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This work presents a comprehensive mathematical
treatment of phononic crystals (PCs) which comprise
a finite lattice of repeated polyatomic unit cells. Wave
dispersion in polyatomic lattices is susceptible to
changes in the local arrangement of the monatoms
(subcells) constituting the individual unit cell. We
derive and interpret conditions leading to identical
and contrasting band structures as well as the
possibility of distinct eigenmodes as a result of cyclic
and non-cyclic cellular permutations. Different modes
associated with cyclic permutations yield topological
invariance, which is assessed via the winding number
of the complex eigenmode. Wave topology variations
in the polyatomic PCs are quantified and conditions
required to support edge modes in such lattices are
established. Next, a transfer function analysis of finite
polyatomic PCs is used to explain the formation of
multiple Bragg band gaps as well as the emergence of
truncation resonances within them. Anomalies arising
from the truncation of the infinite lattice are further
exploited to design mirror symmetrical edge modes in
an extended lattice. We conclude with a generalized
explanation of the band gap evolution mechanism
based on the Bode plot analysis.

1. Introduction
Phononic crystals (PCs) are artificially engineered
structures constructed from a periodic arrangement of
materials in single [1] or multiple directions [2,3]. PCs
are a realization of an array of identical unit cells which,
as a result of their periodic arrangement, enable a rich
domain of unconventional mechanical properties with
applications in vibroacoustic mitigation [4], focusing [5],
flow control [6] and acoustic topological insulators [7].
Of specific interest to this work is the ability of PCs to
exhibit unique wave dispersion properties culminating
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in the formation of phononic band gaps, which are symptomatic of their ability to impede
vibrations within extended frequency ranges [8]. Band gaps in non-dissipative PCs are commonly
explained in light of Bragg scattering and impedance mismatches resulting from their periodic
architecture. This ability to spatially attenuate waves without resorting to rubber-like or soft
viscoelastic polymers places PCs in a unique position to impact applications in need of structural
and acoustic damping without compromising their load-bearing ability. In addition to PCs,
other classes of phononic materials have recently gained traction by including alternative or
supplemental attenuation and/or band gap enhancement mechanisms including, but not limited
to, locally resonant metamaterials [3,9], inertially amplified structures [10,11] and negative
capacitance piezo-shunts [12]. In their most common configuration, PCs are perceived as a
one-dimensional two-layered periodic material that undergoes axial excitation resulting in
longitudinal elastic waves [13]. In its idealized form, a lattice of two distinct spring-mass systems
represents the individual unit cell of such diatomic PC which, over the past decade, has been at
the heart of recent developments in the domains of nonlinear wave guides [14–17], topological
edge states [18] and in breaking wave reciprocity to realize diode-like acoustic structures [19,20].

For wave dispersion analysis, PCs are mathematically treated as spatially infinite periodic
medium [21]. While effective for band structure calculations (e.g. via Bloch-wave and Floquet
methods), this assumption is physically unrealistic. It fails to capture the effects of both:
(i) the number of cells in the finite arrangement and (ii) the terminal boundary conditions on
the PC’s actual response. It is also critical to note that the desired wave manipulation capabilities,
often sought in phononic or locally resonant systems, do not necessarily materialize in finite (i.e.
truncated) realizations with limited number of individual unit cells. Examples of discrepancies
include formation of resonances inside the band gap, and undeveloped band gaps in terms of
attenuation strength and/or width [22]. Hence, understanding the initiation and evolution of the
dynamic properties (such as band gaps) of finite PCs is non-trivial and has recently warranted a
different approach [23–25].

The focus of this work is a generalized class of higher-order phononic lattices structured
from repeated polyatomic unit cells [26–29]. Polyatomic PCs are idealized counterparts of
elastic multi-layered periodic composites [30], the dynamics of which are modelled as periodic
continuants which appear in numerous physics and engineering applications [31]. Given the
added complexity of such higher-dimension systems, performance analysis means are often
based on numerical simulations and approximated methods. As a result, analytical closed-form
solutions which lend insights into the behaviour of finite polyatomic phononic lattices and
provide correlations between dispersion predictions and their actual response remains lacking.
The primary goal of this effort is, therefore, to fill this gap and, in the process, enable us to:
(1) Derive analytical expressions to determine band gap maximum attenuation and sonic speed
of an equivalent continuum model. (2) Examine the effect of different permutations of the
constitutive subcells on: (i) emergent band structures and (ii) eigenvectors (modes) at the band
gap limits. The latter is used to explain, in a coherent manner, intriguing wave phenomena arising
in diatomic lattices (which is a special subset of the polyatomic PCs) such as ‘band inversion’,
‘mirror symmetry’ and ‘edge modes’, which are vital for topologically protected systems [32,33].
We compute and use the winding number of the complex eigenvector associated with the
dispersion relation to quantify the different topological features of such lattices [34]. Finally, we
conclude our study with a generalized Bode plot analysis to help understand the underlying
formation mechanisms of Bragg band gaps in higher-order systems as well as the possibility of
truncation resonances within such gaps.

2. Wave dispersion

(a) Mathematical formulation
Consider an infinite chain of a polyatomic PC with a unit cell comprising Ξ different masses
and stiffnesses as shown in figure 1. The equation of motion of the ξ th mass in the cell is
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Figure 1. Unit cell of a polyatomic phononic crystal (a) and free body diagram of an individual monatom (b). (Online version in
colour.)

given by
mξ üξ + (kξ + kξ+1)uξ − kξuξ−1 − kξ+1uξ+1 = 0. (2.1)

The periodicity of the PC mandates that kξ+Ξ = kξ and, similarly, mξ+Ξ =mξ where ξ =
1, 2, . . . , Ξ . By virtue of the spatial periodicity, implementing the Bloch-wave theorem is possible
and the displacements of the unit cell ends are related. Hence, we write u0 = uΞ e−iβ̄ and
uΞ+1 = u1eiβ̄ , where β̄ is the dimensionless wavenumber and i= √−1 denotes the imaginary
unit. Upon condensing the displacements using the previous conditions, the complete set of
equations governing the motion of the entire unit cell can be written in the compact matrix form:

Mcüc(t) + Kc(β̄)uc(t) = 0, (2.2)

where (¨) = (d2/dt2) denotes the second derivative in time t and

uc(t) =
{
u1(t) u2(t) . . . uΞ (t)

}T
, (2.3a)

Mc
Ξ×Ξ

= diag
[
m1,m2, . . . ,mΞ

]
(2.3b)

and Kc(β̄)
Ξ×Ξ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 . . . 0 −k1e−iβ̄

−k2 k2 + k3 −k3 0 . . . 0

0 −k3
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0
. . .

. . . −kΞ

−k1eiβ̄ 0 . . . 0 −kΞ kΞ + k1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3c)

Assuming a harmonic solution uc(t) = ûc(ω)eiωt, the dynamic stiffness matrix Dc(β̄, ω) =
[Kc(β̄) − ω2Mc] can be found and equation (2.2) is reduced to Dc(β̄, ω)ûc(ω) = 0. The dispersion
relation can be found by setting the determinant of Dc equal to zero (henceforth, we use Dc ≡
Dc(β̄, ω) for brevity). Now, let us define a matrix that is based on the tridiagonal part of the matrix
Dc (as if eiβ̄ = e−iβ̄ = 0) which is denoted here by D̄c. Next, we denote �i,j = |D̄c(i : j, i : j)| as the
determinant of the main minor of the matrix D̄c constructed from the rows and columns spanning
i to j, such that j≥ i. Making use of the linear property of expanding a matrix’s determinant into a
sum of two determinants (For more details, see [35,36]), it can be shown that

|Dc| = �1,Ξ − k2
1�2,Ξ−1 − 2� cos(β̄), (2.4)

where � = k1k2 . . . kΞ . For the special case of i≥ j, the determinant �i,j yields different values as
follows [37]:

�i,j =

⎧⎪⎪⎨
⎪⎪⎩

0 j< i − 1

1 j= i − 1

di j= i

, (2.5)

where di = (ki+1 + ki − miω
2) are the diagonal elements of Dc. To obtain an explicit form of the

determinant |Dc| in equation (2.4), an expression for �i,j is derived. To facilitate the analysis, we
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factor out a diagonal matrix Ci,j from �i,j as follows:

�i,j =

∣∣∣∣∣∣∣∣∣∣

ci
ci+1

. . .
cj

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Ci,j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

di
ci

−ki+1

ci

−ki+1

ci+1

. . .
. . .

. . .
. . . − kj

cj−1

−kj
cj

dj
cj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
�̄i,j

, (2.6)

such that the opposing off-diagonal elements of �̄i,j have the product of 1. The entries ci are
defined as

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2k4 . . . kΞ−1

k3k5 . . . kΞ
i= 1

k2
k3k5 . . . kΞ
k4k6 . . . kΞ−1

i= 2

ki
k3k5 . . . ki−2 ki+1ki+3 . . . kΞ−1

k2k4 . . . ki−1 ki+2ki+4 . . . kΞ
mod(i, 2) �= 0, i �= 1

ki
k2k4 . . . ki−2 ki+1ki+3 . . . kΞ
k3k5 . . . ki−1 ki+2ki+4 . . . kΞ−1

mod(i, 2) = 0, i �= 2

, (2.7)

for odd Ξ , and

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2k4 . . . kΞ
k3k5 . . . kΞ−1

i= 1

k2
k3k5 . . . kΞ−1

k4k6 . . . kΞ
i= 2

ki
k3k5 . . . ki−2 ki+1ki+3 . . . kΞ
k2k4 . . . ki−1 ki+2ki+4 . . . kΞ−1

mod(i, 2) �= 0, i �= 1

ki
k2k4 . . . ki−2 ki+1ki+3 . . . kΞ−1

k3k5 . . . ki−1 ki+2ki+4 . . . kΞ
mod(i, 2) = 0, i �= 2

, (2.8)

for an even Ξ , respectively. Here, the ‘mod’ function denotes the modulo operator. An interesting
feature of tridiagonal matrices is that two tridiagonal matrices have an equivalent determinant
if their diagonals are identical and the product of each opposing off-diagonal elements gives
matching values [37]. As such, �̄i,j is equivalent to the following determinant:

�̄i,j =

∣∣∣∣∣∣∣∣∣∣∣

d̄i 1

1
. . .

. . .
. . .

. . . 1
1 d̄j

∣∣∣∣∣∣∣∣∣∣∣
, (2.9)

where d̄i = mi
ci

(ω2
i − ω2) and ω2

i = (ki + ki+1)/mi and the structure of the matrix is analogous to that
of a simple continuant with its determinant �̄i,j being a function of the diagonal elements only
[38]. By increasing the order of the matrix and observing the pattern of �̄i,j, a generalized equation
for such determinant can be deduced. The equation is found to be a successive summation of the
product of the following terms:

�̄i,j =
∑
ξ̄

(−1)
Ξ̄−ξ̄

2
∑
i1

∑
i2

. . .
∑
iξ̄

d̄i1 d̄i2 . . . d̄iξ̄ + (−1)
Ξ̄
2 δmod(Ξ̄ ,2),0, (2.10)
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where δmod(Ξ̄ ,2),0 is the Kronecker delta, Ξ̄ = j − i + 1 is the order of the matrix minor and ξ̄ =
1, 3, . . . , Ξ̄ or ξ̄ = 2, 4, . . . , Ξ̄ for odd and even Ξ , respectively. The summation indices are

i1 = i, i + 2, . . . , j − ξ̄ + 1 (2.11a)

i2 = i1 + 1, i1 + 3, . . . , j − ξ̄ + 2 (2.11b)

...

iξ̄ = iξ̄−1 + 1, iξ̄−1 + 3, . . . , j − ξ̄ + ξ̄ . (2.11c)

Examples of the indices combinations are provided in the supplementary material. Based on
the determinant �̄i,j and the expansion of the di1di2 . . . diξ̄ terms in equation (2.10), the closed-form
expression of the dispersion relation for a polyatomic PC comprising Ξ monatomic subcells can
be derived as

2�
(

1 − cos(β̄)
)

+
Ξ∑

ξ=1

(−1)ξ αξω
2ξ = 0. (2.12)

It is worth noting that, as clearly observed in equation (2.12), the expression α0 always reduces to
2�, which is in line with the findings of [26,27] and αξ = α

1,Ξ
ξ − k2

1α
2,Ξ−1
ξ , where

α
i,j
ξ = |Ci,j|

∑
ξ̄≥ξ

(−1)(Ξ̄−ξ̄ /2)
∑
i1

. . .
∑
iξ̄

r̄∑
ir=1

mi1 . . .miξ̄

ci1 . . . ciξ̄

⎛
⎝∏

r̂∈rir
ω2
r̂ (1 − δ(ξ̄−ξ ),0) + δ(ξ̄−ξ ),0

⎞
⎠ (2.13)

such that r̄= (
ξ̄
ξ

)
and ⎡

⎢⎢⎢⎢⎣
r1
r2
...
rr̄

⎤
⎥⎥⎥⎥⎦=

(i1, i2, . . . , iξ̄
ξ̄ − ξ

)
. (2.14)

Solving equation (2.12) over the range β̄ ∈ [0, π ]—also known as the irreducible Brillouin
zone (IBZ)—results in Ξ dispersion branches (bands) and provides the free-wave solution of
the dispersion equation. Once the coefficients of the dispersion relation are determined, the
driven-wave solution, where the wavenumber is found as a function of the excitation frequency
β̄(ω) = cos−1(Φ(ω)), can be cast as

Φ(ω) = 1 + 1
α0

Ξ∑
ξ=1

(−1)ξ αξω
2ξ . (2.15)

(b) Band gap attenuation extrema
Within a band gap, the wavenumber β̄ is complex and its imaginary component dictates the rate
of attenuation of the wave’s spatial profile in its propagation direction. The complex component
of the wavenumber is often obtained from the driven-wave problem, i.e. equation (2.15), which
represents a system undergoing an excitation which has a prescribed frequency. To find the
frequencies corresponding to the utmost wave attenuation within a set of band gaps (attention
extrema), the derivative of Φ(ω) with respect to ω is evaluated and is equated to zero

dΦ(ω)
dω

= 2
α0

Ξ∑
ξ=1

(−1)ξ ξαξω
2ξ−1 = 0, (2.16)

which can be simplified as

dΦ(ω)
dω

=
Ξ∑

ξ=1

(−1)ξ ξαξω
2(ξ−1) = 0, (2.17)



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190022

...........................................................

such that it includes non-zero solutions of ω. The roots of equation (2.17) return the frequency
of maximum attenuation within a band gap and are, therefore, expressed as ωmax. We substitute
these roots back into equation (2.15) and then into β̄(ωmax) = cos−1(Φ(ωmax)) to find the maximum
attenuation constant �[β̄(ωmax)] corresponding to ωmax [8]. The number of bounded band gaps
exhibited by a polyatomic PC is one short of the number of dispersion branches, i.e. (Ξ − 1), and,
hence, there exists an equivalent number of (ωmax, �[β̄(ωmax)]) pairs.

(c) Sonic speed
The sonic speed cs of a lattice represents the initial slope of the acoustic branch of the dispersion
relation, which symbolizes the propagation speed of a wave packet (i.e. group velocity) in the
elastic medium at the long wavelength limit. An identical cs is conventionally employed as a
baseline to compare the dissipative performance of different classes of phononic materials [39].
Two different periodic structures with matching sonic speeds (i.e. initial dispersion slope) are said
to possess static equivalence. Here, an analytical derivation of the sonic speed of the polyatomic
PC is presented. To find the desired slope, we evaluate the derivative of equation (2.12) with
respect to β̄:

� sin(β̄) + ∂ω

∂β̄

Ξ∑
ξ=1

(−1)ξ ξαξω
2ξ−1 = 0. (2.18)

In the vicinity of β̄ = 0, the dispersion relation can be assumed linear and the phase velocity
approaches the group velocity, i.e. (∂ω/∂β̄) ≈ (ω/β̄). Given that at β̄ ≈ 0, ω is also infinitesimal
and, therefore, all higher-order terms of ω can be neglected. Considering ξ = 1 only and applying
the previous assumptions with sin(β̄) ≈ β̄, equation (2.18) now reads

� − α1

(
∂ω

∂β̄

)2
= 0. (2.19)

Rearranging the previous equation and applying cs = (∂ω/∂β̄) gives

cs = ∂ω

∂β̄
=
√

�

α1
, (2.20)

where α1 is given by

α1 =
Ξ∑

ξ=1

mξ

⎛
⎝ Ξ∑

ξ=1

kξ kξ+1 . . . kξ+Ξ−2

⎞
⎠ . (2.21)

The second term in equation (2.21) can be found by adding the product of Ξ − 1 subgroups of
the vector [k1, k2, . . . , kΞ ], i.e.: (

k1, k2, . . . , kΞ
Ξ − 1

)
. (2.22)

The order of the vector [k1, k2, . . . , kΞ ] does not influence the outcome of equation (2.22) which
implies that adding the product of the resulting subgroups is indifferent to the arrangement of the
elements in [k1, k2, . . . , kΞ ]. This leads to the conclusion that all possible arrangements of material
properties within a polyatomic unit cell exhibit identical sonic speeds at the long wave speed
limit.

(d) Effect of subcell (monatom) arrangement
For the simple diatomic PC, changing the order of the material properties, i.e. 1–2 or 2–1, does not
influence the final dispersion relation [18]. On the other hand, the dispersion relation of a higher-
order polyatomic PC (Ξ > 2) is susceptible to changes in the subcell arrangement. As such, it is
of interest to examine the possible dispersion outcomes associated with various combinations
of subcell orders. As an illustrative example, and without loss of generality, we consider the
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Figure 2. Possible permutations of a triatomic PC (A through F) and their corresponding dispersion diagrams. Solid and dashed
lines denote the real and imaginary components of the non-dimensional wavenumber β̄ , respectively. Labels for cs (sonic
speed) andωmax (frequency of maximum attenuation) are marked on both diagrams. (Online version in colour.)

dispersion characteristics of a triatomic PC with all possible permutations of its constitutive
monatoms. Figure 2 shows all of the combinations and their respective dispersion relations for
m1 = k1 = 1, m2 = k2 = 2 and m3 = k3 = 3. We notice that the triatomic PC can be configured in six
different permutations which yield only two distinctive band structures. The permutations that
share identical dispersion relations are found to be cyclic, for instance, the groups A,B and C in
figure 2.

As explained earlier, the sonic speed is immune to the cellular arrangement, although the
band gap widths change significantly as can be seen in figure 2, a fact that is pivotal in the
design stages. In other words, when limited to a particular set (database) of materials, choosing
a specific permutation is primarily contingent on the design requirement. It is important to
note here that some permutations may initially seem as reciprocals of each other, but, in truth,
they yield different dispersion relations (e.g. 1–3–2 and 2–3–1). This property is characteristic of
lumped spring-mass systems where, contrast to continuous phononic bars/beams, the reciprocal
configurations do not mirror each other. Specifically, the arrangement 1–3–2 is defined by the
sequence k1–m1–k3–m3–k2–m2 while 2–3–1 corresponds to k2–m2–k3–m3–k1–m1. If we consider m3
as an example, the first case shows that it is connected with k2 and k3 unlike the second case,
where it is coupled with k1 and k3. Each of these cases results in a different dynamic matrix
yielding distinct dispersion relations as a consequence, an effect that disappears when the masses
are identical, or with alike springs and different masses. A systematic proof of the invariance
of the dispersion relation under cyclic permutations using the transfer matrix method (TMM) is
detailed in the supplementary material.

Based on the discussion above, a generalization of the number of distinct band structures of a
polyatomic PC can be stated as follows: for a unit cell with Ξ different materials (i.e. different
masses and stiffnesses), there exists (Ξ − 1)! sets of distinct dispersion diagrams and for the
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Figure 3. Dispersion diagrams up to ω = 2 for a tetratomic PC for k1 = 1, k2 = 2, k3 = 3 and k4 = 1/4. Unit cell masses
are chosen as follows: m1 = 1, m2 = 2, m3 = 3 and m4 = 1/4 (left), m1 = m2 = m3 = m4 = 1 (right). Six distinct band
structures exist for the arrangement on the left (non-identicalmasses) compared to only three for the one on the right (identical
masses). The non-cyclic permutations used to produce the dispersion diagram are displayed for reference. The reciprocal unit
cell arrangements yield the same dispersion diagram when masses are equal. (Online version in colour.)

cases with equal values of masses or stiffnesses, the number of distinct sets is halved. Figure 3
shows two cases of a tetratomic lattice: the first consists of distinct masses and stiffnesses, while
the second comprises uniform masses but dissimilar spring constants. The tetratomic lattice (i.e.
Ξ = 4) exhibits 24 permutations with (Ξ − 1)! = 6 distinct dispersion diagrams for the first case,
while the number of diagrams is halved for the second case as a result of the identical masses. The
reason being that these non-cyclic permutations are reciprocals of one another and can be deduced
from a deliberate selection of the unit cell. For an extended tetratomic PC of the sequence 1–2–
3–4–1–2–3–4. . ., the unit cell can be selected from left-to-right or right-to-left, which, for instance,
yields the permutations 1–2–3–4 and 1–4–3–2 when spring 1 is set as a starting point.

(e) Eigenvectors at band gap limits
An important aspect to highlight regarding cyclic permutations is the behaviour of the
eigenvectors at the edges of a given band gap, a criterion which has lately garnered considerable
attention in the domains of topological edge states and insulators in periodic acoustic and
mechanical systems [40,41]. The limits of a band gap are found from the solution of the dispersion
relation (i.e. the eigenvalues of Dc) at the boundaries of the IBZ, i.e. β̄ = 0, π . To derive the
corresponding eigenvector, we set the displacement amplitude of the last mass to unity, i.e.
ûΞ = 1, and compute relative amplitudes of the rest of the displacement field using:

ûξ−1 = kξ
Dξ−1

ûξ ± k1k2 . . . kξ−1

D1D2 . . .Dξ−1
, (2.23)

where + and − represent β̄ = 0 and β̄ = π , respectively. The D terms are derived based on the
Gaussian elimination of the reduced eigenvalues problem with the substitution of an eigenvalue
and is given by the following general formula:

Dξ+1 = dξ+1 −
k2
ξ+1

Dξ
= dξ+1 −

k2
ξ+1

dξ − (k2
ξ /(dξ−1 − (k2

ξ−1/
. . .)))

, (2.24)

which is analogous to the computation of a continuous fraction [42]. Note that D1 is equal to d1.
For a set of cyclic permutations, it suffices to compute the eigenpairs for one of them. While the



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190022

...........................................................

w

w

A

A B C1 2 3 2 21 13 3

0

B C

A B C

b

b

p

0 p

first band gap

second band gap

Figure 4. Mode shapes of one group of the cyclic permutations of the triatomic PC displayed in figure 2, namely: A, B and C, at
the edges of both the first and second band gaps. (Online version in colour.)

eigenvalues of cyclic permutations remain unchanged, the eigenvectors are, however, unique and
found by applying a permutation matrix P to the computed eigenvector, which reads

P
Ξ×Ξ

=
[

0 IΞ−1
±1 0

]
, (2.25)

where ± conditions are identical to that of equation (2.23). For example, if we start with
the permutation 1–2–. . . − Ξ , then multiplying the eigenvector with the permutation matrix
P once produces a new eigenvector that belongs to the permutation 2–3–. . . − Ξ − 1. The
proposed technique for computing the eigenvectors for cyclic permutations is, however, valid
for combinations of spring constants and masses that render the matrix Dc a spectrum with
unrepeated entities (i.e. an indefective Dc matrix). Given a specific eigenvalue, if all corresponding
eigenvectors from the different cyclic permutations are cast into one matrix, denoted here as U,
the following pattern is observed:

U
Ξ×Ξ

=
[
ûc Pûc . . . PΞ−2ûc PΞ−1ûc

]
. (2.26)

Figure 4 shows the eigenvectors (mode shapes) of the different triatomic PC permutations,
namely: A, B and C, at the edges of both band gaps. In the case of the first gap, the sign of the
permuting mass changes with every sequence but its amplitude is preserved. For the second gap,
a similar behaviour is observed albeit without the sign change, as evident from the permutation
matrix P. Alternatively, the results obtained from the permutation matrix P can be also deduced
from the phase shift between neighbouring unit cells. Based on Bloch boundary conditions, the
displacement of the ξ th mass of the ith unit cell is related to its peer in the adjacent (i + 1)th
cell via uΞ+ξ = uξ eiβ̄ . That is, the unit cells as a block flip signs if the band gap is sandwiched
between two limits at β̄ = π while preserve their sign when the band gap is sandwiched between
two limits at β̄ = 0. If the cyclic permutations are selected from the two successive unit cells as
illustrated in figure 5 (shown for the upper limit of both gaps in figure 4), the same behaviour
concluded from the permutation matrix P in equation (2.25) and displayed in figure 4 is recovered.
The concept of the permutation matrix P shown here serves as an elementary proof for the
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Figure 5. Illustrative schematic of the eigenvectors (mode shapes) of two neighbouring unit cells at the upper limit of the first
and second band gaps in figure 4, corresponding to β̄ = π and β̄ = 0, respectively. (Online version in colour.)

‘band inversion’ phenomenon reported in diatomic PC lattice [18,34]. Conventionally, in-phase
oscillations typically reside in the acoustic branch while out-of-phase oscillations occur in the
optic branch. Band inversion refers to a situation where in-phase and out-of-phase modes switch
places at the limits of the band gap between the acoustic and optic branches following cyclic
permutations. Starting with the eigenvectors at the band gap limits: u1

c = {1, 1}T and u2
c = {−1, 1}T

for a diatomic lattice with unequal stiffnesses and identical masses, the permutation matrix
(with a negative sign) can be applied to produce v1

c = Pu1
c = {1, −1}T ≡ {−1, 1}T and v2

c = Pu2
c =

{−1, −1}T ≡ {1, 1}T, corresponding to the eigenvectors of the cyclic permutation.

(f) Topological aspects of polyatomic phononic crystals
It is now established that polyatomic lattices with cyclic cellular permutations share identical
band structures (i.e. eigenvalues) but non-matching eigenvectors, a feature which motivates an
investigation of their topological properties. The Zak phase is a well-known metric in wave
topology that distinguishes between different unit cell candidates which have a distinct band
structure [18,43]. Normalizing the Zak phase by a unit of π leads to the winding number ν of the
eigenvector around the origin of the complex plane (we refer the reader to current literature for
more on the calculation of ν [34,44]). As a starting point, consider a triatomic lattice with equal
masses and one different spring per unit cell, as shown in figure 6a. The motivation behind this
choice will become clear shortly. The cyclic permutations of such arrangement, shown in figure 6a,
expectedly generate an identical band structure. However, only one permutation possesses an
integer value of ν, which is non-zero for k1 > k2 (figure 6b). This permutation exhibits mirror
symmetry about the spring separating two successive unit cells. In other words, cells on each side
of the mirror (within the dashed boundaries) are reciprocal arrangements of one another. If more
than one spring is allowed to be different, the mirror symmetry condition cannot be satisfied and
ν will not be quantized, i.e. the associated system can no longer be topologically protected. It is
worth noting that the fact that the Zak phase is not always quantized (implying that ν is not an
integer by necessity) and its dependence on unit cell symmetry has been noted in the literature
[43]. Further, a correction factor has also been suggested to sustain the integer nature (in π units)
of the Zak phase [45].
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As indicated earlier, ν quantifies the number of times an eigenvector winds around the origin
of the complex plane. In a diatomic PC, the eigenvector may be normalized such that one
component remains real while the other is complex and, therefore, the rotation about the origin
can be unambiguously illustrated in the complex plane. For the triatomic case, on the other hand,
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Figure 7. (a) Cyclic permutations of a triatomic lattice with identical springs and varying masses. (b) Winding numbers ν
associated with the dispersion branches of them1–m2–m3 unit cell form1 > m2 andm1 < m2. (Online version in colour.)

the eigenvector is three-dimensional and normalizing the first to be real leaves two complex
components. The winding of the eigenvector in this scenario can be visualized by the rotation
of a line connecting the two complex components as a function of the wavenumber β̄. This is
graphically depicted in figure 6c and d for k1 > k2 and k1 < k2, respectively. The eigenvector does
not encircle the origin for k1 < k2 and, hence ν is zero. For k1 > k2, it winds around the origin once
for the first and third modes and twice for the second mode. Unlike the diatomic PC, a unique ν

may not be assigned to the entire lattice. Instead, it is defined for individual bands when Ξ > 2 as
evident by the unequal values of ν when k1 > k2. Visualizing the eigenvector rotation around the
origin for higher-order hierarchies of the polyatomic PC might not be as straightforward. For a
tetratomic PC, as a case in point, this may be visualized as the winding of an area connecting
three complex components of the eigenvector around the origin. For higher-order lattices, it
becomes a difficult exercise in imagination. Mirror symmetry in polyatomic PCs with Ξ > 2 is
not limited to polyatomic lattices with identical masses, and can be generalized to configurations
with different masses and identical springs. Such generalization is not feasible for diatomic PCs
[34]. An illustrative schematic and an example of this case are displayed in figure 7.

A closing of the band gap is an indispensable condition to obtain two lattices with topologically
invariant metrics. The examples provided in figures 6 and 7 satisfy this condition at k1 = k2 and
m1 =m2, respectively. In other words, the gap closes and opens again as we transition from
k1 > k2 (or m1 >m2) to k1 < k2 (or m1 <m2), changing the winding number ν as a result. As the
number of monatoms comprising the polyatomic unit cell grows, the possible combinations of
springs (or masses) that forces at least one band gap to close also increases. The reason being
that, in polyatomic PCs, a higher number of variations within a unit cell remains possible without
violating the mirror symmetry requirement. In fact, (Ξ − 1)/2 springs (or masses) in a unit cell
with an odd number of monatoms are allowed to be different. For example, for a triatomic
cell (i.e. Ξ = 3), this shown by the sole ‘red’ spring in figure 6a. As long as one of the cyclic
permutations of the unit cell is symmetric, e.g. the k1 − k2 − k1, then there exists one permutation
among this group that satisfies mirror symmetry and, consequently, yields an integer winding
number ν. In the case of varying masses and identical springs, as shown in figure 7, the symmetric
unit cell configuration (i.e. m1 − m2 − m1) automatically guarantees such mirror symmetry. The
aforementioned criteria do not extend to unit cells with an even number of monatoms where more
than one arrangement can satisfy mirror symmetry within one cycle of permutations.

To attain a clear picture of topological variations in polyatomic lattices, we exploit barycentric
coordinates as a means to construct a map of the ν values corresponding to various combinations
of lattice properties. We limit the analysis here to polyatomic lattices with identical masses and
modulated springs, while maintaining the mirror symmetry condition. In the barycentric space,
a constraint is specified between the variables of interest and every possible combination thereof
is swept within the constrained space. In the top row of figure 8, for example, the stiffnesses k1
and k2 of a triatomic lattice (figure 6) are swept by a line (1-simplex) such that (k1 + k2) is equal
to a constant k and the resultant ν is indicated. The lines are colour-coded such that segments
sharing the same ν also share the same colour. The coordinates along the line are (k1, k2) and the
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midpoint corresponds to k1 = k2 = (k/2), where the band gaps close. The two vertices, i.e. (k, 0)
and (0, k), are labelled as k1 and k2 to emphasize the dominance of one variable relative to the
other as we approach a vertex. The ratio between the variables becomes either zero or infinity at
each of the two vertices (e.g. (k1/k2) = (k/0) = ∞ at the k1 vertex). Extending the analysis to three
variables is similar in concept with the constraint being k1 + k2 + k3 = k. As such, the barycentric
space becomes a triangle (2-simplex) as in the cases of the tetratomic and pentatomic unit cells
depicted in the second and third rows of figure 8. The dashed lines separate the various ν regions
(shaded using the same colour codes) and a detailed description of the different combinations
of k1, k2 and k3 is provided in the key at the bottom of the figure. It is important to note that
moving along the edges of the triangle dictates that one of the spring constants is zero, which
is physically unrealistic. Hence, the values obtained at the edges are excluded and the spanned
space is infinitesimally smaller than the barycentric triangle. For a heptatomic lattice with four
stiffness variables, the domain of barycentric coordinates extends to a tetrahadron (3-simplex).
Once again, the dashed border lines separate the various ν regions and correspond to band gap
closings. Every border line is shared between two neighbouring modes and moving along it closes
the band gap sandwiched between these modes. Consequently, if a common border line does
not exist between two modes, then the sandwiched band gap remains open for all considered
combinations and, as a result, ν remains unaltered. Beyond heptatomic lattices, the corresponding
simplex will encounter a larger number of vertices and will permit a similar, albeit more complex,
analysis to be conducted.

3. Structural dynamics of a finite polyatomic phononic crystal lattice

(a) Equations of motion
The equations of motion of a finite polyatomic PC give rise to a class of matrices known as periodic
continuant matrices [31]. The continuant matrix usually comprises a period Ξ , which denotes the
number of subcells, and a number of periods (cells) n with a class r resulting in a matrix order of
N = nΞ + r. In particular, we are interested in cases with r= 0 (note that r= mod(N, Ξ )) implying
that the structure has an integer number of cells (complete periods), whereas r �= 0 is indicative of
an incomplete last period. Hence, the dynamics of a polyatomic PC is given by

Mü(t) + Ku(t) = f(t), (3.1)

where M= In ⊗ Mc and

Kij =

⎧⎪⎪⎨
⎪⎪⎩
ki+1 + ki − (εδi,1 + εδi,N) i= j

−kmax(i,j) |i − j| = 1

0 |i − j| �= 1, 0

(3.2a)

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uc1 (t)
uc2 (t)

...
ucn (t)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2b)

and f(t) =
{
f (t) 0 . . . 0

}T
, (3.2c)

such that ⊗ is the Kronecker product, In is the unit matrix with size n × n and ucn (t) is the
displacement vector of the nth unit cell. The excitation f (t) is imposed on the first mass since
the interest of the current analysis is to ultimately find the end-to-end transfer function. The
stiffness matrix K is generalized for a polyatomic structure with any prescribed boundary
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conditions represented by the variables ε and ε. Applying the Laplace transform and introducing
D=Ms2 + K, we arrive at

D(s)u(s) = f(s), (3.3)

where

Dij(s) =

⎧⎪⎪⎨
⎪⎪⎩
di(s) − (εδi,1 + εδi,N) i= j

−kmax(i,j) |i − j| = 1

0 |i − j| �= 1, 0.

(3.4)

(b) Transfer function
(i) System poles

The characteristic polynomial (containing the poles of the dynamical system) is derived from
the determinant of the dynamic stiffness matrix in equation (3.4). Here, we start by stating the
characteristic polynomial φN(λ), where λ is the eigenvalue, for an unperturbed matrix (i.e. ε = ε =
0) which resembles a fixed-fixed lattice with general matrix size N [37]:

φN(λ) = ��N/Ξ�
[
�1,r(λ)U�N/Ξ�(νΞ (λ)) + k2

2k
2
3 . . . k2

r+1k
2
1

�
�r+2,Ξ−1(λ)U�(N−Ξ )/Ξ�(νΞ (λ))

]
, (3.5)

where �·� denotes the floor function and U�N/Ξ�(νΞ (λ)) is the Chebyshev polynomial of the second
kind and its input function νΞ (λ) is given by

νΞ (λ) = 1
2�

(
�1,Ξ (λ) − k2

1�2,Ξ−1(λ)
)

. (3.6)

Here, the term �i,j is the s-domain version of equation (2.4), i.e. s2 = −ω2. Given that D(s)
is a perturbed matrix, we expand the first and last rows of the determinant of D(s) into a sum of
determinants using the linear property of determinants to make use of equation (3.5). This process
results in the characteristic polynomial of the perturbed D(s)

φ∗
N(λ) = φN(λ) + εφ̄N−1(λ) + εφN−1(λ) + εεφ̄N−2(λ), (3.7)

where

φ̄N = ��N/Ξ�
[
�2,r+1(λ)U�N/Ξ�(νΞ (λ)) + k2

3k
2
4 . . . k2

r+2k
2
2

�
�r+3,Ξ (λ)U�(N−Ξ )/Ξ�(νΞ (λ))

]
. (3.8)

For brevity, we write φN(λ) henceforth as φN (and similarly for the other terms) and substitute
N = nΞ . Hence, each term in equation (3.7) can be written in its final form by using the definitions
stated in equations (3.8) and (2.5):

φΞn = �nUn(νΞ ) + �n−1k2
1�2,Ξ−1Un−1(νΞ ), (3.9a)

φΞn−1 = �n−1�1,Ξ−1Un−1(νΞ ), (3.9b)

φ̄Ξn−1 = �n−1�2,ΞUn−1(νΞ ) (3.9c)

and φ̄Ξn−2 = �n−1�2,Ξ−1Un−1(νΞ ) + �n

k2
1
Un−2(νΞ ). (3.9d)
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Note that the k2
2k

2
3 . . . k2

r+1 becomes unity if r< 1. Here, a special emphasis is placed on the free–
free case of the polyatomic PC. After substituting the boundary condition values (ε = ε = −k1 for
an unconstrained PC), equation (3.7) reduces to

φ∗
Ξn = �n

[
Un(νΞ ) + Un−2(νΞ ) − k1

�

(
�2,Ξ + �1,Ξ−1 − 2k1�2,Ξ−1

)
Un−1(νΞ )

]
. (3.10)

Knowing that Un(cos(θ )) = sin((n + 1)θ )/sin(θ ) from Chebyshev polynomial properties,
equation (3.10) now reads

φ∗
Ξn = �n

sin(θ )

[
sin

(
(n + 1)θ

)+ sin
(
(n − 1)θ

)− k1

�

(
�2,Ξ + �1,Ξ−1 − 2k1�2,Ξ−1

)
sin (nθ)

]
. (3.11)

Note here that setting νΞ = cos(θ ) results in equation (2.4), i.e. the dispersion relation, which
governs the eigenvalues of the system with θ being the solutions of φ∗

Ξn = 0. With a few further
manipulations and exploiting trigonometric identities, we obtain

φ∗
Ξn = �n−1

[
2� cos(θ ) − k1(�2,Ξ + �1,Ξ−1 − 2k1�2,Ξ−1)

]
sin (nθ)

sin(θ )
. (3.12)

Making use of equation (3.6) and the fact that νΞ = cos(θ ) as stated earlier, we arrive at

φ∗
Ξn = �n−1

[
�1,Ξ − k1�2,Ξ − k1�1,Ξ−1 + k2

1�2,Ξ−1

]
sin (nθ)

sin(θ )
. (3.13)

From equation (3.7), it can be shown that

�∗
1,Ξ = �1,Ξ − k1�2,Ξ − k1�1,Ξ−1 + k2

1�2,Ξ−1 (3.14)

is the determinant of the matrix D̄c with a perturbation value of ε = ε = −k1 (i.e. single
unconstrained unit cell) and, therefore, the characteristic polynomial of the perturbed D(s) is
written as

φ∗
Ξn = �n−1�∗

1,Ξ
sin(nθ )
sin(θ )

. (3.15)

Setting the characteristic polynomial in equation (3.15) equal to zero yields the solutions of
θ� = (�π/n), for � = 1, 2, . . . , n − 1 and the corresponding eigenvalues are found from the roots of
the following polynomial:

P(s) = �∗
1,Ξ

n−1∏
�=1

⎛
⎝ Ξ∑

ξ=1

αξ s2ξ + 2�
(

1 − cos(θ�)
)⎞⎠ . (3.16)

The second term in equation (3.16) is the s-domain version of the dispersion relation in
equation (2.12), which means that the roots of equation (3.16) satisfy the dispersion relation
and lie on one of the dispersion branches. As a result, θ� can be seen as a discretized form
of the wavenumber. Furthermore, the lattice’s natural frequencies correspond to the dispersion
relation roots at such discrete points [8]. The first term �∗

1,Ξ , on the other hand, represents what
are often denoted as truncation poles. Its roots do not necessarily satisfy the dispersion relation
and, consequently, often appear inside the band gap. The presented analysis can be extended to
other boundary conditions, i.e. other values of ε and ε (for a comprehensive list of other possible
boundary conditions, refer to [8]). However, an explicit solution of θ� is not always guaranteed.

(ii) System zeros

Unlike the system poles in equation (3.16), the zeros polynomial Z(s) of the dynamical system
is established based on the desired actuation and sensing locations (i.e. the input and output).
The structure of the tridiagonal matrix describing the dynamics of the polyatomic lattice, i.e.
D(s), allows the determination of the zeros of the transfer function using the determinant of a
minor of the matrix D(s). For the specific case of the end-to-end transfer function, the matrix of
interest is a minor of D(s) constructed by deleting the first row (corresponding to the excitation
location) and the last column (corresponding to the sensing location) and its determinant can
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Figure 9. (a) Frequency response functions (FRFs) of a triatomic PC with n= 10 cells for all possible unit cell permutations: A
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circles and the analytically obtainedωmax is representedwith vertical dashed lines. Shaded regions on all sub-figures represent
the theoretical band gap ranges. (Online version in colour.)

be shown to be equal to the product of the off-diagonal elements of D(s), which, in our case,
results in Z(s) = �n/k1. The procedure of deriving the zeros polynomial explained earlier has been
thoroughly discussed in Miu [46,47] and recently applied in the context of periodic structures
by the authors [8,11,22]. As such, the details of these derivations are omitted here for brevity.
Finally, the ratio of the zeros to the characteristic (poles) polynomials provides the sought
end-to-end transfer function:

uΞn(s)
f (s)

= Z(s)
P(s)

= �n/k1

�∗
1,Ξ

∏n−1
�=1

(∑Ξ
ξ=1 αξ s2ξ + 2�

(
1 − cos(θ�)

)) . (3.17)

(iii) Frequency response function

The frequency response function (FRF) of the different permutations of a finite triatomic lattice
(shown in figure 2) is extracted from the transfer function in equation (3.17) by substituting s= iω.
Figure 9 shows these FRFs for n= 10 (a) as well as the pole (i.e. natural frequencies) distribution
projected on the dispersion curves (b). The results have been also validated by solving u(ω) =
D(ω)−1f(ω) numerically. As expected, each group of cyclic permutations which share an identical
dispersion relation exhibit the same band gap frequency range as well as the same set of natural
frequencies obtained from the second term of equation (3.16). However, a key difference between
the different cyclic permutations is the location of the truncation poles (i.e. poles that lie within
the band gap range in this example) given instead by the roots of the term �∗

1,Ξ . The presence
of a truncation pole represents a discontinuity within the finite PC’s band gap which also alters
the location (frequency) of the maximum attenuation point. This can be seen in the discrepancy
between the numerically obtained maximum attenuation in the FRF (marked as circles in figure 9)
and the analytically obtained ωmax (vertical dashed line in figure 9). Although ω = 0 is a solution
for �∗

1,Ξ , it cannot be considered as a truncation pole as it does not occur within a band gap, in
addition to the fact that it satisfies the dispersion relation for β̄ = 0. Instead, ω = 0 indicates a rigid
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body mode of the unconstrained lattice as a result of the free–free boundary conditions. In what
follows, we elaborate on the behaviour of finite PCs at the truncation frequencies that manifest
themselves within a band gap.

(c) Edge modes in polyatomic lattices
(i) Truncation poles and corresponding eigenmodes

The presence of a resonant frequency (pole) within a band gap of a finite PC is a byproduct
of the truncation of the infinite structure [6]. Furthermore, the derived expression for �∗

1,Ξ
in equation (3.14) indicates that such truncation poles coincide with the poles of a single
unconstrained unit cell. Mode shapes associated with truncation poles resemble a propagating
wave with an exponential spatial decay profile starting from one end of the finite lattice. This is
demonstrated in figure 10 for the three first permutations of the triatomic lattice (i.e. A through
C). Note that a mode shape is a property of the dynamical system and does not change with
different excitation locations. Thus, a triatomic PC with the configuration C, for example, will
always have the mode shapes in figure 10 even if the excitation is imposed on the first mass
(i.e. mass index = 1 in the figure). In the latter case, the wave can be therefore perceived as
exponentially growing, instead of decaying, from the excitation point. Based on the behaviour
of the mode shapes, several observations are made: (i) the spatial decay of the wave is rapid for
poles that are closer to ωmax of the respective band gap, (ii) large localized displacement may
occur at either of the end masses regardless of the excitation location and (iii) the alike masses
move out- or in-phase for the first and second truncation pole, respectively, validating the results
in figure 5. These modes are reminiscent of edge modes in two-dimensional structures where a
large localized displacement materializes on one of the system boundaries [48].

All the cases portrayed in figure 10 describe lattices with different masses and spring constants,
simultaneously, in addition to the fact that all the permutations are cyclic. It is worth mentioning,
however, that when the masses are equal, there exist non-cyclic permutations that have identical
FRFs as well as natural frequencies (figure 3 as a case in point). An illustrative example of the latter
is depicted in figure 11 for 1–2–3 and 1–3–2 permutations of the triatomic PC with equal masses
m1 =m2 =m3 = 1. Despite the matching responses, the two non-cyclic permutations clearly have
distinct eigenvectors for a given truncation pole (shown in figure 11b). It can be also observed
that these two eigenvectors are mirror images of each other. This type of modes has been recently
exploited to create a unique topological behaviour in an array of coupled rods with quasi-periodic
parameters [33].

(ii) Edge modes in mirror symmetric polyatomic phononic crystals

In the previous section, we discussed the truncation pole phenomenon for a general polyatomic
PC (i.e. with both mass and stiffness variations) as a result of an arbitrary truncation of the infinite
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lattice. In the context of dispersion topology, such simultaneous mass and stiffness variations
result in a non-integer winding number ν. Thus, the conditions established in §§2f have to be met
to ensure that a given truncation pole indeed corresponds to a non-trivial mode inside the band
gap. If mirror symmetry is established in a polyatomic lattice with free–free boundary conditions,
the truncation poles observed in §3c(i) disappear and move to the bulk mode. A test for whether
or not a lattice supports an edge mode is to prescribe a fixed boundary condition at one end [34].
In here, we consider the tetratomic lattice in figure 8 to illustrate the creation of such an edge
mode. We adopt the following parametrization for the springs: k1 = (k/5)(2 − a), k3 = (k/5)(2 + a)
and k2 = (k/5) such that their summation is always equal to k, consistent with figure 8. Varying
a closes the first and third band gaps at a= ±√

2 and the second band gap at a= 0. For each
band gap closing/opening, an edge mode is observed in figure 12a, albeit not as flat (robust)
as traditionally encountered in diatomic PCs [34]. However, unlike diatomic PCs with a single
winding number for both dispersion branches, it remains more challenging to determine when
an edge mode is supported in polyatomic lattices where each dispersion band exhibits a unique
ν value. To resolve this, we assign a characteristic number νg to each band gap reminiscent of
band gap Chern numbers [49,50], to better relate the behaviour of the finite lattice to information
obtained earlier from the band topology. For a given gap, νg is defined as the summation of the
winding numbers of the bands beneath it and its value is indicated in figure 12b. Interestingly,
we observe that the emergence of an edge mode happens only in conjunction with an odd νg. To
confirm this hypothesis, we simulate the finite system for all possible stiffness combinations in
the same barycentric space and perform a binary search for the existence of an edge mode (1), or
lack thereof (0). The binary map shown in figure 12c confirms the dispersion-based predictions
and precisely matches it when the operation mod(νg, 2) is carried out. The ‘red’ region represents a
small design space where the edge mode will not be supported for the current boundary condition
choice (i.e. fixed-free). This is however remedied by shifting to a fixed–fixed lattice and this region
is then recovered. Finally, figure 12d shows results when the same analysis is carried out for the
pentatomic lattice in figure 8, which are fully consistent with the previous discussion.
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(iii) Truncation poles and two-dimensional lattices

The mode shapes of the truncation poles can be exploited to create an edge mode in a two-
dimensional lattice structure based on the one-dimensional model. In figure 13, we demonstrate
a two-dimensional lattice built from an array of a one-dimensional triatomic PC with the
permutation 1–2–3 (i.e. permutation A in figure 2) stacked in the y-direction and coupled with
a relatively stiff spring ky (here, we used ky/k1 = 103) similar to the system discussed in [33].
If the two-dimensional system is excited with a sine sweep at one corner and the response is
measured from the opposing one, the resulting FRF is qualitatively analogous to that of the one-
dimensional model as seen in the frequency response in figure 13. In addition, the mode shape of
the two-dimensional lattice (when seen from the front view) mimics that of its one-dimensional
counterpart illustrated in figure 10. The ease of pinpointing edge modes frequencies by only
considering the eigenvalue problem of a single unit cell facilitates their analysis and provides
physical intuition into the relation of such modes with the constitutive unit cell. It is worth
noting that the 2D mode presented here is not topologically protected and further considerations
should be taken into account to ensure such protection. Examples of the latter include stacking
and coupling a family of modulated one-dimensional lattices along a second spatial dimension
[50], adiabatic spatio-temporal modulation of mechanical properties [51], as well as gyroscopic
effects [52].
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(d) Band gap formation mechanism
The formation mechanism of Bragg-type band gaps in finite lattices has been explained in light
of the Bode plot analysis. Moreover, the strong dependence of band gap strength, width and
location on the pole distribution has been thoroughly investigated for a finite diatomic PC
[8]. In the latter, periodically placing two spring-mass systems with distinct properties splits
the total set of natural frequencies into two groups on both sides of the sole band gap. These
two groups of natural frequencies can be perceived as a low-frequency ‘pass-band’ FRF and
a high-frequency one, respectively. Since a standard Bode plot is based on a log–log scale
which automatically converts the multiplication of terms into addition, the superposition of
these two FRFs returns the frequency response of the entire system. At the tail end of the low-
frequency pass band, the FRF acts as a filter following its last pole due to the accumulated
contribution of −20 dB/decade per pole. The second high-frequency pass band puts an end
to the attenuation of the low-frequency pass band and provides the upper bound of the
band gap.

The analysis of the emergence of multiple band gaps in higher-order hierarchies is analogous
to that of the diatomic lattice. Here, we establish a generalized procedure to physically interpret
the formation mechanism of multiple band gaps using a systematic Bode plot analysis. We start
by computing the roots of the characteristic polynomial P(s) in equation (3.16). For each value
of θ�, Ξ positive solutions are found, each of which corresponds to one pass band. Once all the
solutions are computed, they are sorted based on the number of the pass band, which will result
in Ξ pole groups that can be mathematically presented as

uΞn(ω)
f (ω)

= �n

k1
∏Ξ

ξ=1 mξ

× 1∏n
q=1(ω2 − ω2

q )
× 1∏n

q=1(ω2 − ω2
q+n)

× . . . × 1∏n
q=1(ω2 − ω2

q+(Ξ−1)n)
.

(3.18)
Taking the natural logarithm of equation (3.18) results in a summation series and the pole

groups corresponding to each band can be now denoted by Tξ , and mathematically written as

Tξ =
n∑

q=1

ln

(
1

ω2 − ω2
q+(ξ−1)n

)
, (3.19)
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with the gain being

T0 = ln

(
�n

k1
∏Ξ

ξ=1 mξ

)
. (3.20)

We conclude with an illustrative visual presentation of the formation mechanism for a
pentatomic PC in figure 14. If each of the Tξ terms is plotted separately, we notice that the first
group of poles in T1 acts as a low-pass filter. The remaining transfer functions, however, behave as
pass-band filters. The pass-band filters allow waves to pass within their respective frequency ranges
and, otherwise, attenuate them. This is confirmed by the behaviour of the transfer function Tξ for
ξ > 1. It is also evident in figure 14 that the contribution of the poles of Tξ (ξ > 1) is negligible at
lower frequencies, while the collective high-frequency attenuation by the poles kicks in once the
frequency hits the last pole of the group. As such, the band gap formation is effectively a collective
contribution of the attenuation regions of a series of multiple pass-band filters. The decrease in
the amplitude of a group of poles, say the ξ th group, is compensated with the increase in the
amplitude caused by the (ξ + 1)th group and the maximum attenuation occurs relatively midway
between the last pole of ξ th group and the first pole of the (ξ + 1)th group. Each separating
region between two pass-band filters is equivalent to one of the band gaps predicted by the
traditional wave dispersion analysis. It is also important to point out that higher-order band gaps
enjoy steeper magnitude reduction in the FRF as a direct consequence of the larger collective
high-frequency attenuation of the increasing number of poles. This is perfectly in line with the
attenuation constants (imaginary component of β̄) shown in dispersion diagrams in figures 2
and 3. Finally, it can also be observed that the pass-band regions tend to have a higher Q-factor
at higher frequencies. The framework presented here to quantify the formation of band gaps in
finite periodic systems is general and extendable to higher-order polyatomic phononic lattices as
well as continuous phononic structures.

4. Concluding remarks
This paper has established a rigorous mathematical framework to quantify: (1) wave dispersion
and topological characteristics and (2) finite structural dynamics of a generalized polyatomic
phononic crystal (PC) comprising, in its general form, a series of two or more arbitrarily arranged
monatoms. The governing dispersion relation has been derived in closed-form for any given
number of monatomic subcells constituting the polyatomic unit cell. Different characteristics of
the dispersion relation including the sonic speed and maximum attenuation within band gaps
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have been outlined. The different effects of changing the atomic arrangements of the individual
subcells, as well as conditions leading to identical and distinct band structures have been shown.
The resultant topological aspects associated with different cellular permutations of the polyatomic
PCs have been quantified via the winding number of the complex eigenvector and shown to be
quantized in the presence of mirror symmetry. It has been also established that the emergence
of an edge mode is sensitive to the parity of the characteristic metric νg, and materializes only
at odd values of it. A generalized form of the end-to-end transfer function of any polyatomic
PC was also obtained and several examples were presented to highlight the natural frequency
(pole) distribution of the finite lattice and its correlation to the infinite dispersion predictions. An
interpretation of truncation modes which appear inside the band gaps of a free–free polyatomic
lattice has been provided, as well as a brief discussion of how such modes can be potentially
exploited to realize edge states in two-dimensional lattices. Finally, a generalized theorem to
interpret the evolution and formation mechanism of multiple Bragg-type band gaps in finite
polyatomic PCs has been provided based on the Bode plot analysis.
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