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ABSTRACT

A new Barely Implicit Correction (BIC) algorithm is presented for the simulation of low-Mach-number
flows. This new algorithm is based on the original, introduced by G. Patnaik et al. [G. Patnaik, R. H.
Guirguis, J. P. Boris and E. S. Oran, A barely implicit correction for flux-corrected transport. In: Journal
of Computational Physics 71.1 (1987), pp. 120], which was a solution procedure including an explicit
predictor step to solve the convective portion of the Navier-Stokes equations and an implicit corrector
step to remove the acoustic limit on the integration time-step. The explicit predictor uses a high-order
monotone algorithm while the implicit corrector solves an elliptic equation for a pressure correction to
equilibrate acoustic waves. In this paper, we develop and extend BIC for multidimensional viscous flows.
We introduce a new filter to further stabilize the algorithm and clarify the solution procedure for the
inclusion of the viscous fluxes. The new algorithm is examined in three test problems with successively
increased difficulty. First, a two-dimensional lid-driven cavity flow is simulated to demonstrate the ability
of BIC on solving steady-state swirling flows. Using time steps at least 100 times larger than the explicit
limit, good agreements are obtained for solutions when compared with an incompressible calculation
by a prior work. A two-dimensional (2D) doubly periodic shear layer flow is simulated to examine the
algorithm on solving a transient flow with strong vorticity gradients. Finally, vortex breakdown in three-
dimensional (3D) swirling flows are used to further test the stability and performance of the new BIC
algorithm. Comparisons of explicit and implicit BIC calculations of both the 2D doubly periodic shear
layer and 3D vortex breakdown are presented side by side. They demonstrate that the new BIC algorithm
is able to predict accurate and robust solutions using time steps varying from near the explicit stability
limit to tens and hundreds of times larger. Excellent agreement is also obtained when compared with
results from other algorithms. We discuss our observations of these computations and features which
were found to be critical for robustly simulating low-speed, highly dynamic flows.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

High-order monotone algorithms were designed to compute
high-speed flows using an explicit time-integration scheme. In this

Over the past forty years, many high-order monotone algo-
rithms have been developed and widely applied to the simulation
of compressible gas dynamics. These algorithms were originally de-
signed to overcome problems associated with calculating shocks
and contact discontinuities accurately. During this time, and espe-
cially more recently, these algorithms have been used not only to
compute supersonic flow, but also to compute subsonic flows with
turbulence and a range of reactive flow from low-speed flames
to high-speed detonations. A number of these monotone methods
have been reviewed in [1].
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approach, numerical stability is then ensured by restricting the
time step, which is based on the sound speed and convective ve-
locity. In supersonic flows, the convective velocities are comparable
with the sound speed, so there is no serious limitation on the com-
putation efficiency from using an explicit method. In low-speed
flows, however, the convective velocities can be much smaller than
the sound speed. This can make simulations of low-speed flow
prohibitively expensive when using explicit algorithms.

The motivation of the algorithm described in this paper is the
need to calculate low-speed flows accurately and economically. In
this flow regime, fluid velocities range from centimeters to tens
of meters per second, which could be hundreds of times smaller
than the sound speed. If the sound speed restriction in the sta-
bility limit could be removed, the computational cost would be
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at least one or two order of magnitude lower. This has been the
motivation for developing low-Mach number, implicit algorithms.
One way to remove the sound speed limit is to make the time in-
tegration implicit, such as MacCormack method [2], semi-implicit
ICE method [3], implicit nonlinear PPM [4] and TVD methods [5].
These implicit calculations are accurate but very expensive. Im-
provements on reducing the computational cost are reported in
recent works, including the methods developted by Wall, Pierce &
Moin [6] and Degond & Tang [7]. Another technique is the per-
turbation or asymptotic approach. The physical acoustic waves are
decoupled from the system of equations by using regular perturba-
tion theory and applying Taylor series expansion on the variables
in power terms of the Mach number. Examples of this approach in-
clude the methods developed by Jones & Boris [8], Rehm & Baum
[9], Paolucci [10], Pember et al. [11], Nicoud [12] and Thornber
et al. [13]. The asymptotic approximation still allows compression
and rarefaction over time as long as the Mach number is small
enough. The spatial variations in pressure, however, are filtered
out, which means acoustic wave effects are eliminated.

The barely implicit correction (BIC), originally proposed by Pat-
naik et al. [14], eliminated the sound speed restriction by solving
the governing equations at a large time step determined by the
fluid velocity (predictor step), and then applying a pressure correc-
tion that effectively equilibrates the acoustic waves. More specif-
ically, at each time step, a pressure correction is applied to the
momentum and energy equations (corrector step). The formula-
tion of the pressure correction allows for the corrector step to scale
from explicit to fully implicit. Patnaik et al. used the flux-corrected
transport (FCT) for the predictor step value, although in principle,
any monotone algorithm should work just as well.

The original BIC algorithm [14] was used for one-dimensional
and two-dimensional problems, and, in particular, for reactive
flows. Examples include computations of premixed cellular flame
structure (Patnaik et al. [15]), and simulations of axisymmetric
methane-air diffusion flames (Kaplan et al. [16]). These multidi-
mensional reactive-flow computations produced quantitative re-
sults when compared to experiments. Nonetheless, there were nu-
merical issues that caused some problems in the execution, such
as small, sometimes growing pressure oscillations that had to be
damped. Patnaik et al. [15] filtered these oscillations from the
solutions by using a high-frequency pressure filter. Kaplan et al.
[16] reduced oscillations to an acceptable level by using a control
algorithm for the outflow boundary condition.

In this paper, we develop and extend the BIC algorithm so that
it is robust and stable for one-, two-, and three-dimensional vis-
cous flow problems with and without inflow and outflow bound-
aries. The base monotone algorithm is the same used by Patnaik
et al. [14], fourth-order FCT. Here the new procedure for devel-
oping the pressure correction is described in detail along with an
additional filter step. The new formulation retains the flexibility of
the original algorithm to scale from explicit to fully implicit. In this
work, we focus on fully implicit performance of the new BIC algo-
rithm. This is tested by computing the flow in a two-dimensional
(2D) lid-driven cavity and comparing this solution from a pre-
viously published incompressible computation [17], a 2D doubly
periodic shear layer flow with comparisons against a “Numerical
Acoustic Relaxation (NAR)” method [18] and a “pseudospectral”
method [19], and 3D vortex breakdown in a rotating flow which
is compared with a previous DNS calculation [20]. For the cases
of doubly periodic shear layers and the vortex breakdown, implicit
and explicit solutions are compared side by side.

The organization of this paper is as follows. Section 2 presents
the basic numerical algorithm for the convective portion of the
Navier-Stokes equations (i.e., the Euler equations). This section be-
gins with a description of the original procedure and then shows
how this must be changed. Details on how to implement the new

algorithm for solving the Navier-Stokes equations are presented in
Section 3. In Section 4, we demonstrate the performance of this
algorithm using the series of test problems described above. The
paper ends in Section 5 with a discussion of some of the general
performance metrics and special features of the algorithm.

2. The barely implicit correction algorithm

We begin by describing the original BIC procedure, and then
show how it can be stabilized, and finally generalize the solution
to include viscous and other source terms. The convective fluxes
will be solved here using the flux-corrected transport algorithm
(FCT). In the original version of FCT, there is a two-stage Runge-
Kutta time integration, that is, a half time step (marching from t°
to t°+ At/2) and a full time step (from t° to t° + At), which to-
gether give second-order in time. In the BIC algorithm given be-
low, the original time integration for FCT is combined with a new
BIC step, so that there is only one time step (from t° to t° + At)
required. This is explained below.

2.1. Original BIC procedure

First consider the original BIC-FCT approach, which solves the
Euler equations that can be written as:

ap
T =V (pV) (1)
aa’%" =-V.(pVWV) - VP 2)
OE
5 =-V-(E+PV 3)

in which t is time, p is density, P is pressure, E is total energy, V is
the velocity vector. The equation of state relating pressure and the
total energy is

P 1 .,
E= v -1 + 5 oV (4)
The inclusion of body forces and source terms will be discussed
later.

The procedure outlined below is almost the same as [14]. Here,
we repeat and recast the steps to clarify the path towards the so-
lution and to facilitate the explanation of the need for the new
step added to ensure stability. This explanation below is also nec-
essary to address the more substantive modifications needed and
explained in a later section.

The term “barely implicit correction” is used to indicate that
only selected terms in the equations are treated implicitly [21].
This same basic concept as used here means that only the pressure
in Eq. (2) and velocity in Eq. (3) are treated implicitly. There were
two main stages in the algorithm. First, there is an explicit predic-
tor step using a large time-step governed by Courant-Friedrichs-
Levy (CFL) condition on the fluid velocity (not the acoustic speed)
to solve for predicted values. Then there is a second implicit cor-
rector step that solves an elliptic equation for a pressure correc-
tion. They also introduced the implicitness parameter, w, which al-
lows the algorithm to vary from partially implicit (damping of the
sound wave is minimized) to fully implicit (damping of the sound
wave is maximized).

These two stages are carried out by a four-step procedure. Be-
low, superscripts “o” denotes the old time step and “n” denotes
the new time step. The prime represents the predicted values at
the end of the predictor step, and these values are then used by
the correction step.
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1. Solve for predicted density p’, and momentum p’V’:

/I _ 0

P Atp =-V.pV (5)
N _ HO0YO

% — V. pOVOV° — VPP (6)

Use a monotone method (here FCT with one-step time integra-
tion) to solve for predicted density o’ and momentum p'V’. The
time step At is the large time-step from the CFL condition gov-
erned by fluid velocity (not sound speed).

2. Solve for intermediate energy E:
E—E°

At

Again, use FCT with the one-step time integration with the
same At as in step 1 to solve for an intermediate energy E. The
velocity V' can be calculated by p'V’/p’. The convective veloc-
ity used in this step is a weighted sum of the old and predicted
velocity. Note the introduction of the implicitness parameter w.

3. Solve for pressure correction §P. This is a step introduced for
the BIC procedure.

=-V.(E°+P) [0V + (1 -w)V] (7)

8P E° + P°
G—Dwar ~ @AY ( > )Vap
_ E_Eo B p/vrz _ povo2 (8)
At 2At

Substitute in predicted density p’, velocity V', intermediate en-
ergy E and properties at old time step into this elliptic equation
to solve for 8P, which is defined as 6P = w(P" — P°). Here y is
the ratio of specific heats.

Eq. (8) was originally derived in [14] by rewriting Eq. (2) with
the pressure in an implicit form and Eq. (3) with the velocity
in an implicit form, and combining them into one equation. To
solve Eq. (8) for a one-dimensional (1D) system, a tridiagonal
matrix solver is needed. For a two- or three-dimensional sys-
tem, an elliptic solver is required. For boundary conditions, the
Neumann condition can be applied at symmetry, no-slip wall,
or outflow (zero-gradient) boundaries. If the internal energy
is constant at a physical boundary, then the pressure at this
boundary is constant according to the equation of state. There-
fore a Dirichlet condition (6P = 0) can be applied as the pres-
sure does not vary. If the internal energy varies at a physical
boundary, then the boundary condition for §P can be derived
as a function of the internal energy based on the equation of
state.

4, Correct the momentum and energy using §P:

PV = o'V — AtVSP (9)
&P

n__ _ - 0

e —(y_l)w-i-e (10)

Since the density equation was not treated implicitly, the den-
sity at a new time step is equal to the predicted density, that is
p" = p’. Eq. (9) and 10 were given in [14]. Here e represents the
total internal energy. Exactly how to update the kinetic energy
was not described in the original paper.

Using steps 1-4, we were able to reproduce the two original
1D test problems, which were advection of a contact discontinuity
and damping of a sound wave [14]. These two tests involved so-
lution of the Euler equations only. Then, we attempted to use the
algorithm as given above to solve the full Navier-Stokes equations
by including the diffusion terms that were added through straight-
forward time-step splitting. The result showed there was a grow-
ing, unbounded instability in the solution that could be traced to

the coupling with the diffusion terms as well as effects from open
boundary conditions.

Simulations of a 2D double shear layer with periodic bound-
aries on all sides were used to isolate the issues with the addi-
tional viscous diffusion terms. The simulations showed the evo-
lution of the two shear layers rolling into large vorticies due to
an initial sinusoidal velocity perturbation. The implicit calculation
ran, but with strong unphysical oscillations in the temperature and
density.

Simulations of a 3D columnar vortex were performed using an
inflow boundary with open boundaries on all other sides of the do-
main. The results showed uncontrolled oscillations and was com-
pletely unbounded after only a few time-steps. This type of out-
flow boundary problem was also encountered by Patnaik et al.
[15] and Kaplan et al. [16]. The issue of how to stabilize an out-
flow will be discussed in more detail below.

2.2. New solution procedure

In order to stabilize the algorithm, we first need to isolate the
cause of the instability. This leads us to change our focus from pure
convection (Euler equations) to additional physical processes that
occur in a flow. When numerically solving the full Navier-Stokes
equations using explicit time schemes, timestep-splitting is often
used. This means each physical process, that is convection, diffu-
sion, and chemical reactions, is calculated serially in one time step.
Then the solutions of all the individual processes are summed, ef-
fectively coupling all the physical processes to advance in time.
This method, in theory, is correct for small time steps and it works
well when using explicit time integration for convection, or when
the changes in variables are not significant in one time step. When
using implicit algorithms such as BIC, however, the large time step
may cause large changes in momentum and energy due to diffu-
sion or reaction (if there is chemical heat release, which will be
addressed in a later work). Since the original BIC algorithm was
only applied to the convection stage, the changes in momentum
and energy from the other physical processes were not explicitly
accounted for in the pressure correction. This mismatch is what
was causing the instability issue. The pressure-correction proce-
dure has to be modified, in some way to include the changes from
other physical processes.

One approach was given in the most recent document of the
BIC algorithm [22]. An extra term S was included in the energy
equation Eq. (7) as a source term, and this formed the new equa-
tion for the intermediate energy:

E—E°
At

This term S serves as a “storage” variable which accumulates
the change of total internal energy due to diffusion and other pro-
cesses. Then using this new expression for (E— E")/At, the effects
of S are then fed into the elliptic equation, Eq. (8). Now &P includes
the effects of energy change in all of the physical processes consid-
ered.

Then, step 4, which is the correction of momentum, energy and
pressure, was given by [22] as:

=-V (E+P) [0V + (1 -0)V]+S (11)

PV = p'V' — AtVSP (12)
8P

n__ 9% 0

E"= (y—l)a)+E (13)

P" = P°+ 5P (14)

This update of variables, however, introduces two inconsisten-
cies. The first is in the kinetic energy computed from the updated
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momentum p"V" and updated total energy of Eq. (13). This incon-
sistency manifests itself because the new pressure correction is ap-
plied to the old total energy, which does not account for the rel-
atively large new kinetic energy. We show this mismatch by first
expanding the old total energy E°,
P° 1

E°= —— + —p°V%, 15

v =1 +5p (15)

The old total energy is expressed as a sum of the internal and
the kinetic energies, with the internal energy written using the
equation of state. We then incorporate the pressure correction by
substituting Eq. (15) into Eq. (13). Rearranging then gives:

wP°+46P 1
=— T = 4 _pov2 16

R +50 (16)
which means only the internal energy is updated with the pres-
sure correction term, and the kinetic energy does not change from
its value at the old time step. The momentum, however, is updated
according to Eq. (12). This mismatch violated conservation and we
observed that this asynchronism generated nonphysical pressure
waves within large momentum gradient regions.

We now introduce one modification to the kinetic energy cor-
rection to address the mismatch of energies. We replace Eq. (13) at
step 4 with:

wP°+ 8P 1

_ ~ ,nyn2
= (y—l)w+2’o V! 17)

Eﬂ

Eﬂ

This corrects the kinetic energy from the updated momentum
p"V". The velocity at the new time step V" can be calculated by
PV .

The second inconsistency is in Eq. (14), which does not account
for the implicitness w. The corrected form is written as:

P" = P° + 8P/w. (18)

Although adding the extra term S helps account for all the
physical processes in the pressure correction, oscillations in pres-
sure still arises when the time step is very large. Large implicit
time steps result in regions with strong energy source, and when
such a region is under-resolved, numerical instabilities occur and
eventually grow unbounded if left unchecked. These oscillations
decrease as the time step decreases, and they are effectively gone
when the time step is close to a usual explicit time step. Two
approaches are often used to suppress such numerical instabili-
ties. These are artificial dissipation by including additional damp-
ing terms in the equations [23,24], and more efficiently, spatial fil-
tering which does not affect the main physical gradients in the
flow [25-28]. A high-frequency pressure filter is suggested for BIC
in [22] to avoid the oscillations:

Pfiltered =P+ OlV4P (19)

in which « is a small constant. It was, however, necessary to deter-
mine the optimal @ on a case-by-case basis, and the filter violates
conservation.

Here we eliminate high-frequency oscillations and maintain
physical structures and conservation by implementing an extra FCT
step [29]. The monotone property of FCT allows for it to act as a
high-frequency filter. We use this extra step by passing the con-
servative variables calculated from step 4 (p", p"V" and E") into
the FCT routine as inputs, while forcing the convective velocities
and all pressure and source terms to be zero. This means no addi-
tional convection or pressure work in a computational cell is per-
formed. Furthermore, because all the conservative variables are fil-
tered, this procedure preserves conservation. In our usage, we find
that this filter is applicable to most cases without extra tuning or
optimizing.

3. Coupling BIC with diffusion processes

So far, we have shown how to use BIC to solve for convective
fluxes. To obtain the complete solution to the full set of Navier-
Stokes equations, the diffusion processes need to be modeled and
included. Here we couple the diffusion with the convection pro-
cess through time-step splitting procedure mentioned above. This
means that, in one time step, the diffusion and convection fluxes
are calculated independently, and each process uses the solution
from the previous process as initial conditions. There are three ma-
jor considerations for using time-step splitting, especially when the
convection process uses an implicit method. These are: (1) time-
step control, (2) the order in which of each physical process is
computed, and (3) when and how to update variables. The exact
way the processes are updated is explained in detail below.

3.1. Governing equations

We consider the time-dependent, compressible Navier-Stokes
equations :

ap

5 =~V (V) (20)
a(éot") V. (pW)—VP_V.% (21)
%=—V-((E+P)V)—V-(V-f)—V-(KVT) (22)
- pv(%(v V)l — (VV) — (W)T) (23)

where T is temperature, K is thermal conductivity, I is the identity
matrix, 7 is the stress tensor. Superscript T denotes the transpose
for a matrix. We assume Newtonian fluids and v is the kinematic
viscosity. These equations are closed with the ideal gas equation of

state:
R
P=p—T 24
P (24)
The total energy is calculated using Eq. (4).

3.2. Temporal integration procedure

Fig. 1 summarizes the integration process in one computational
time-step, in which the subscript o represents the starting (or
“old”) value, and subscripts 1, 2, and n denote stages where the
variables need to be updated. Accordingly, Table 1 lists the values
of all the variables at the end of each stage. The total procedure is
now explained step by step.

Step (1) Calculate the global time step, Atg.

The global time step is the overall At that all the physical pro-
cesses use to advance to the new time-step (t°+ Atg). To ensure
the stability of the time integration, this time step is constrained
by both the physical process and the choice of numerical algo-
rithm. The time-step limit for each process can be calculated by:

. AXx
Atcony = CFLyave m1n< TR a)’ (25)
or Ateoms = CFLpyig min(fv’l‘) (26)
. Ax?
Atcond = Ccond mm<2)‘/pcp> (27)
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Table 1
Update of the variables at each stage.

Stage Old time step: o After diffusion: 1 Intermediate stage: 2 New time step: n
Density Po P1 p2=p Pn = P2
Momentum PoVo p1Vi 2V = p'V’ PV = pa2Vo — AtVSP
Energy Eo=Rr+30V) Ei=35+imVP E=E Ey = 208 4 L pnV2
Pressure P, P =P, P, =P P, =P, +8P/w
Temperature T, Ti = P,/Rp1 L=T To = Pa/Rpn
Velocity Vo Vi V, =V, Vo = onVa/pn
- Step (2) Compute the diffusion effects
‘ Start or Restart Calculation P (2) put if . 1T -
At R After obtaining the local time-step limits At.,,q and At,;s, sub-
4 1 ———————————————————————— + 0 cycle the integration of the heat conduction and viscous diffu-
S . . H _ 10
Compute Time Step (Aty & Atyoeq;) sion fro.m the old tl.me step, t°, to the new time step, t, =t°+
Atg, using a local time-step Aty for n times, where Aty =
4-1 Atg/n. The number of the subcycles is determined so that the lo-
: o cal time step is not larger than the smallest of these two limits,
Sub-cycling Diffusion . . -
e A(pe) (Atjocq <min(Atgong, Atyisc)), while the number of the subcycles is
i Local time steps ! S B P A Beate . - . .
' At ' Heat Conduction ] minimized. Here the diffusion process is calculated using second-
bewanawni2f8h o ! Viscosity order spatial differencing and high-order Runge-Kutta time inte-
| r---  gration.
—l* ——————————————————— - %* 1 : There is a special treatment for updating of variables at this
Convection stage. In the new BIC procedure described in Section 2.2, the

' 1 1 S —
Explicit Prediction

Pressure Solution
Implicit correction

Time = Time + At
T

v
Output

Fig. 1. Flowchart of the coupling of the physical processes in one time-step.

2u/p

where v is the fluid velocity, a is the speed of sound, A is the ther-
mal conductivity, p is the dynamic viscosity. Here Ax is the com-
putational mesh size and the subscripts conv, cond, and visc stand
for convection, conduction and viscosity. Two CFL conditions for
the convection process are defined here, in which CFLyqye includes
the acoustic velocity and CFLg,;q is governed only by the fluid ve-
locity. Equivalent conditions for conduction and viscous diffusion
processes are defined as C.,,q and C.. These CFL and the C.gpq,
C,isc conditions are dependent on the algorithms chosen for these
processes.

If each of these processes, that is convection, thermal con-
duction, and viscous diffusion, is integrated using an explicit
algorithm, then the global time step is determined by the smallest
time-step required to ensure stability. When using BIC algorithm
for convection, however, the implicit time-step Atcpny could be
larger than the other required time-steps. In order to preserve the
computational efficiency, the Atg is chosen as the implicit time
step Atcony and the other processes are subcycled using local time
steps Atj,q Within the required stability limit.

At this stage, all of the variables have values from the previ-
ous time step. This stage is denoted as ‘0’ which stands for ‘old’
in Fig. 1 and all the variables are listed in the second column in
Table 1 with subscript ‘o’.

. [ Ax?
Atyise = Cyisc mm( ) (28)

change of total internal energy due to the diffusion process
needs to be extracted and stored temporarily in the variable
S = A(pe)/Atg, which will be passed into the energy equation
Eq. (11) that is solved in the next convection step. At this next con-
vection step, the effect of the change of the total internal energy
due to diffusion is included as a pressure effect, by redistributing
the pressure correction back into the flow field through the ellip-
tic Eq. (8). Therefore to avoid redundancy, the total internal energy
at this stage should temporarily keep the value it had before the
diffusion process. This means that the pressure should also stay as
P,, as pressure is a function of the total internal energy. The den-
sity, velocity, and momentum should be updated as usual. The total
energy should be updated with the old internal energy before the
diffusion (P,/(y — 1)) and the new kinetic energy (% ,01V12). Accord-
ingly, the temperature should be calculated using the old pressure
P, and the new density p;. This is listed in the third column ‘After
diffusion:1” in Table 1.

Step (3) Compute the convective transport using BIC : explicit
predictor

Now perform steps 1 and 2 of the BIC algorithm to calculate
the predicted convective fluxes. That is, solve Egs. (5), (6) and then
11, using the global time step Aty and the values updated after
the diffusion process. This means the p°, V°, P° and E° in Egs. (5),
(6) and 11 are essentially the values with subscript ‘1’ in Table 1.

This stage after the explicit predictor is denoted as ‘2’ in
Fig. 1 and ‘intermediate stage: 2’ in Table 1. The values p’, p'V’
and E in Table 1 are the outputs from the monotone algorithm
solver. The notation is kept same as in Egs. (5), (6) and 11 for con-
sistency. The pressure should have the same value that it had at
the beginning of the time step, that is, P,. Although the density
changed at this stage, the temperature and velocity are not up-
dated to save computational efforts as they will not be used in the
next corrector step.

Step (4) Compute the convective transport using BIC : implicit
corrector

Solve the elliptic Eq. (8) for the pressure correction §P. Then
correct the momentum, total energy and pressure using Eqs. (12),
(17) and 14, respectively. Here we used a multigrid elliptic solver
from BoxLib [30]. The default setting of the solver is employed,
where red-black Gauss-Seidel smoother is used for relaxation, bi-
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conjugate gradient stabilized algorithm is used for the coarse grid
exact solver, and V-cycle is used for restriction and interpolation
between fine and coarse grids.

At this stage, which is denoted as ‘n’, all of the physical pro-
cesses are at the same stage of integration, and all the flow proper-
ties are consistent and synchronized appropriately to the new time
t° + Atg. The values of all of the variables at this stage are listed in
the fifth column in Table 1 with subscripts ‘n’.

Step (5) Apply a high-frequency filter if necessary

If necessary, a high-frequency filter, which here is an extra
FCT step, could be applied here after finishing all the integration
processes. Since the FCT filter operates on conservative variables,
primitive variables need to be updated after the filtering accord-
ingly to avoid synchronization errors.

4. Applications

In the following, the performance of the BIC algorithm is ex-
amined for three test problems. In Section 4.1, simulations of a
2D lid-driven cavity flow demonstrate the ability of BIC on solving
steady-state swirling flows. The results are compared with a nu-
merical solution using a vorticity-stream-function formulation of
the incompressible Navier-Stokes equations [17]. Section 4.2 de-
scribes simulations of a 2D doubly periodic shear layer. These are
used to examine the behavior of the BIC algorithm when it is used
to simulate transient flows with strong vorticity gradients. The re-
sults are qualitatively compared with a “Numerical Acoustic Relax-
ation (NAR)” method [18] and quantatively compared with a pseu-
dospectral method [19]. In Section 4.3, the BIC algorithm is applied
to a 3D vortex breakdown problem, which validates its ability of
predicting the instabilities that occur in swirling jet flows. The re-
sults are qualitatively comparable with a previous DNS simulation
[20].

For all of the test problems in this paper, the implicitness pa-
rameter @ = 1.0 is used. The original BIC paper tested the prior
version of the algorithm for variable w and showed the damping
and dispersion effects of @w on sound waves. For all of the low-
Mach number flows of interest to us here, w = 1.0 is adequate. We
leave the investigation of variable w to future work when we dis-
cuss reactive flows.

In this work, the LCPFCT [31] version of the FCT implementation
with a fully multidimensional limiter by Zalesak [32] with a mod-
ification from DeVore [33] is employed for the convective solver.
We have also changed the numerical diffusion and antidiffusion
coefficients, v and u (see Eq. 3.19 in [31]), of the LCPFCT algorithm
to ensure the 3D implementation remains stable. The algorithm is
stable in 3D when using

11,

U:ﬁ+§6 (29)
1 1,
n=15 &€ (30)

where € is the local CFLg,q. This choice of v and w is related to the
stability of explicit LCPFCT in 3D and will be discussed in a future
work.

4.1. 2D Lid-driven cavity

This simulation considers flow in a 2D square cavity with no-
slip boundary conditions on the lower and side walls, and an up-
per wall moving with a constant uniform velocity. A primary vor-
tex, driven by shear forces, eventurally forms at the center of the
cavity. It is accompanied by secondary vortices at corners. The flow
pattern is shown in Fig. 2 as streamlines superimposed on the field

24

20

16

12

o]
x-velocity (m/s)

Fig. 2. Streamline superimposed on the contour of x-velocity for case 3 with Re =
1000, CFLyave = 86.

of velocity in the horizontal direction (x-velocity). The lid-driven
flow is a classical test problem for validation of numerical meth-
ods and computational codes. Previous numerical results are re-
viewed in [34]. Here we compare our simulations with the data
from Ghia et al. [17], who solved a vorticity-stream-function for-
mulation of the 2D incompressible Navier-Stokes equations using
a finite-difference method.

Three different implicit time steps using BIC are tested by hold-
ing CFLgy,q = 0.5 as a constant and varying sound speed through
flow temperatures from 300K to 3, 000K and 30, O00K. The re-
sultant CFLyqe equals to 13, 38 and 86 respectively. Other than
the temperature, the other flow properties are initialized to model
dry air at standard condition (300K, 1atm). The values of the pa-
rameters are summarized in Table 2 below. The test cases are per-
formed for Re = 1000. Using all the values in Table 2, we derive the
lid velocity Uy = 27.775 m/s and the length of the square cavity
H = 0.0565 m. A non-slip wall boundary condition is applied at all
the four boundaries. The upper wall has a constant velocity Ujy. All
of the calculations are performed on a uniform 256 x 256 Cartesian
mesh.

Fig. 3 presents the velocity profiles (x-velocity and y-velocity)
at the vertical and horizontal centerlines of the cavity for cases 1
with CFLyqve = 13. The effect of the fourth order FCT filter is tested
in this calculation. The steady state results show good agreement
when compared with the reference data from Ghia et al. [17]. The
results in Fig. 3 show that the application of the filter does not
affect the accuracy of the calculation, and does not change the flow
structure.

Fig. 4 and 5 show the velocity profiles for case 2 with CFLygye =
38 and case 3 with CFLyqye = 86. These calculations with relatively
high CFLyqe conditions are performed with the filter. The steady
state results for both cases agree well with the reference data [17].

4.2. 2D Doubly periodic shear layers

The simulations of 2D double shear layers with periodic bound-
aries on all sides are performed in a unit domain [0,1] x [0,1]. In
this domain, a horizontal jet is initialized with small vertical per-
turbations, and at the jet boundaries, the two shear layers roll up
into large vortices as the flow evolves. This configuration was origi-
nally introduced by Bell, Colella & Glaz [35], and further examined
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Table 2

Properties of the flow for three test cases: case 1 with CFLyqy = 13, case 2 with CFLyqae = 38, and case

3 with CFLyae = 86. The Re is defined as UyqH/v, and Ma is defined as U/, / LRE

YR

My, qir *
Re Ma T[K] P[atm]  M,, 4 [kg/mol] v [m?/s] Pr
Case 1 1000 0.08 300 1.0 28.97 1.568 x 10~ 0.711
Case 2 1000 0.0253 3000 1.0 28.97 1.568 x 103 0.711
Case 3 1000 0.008 30,000 1.0 28.97 1.568 x 10> 0.711
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Fig. 3. Comparison of the velocity profiles at the cavity's centerlines for Re = 1000, CFLyqe = 13 with and without filter. (A) x-velocity along the vertical centerline. (B)
y-velocity along the horizontal centerline. Squares: data from calculation using (w — ) formulation (Ghia et al. [17]); Line plots: implicit calculation using BIC (present
work). For this calculation, with and without the filter give same results to numerical accuracy.
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Fig. 7. Vorticity fields for calculations using explicit FCT and implicit BIC with
CFLyave = 0.9. The implicit BIC calculation is performed without the filter.

by Minion & Brown [19], Nourgaliev, Dinh & Theofanous [18] to
compare various numerical methods for stability and accuracy, as
the large vorticity gradients in this setup are sensitive to the nu-
merical algorithms. The initial velocity condition is given by

tanh(? (y — 0.25)), for y < 0.5
~ |tanh(¥(0.75 - y)), for y > 0.5
v = ysin(2w (x + 0.25)) (31)

where 9 is the parameter that controls the width of the shear layer.
The initial perturbation uses the lowest wavenumber with an am-
plitude y. The other flow properties are initially uniform through-
out the domain. In this work, calculations are performed for a “thin
layer” configuration = 80, with a perturbation strength y = 0.05
at Re = 10, 000. The initial velocity profiles are shown below in Fig.
6:

The different computations are performed on uniform Cartesian
grids, 256 x 256 and 512 x 512. A summary of the vorticity maps
for a time late into the calculation is shown by Figs. 7-9. Quantita-
tive comparisons of the decay of total enstrophy and total kinetic
energy with the results obtained by the pseudospectral method of
Minion & Brown [19] are shown in Fig. 10. Their pseudospectral
method solves the incompressible Navier Stokes equations using

a projection method in spectral space and a fourth-order Runge-
Kutta method for time integration.

Fig. 7 compares the results of simulations using explicit FCT and
implicit BIC, with the same time step governed by CFLyge = 0.9.
This is close to the explicit stability limit for this low-speed flow
problem. The vorticity fields show good agreement between the
explicit and implicit results. The vorticity fields are also in qual-
itative agreement with those shown by Nourgaliev, Dinh & The-
ofanous [18]. In Fig. 10, the dissipation profiles of the total en-
strophy and the total kinetic energy for both the explicit and the
implicit simulations agree closely with those shown by the pseu-
dospectral method on a 768 x 768 grid. The difference between the
explicit and the implicit calculation for the total enstrophy is about
0.16%, and in the total kinetic energy is about 0.019%.

Fig. 8(a) shows the result of the calculation using BIC with
CFLyqpe = 32 (the corresponding CFLﬂu,-d =0.1) on the 256 x 256
grid. In addition to the two large main vortices, there are “wrin-
kles” in the shear layers. A closer examination of these shows that
they are small vortices. These vortices were also found and dis-
cussed by Minion & Brown [19], who showed that when the flow
is under-resolved, spurious vortices form due to perturbations with
higher wavenumbers imposed by the truncation errors from the
numerical discretization. When a finer mesh with 512 x 512 is used
with CFLygpe = 32, the spurious vortices disappear as shown in
Fig. 8(b). Another calculation is performed on the 512 x 512 grid
using an even larger time step with CFLyqpe = 58 (the correspond-
ing CFLyy,q = 0.2), as displayed in Fig. 8(c). In general, the vorticity
fields of all cases in Figs. 7 and 8 agree well with each other, both
in terms of the structure of the main vortices and the shear layer
thickness. It indicates, however, that the implicit calculations may
require a higher resolution than the explicit FCT to resolve the flow
features when using large implicit time steps. This is possibly due
to the relatively low-order calculation for the pressure correction
in BIC compared with the accuracy of the fourth-order FCT (when
calculating the pressure correction, a second-order discretization is
used for the Laplacian-like term in the elliptic equation (Eq. (8)),
and a 3-point stencil for each dimension for the multigrid solver is
selected in Boxlib).

As shown in Fig. 10, all of the dissipation curves for calculations
using BIC with large time steps agree closely with the pseudospec-
tral method on a 768 x 768 grid. The good agreement validates
the ability of BIC to predict consistent results using various time
steps. Some minor differences, however, do appear in the compari-
son of the cases with different time steps in Fig. 10. With the same
resolution, calculations with larger time steps show slightly faster
dissipation, which is seen in the comparison of the cases on grid
256 x 256 with CFLyque = 0.9 and CFLyge = 32, and the cases on
grid 512 x 512 with CFLyape = 32 and CFLyqpe = 58 in Fig. 10.

We now consider the effects of further increasing the time step.
A relatively large time step with CFLyqye = 150 (the correspond-
ing CFLyyq = 0.5) is used for an implicit simulation on a 512 x 512
grid without the filter. The result is shown in Fig. 9(a), in which
numerical instabilities appear inside and around the outer-edge of
the vortices. These instabilities can be seen in the vorticity fields,
and are presented more clearly in the vorticity contours. These os-
cillations cause a faster decay of both the total enstrophy and the
kinetic energy compared with the curves for other stable calcula-
tions as shown in Fig. 10. Intended to stabilize the calculation, the
filter is then applied to re-calculate this case using the same time
step with CFLygpe = 150. As shown in Fig. 9(b), applying the FCT
filter helps eliminate the oscillations outside of the vortices, which
brings the dissipation curves in Fig. 10 slightly closer towards the
other stable solutions than the curves of the case without the fil-
ter. There is, however, still a noticeable difference between the dis-
sipation curves. Very small oscillations around the edges of the
vortices appear when a closer examination is taken of Fig. 9(b).
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Fig. 8. Vorticity fields for implicit BIC calculations with different time steps and grids. The FCT filter is applied on all of these three cases.
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Fig. 9. Vorticity fields with superimposed vorticity contours for implicit BIC calcu-
lations with CFLyaye = 150 on a 512 x 512 grid, (a) without the filter and (b) with
the filter.

Despite these differences, the actual difference of the total kinetic
energy in value is only about 0.51% compared with other calcu-
lations using smaller time steps. This decrease of the kinetic en-
ergy causes a 0.4K increase in temperature. Nevertheless, this case
suggests that the filter can help mitigate spurious oscillations,
which allows for more acceptable solutions to be obtained.

4.3. 3D Vortex breakdown

A 3D vortex breakdown problem was computed to test the
ability of BIC to predict the instabilities that occur in swirling jet
flows. In swirling jets, the vortex structure may be affected by
disturbances imposed by the evolution of fluid dynamics, phys-
ical boundaries, and temperature. These disturbances can cause
adverse pressure gradients on the vortex core. When the axial
momentum of the flow is not sufficient to overcome the force
generated by the adverse pressure gradient, the vortex structure
can form a new stable state. This state is characterized by a stag-
nation point on the central axis of the vortex with a recirculation
zone around it. This change in the vortex structure is referred to
as “vortex breakdown.”

Based on distinctive internal structures, vortex breakdown was
characterized into three types by Sarpkaya [36]: the spiral mode,
the bubble mode, and the double-helix mode. Seven types were
reported by Faler & Leibovich [37], which include more intermedi-
ate states. Extensive research has been done over the past on this
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Fig. 11. Grabowski vortex profile with S = 1.3, @ = 1: (a) Pressure distribution for the Grabowski vortex profile; (b) Azimuthal distribution for the Grabowski vortex profile.

phenomenon, which leads to a conclusion that the types of break-
down are mainly controlled by the flow Reynolds number and the
swirling level. Here, we adopt one set of the flow parameters from
a DNS simulation by Ruith et al. [20]. Under this selected flow con-
dition, the vortex undergoes three major types of breakdown.

In the calculations presented below, the flow is initialized with
a “Grabowski vortex” profile, which is adopted from [20], originally
introduced by Grabowski & Berger [38]. The azimuthal, radial, and
axial velocities vary with the radial location r:

vp(0<Tr<1)=5r(2-1?) (32)
vp(1<r)=S5/r (33)
v (r) =0 (34)
1,0<r< 1) =a+ (1 —a)r?(6—8r+3r?) (35)
1< =1 (36)

Here, the swirl number is defined as S =vy(R)/Vz00, Where
R is the radius of the vortex core, and the Reynolds number is
Re = v;.R/v. The coflow parameter o = v;¢/V; ~ describes the ax-
ial velocity as a jet-like (@ > 1.0) or wake-like profile (« < 1.0). We
setRe=300,S=13,a=1,R=1, and v;» = 1 m/s, which is one
case in [20]. In a swirling flow, the centrifugal force directed out-
wards should be balanced by the pressure gradient force pointing
inwards. Based on the radial force balance,

2

Yo - l% (37)
r por
we derive the Grabowski pressure profile outside Eq. (38) and in-
side Eq. (39) of the vortex core as a function of the radial loca-
tion:

1
Pue(1 < 1) = pS* (=515 ) + P (38)

6
Pm(0<r<1)=,052[r6—r4+2r2—;}+l’our(r=1) (39)

Three simulations are presented in this work:

1. Reference case: Explicit calculation using FCT with CFLygpe =
0.95. Vortex breakdown in the chosen flow configuration is
controlled more by kinematic than thermodynamic effects, in
order to maximize the time step, the sound speed was scaled
through density while keeping the Mach number below 0.15:
a) The maximum Mach number is defined as Mmax = Vmax/a =

Vmax/+/YP/p. in which vmax is the maximum fluid velocity
and a is the sound speed. In order to keep Mpmax below 0.15,
we selected a clean number for p as 1000kg/m3 so that
the resulted far-field pressure P, ~ 71428 Pa, which is not
too far from the realistic condition. Peak velocity magnitude
Umax iS obtained from the initial velocity field.

b) Then the molecular weight is chosen as high as M, =
1000 kg/kmol, so that the temperature is not unrealistically
low. The resultant temperature in the initial flow field is
Tmin = 8.427 K and Tmax = 8.573 K, which is calculated us-
ing T = PMy/(Rup).

2. Implicit calculation using BIC with CFLyge = 2.0. This calcula-
tion keeps all of the flow properties as the reference case. The
corresponding CFLg,;q is around 0.2.

3. Implicit calculation using BIC with CFLygye = 60. This case in-
tends to test the performance of BIC at higher CFLyqe con-
dition. Therefore, the sound speed was scaled up by rais-
ing the flow temperature through lowering the density from
1000kg/m? to 1kg/m3. This setup results in a similar corre-
sponding CFLg,;q around 0.2. Except for the density and temper-
ature, all the other flow properties are same as in the explicit
simulation.

The initial pressure and azimuthal velocity profiles are shown
in Fig. 11. They are same for all of the cases.

The simulations are performed on a 40 m x 40 m x 20 m do-
main as shown in Fig. 12, in which we define the z-axis as the
axial direction. An inflow condition is imposed on the lower axial
x — y plane, as indicated in Fig. 12, with the Grabowski vortex pro-
file as described above. The upper axial x — y plane is treated as
non-reflecting. The pressure is controlled at the lateral boundaries
by the Bernoulli’s equation, since the flow is assumed to be irrota-
tional outside of the vortex core. This boundary pressure is then
calculated by P = P,, — pV2/2, where V is the magnitude of the
velocity. The velocity at the lateral boundaries are specified using
a first order extrapolation with a zero gradient. For flow leaving
the boundaries, we also apply the same first order extrapolation
with a zero gradient for the temperature. For flow coming into the
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Fig. 13. Layout of the particle injection location.

boundary, we specify the temperature using the ideal gas law with
the fixed density discussed earlier.

The flow is initialized with the axisymmetric, columnar
Grabowski vortex profile throughout the whole domain, in which
the axisymmetry is applied at the center of the x — y plane along
the z axis. Cartesian mesh is employed with three levels of refine-
ment. The cell width is halved for each level. The refinement does
not change during the calculation. The radial location of refine-
ment is fixed at where the radial pressure gradient is not signif-
icant based on Egs. (38) and (39).

Figs. 14 to 16 show time series for the three simulations. In
these figures, the flow streaklines are superimposed on normalized
pressure contours, where the dark region indicates higher pres-
sure and the light region indicates low pressure. As the major vor-
tex structure is at the center of the computational domain, only
a small central section of the domain of 4 m x 20 m is shown
in Figs. 14 to 16. They have been rotated 90° from that shown
in Fig. 12, with the flow now going from left to right. The flow
particle paths are visualized through streaklines by releasing mass-
less particles at the inflow boundary, from 18 locations distributed
evenly along a circle centered at the vortex axis with a 5cm ra-
dius. The particles released on the circle are colored as black, white
and grey, which were selected to show different initial locations
and the swirling motion. At the center of the vortex, the particles
are colored pink. A schematic diagram of these particle injection
points is shown in Fig. 13.

In all of the three cases, the flow starts to decelerate in the ax-
ial direction at a similar time around 23.0s, and a similar location
on the vortex axis. This deceleration leads to a radial expansion of
the vortex core, which eventually results in the formation of the
bubble mode. The bubbles in all the cases start to show a conical
shape at about 45.0s. At around 90.0s, the bubbles are developed
to a similar size, and then the downstream instabilities start to oc-
cur.

time =23.0 s
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time = 453.0 s |
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Fig. 14. Streaklines imposed on contours of normalized pressure for the explicit
FCT calculation with CFLyave = 0.95. The darker regions indicate higher pressure and
the lighter regions indicate lower pressure. Time steps are selected to show the
formation and transitions of the instability modes.

Under this flow condition and the current setup of the domain,
the downstream secondary instability initially forms the double-
helix mode, then transitions to the spiral mode, and finally set-
tles back into the double-helix mode. In Fig. 14, this transition
appears in the explicit simulation as shown by the distinct flow
structures of an early-stage, relatively narrow double-helix mode at
time 112.0s (Fig. 14d), a spiral mode at time 187.0s (Fig. 14e), and a
widely expanded double-helix mode at time 703.0s (Fig. 14g). Both
implicit calculations are able to predict this transition. As shown in
Fig. 15 where the CFLygpe = 2.0, the flow downstream first forms
a narrow double-helix mode at time 118.0s (Fig. 15d). After a short
period, this mode is then replaced by a spiral mode shown at time
165.0s in Fig. 15 (e). Eventually, the downstream flow settles into a
stable, widely expanded double-helix mode shown at time 369.0s
(Fig. 15f) and a later time 650.0s (Fig. 15g). This stable double-
helix mode has a thinner flow structure comparing with the ear-
lier transient one in Fig. 15 (d). Similarly in Fig. 16 where the
CFLygye = 60, the early stage double-helix flow structure appears
at time 118.4s (Fig. 16d), followed by a spiral mode at time 164.0s
(Fig. 16e), and eventually transitions to a steady state with a widely
expanded double-helix mode shown at time 369.3s (Fig. 16f) and
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Fig. 15. Streaklines imposed on contours of normalized pressure for the implicit
BIC calculation with CFLy,ve = 2.0. The darker regions indicate higher pressure and
the lighter regions indicate lower pressure. Time steps are selected to show the
formation and transitions of the instability modes. The FCT filter is applied.

a later time 650.5s (Fig. 16g). The results of the two implicit cal-
culations with different CFLyq conditions agree closely with each
other, both in terms of the flow structures and the phase accuracy.
The flow structures in the explicit calculation and the two implicit
calculations also agree quite well with the previous DNS simula-
tion results from Ruith et al. [20]. These computations show the
ability of the BIC algorithm to capture and predict the transition of
all three major types of the vortex breakdown using large implicit
time steps.

Fig. 17 shows a quantitative comparison of the pressure and
the axial velocity along the axial direction for the explicit FCT
simulation and the two implicit BIC simulations. The profiles
are taken at three radial locations, ranging from the vortex axis
(r =0 m) to the far field (r = 8 m). In Fig. 17 (a), the bubble mode
in the three calculations is developing while the downstream flow
is not affected by the secondary instabilities. The location of the
bubble formation is indicated by the minimum velocity on the
axial velocity profile at r=0 m. It shows that the location of
the bubble is almost the same for all three cases, although the
downstream recovery of the vortex is slightly different. This leads

Fig. 16. Streaklines imposed on contours of normalized pressure for the implicit
BIC calculation with CFLyave = 60.0. The darker regions indicate higher pressure and
the lighter regions indicate lower pressure. Time steps are selected to show the
formation and transitions of the instability modes. The FCT filter is applied.

to a more pronounced difference in the behavior when the spiral
and double-helix modes occur, which is shown in Fig. 17 (b). Here,
at the centerline r=0 m, we observe a secondary minimum in
the axial velocity downstream of the bubble, which corresponds to
the bifurcation point of the double helix. This minimum is lower
in the implicit calculations than it is in the explicit calculation,
which implies the flow experiences a stronger deceleration at the
double-helix bifurcation point in the implicit calculations. This is
consistent with the stronger adverse pressure gradient near this
point in the implicit calculations seen in Fig. 17 (b). Although
there is a difference between the explicit and implicit simulations,
this difference does not grow as CFLyqye is increased.

5. Discussion

There are several important features of applying the BIC proce-
dure to an explicit solution of the NS equations. From our experi-
ence of using this algorithm, we have identified important points
worth discussing. Below, we discuss the use of a spatial high-
frequency filter, details of algorithm coupling, the comparison of
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Fig. 17. Time averaged pressure and axial velocity at different radial locations: (a) Time averaged from t = 85 to 95s, when the bubble is developing; (b) Time averaged
from t = 600 to 650s, when the downstream instabilities are developed. Solid line: explicit FCT simulation, dashed line: implicit BIC simulation with CFLyqe = 2.0, and

dash-dotted line: implicit BIC simulation with CFLye = 60.

explicit and implicit calculations, the importance of the equation
of state, and future directions.

5.1. The filter

We have shown that the new BIC algorithm is stable when the
implicit time step is considerably larger than the time step re-
quired by the explicit stability limit. Nonetheless, when the time
step is too large, numerical oscillations can occur in the solution. A
high-frequency filter is necessary in order to control the major nu-
merical instabilities, and therefore to stabilize the calculation while
maintaining the accuracy.

The filter used here is an extra FCT step. In previous work
[29,39], the FCT algorithm has been used as a post-processing fil-
tering operation to extract a solution from a very noisy direct sim-
ulation Monte Carlo calculation. As the effect of the filtering as
a post-processing tool is essentially to smooth local peaks in the
data, this application inspired us to use FCT as a spatial filter dur-
ing the calculation to control numerical noise. The details of the fil-
tering process are discussed in [29], and are only briefly explained
here to explain why and how it works as a filter.

We begin by explaining some of the basic ideas of the FCT al-
gorithm, which was developed to solve a continuity equation for a
variable, p:
dp

ar =~V (V).

(40)

The steps of the FCT algorithm globally conserve p, do not
heighten any existing extrema, and do not introduce any new
maxima or minima into the solution. Specifically, the values {p?}
where i indicates the spatial location of p, are advanced in time to
{pl”} by the following process:

1. The initial values p° are transported and diffused, giving pt.
The diffusion here guarantees positivity and stability.

2. Anti-diffusion fluxes f19(p') are defined to remove excess dif-
fusion. This antidiffusion stage, however, can introduce negative
values or nonphysical overshoots in the solution.

3. The antidiffused fluxes are limited to guarantee positivity and
stability, before they are applied to p™ to find p". This ensures
that no new unphysical maxima or minima are added to the
solution.

The effect of these steps is first to smooth local peaks in
the data, which alters the local value of p and the value of its
neighbors. Then, in the limited antidiffusion step, the neighbors
keep values closer to their original values, but the peak remains
smoothed. The practical result of these steps is a high-frequency
filter with some useful properties, as shown in Fig. 18. Here a
square wave, propagating at zero velocity (V=0 in Eq. (40)), is
passed through the FCT algorithm using a uniform grid, as shown
in Fig. 18a. The result is that the square wave is unaltered by FCT,
up to numerical round off. Next, if a random spectrum of high-
frequency noise is superimposed on the square wave, as shown in
Fig. 18b, FCT reduces the noise while rigorously conserving p. Dur-
ing this process, the quantity p is convected at zero velocity. It is
the flux limiter and the remnants of the antidiffusion that persist
during the filtering. The comparison of the results after 5000 and
20,000 passes shows that the less noisy solution stops changing
as the number of filter passes increases. This is because the flux
limiting step eliminates local extrema on neighboring points. After
these points are smoothed, the flux limiter will no longer affect
the solution, thereby stopping the effects of the filtering.

In theory, any high-frequency spatial filter that could help con-
trol high-frequency oscillations should work just as well. When the



X. Zhang et al./ Computers and Fluids 175 (2018) 230-245 243

Starting Point

5000 passes

20,000 passes

e

T

@ g4

TTT T T T[T I T[T T [ TI [ TT

saadosaleaabanelasalesy
TTTTT T T T T T I TTTI ToT

02 PURTINE T W (ST T ST U (N ST ST WA W (N UNT N Y

ST S U T U U U SN S T R S

LI B B L B L B

s laaa laaalosalagy

TTT T T I T T T T T T T TTT
gl alaaalaaalaaaleay

IS T S S S SN U S N R RS

100 200 300 400

0.6

(b)

[=
=
TTT T I T[T I T[T T [T I [TTT

soadoasloaabosnlinalony
TTT TT T TT T TTT T TTT rTT

02 saaad e s gl a g aa l o g

TTTT T T T T T T T T T

dddad o g aa la s a l ooy

TTTT T T T T T T T T T

aaadaaaleaalaaalaaalaag
TTT TT T T T T T T T T TTT

pddad o s oo a l g g

-
(=

100 200 300 400

Fig. 18. Reprinted from [29]. Application of FCT filter to square wave. Plain square wave (panel a) and one that has been superimposed with random noise (panel b) are
passed through FCT with V = 0. The starting point and the results after 5000 and 20,000 passes through the FCT filter are shown for both cases.

BIC algorithm is combined with FCT, however, using the FCT rou-
tine itself as a filter reduces the complexity of implementation.

5.2. The coupling of BIC with explicit algorithms

It is also important to examine the interface between the com-
bined BIC and explicit algorithm, and not only their separate inher-
ent features. An example is the effect of a multiplicative coefficient
that is introduced in FCT. This coefficient was introduced to add a
very small amount of numerical diffusion in every time integration
step, so that no local existing extrema will be enhanced and there-
fore the monotonicity is ensured. Although the influence of this
coefficient was well studied for explicit calculations [40], it affects
the results in a different way when BIC is applied.

The amount of the numerical diffusion has been quantified in
[40] for explicit FCT. Here, we have seen that when FCT is com-
bined with BIC, the total amount of the numerical diffusion de-
creases with larger implicit time steps. This is attributed to the
inherent benefit of BIC simply having a larger time step: that is,
the total number of time integration steps is reduced by using
larger time steps to march towards the target physical time. Al-
though the numerical diffusion in FCT imposed by this coefficient
is very small, the effect is not negligible when it is close in value
to the physical viscosity. Using BIC when it is possible provides a
noticeably better result especially when a quantitatively accurate
solution is required.

The performance of BIC discussed in this paper is based on the
combination of BIC with FCT. When BIC is applied to other meth-
ods, the influence of the interface between them should be care-
fully examined in the analysis of the overall performance and the
interpretation of the results.

5.3. Comparison of explicit and implicit calculations

We have compared the results obtained from explicit FCT and
implicit BIC calculations side by side for the 2D doubly peri-
odic shear layers problem and the 3D vortex breakdown problem.
In both cases, the implicit calculations show excellent agreement
with the explicit solutions. The accuracy of the solutions from BIC

is shown to be robust using time steps varying from near the ex-
plicit stability limit to hundreds of times larger.

Closer examinations of the implicit calculations with large time
steps in the 2D doubly periodic shear layers problem show some
additional numerical diffusion compared with the explicit solution.
In this case, we see a slightly faster decay of the total enstro-
phy and the kinetic energy when using lager implicit time steps.
The additional diffusion observed in the BIC simulations is pos-
sibly related to the relatively less accurate elliptic solver for the
pressure correction when compared with the fourth-order accu-
rate FCT. This implies that even when a high-order monotone al-
gorithm is used for the explicit prediction, the overall spacial ac-
curacy could be limited by the choice of the elliptic solver for the
implicit correction. In this work, we use a second-order discretiza-
tion for the Laplacian-like term in the elliptic Eq. (8), and a 3-point
stencil for each dimension for the elliptic solver from the Boxlib
library. A higher order discretization stencil and a more accurate
elliptic solver can be used in future applications.

5.4. The equation of state

The BIC algorithm in this paper is derived for ideal gases. For
other types of equation of state, the pressure correction equa-
tion should be re-derived by finding the corresponding relation of
changes of pressure and energy, and then substituting the relation
into the implicit forms of the conservation of momentum and en-
ergy equations. This derivation should follow the original proce-
dure in [14].

5.5. Future direction

We have demonstrated the ability of the BIC and FCT to provide
stable and robust calculations in the range of low-Mach-number
flows. The algorithm has been tested on flows with Mach number
as low as 0.003. As the Mach number increases to a point where
the compressibility effects are significant, the explicit FCT algo-
rithm should be used instead. Future work will develop a method
to evolve solutions smoothly between low-Mach-number solution
obtained from BICFCT and high-Mach-number solution obtained
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from explicit FCT. This could benefit the research of flows which
cover a wide range of flow speeds.

6. Summary and conclusions

For the computation of low-Mach-number flows, we have
presented a new BIC algorithm based on the original BIC intro-
duced in [14,22]. The original BIC algorithm proposed a solution
procedure that includes an explicit predictor step to solve the
convective portion of the Navier-Stokes equations and an implicit
corrector step to remove the acoustic limit on the CFL condition.
The explicit predictor uses a high-order monotone algorithm while
the implicit corrector solves an elliptic equation for a pressure
correction to equilibrate acoustic waves. The modification de-
scribed in this paper has several new features. These are: (1) a
modification of the energy correction, and (2) a filter step that
is operated on all of the conserved variables to remove spurious
oscillations. Another contribution in this paper is the description
of the integration procedure of BIC with the terms that represent
physical diffusion processes. The performance of BIC was tested by
combining it with a fourth-order monotone FCT algorithm. Three
swirling flows with successively increased difficulty are modeled.

First, a flow in a 2D enclosed cavity with a moving upper wall
is simulated using various implicit time steps. This case is selected
to demonstrate the ability of BIC on solving steady-state swirling
flows. The solutions obtained using BIC are compared with results
from an incompressible calculation [17]. In this case, we obtain
good agreements for CFLyqe number of at least 100.

The second test problem is the evolution of two shear layers
into large vortices in a 2D periodic domain. This case is simulated
to examine the behavior of BIC when solving transient flows with
strong vorticity gradients. For this case, comparisons between ex-
plicit FCT and implicit BIC calculations are presented side by side.
The accuracy of the solutions using BIC are shown to be robust
using time steps varying from near the explicit stability limit to
hundreds of times larger. The CFLyqe number exceeds 100 before
there are even small differences. The solutions from the BIC cal-
culations also show excellent agreement when compared to other
algorithms [18,19]. A closer examination on the time history of to-
tal enstrophy and the total kinetic energy shows a slightly faster
decay of both when a larger time step is used. This additional dif-
fusion is possibly from the relatively lower-order solution of the
pressure correction term in BIC compared with the fourth-order
explicit FCT. This shows that the choice of the multigrid solver for
the elliptic equation can limit the overall spatial accuracy of the
algorithm, although high-order explicit methods are used.

The third test problem is a 3D vortex breakdown with an
inflow-outflow boundary condition, which tests BIC on predicting
the instabilities that occur in swirling jet flows. The highlight in
this work is the direct comparison of the explicit and implicit cal-
culations. The bubble modes predicted by BIC with different time
steps agree closely with the one obtained from the explicit FCT cal-
culation, in terms of both shape and location. The comparison also
shows that BIC is able to predict the downstream spiral mode and
the double-helix mode, and capture the transition from one to an-
other. BIC, however, predicts a stronger deceleration at the double-
helix bifurcation point.

A spatial filter is sometimes necessary to eliminate high-
frequency numerical oscillations and therefore stabilizes the calcu-
lations when using large implicit time steps. Fourth-order mono-
tone FCT, used here as the routine for solving convective fluxes, is
suggested as a convenient choice for such a required filter. The FCT
algorithm could serve as a filter which reduces the complexity of
implementation as one FCT routine could work for two purposes.
Moreover, it is conservative, and does not require extra tuning or
optimization for most applications.

The extension of BIC to reactive flows will be introduced in a
subsequent paper. Potential future improvements include the gen-
eralization of the pressure correction to account for different equa-
tions of states, and an algorithm that transitions between BICFCT
and explicit FCT to simulate flows that cover a range of Mach num-
bers.
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