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a b s t r a c t 

A new Barely Implicit Correction (BIC) algorithm is presented for the simulation of low-Mach-number 

flows. This new algorithm is based on the original, introduced by G. Patnaik et al. [G. Patnaik, R. H. 

Guirguis, J. P. Boris and E. S. Oran, A barely implicit correction for flux-corrected transport. In: Journal 

of Computational Physics 71.1 (1987), pp. 120], which was a solution procedure including an explicit 

predictor step to solve the convective portion of the Navier–Stokes equations and an implicit corrector 

step to remove the acoustic limit on the integration time-step. The explicit predictor uses a high-order 

monotone algorithm while the implicit corrector solves an elliptic equation for a pressure correction to 

equilibrate acoustic waves. In this paper, we develop and extend BIC for multidimensional viscous flows. 

We introduce a new filter to further stabilize the algorithm and clarify the solution procedure for the 

inclusion of the viscous fluxes. The new algorithm is examined in three test problems with successively 

increased difficulty. First, a two-dimensional lid-driven cavity flow is simulated to demonstrate the ability 

of BIC on solving steady-state swirling flows. Using time steps at least 100 times larger than the explicit 

limit, good agreements are obtained for solutions when compared with an incompressible calculation 

by a prior work. A two-dimensional (2D) doubly periodic shear layer flow is simulated to examine the 

algorithm on solving a transient flow with strong vorticity gradients. Finally, vortex breakdown in three- 

dimensional (3D) swirling flows are used to further test the stability and performance of the new BIC 

algorithm. Comparisons of explicit and implicit BIC calculations of both the 2D doubly periodic shear 

layer and 3D vortex breakdown are presented side by side. They demonstrate that the new BIC algorithm 

is able to predict accurate and robust solutions using time steps varying from near the explicit stability 

limit to tens and hundreds of times larger. Excellent agreement is also obtained when compared with 

results from other algorithms. We discuss our observations of these computations and features which 

were found to be critical for robustly simulating low-speed, highly dynamic flows. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Over the past forty years, many high-order monotone algo-

rithms have been developed and widely applied to the simulation

of compressible gas dynamics. These algorithms were originally de-

signed to overcome problems associated with calculating shocks

and contact discontinuities accurately. During this time, and espe-

cially more recently, these algorithms have been used not only to

compute supersonic flow, but also to compute subsonic flows with

turbulence and a range of reactive flow from low-speed flames

to high-speed detonations. A number of these monotone methods

have been reviewed in [1] . 
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High-order monotone algorithms were designed to compute

igh-speed flows using an explicit time-integration scheme. In this

pproach, numerical stability is then ensured by restricting the

ime step, which is based on the sound speed and convective ve-

ocity. In supersonic flows, the convective velocities are comparable

ith the sound speed, so there is no serious limitation on the com-

utation efficiency from using an explicit method. In low-speed

ows, however, the convective velocities can be much smaller than

he sound speed. This can make simulations of low-speed flow

rohibitively expensive when using explicit algorithms. 

The motivation of the algorithm described in this paper is the

eed to calculate low-speed flows accurately and economically. In

his flow regime, fluid velocities range from centimeters to tens

f meters per second, which could be hundreds of times smaller

han the sound speed. If the sound speed restriction in the sta-

ility limit could be removed, the computational cost would be
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t least one or two order of magnitude lower. This has been the

otivation for developing low-Mach number, implicit algorithms.

ne way to remove the sound speed limit is to make the time in-

egration implicit, such as MacCormack method [2] , semi-implicit

CE method [3] , implicit nonlinear PPM [4] and TVD methods [5] .

hese implicit calculations are accurate but very expensive. Im-

rovements on reducing the computational cost are reported in

ecent works, including the methods developted by Wall, Pierce &

oin [6] and Degond & Tang [7] . Another technique is the per-

urbation or asymptotic approach. The physical acoustic waves are

ecoupled from the system of equations by using regular perturba-

ion theory and applying Taylor series expansion on the variables

n power terms of the Mach number. Examples of this approach in-

lude the methods developed by Jones & Boris [8] , Rehm & Baum

9] , Paolucci [10] , Pember et al. [11] , Nicoud [12] and Thornber

t al. [13] . The asymptotic approximation still allows compression

nd rarefaction over time as long as the Mach number is small

nough. The spatial variations in pressure, however, are filtered

ut, which means acoustic wave effects are eliminated. 

The barely implicit correction (BIC), originally proposed by Pat-

aik et al. [14] , eliminated the sound speed restriction by solving

he governing equations at a large time step determined by the

uid velocity (predictor step), and then applying a pressure correc-

ion that effectively equilibrates the acoustic waves. More specif-

cally, at each time step, a pressure correction is applied to the

omentum and energy equations (corrector step). The formula-

ion of the pressure correction allows for the corrector step to scale

rom explicit to fully implicit. Patnaik et al. used the flux-corrected

ransport (FCT) for the predictor step value, although in principle,

ny monotone algorithm should work just as well. 

The original BIC algorithm [14] was used for one-dimensional

nd two-dimensional problems, and, in particular, for reactive

ows. Examples include computations of premixed cellular flame

tructure (Patnaik et al. [15] ), and simulations of axisymmetric

ethane-air diffusion flames (Kaplan et al. [16] ). These multidi-

ensional reactive-flow computations produced quantitative re-

ults when compared to experiments. Nonetheless, there were nu-

erical issues that caused some problems in the execution, such

s small, sometimes growing pressure oscillations that had to be

amped. Patnaik et al. [15] filtered these oscillations from the

olutions by using a high-frequency pressure filter. Kaplan et al.

16] reduced oscillations to an acceptable level by using a control

lgorithm for the outflow boundary condition. 

In this paper, we develop and extend the BIC algorithm so that

t is robust and stable for one-, two-, and three-dimensional vis-

ous flow problems with and without inflow and outflow bound-

ries. The base monotone algorithm is the same used by Patnaik

t al. [14] , fourth-order FCT. Here the new procedure for devel-

ping the pressure correction is described in detail along with an

dditional filter step. The new formulation retains the flexibility of

he original algorithm to scale from explicit to fully implicit. In this

ork, we focus on fully implicit performance of the new BIC algo-

ithm. This is tested by computing the flow in a two-dimensional

2D) lid-driven cavity and comparing this solution from a pre-

iously published incompressible computation [17] , a 2D doubly

eriodic shear layer flow with comparisons against a “Numerical

coustic Relaxation (NAR)” method [18] and a “pseudospectral”

ethod [19] , and 3D vortex breakdown in a rotating flow which

s compared with a previous DNS calculation [20] . For the cases

f doubly periodic shear layers and the vortex breakdown, implicit

nd explicit solutions are compared side by side. 

The organization of this paper is as follows. Section 2 presents

he basic numerical algorithm for the convective portion of the

avier–Stokes equations (i.e., the Euler equations). This section be-

ins with a description of the original procedure and then shows

ow this must be changed. Details on how to implement the new
lgorithm for solving the Navier–Stokes equations are presented in

ection 3 . In Section 4 , we demonstrate the performance of this

lgorithm using the series of test problems described above. The

aper ends in Section 5 with a discussion of some of the general

erformance metrics and special features of the algorithm. 

. The barely implicit correction algorithm 

We begin by describing the original BIC procedure, and then

how how it can be stabilized, and finally generalize the solution

o include viscous and other source terms. The convective fluxes

ill be solved here using the flux-corrected transport algorithm

FCT). In the original version of FCT, there is a two-stage Runge-

utta time integration, that is, a half time step (marching from t o 

o t o + �t/ 2 ) and a full time step (from t o to t o + �t), which to-

ether give second-order in time. In the BIC algorithm given be-

ow, the original time integration for FCT is combined with a new

IC step, so that there is only one time step (from t o to t o + �t)

equired. This is explained below. 

.1. Original BIC procedure 

First consider the original BIC-FCT approach, which solves the

uler equations that can be written as: 

∂ρ

∂t 
= −∇ · ( ρV ) (1) 

∂ρV 

∂t 
= −∇ · ( ρVV ) − ∇P (2) 

∂E 

∂t 
= −∇ · ( E + P ) V (3) 

n which t is time, ρ is density, P is pressure, E is total energy, V is

he velocity vector. The equation of state relating pressure and the

otal energy is 

 = 

P 

γ − 1 
+ 

1 

2 
ρV 

2 (4) 

he inclusion of body forces and source terms will be discussed

ater. 

The procedure outlined below is almost the same as [14] . Here,

e repeat and recast the steps to clarify the path towards the so-

ution and to facilitate the explanation of the need for the new

tep added to ensure stability. This explanation below is also nec-

ssary to address the more substantive modifications needed and

xplained in a later section. 

The term “barely implicit correction” is used to indicate that

nly selected terms in the equations are treated implicitly [21] .

his same basic concept as used here means that only the pressure

n Eq. (2) and velocity in Eq. (3) are treated implicitly. There were

wo main stages in the algorithm. First, there is an explicit predic-

or step using a large time-step governed by Courant-Friedrichs-

evy (CFL) condition on the fluid velocity (not the acoustic speed)

o solve for predicted values. Then there is a second implicit cor-

ector step that solves an elliptic equation for a pressure correc-

ion. They also introduced the implicitness parameter, ω, which al-

ows the algorithm to vary from partially implicit (damping of the

ound wave is minimized) to fully implicit (damping of the sound

ave is maximized). 

These two stages are carried out by a four-step procedure. Be-

ow, superscripts “o” denotes the old time step and “n” denotes 

he new time step. The prime represents the predicted values at

he end of the predictor step, and these values are then used by

he correction step. 
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1. Solve for predicted density ρ ′ , and momentum ρ′ V 
′ : 

ρ ′ − ρo 

�t 
= −∇ · ρo V 

o (5)

ρ ′ V 
′ − ρo V 

o 

�t 
= −∇ · ρo V 

o V 
o − ∇P o (6)

Use a monotone method (here FCT with one-step time integra-

tion) to solve for predicted density ρ ′ and momentum ρ′ � V ′ . The
time step �t is the large time-step from the CFL condition gov-

erned by fluid velocity (not sound speed). 

2. Solve for intermediate energy E : 

E − E o 

�t 
= −∇ · ( E o + P o ) 

[
ωV 

′ + (1 − ω) V 
o 
]

(7)

Again, use FCT with the one-step time integration with the

same �t as in step 1 to solve for an intermediate energy E . The

velocity V 
′ can be calculated by ρ′ V 

′ / ρ′ . The convective veloc-
ity used in this step is a weighted sum of the old and predicted

velocity. Note the introduction of the implicitness parameter ω.

3. Solve for pressure correction δP . This is a step introduced for
the BIC procedure. 

δP 

(γ − 1) ω�t 
− ω�t∇ ·

(
E o + P o 

ρ ′ 

)
∇δP 

= 

E − E o 

�t 
− ρ ′ V 

′ 2 − ρo V 
o2 

2�t 
(8)

Substitute in predicted density ρ ′ , velocity V 
′ , intermediate en-

ergy E and properties at old time step into this elliptic equation

to solve for δP , which is defined as δP ≡ ω ( P n − P o ) . Here γ is

the ratio of specific heats. 

Eq. (8) was originally derived in [14] by rewriting Eq. (2) with

the pressure in an implicit form and Eq. (3) with the velocity

in an implicit form, and combining them into one equation. To

solve Eq. (8) for a one-dimensional (1D) system, a tridiagonal

matrix solver is needed. For a two- or three-dimensional sys-

tem, an elliptic solver is required. For boundary conditions, the

Neumann condition can be applied at symmetry, no-slip wall,

or outflow (zero-gradient) boundaries. If the internal energy

is constant at a physical boundary, then the pressure at this

boundary is constant according to the equation of state. There-

fore a Dirichlet condition ( δP = 0 ) can be applied as the pres-

sure does not vary. If the internal energy varies at a physical

boundary, then the boundary condition for δP can be derived
as a function of the internal energy based on the equation of

state. 

4. Correct the momentum and energy using δP : 

ρn V 
n = ρ ′ V 

′ − �t∇δP (9)

e n = 

δP 

(γ − 1) ω 

+ e o (10)

Since the density equation was not treated implicitly, the den-

sity at a new time step is equal to the predicted density, that is

ρn = ρ′ . Eq. (9) and 10 were given in [14] . Here e represents the

total internal energy. Exactly how to update the kinetic energy

was not described in the original paper. 

Using steps 1–4, we were able to reproduce the two original

1D test problems, which were advection of a contact discontinuity

and damping of a sound wave [14] . These two tests involved so-

lution of the Euler equations only. Then, we attempted to use the

algorithm as given above to solve the full Navier–Stokes equations

by including the diffusion terms that were added through straight-

forward time-step splitting. The result showed there was a grow-

ing, unbounded instability in the solution that could be traced to
he coupling with the diffusion terms as well as effects from open

oundary conditions. 

Simulations of a 2D double shear layer with periodic bound-

ries on all sides were used to isolate the issues with the addi-

ional viscous diffusion terms. The simulations showed the evo-

ution of the two shear layers rolling into large vorticies due to

n initial sinusoidal velocity perturbation. The implicit calculation

an, but with strong unphysical oscillations in the temperature and

ensity. 

Simulations of a 3D columnar vortex were performed using an

nflow boundary with open boundaries on all other sides of the do-

ain. The results showed uncontrolled oscillations and was com-

letely unbounded after only a few time-steps. This type of out-

ow boundary problem was also encountered by Patnaik et al.

15] and Kaplan et al. [16] . The issue of how to stabilize an out-

ow will be discussed in more detail below. 

.2. New solution procedure 

In order to stabilize the algorithm, we first need to isolate the

ause of the instability. This leads us to change our focus from pure

onvection (Euler equations) to additional physical processes that

ccur in a flow. When numerically solving the full Navier–Stokes

quations using explicit time schemes, timestep-splitting is often

sed. This means each physical process, that is convection, diffu-

ion, and chemical reactions, is calculated serially in one time step.

hen the solutions of all the individual processes are summed, ef-

ectively coupling all the physical processes to advance in time.

his method, in theory, is correct for small time steps and it works

ell when using explicit time integration for convection, or when

he changes in variables are not significant in one time step. When

sing implicit algorithms such as BIC, however, the large time step

ay cause large changes in momentum and energy due to diffu-

ion or reaction (if there is chemical heat release, which will be

ddressed in a later work). Since the original BIC algorithm was

nly applied to the convection stage, the changes in momentum

nd energy from the other physical processes were not explicitly

ccounted for in the pressure correction. This mismatch is what

as causing the instability issue. The pressure-correction proce-

ure has to be modified, in some way to include the changes from

ther physical processes. 

One approach was given in the most recent document of the

IC algorithm [22] . An extra term S was included in the energy

quation Eq. (7) as a source term, and this formed the new equa-

ion for the intermediate energy: 

E − E o 

�t 
= −∇ · ( E o + P o ) 

[
ωV 

′ + (1 − ω) V 
o 
]

+ S (11)

This term S serves as a “storage” variable which accumulates

he change of total internal energy due to diffusion and other pro-

esses. Then using this new expression for 
(
E − E o 

)
/ �t, the effects

f S are then fed into the elliptic equation, Eq. (8) . Now δP includes
he effects of energy change in all of the physical processes consid-

red. 

Then, step 4, which is the correction of momentum, energy and

ressure, was given by [22] as: 

n V 
n = ρ ′ V 

′ − �t∇δP (12)

 
n = 

δP 

(γ − 1) ω 

+ E o (13)

 
n = P o + δP (14)

This update of variables, however, introduces two inconsisten-

ies. The first is in the kinetic energy computed from the updated
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omentum ρn V 
n and updated total energy of Eq. (13) . This incon-

istency manifests itself because the new pressure correction is ap-

lied to the old total energy, which does not account for the rel-

tively large new kinetic energy. We show this mismatch by first

xpanding the old total energy E o , 

 
o = 

P o 

γ − 1 
+ 

1 

2 
ρo V 

o2 . (15) 

The old total energy is expressed as a sum of the internal and

he kinetic energies, with the internal energy written using the

quation of state. We then incorporate the pressure correction by

ubstituting Eq. (15) into Eq. (13) . Rearranging then gives: 

 
n = 

ωP o + δP 

(γ − 1) ω 

+ 

1 

2 
ρo V 

o2 (16) 

hich means only the internal energy is updated with the pres-

ure correction term, and the kinetic energy does not change from

ts value at the old time step. The momentum, however, is updated

ccording to Eq. (12) . This mismatch violated conservation and we

bserved that this asynchronism generated nonphysical pressure

aves within large momentum gradient regions. 

We now introduce one modification to the kinetic energy cor-

ection to address the mismatch of energies. We replace Eq. (13) at

tep 4 with: 

 
n = 

ωP o + δP 

(γ − 1) ω 

+ 

1 

2 
ρn V 

n 2 (17) 

This corrects the kinetic energy from the updated momentum
n V 

n . The velocity at the new time step V 
n can be calculated by

n V 
n / ρn . 

The second inconsistency is in Eq. (14) , which does not account

or the implicitness ω. The corrected form is written as: 

 
n = P o + δP/ω. (18) 

Although adding the extra term S helps account for all the

hysical processes in the pressure correction, oscillations in pres-

ure still arises when the time step is very large. Large implicit

ime steps result in regions with strong energy source, and when

uch a region is under-resolved, numerical instabilities occur and

ventually grow unbounded if left unchecked. These oscillations

ecrease as the time step decreases, and they are effectively gone

hen the time step is close to a usual explicit time step. Two

pproaches are often used to suppress such numerical instabili-

ies. These are artificial dissipation by including additional damp-

ng terms in the equations [23,24] , and more efficiently, spatial fil-

ering which does not affect the main physical gradients in the

ow [25–28] . A high-frequency pressure filter is suggested for BIC

n [22] to avoid the oscillations: 

 
f iltered = P + α∇ 

4 P (19) 

n which α is a small constant. It was, however, necessary to deter-

ine the optimal α on a case-by-case basis, and the filter violates

onservation. 

Here we eliminate high-frequency oscillations and maintain

hysical structures and conservation by implementing an extra FCT

tep [29] . The monotone property of FCT allows for it to act as a

igh-frequency filter. We use this extra step by passing the con-

ervative variables calculated from step 4 ( ρn , ρn V 
n and E n ) into

he FCT routine as inputs, while forcing the convective velocities

nd all pressure and source terms to be zero. This means no addi-

ional convection or pressure work in a computational cell is per-

ormed. Furthermore, because all the conservative variables are fil-

ered, this procedure preserves conservation. In our usage, we find

hat this filter is applicable to most cases without extra tuning or

ptimizing. 
. Coupling BIC with diffusion processes 

So far, we have shown how to use BIC to solve for convective

uxes. To obtain the complete solution to the full set of Navier–

tokes equations, the diffusion processes need to be modeled and

ncluded. Here we couple the diffusion with the convection pro-

ess through time-step splitting procedure mentioned above. This

eans that, in one time step, the diffusion and convection fluxes

re calculated independently, and each process uses the solution

rom the previous process as initial conditions. There are three ma-

or considerations for using time-step splitting, especially when the

onvection process uses an implicit method. These are: (1) time-

tep control, (2) the order in which of each physical process is

omputed, and (3) when and how to update variables. The exact

ay the processes are updated is explained in detail below. 

.1. Governing equations 

We consider the time-dependent, compressible Navier–Stokes

quations : 

∂ρ

∂t 
= −∇ · ( ρV ) (20) 

∂ ( ρV ) 

∂t 
= −∇ · ( ρVV ) − ∇P − ∇ · ˆ τ (21) 

∂E 

∂t 
= −∇ · ( ( E + P ) V ) − ∇ ·

(
V · ˆ τ

)
− ∇ · ( K∇T ) (22) 

ˆ = ρν
(
2 

3 
( ∇ · V ) I − ( ∇V ) − ( ∇V ) 

† 
)

(23) 

here T is temperature, K is thermal conductivity, I is the identity

atrix, ˆ τ is the stress tensor. Superscript † denotes the transpose

or a matrix. We assume Newtonian fluids and ν is the kinematic

iscosity. These equations are closed with the ideal gas equation of

tate: 

 = ρ
R 

M w 
T (24) 

The total energy is calculated using Eq. (4) . 

.2. Temporal integration procedure 

Fig. 1 summarizes the integration process in one computational

ime-step, in which the subscript o represents the starting (or

old”) value, and subscripts 1, 2, and n denote stages where the

ariables need to be updated. Accordingly, Table 1 lists the values

f all the variables at the end of each stage. The total procedure is

ow explained step by step. 

tep (1) Calculate the global time step, �t g . 

The global time step is the overall �t g that all the physical pro-

esses use to advance to the new time-step ( t o + �t g ). To ensure

he stability of the time integration, this time step is constrained

y both the physical process and the choice of numerical algo-

ithm. The time-step limit for each process can be calculated by: 

t con v = CF L wa v e min 

(
�x 

| v | + a 

)
, (25) 

r �t con v = CF L f luid min 

(
�x 

| v | 
)

(26) 

t cond = C cond min 

(
�x 2 

2 λ/ρc p 

)
(27) 
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Table 1 

Update of the variables at each stage. 

Stage Old time step: o After diffusion: 1 Intermediate stage: 2 New time step: n 

Density ρo ρ1 ρ2 = ρ ′ ρn = ρ2 

Momentum ρo V o ρ1 V 1 ρ2 V 2 = ρ ′ V ′ ρn V n = ρ2 V 2 − �t∇δP

Energy E o = 
P o 

γ −1 
+ 

1 
2 
ρo V 

2 
o E 1 = 

P o 
γ −1 

+ 
1 
2 
ρ1 V 

2 
1 E 2 = E E n = 

ωP o + δP 
(γ −1) ω + 

1 
2 
ρn V 

2 
n 

Pressure P o P 1 = P o P 2 = P o P n = P o + δP/ω

Temperature T o T 1 = P o /Rρ1 T 2 = T 1 T n = P n /Rρn 

Velocity V o V 1 V 2 = V 1 V n = ρn V n /ρn 

Fig. 1. Flowchart of the coupling of the physical processes in one time-step. 
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�t v isc = C v isc min 

(
�x 2 

2 μ/ρ

)
(28)

where v is the fluid velocity, a is the speed of sound, λ is the ther-

mal conductivity, μ is the dynamic viscosity. Here �x is the com-

putational mesh size and the subscripts conv, cond , and visc stand

for convection, conduction and viscosity. Two CFL conditions for

the convection process are defined here, in which CFL wave includes

the acoustic velocity and CFL fluid is governed only by the fluid ve-

locity. Equivalent conditions for conduction and viscous diffusion

processes are defined as C cond and C visc . These CFL and the C cond ,

C visc conditions are dependent on the algorithms chosen for these

processes. 

If each of these processes, that is convection, thermal con-

duction, and viscous diffusion, is integrated using an explicit

algorithm, then the global time step is determined by the smallest

time-step required to ensure stability. When using BIC algorithm

for convection, however, the implicit time-step �t conv could be

larger than the other required time-steps. In order to preserve the

computational efficiency, the �t g is chosen as the implicit time

step �t conv and the other processes are subcycled using local time

steps �t local within the required stability limit. 

At this stage, all of the variables have values from the previ-

ous time step. This stage is denoted as ‘ o ’ which stands for ‘old’

in Fig. 1 and all the variables are listed in the second column in

Table 1 with subscript ‘ o ’. 
tep (2) Compute the diffusion effects 

After obtaining the local time-step limits �t cond and �t visc , sub-

ycle the integration of the heat conduction and viscous diffu-

ion from the old time step, t o , to the new time step, t n = t o +
t g , using a local time-step �t local for n times, where �t local =
t g /n . The number of the subcycles is determined so that the lo-

al time step is not larger than the smallest of these two limits,

 �t local ≤min( �t cond , �t visc )), while the number of the subcycles is

inimized. Here the diffusion process is calculated using second-

rder spatial differencing and high-order Runge-Kutta time inte-

ration. 

There is a special treatment for updating of variables at this

tage. In the new BIC procedure described in Section 2.2 , the

hange of total internal energy due to the diffusion process

eeds to be extracted and stored temporarily in the variable

 = �(ρe ) / �t g , which will be passed into the energy equation

q. (11) that is solved in the next convection step. At this next con-

ection step, the effect of the change of the total internal energy

ue to diffusion is included as a pressure effect, by redistributing

he pressure correction back into the flow field through the ellip-

ic Eq. (8) . Therefore to avoid redundancy, the total internal energy

t this stage should temporarily keep the value it had before the

iffusion process. This means that the pressure should also stay as

 o , as pressure is a function of the total internal energy. The den-

ity, velocity, and momentum should be updated as usual. The total

nergy should be updated with the old internal energy before the

iffusion ( P o / ( γ − 1 ) ) and the new kinetic energy ( 1 2 ρ1 V 
2 
1 
). Accord-

ngly, the temperature should be calculated using the old pressure

 o and the new density ρ1 . This is listed in the third column ‘After

iffusion:1 ′ in Table 1 . 

tep (3) Compute the convective transport using BIC : explicit 

redictor 

Now perform steps 1 and 2 of the BIC algorithm to calculate

he predicted convective fluxes. That is, solve Eqs. (5), (6) and then

1 , using the global time step �t g and the values updated after

he diffusion process. This means the ρo , V 
o , P o and E o in Eqs. (5),

6) and 11 are essentially the values with subscript ‘1’ in Table 1 . 

This stage after the explicit predictor is denoted as ‘2’ in

ig. 1 and ‘intermediate stage: 2 ′ in Table 1 . The values ρ′ , ρ′ V 
′ 

nd E in Table 1 are the outputs from the monotone algorithm

olver. The notation is kept same as in Eqs. (5), (6) and 11 for con-

istency. The pressure should have the same value that it had at

he beginning of the time step, that is, P o . Although the density

hanged at this stage, the temperature and velocity are not up-

ated to save computational efforts as they will not be used in the

ext corrector step. 

tep (4) Compute the convective transport using BIC : implicit 

orrector 

Solve the elliptic Eq. (8) for the pressure correction δP . Then
orrect the momentum, total energy and pressure using Eqs. (12),

17) and 14 , respectively. Here we used a multigrid elliptic solver

rom BoxLib [30] . The default setting of the solver is employed,

here red-black Gauss-Seidel smoother is used for relaxation, bi-
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Fig. 2. Streamline superimposed on the contour of x-velocity for case 3 with Re = 

10 0 0 , CF L wa v e = 86 . 
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onjugate gradient stabilized algorithm is used for the coarse grid

xact solver, and V-cycle is used for restriction and interpolation

etween fine and coarse grids. 

At this stage, which is denoted as ‘ n ’, all of the physical pro-

esses are at the same stage of integration, and all the flow proper-

ies are consistent and synchronized appropriately to the new time

 
o + �t g . The values of all of the variables at this stage are listed in

he fifth column in Table 1 with subscripts ‘ n ’. 

tep (5) Apply a high-frequency filter if necessary 

If necessary, a high-frequency filter, which here is an extra

CT step, could be applied here after finishing all the integration

rocesses. Since the FCT filter operates on conservative variables,

rimitive variables need to be updated after the filtering accord-

ngly to avoid synchronization errors. 

. Applications 

In the following, the performance of the BIC algorithm is ex-

mined for three test problems. In Section 4.1 , simulations of a

D lid-driven cavity flow demonstrate the ability of BIC on solving

teady-state swirling flows. The results are compared with a nu-

erical solution using a vorticity-stream-function formulation of

he incompressible Navier–Stokes equations [17] . Section 4.2 de-

cribes simulations of a 2D doubly periodic shear layer. These are

sed to examine the behavior of the BIC algorithm when it is used

o simulate transient flows with strong vorticity gradients. The re-

ults are qualitatively compared with a “Numerical Acoustic Relax-

tion (NAR)” method [18] and quantatively compared with a pseu-

ospectral method [19] . In Section 4.3 , the BIC algorithm is applied

o a 3D vortex breakdown problem, which validates its ability of

redicting the instabilities that occur in swirling jet flows. The re-

ults are qualitatively comparable with a previous DNS simulation

20] . 

For all of the test problems in this paper, the implicitness pa-

ameter ω = 1 . 0 is used. The original BIC paper tested the prior

ersion of the algorithm for variable ω and showed the damping

nd dispersion effects of ω on sound waves. For all of the low-

ach number flows of interest to us here, ω = 1 . 0 is adequate. We

eave the investigation of variable ω to future work when we dis-

uss reactive flows. 

In this work, the LCPFCT [31] version of the FCT implementation

ith a fully multidimensional limiter by Zalesak [32] with a mod-

fication from DeVore [33] is employed for the convective solver.

e have also changed the numerical diffusion and antidiffusion

oefficients, ν and μ (see Eq. 3.19 in [31] ), of the LCPFCT algorithm

o ensure the 3D implementation remains stable. The algorithm is

table in 3D when using 

= 

1 

12 
+ 

1 

3 
ε2 (29) 

= 

1 

12 
− 1 

6 
ε2 (30) 

here ε is the local CFL fluid . This choice of ν and μ is related to the

tability of explicit LCPFCT in 3D and will be discussed in a future

ork. 

.1. 2D Lid-driven cavity 

This simulation considers flow in a 2D square cavity with no-

lip boundary conditions on the lower and side walls, and an up-

er wall moving with a constant uniform velocity. A primary vor-

ex, driven by shear forces, eventurally forms at the center of the

avity. It is accompanied by secondary vortices at corners. The flow

attern is shown in Fig. 2 as streamlines superimposed on the field
f velocity in the horizontal direction (x-velocity). The lid-driven

ow is a classical test problem for validation of numerical meth-

ds and computational codes. Previous numerical results are re-

iewed in [34] . Here we compare our simulations with the data

rom Ghia et al. [17] , who solved a vorticity-stream-function for-

ulation of the 2D incompressible Navier–Stokes equations using

 finite-difference method. 

Three different implicit time steps using BIC are tested by hold-

ng CF L f luid = 0 . 5 as a constant and varying sound speed through

ow temperatures from 300 K to 3, 0 0 0 K and 30, 0 0 0 K. The re-

ultant CFL wave equals to 13, 38 and 86 respectively. Other than

he temperature, the other flow properties are initialized to model

ry air at standard condition (300 K, 1 atm). The values of the pa-

ameters are summarized in Table 2 below. The test cases are per-

ormed for Re = 10 0 0 . Using all the values in Table 2 , we derive the

id velocity U lid = 27 . 775 m / s and the length of the square cavity

 = 0 . 0565 m . A non-slip wall boundary condition is applied at all

he four boundaries. The upper wall has a constant velocity U lid . All

f the calculations are performed on a uniform 256 ×256 Cartesian

esh. 

Fig. 3 presents the velocity profiles (x-velocity and y-velocity)

t the vertical and horizontal centerlines of the cavity for cases 1

ith CF L wa v e = 13 . The effect of the fourth order FCT filter is tested

n this calculation. The steady state results show good agreement

hen compared with the reference data from Ghia et al. [17] . The

esults in Fig. 3 show that the application of the filter does not

ffect the accuracy of the calculation, and does not change the flow

tructure. 

Fig. 4 and 5 show the velocity profiles for case 2 with CF L wa v e =
8 and case 3 with CF L wa v e = 86 . These calculations with relatively

igh CFL wave conditions are performed with the filter. The steady

tate results for both cases agree well with the reference data [17] .

.2. 2D Doubly periodic shear layers 

The simulations of 2D double shear layers with periodic bound-

ries on all sides are performed in a unit domain [0, 1] × [0, 1]. In

his domain, a horizontal jet is initialized with small vertical per-

urbations, and at the jet boundaries, the two shear layers roll up

nto large vortices as the flow evolves. This configuration was origi-

ally introduced by Bell, Colella & Glaz [35] , and further examined
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Table 2 

Properties of the flow for three test cases: case 1 with CF L wa v e = 13 , case 2 with CF L wa v e = 38 , and case 

3 with CF L wa v e = 86 . The Re is defined as U lid H / ν , and Ma is defined as U lid / 

√ 

γ R u T 
M w,air 

. 

Re Ma T [ K] P [ atm] M w, air [ kg/mol] γ ν [ m 
2 /s] Pr 

Case 1 10 0 0 0.08 300 1.0 28.97 1.4 1 . 568 × 10 −5 0.711 

Case 2 10 0 0 0.0253 30 0 0 1.0 28.97 1.4 1 . 568 × 10 −5 0.711 

Case 3 10 0 0 0.008 30,0 0 0 1.0 28.97 1.4 1 . 568 × 10 −5 0.711 

Fig. 3. Comparison of the velocity profiles at the cavity’s centerlines for Re = 10 0 0 , CF L wa v e = 13 with and without filter. (A) x-velocity along the vertical centerline. (B) 

y-velocity along the horizontal centerline. Squares: data from calculation using (ω − ψ) formulation (Ghia et al. [17] ); Line plots: implicit calculation using BIC (present 

work). For this calculation, with and without the filter give same results to numerical accuracy. 

Fig. 4. Comparison of the velocity profiles at the cavity’s centerlines for Re = 10 0 0 , CF L wa v e = 38 with filter. (A) x-velocity along the vertical centerline. (B) y-velocity along 

the horizontal centerline. Squares: data from calculation using (ω − ψ) formulation (Ghia et al. [17] ); Line plots: implicit calculation using BIC (present work). 

Fig. 5. Comparison of the velocity profiles at the cavity’s centerlines for Re = 10 0 0 , CF L wa v e = 86 with filter. (A) x-velocity along the vertical centerline. (B) y-velocity along 

the horizontal centerline. Squares: data from calculation using (ω − ψ) formulation (Ghia et al. [17] ); Line plots: implicit calculation using BIC (present work). 
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Fig. 6. Initial velocity conditions for doubly periodic shear layers. 

Fig. 7. Vorticity fields for calculations using explicit FCT and implicit BIC with 

CF L wa v e = 0 . 9 . The implicit BIC calculation is performed without the filter. 
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y Minion & Brown [19] , Nourgaliev, Dinh & Theofanous [18] to

ompare various numerical methods for stability and accuracy, as

he large vorticity gradients in this setup are sensitive to the nu-

erical algorithms. The initial velocity condition is given by 

 = 

{
tanh ( ϑ ( y − 0 . 25 ) ) , for y � 0 . 5 

tanh ( ϑ ( 0 . 75 − y ) ) , for y > 0 . 5 

v = γ sin ( 2 π( x + 0 . 25 ) ) (31) 

here ϑ is the parameter that controls the width of the shear layer.

he initial perturbation uses the lowest wavenumber with an am-

litude γ . The other flow properties are initially uniform through-

ut the domain. In this work, calculations are performed for a “thin

ayer” configuration ϑ = 80 , with a perturbation strength γ = 0 . 05

t Re = 10 , 0 0 0 . The initial velocity profiles are shown below in Fig.

 : 

The different computations are performed on uniform Cartesian

rids, 256 ×256 and 512 ×512. A summary of the vorticity maps

or a time late into the calculation is shown by Figs. 7–9 . Quantita-

ive comparisons of the decay of total enstrophy and total kinetic

nergy with the results obtained by the pseudospectral method of

inion & Brown [19] are shown in Fig. 10 . Their pseudospectral

ethod solves the incompressible Navier Stokes equations using
 projection method in spectral space and a fourth-order Runge-

utta method for time integration. 

Fig. 7 compares the results of simulations using explicit FCT and

mplicit BIC, with the same time step governed by CF L wa v e = 0 . 9 .

his is close to the explicit stability limit for this low-speed flow

roblem. The vorticity fields show good agreement between the

xplicit and implicit results. The vorticity fields are also in qual-

tative agreement with those shown by Nourgaliev, Dinh & The-

fanous [18] . In Fig. 10 , the dissipation profiles of the total en-

trophy and the total kinetic energy for both the explicit and the

mplicit simulations agree closely with those shown by the pseu-

ospectral method on a 768 ×768 grid. The difference between the

xplicit and the implicit calculation for the total enstrophy is about

.16%, and in the total kinetic energy is about 0.019%. 

Fig. 8 (a) shows the result of the calculation using BIC with

F L wa v e = 32 (the corresponding CF L f luid = 0 . 1 ) on the 256 ×256

rid. In addition to the two large main vortices, there are “wrin-

les” in the shear layers. A closer examination of these shows that

hey are small vortices. These vortices were also found and dis-

ussed by Minion & Brown [19] , who showed that when the flow

s under-resolved, spurious vortices form due to perturbations with

igher wavenumbers imposed by the truncation errors from the

umerical discretization. When a finer mesh with 512 ×512 is used

ith CF L wa v e = 32 , the spurious vortices disappear as shown in

ig. 8 (b). Another calculation is performed on the 512 ×512 grid

sing an even larger time step with CF L wa v e = 58 (the correspond-

ng CF L f luid = 0 . 2 ), as displayed in Fig. 8 (c). In general, the vorticity

elds of all cases in Figs. 7 and 8 agree well with each other, both

n terms of the structure of the main vortices and the shear layer

hickness. It indicates, however, that the implicit calculations may

equire a higher resolution than the explicit FCT to resolve the flow

eatures when using large implicit time steps. This is possibly due

o the relatively low-order calculation for the pressure correction

n BIC compared with the accuracy of the fourth-order FCT (when

alculating the pressure correction, a second-order discretization is

sed for the Laplacian-like term in the elliptic equation ( Eq. (8) ),

nd a 3-point stencil for each dimension for the multigrid solver is

elected in Boxlib). 

As shown in Fig. 10 , all of the dissipation curves for calculations

sing BIC with large time steps agree closely with the pseudospec-

ral method on a 768 ×768 grid. The good agreement validates

he ability of BIC to predict consistent results using various time

teps. Some minor differences, however, do appear in the compari-

on of the cases with different time steps in Fig. 10 . With the same

esolution, calculations with larger time steps show slightly faster

issipation, which is seen in the comparison of the cases on grid

56 ×256 with CF L wa v e = 0 . 9 and CF L wa v e = 32 , and the cases on

rid 512 ×512 with CF L wa v e = 32 and CF L wa v e = 58 in Fig. 10 . 

We now consider the effects of further increasing the time step.

 relatively large time step with CF L wa v e = 150 (the correspond-

ng CF L f luid = 0 . 5 ) is used for an implicit simulation on a 512 ×512

rid without the filter. The result is shown in Fig. 9 (a), in which

umerical instabilities appear inside and around the outer-edge of

he vortices. These instabilities can be seen in the vorticity fields,

nd are presented more clearly in the vorticity contours. These os-

illations cause a faster decay of both the total enstrophy and the

inetic energy compared with the curves for other stable calcula-

ions as shown in Fig. 10 . Intended to stabilize the calculation, the

lter is then applied to re-calculate this case using the same time

tep with CF L wa v e = 150 . As shown in Fig. 9 (b), applying the FCT

lter helps eliminate the oscillations outside of the vortices, which

rings the dissipation curves in Fig. 10 slightly closer towards the

ther stable solutions than the curves of the case without the fil-

er. There is, however, still a noticeable difference between the dis-

ipation curves. Very small oscillations around the edges of the

ortices appear when a closer examination is taken of Fig. 9 (b).



238 X. Zhang et al. / Computers and Fluids 175 (2018) 230–245 

Fig. 8. Vorticity fields for implicit BIC calculations with different time steps and grids. The FCT filter is applied on all of these three cases. 

Fig. 9. Vorticity fields with superimposed vorticity contours for implicit BIC calcu- 

lations with CF L wa v e = 150 on a 512 ×512 grid, (a) without the filter and (b) with 

the filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Time history of (a) total enstrophy, 
∑ 

i, j 

ω 2 
i, j 

2 

�A i, j 
A total 

, and (b) total kinetic en- 

ergy, 
∑ 

i, j 

| u | 2 
i, j 

2 

�A i, j 
A total 

for doubly periodic “thin” shear layer tests at Re = 10 , 0 0 0 . Com- 

parison of explicit FCT, implicit BIC calculations with the solution by the psedospec- 

tral method (Minion & Brown [19] ). 
Despite these differences, the actual difference of the total kinetic

energy in value is only about 0.51% compared with other calcu-

lations using smaller time steps. This decrease of the kinetic en-

ergy causes a 0.4 K increase in temperature. Nevertheless, this case

suggests that the filter can help mitigate spurious oscillations,

which allows for more acceptable solutions to be obtained. 

4.3. 3D Vortex breakdown 

A 3D vortex breakdown problem was computed to test the

ability of BIC to predict the instabilities that occur in swirling jet

flows. In swirling jets, the vortex structure may be affected by

disturbances imposed by the evolution of fluid dynamics, phys-

ical boundaries, and temperature. These disturbances can cause

adverse pressure gradients on the vortex core. When the axial

momentum of the flow is not sufficient to overcome the force

generated by the adverse pressure gradient, the vortex structure

can form a new stable state. This state is characterized by a stag-

nation point on the central axis of the vortex with a recirculation

zone around it. This change in the vortex structure is referred to

as “vortex breakdown.”

Based on distinctive internal structures, vortex breakdown was

characterized into three types by Sarpkaya [36] : the spiral mode,

the bubble mode, and the double-helix mode. Seven types were

reported by Faler & Leibovich [37] , which include more intermedi-

ate states. Extensive research has been done over the past on this
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Fig. 11. Grabowski vortex profile with S = 1 . 3 , α = 1 : (a) Pressure distribution for the Grabowski vortex profile; (b) Azimuthal distribution for the Grabowski vortex profile. 
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henomenon, which leads to a conclusion that the types of break-

own are mainly controlled by the flow Reynolds number and the

wirling level. Here, we adopt one set of the flow parameters from

 DNS simulation by Ruith et al. [20] . Under this selected flow con-

ition, the vortex undergoes three major types of breakdown. 

In the calculations presented below, the flow is initialized with

 “Grabowski vortex” profile, which is adopted from [20] , originally

ntroduced by Grabowski & Berger [38] . The azimuthal, radial, and

xial velocities vary with the radial location r : 

 θ (0 � r � 1) = Sr(2 − r 2 ) (32) 

 θ (1 � r) = S/r (33) 

 r (r) = 0 (34) 

 z (0 � r � 1) = α + (1 − α) r 2 (6 − 8 r + 3 r 2 ) (35) 

 z (1 � r) = 1 (36) 

Here, the swirl number is defined as S = v θ (R ) / v z, ∞ , where

 is the radius of the vortex core, and the Reynolds number is

e = v z, ∞ R/ν . The coflow parameter α = v z,c / v z, ∞ describes the ax-

al velocity as a jet-like ( α > 1.0) or wake-like profile ( α < 1.0). We

et Re = 300 , S = 1 . 3 , α = 1 , R = 1 , and v z, ∞ = 1 m / s , which is one

ase in [20] . In a swirling flow, the centrifugal force directed out-

ards should be balanced by the pressure gradient force pointing

nwards. Based on the radial force balance, 

v 2 
θ

r 
= 

1 

ρ

∂P 

∂r 
(37) 

e derive the Grabowski pressure profile outside Eq. (38) and in-

ide Eq. (39) of the vortex core as a function of the radial loca-

ion: 

 out (1 � r) = ρS 2 
(
− 1 

2 r 2 

)
+ P ∞ (38) 

 in (0 � r � 1) = ρS 2 
[
r 6 

6 
− r 4 + 2 r 2 − 7 

6 

]
+ P out (r = 1) (39) 

Three simulations are presented in this work: 
1. Reference case: Explicit calculation using FCT with CF L wa v e =
0 . 95 . Vortex breakdown in the chosen flow configuration is

controlled more by kinematic than thermodynamic effects, in

order to maximize the time step, the sound speed was scaled

through density while keeping the Mach number below 0.15: 

a) The maximum Mach number is defined as M max = v max /a =
v max / 

√ 

γ P/ρ, in which v max is the maximum fluid velocity

and a is the sound speed. In order to keep M max below 0.15,

we selected a clean number for ρ as 10 0 0 kg/m 
3 so that

the resulted far-field pressure P ∞ ≈71428 Pa, which is not

too far from the realistic condition. Peak velocity magnitude

v max is obtained from the initial velocity field. 

b) Then the molecular weight is chosen as high as M w =
10 0 0 kg / kmol , so that the temperature is not unrealistically

low. The resultant temperature in the initial flow field is

T min = 8 . 427 K and T max = 8 . 573 K , which is calculated us-

ing T = P M w / ( R u ρ) . 

2. Implicit calculation using BIC with CF L wa v e = 2 . 0 . This calcula-

tion keeps all of the flow properties as the reference case. The

corresponding CFL fluid is around 0.2. 

3. Implicit calculation using BIC with CF L wa v e = 60 . This case in-

tends to test the performance of BIC at higher CFL wave con-

dition. Therefore, the sound speed was scaled up by rais-

ing the flow temperature through lowering the density from

10 0 0 kg/m 
3 to 1 kg/m 

3 . This setup results in a similar corre-

sponding CFL fluid around 0.2. Except for the density and temper-

ature, all the other flow properties are same as in the explicit

simulation. 

The initial pressure and azimuthal velocity profiles are shown

n Fig. 11 . They are same for all of the cases. 

The simulations are performed on a 40 m × 40 m × 20 m do-

ain as shown in Fig. 12 , in which we define the z -axis as the

xial direction. An inflow condition is imposed on the lower axial

 − y plane, as indicated in Fig. 12 , with the Grabowski vortex pro-

le as described above. The upper axial x − y plane is treated as

on-reflecting. The pressure is controlled at the lateral boundaries

y the Bernoulli’s equation, since the flow is assumed to be irrota-

ional outside of the vortex core. This boundary pressure is then

alculated by P = P ∞ − ρV 2 / 2 , where V is the magnitude of the

elocity. The velocity at the lateral boundaries are specified using

 first order extrapolation with a zero gradient. For flow leaving

he boundaries, we also apply the same first order extrapolation

ith a zero gradient for the temperature. For flow coming into the
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Fig. 12. Computational domain and mesh with superimposed initial velocity field. 

Fig. 13. Layout of the particle injection location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Streaklines imposed on contours of normalized pressure for the explicit 

FCT calculation with CF L wave = 0 . 95 . The darker regions indicate higher pressure and 

the lighter regions indicate lower pressure. Time steps are selected to show the 

formation and transitions of the instability modes. 
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boundary, we specify the temperature using the ideal gas law with

the fixed density discussed earlier. 

The flow is initialized with the axisymmetric, columnar

Grabowski vortex profile throughout the whole domain, in which

the axisymmetry is applied at the center of the x − y plane along

the z axis. Cartesian mesh is employed with three levels of refine-

ment. The cell width is halved for each level. The refinement does

not change during the calculation. The radial location of refine-

ment is fixed at where the radial pressure gradient is not signif-

icant based on Eqs. (38) and (39) . 

Figs. 14 to 16 show time series for the three simulations. In

these figures, the flow streaklines are superimposed on normalized

pressure contours, where the dark region indicates higher pres-

sure and the light region indicates low pressure. As the major vor-

tex structure is at the center of the computational domain, only

a small central section of the domain of 4 m × 20 m is shown

in Figs. 14 to 16 . They have been rotated 90 ° from that shown

in Fig. 12 , with the flow now going from left to right. The flow

particle paths are visualized through streaklines by releasing mass-

less particles at the inflow boundary, from 18 locations distributed

evenly along a circle centered at the vortex axis with a 5 cm ra-

dius. The particles released on the circle are colored as black, white

and grey, which were selected to show different initial locations

and the swirling motion. At the center of the vortex, the particles

are colored pink. A schematic diagram of these particle injection

points is shown in Fig. 13 . 

In all of the three cases, the flow starts to decelerate in the ax-

ial direction at a similar time around 23.0 s, and a similar location

on the vortex axis. This deceleration leads to a radial expansion of

the vortex core, which eventually results in the formation of the

bubble mode. The bubbles in all the cases start to show a conical

shape at about 45.0 s. At around 90.0 s, the bubbles are developed

to a similar size, and then the downstream instabilities start to oc-

cur. 
Under this flow condition and the current setup of the domain,

he downstream secondary instability initially forms the double-

elix mode, then transitions to the spiral mode, and finally set-

les back into the double-helix mode. In Fig. 14 , this transition

ppears in the explicit simulation as shown by the distinct flow

tructures of an early-stage, relatively narrow double-helix mode at

ime 112.0s ( Fig. 14 d ), a spiral mode at time 187.0s ( Fig. 14 e ), and a

idely expanded double-helix mode at time 703.0s ( Fig. 14 g ). Both

mplicit calculations are able to predict this transition. As shown in

ig. 15 where the CF L wa v e = 2 . 0 , the flow downstream first forms

 narrow double-helix mode at time 118.0s ( Fig. 15 d ). After a short

eriod, this mode is then replaced by a spiral mode shown at time

65.0 s in Fig. 15 ( e ). Eventually, the downstream flow settles into a

table, widely expanded double-helix mode shown at time 369.0s

 Fig. 15 f ) and a later time 650.0s ( Fig. 15 g ). This stable double-

elix mode has a thinner flow structure comparing with the ear-

ier transient one in Fig. 15 ( d ). Similarly in Fig. 16 where the

F L wa v e = 60 , the early stage double-helix flow structure appears

t time 118.4s ( Fig. 16 d ), followed by a spiral mode at time 164.0s

 Fig. 16 e ), and eventually transitions to a steady state with a widely

xpanded double-helix mode shown at time 369.3s ( Fig. 16 f ) and
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Fig. 15. Streaklines imposed on contours of normalized pressure for the implicit 

BIC calculation with CF L wave = 2 . 0 . The darker regions indicate higher pressure and 

the lighter regions indicate lower pressure. Time steps are selected to show the 

formation and transitions of the instability modes. The FCT filter is applied. 
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Fig. 16. Streaklines imposed on contours of normalized pressure for the implicit 

BIC calculation with CF L wave = 60 . 0 . The darker regions indicate higher pressure and 

the lighter regions indicate lower pressure. Time steps are selected to show the 

formation and transitions of the instability modes. The FCT filter is applied. 
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 later time 650.5s ( Fig. 16 g ). The results of the two implicit cal-

ulations with different CFL wave conditions agree closely with each

ther, both in terms of the flow structures and the phase accuracy.

he flow structures in the explicit calculation and the two implicit

alculations also agree quite well with the previous DNS simula-

ion results from Ruith et al. [20] . These computations show the

bility of the BIC algorithm to capture and predict the transition of

ll three major types of the vortex breakdown using large implicit

ime steps. 

Fig. 17 shows a quantitative comparison of the pressure and

he axial velocity along the axial direction for the explicit FCT

imulation and the two implicit BIC simulations. The profiles

re taken at three radial locations, ranging from the vortex axis

 r = 0 m ) to the far field ( r = 8 m ). In Fig. 17 ( a ), the bubble mode

n the three calculations is developing while the downstream flow

s not affected by the secondary instabilities. The location of the

ubble formation is indicated by the minimum velocity on the

xial velocity profile at r = 0 m . It shows that the location of

he bubble is almost the same for all three cases, although the

ownstream recovery of the vortex is slightly different. This leads
o a more pronounced difference in the behavior when the spiral

nd double-helix modes occur, which is shown in Fig. 17 ( b ). Here,

t the centerline r = 0 m , we observe a secondary minimum in

he axial velocity downstream of the bubble, which corresponds to

he bifurcation point of the double helix. This minimum is lower

n the implicit calculations than it is in the explicit calculation,

hich implies the flow experiences a stronger deceleration at the

ouble-helix bifurcation point in the implicit calculations. This is

onsistent with the stronger adverse pressure gradient near this

oint in the implicit calculations seen in Fig. 17 ( b ). Although

here is a difference between the explicit and implicit simulations,

his difference does not grow as CFL wave is increased. 

. Discussion 

There are several important features of applying the BIC proce-

ure to an explicit solution of the NS equations. From our experi-

nce of using this algorithm, we have identified important points

orth discussing. Below, we discuss the use of a spatial high-

requency filter, details of algorithm coupling, the comparison of
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Fig. 17. Time averaged pressure and axial velocity at different radial locations: (a) Time averaged from t = 85 to 95 s, when the bubble is developing; (b) Time averaged 

from t = 600 to 650 s, when the downstream instabilities are developed. Solid line: explicit FCT simulation, dashed line: implicit BIC simulation with CF L wa v e = 2 . 0 , and 

dash-dotted line: implicit BIC simulation with CF L wa v e = 60 . 
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explicit and implicit calculations, the importance of the equation

of state, and future directions. 

5.1. The filter 

We have shown that the new BIC algorithm is stable when the

implicit time step is considerably larger than the time step re-

quired by the explicit stability limit. Nonetheless, when the time

step is too large, numerical oscillations can occur in the solution. A

high-frequency filter is necessary in order to control the major nu-

merical instabilities, and therefore to stabilize the calculation while

maintaining the accuracy. 

The filter used here is an extra FCT step. In previous work

[29,39] , the FCT algorithm has been used as a post-processing fil-

tering operation to extract a solution from a very noisy direct sim-

ulation Monte Carlo calculation. As the effect of the filtering as

a post-processing tool is essentially to smooth local peaks in the

data, this application inspired us to use FCT as a spatial filter dur-

ing the calculation to control numerical noise. The details of the fil-

tering process are discussed in [29] , and are only briefly explained

here to explain why and how it works as a filter. 

We begin by explaining some of the basic ideas of the FCT al-

gorithm, which was developed to solve a continuity equation for a

variable, ρ: 

∂ρ

∂t 
= −∇ · ( ρV ) . (40)

The steps of the FCT algorithm globally conserve ρ , do not

heighten any existing extrema, and do not introduce any new

maxima or minima into the solution. Specifically, the values 
{
ρ0 
i 

}
where i indicates the spatial location of ρ , are advanced in time to{
ρn 
i 

}
by the following process: 
1. The initial values ρ0 are transported and diffused, giving ρtd .

The diffusion here guarantees positivity and stability. 

2. Anti-diffusion fluxes f da ( ρtd ) are defined to remove excess dif-

fusion. This antidiffusion stage, however, can introduce negative

values or nonphysical overshoots in the solution. 

3. The antidiffused fluxes are limited to guarantee positivity and

stability, before they are applied to ρtd to find ρn . This ensures

that no new unphysical maxima or minima are added to the

solution. 

The effect of these steps is first to smooth local peaks in

he data, which alters the local value of ρ and the value of its

eighbors. Then, in the limited antidiffusion step, the neighbors

eep values closer to their original values, but the peak remains

moothed. The practical result of these steps is a high-frequency

lter with some useful properties, as shown in Fig. 18 . Here a

quare wave, propagating at zero velocity ( V = 0 in Eq. (40) ), is

assed through the FCT algorithm using a uniform grid, as shown

n Fig. 18 a . The result is that the square wave is unaltered by FCT,

p to numerical round off. Next, if a random spectrum of high-

requency noise is superimposed on the square wave, as shown in

ig. 18 b , FCT reduces the noise while rigorously conserving ρ . Dur-

ng this process, the quantity ρ is convected at zero velocity. It is

he flux limiter and the remnants of the antidiffusion that persist

uring the filtering. The comparison of the results after 50 0 0 and

0,0 0 0 passes shows that the less noisy solution stops changing

s the number of filter passes increases. This is because the flux

imiting step eliminates local extrema on neighboring points. After

hese points are smoothed, the flux limiter will no longer affect

he solution, thereby stopping the effects of the filtering. 

In theory, any high-frequency spatial filter that could help con-

rol high-frequency oscillations should work just as well. When the
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Fig. 18. Reprinted from [29] . Application of FCT filter to square wave. Plain square wave (panel a) and one that has been superimposed with random noise (panel b) are 

passed through FCT with V = 0 . The starting point and the results after 50 0 0 and 20,0 0 0 passes through the FCT filter are shown for both cases. 
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o  
IC algorithm is combined with FCT, however, using the FCT rou-

ine itself as a filter reduces the complexity of implementation. 

.2. The coupling of BIC with explicit algorithms 

It is also important to examine the interface between the com-

ined BIC and explicit algorithm, and not only their separate inher-

nt features. An example is the effect of a multiplicative coefficient

hat is introduced in FCT. This coefficient was introduced to add a

ery small amount of numerical diffusion in every time integration

tep, so that no local existing extrema will be enhanced and there-

ore the monotonicity is ensured. Although the influence of this

oefficient was well studied for explicit calculations [40] , it affects

he results in a different way when BIC is applied. 

The amount of the numerical diffusion has been quantified in

40] for explicit FCT. Here, we have seen that when FCT is com-

ined with BIC, the total amount of the numerical diffusion de-

reases with larger implicit time steps. This is attributed to the

nherent benefit of BIC simply having a larger time step: that is,

he total number of time integration steps is reduced by using

arger time steps to march towards the target physical time. Al-

hough the numerical diffusion in FCT imposed by this coefficient

s very small, the effect is not negligible when it is close in value

o the physical viscosity. Using BIC when it is possible provides a

oticeably better result especially when a quantitatively accurate

olution is required. 

The performance of BIC discussed in this paper is based on the

ombination of BIC with FCT. When BIC is applied to other meth-

ds, the influence of the interface between them should be care-

ully examined in the analysis of the overall performance and the

nterpretation of the results. 

.3. Comparison of explicit and implicit calculations 

We have compared the results obtained from explicit FCT and

mplicit BIC calculations side by side for the 2D doubly peri-

dic shear layers problem and the 3D vortex breakdown problem.

n both cases, the implicit calculations show excellent agreement

ith the explicit solutions. The accuracy of the solutions from BIC
s shown to be robust using time steps varying from near the ex-

licit stability limit to hundreds of times larger. 

Closer examinations of the implicit calculations with large time

teps in the 2D doubly periodic shear layers problem show some

dditional numerical diffusion compared with the explicit solution.

n this case, we see a slightly faster decay of the total enstro-

hy and the kinetic energy when using lager implicit time steps.

he additional diffusion observed in the BIC simulations is pos-

ibly related to the relatively less accurate elliptic solver for the

ressure correction when compared with the fourth-order accu-

ate FCT. This implies that even when a high-order monotone al-

orithm is used for the explicit prediction, the overall spacial ac-

uracy could be limited by the choice of the elliptic solver for the

mplicit correction. In this work, we use a second-order discretiza-

ion for the Laplacian-like term in the elliptic Eq. (8) , and a 3-point

tencil for each dimension for the elliptic solver from the Boxlib

ibrary. A higher order discretization stencil and a more accurate

lliptic solver can be used in future applications. 

.4. The equation of state 

The BIC algorithm in this paper is derived for ideal gases. For

ther types of equation of state, the pressure correction equa-

ion should be re-derived by finding the corresponding relation of

hanges of pressure and energy, and then substituting the relation

nto the implicit forms of the conservation of momentum and en-

rgy equations. This derivation should follow the original proce-

ure in [14] . 

.5. Future direction 

We have demonstrated the ability of the BIC and FCT to provide

table and robust calculations in the range of low-Mach-number

ows. The algorithm has been tested on flows with Mach number

s low as 0.003. As the Mach number increases to a point where

he compressibility effects are significant, the explicit FCT algo-

ithm should be used instead. Future work will develop a method

o evolve solutions smoothly between low-Mach-number solution

btained from BICFCT and high-Mach-number solution obtained
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from explicit FCT. This could benefit the research of flows which

cover a wide range of flow speeds. 

6. Summary and conclusions 

For the computation of low-Mach-number flows, we have

presented a new BIC algorithm based on the original BIC intro-

duced in [14,22] . The original BIC algorithm proposed a solution

procedure that includes an explicit predictor step to solve the

convective portion of the Navier–Stokes equations and an implicit

corrector step to remove the acoustic limit on the CFL condition.

The explicit predictor uses a high-order monotone algorithm while

the implicit corrector solves an elliptic equation for a pressure

correction to equilibrate acoustic waves. The modification de-

scribed in this paper has several new features. These are: (1) a

modification of the energy correction, and (2) a filter step that

is operated on all of the conserved variables to remove spurious

oscillations. Another contribution in this paper is the description

of the integration procedure of BIC with the terms that represent

physical diffusion processes. The performance of BIC was tested by

combining it with a fourth-order monotone FCT algorithm. Three

swirling flows with successively increased difficulty are modeled. 

First, a flow in a 2D enclosed cavity with a moving upper wall

is simulated using various implicit time steps. This case is selected

to demonstrate the ability of BIC on solving steady-state swirling

flows. The solutions obtained using BIC are compared with results

from an incompressible calculation [17] . In this case, we obtain

good agreements for CFL wave number of at least 100. 

The second test problem is the evolution of two shear layers

into large vortices in a 2D periodic domain. This case is simulated

to examine the behavior of BIC when solving transient flows with

strong vorticity gradients. For this case, comparisons between ex-

plicit FCT and implicit BIC calculations are presented side by side.

The accuracy of the solutions using BIC are shown to be robust

using time steps varying from near the explicit stability limit to

hundreds of times larger. The CFL wave number exceeds 100 before

there are even small differences. The solutions from the BIC cal-

culations also show excellent agreement when compared to other

algorithms [18,19] . A closer examination on the time history of to-

tal enstrophy and the total kinetic energy shows a slightly faster

decay of both when a larger time step is used. This additional dif-

fusion is possibly from the relatively lower-order solution of the

pressure correction term in BIC compared with the fourth-order

explicit FCT. This shows that the choice of the multigrid solver for

the elliptic equation can limit the overall spatial accuracy of the

algorithm, although high-order explicit methods are used. 

The third test problem is a 3D vortex breakdown with an

inflow-outflow boundary condition, which tests BIC on predicting

the instabilities that occur in swirling jet flows. The highlight in

this work is the direct comparison of the explicit and implicit cal-

culations. The bubble modes predicted by BIC with different time

steps agree closely with the one obtained from the explicit FCT cal-

culation, in terms of both shape and location. The comparison also

shows that BIC is able to predict the downstream spiral mode and

the double-helix mode, and capture the transition from one to an-

other. BIC, however, predicts a stronger deceleration at the double-

helix bifurcation point. 

A spatial filter is sometimes necessary to eliminate high-

frequency numerical oscillations and therefore stabilizes the calcu-

lations when using large implicit time steps. Fourth-order mono-

tone FCT, used here as the routine for solving convective fluxes, is

suggested as a convenient choice for such a required filter. The FCT

algorithm could serve as a filter which reduces the complexity of

implementation as one FCT routine could work for two purposes.

Moreover, it is conservative, and does not require extra tuning or

optimization for most applications. 
The extension of BIC to reactive flows will be introduced in a

ubsequent paper. Potential future improvements include the gen-

ralization of the pressure correction to account for different equa-

ions of states, and an algorithm that transitions between BICFCT

nd explicit FCT to simulate flows that cover a range of Mach num-

ers. 
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