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Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic

field is studied via direct numerical simulations. The simulations follow the revealing

experimental study of Sukoriansky et al. (1986), in particular the paradoxical observation

of high-amplitude velocity fluctuations, which exist in the downstream portion of the

flow when the strong transverse magnetic field is imposed in the entire duct including

the honeycomb exit, but not in other configurations. It is shown that the fluctuations

are caused by the large-scale quasi-two-dimensional structures forming in the flow at the

initial stages of the decay and surviving the magnetic suppression. Statistical turbulence

properties, such as the energy decay curves, two-point correlations and typical length

scales are computed. The study demonstrates that turbulence decay in the presence of a

magnetic field is a complex phenomenon critically depending on the state of the flow at

the moment the field is introduced.
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1. Introduction

This paper addresses decay of turbulence in an electrically conducting fluid in the

presence of an imposed static magnetic field. The parameters typical for technological

and laboratory flows of liquid metals are considered, so the quasi-static (also called

non-inductive) approximation, according to which the magnetohydrodynamic flow-field

interaction is reduced to the effect of the imposed field on a flow, is adopted (see, e.g.,

Davidson 2016, for the derivation and a discussion of validity of the approximation).

In any three-dimensional flow of an electrically conducting fluid, an imposed magnetic

field suppresses turbulent fluctuations via the Joule dissipation of induced electric cur-

rents. Unlike its viscous counterpart, the Joule dissipation is active irrespective of the

length scale, and anisotropic in the sense that its rate is proportional to the square of

the gradient of velocity along the magnetic field lines. As described by Moffatt (1967),

this transforms an initially isotropic flow into a flow with reduced or even zero velocity

gradients along the magnetic field lines. In flows with walls, the picture is more complex

due to the effect of walls on the velocity and electric currents. In particular, in the case

of an MHD duct, the mean flow is changed by the Lorentz force, and special boundary

layers appear (see, e.g., Branover 1978; Müller & Bühler 2001). The principal features

of the transformation of turbulence still remain (1) suppression of fluctuations, so the

MHD flows are found in a laminar or transitional state at much higher Reynolds num-

bers than their hydrodynamic counterparts (see, e.g., Zikanov et al. 2014a, for a review),

and (2) dimensional anisotropy with weaker velocity gradients along the field lines than

across them (see, e.g., Moffatt 1967; Davidson 1997; Zikanov & Thess 1998; Vorobev

et al. 2005; Krasnov et al. 2008; Reddy & Verma 2014; Verma 2017). The anisotropy

may reach the asymptotic state of flow’s quasi- (i.e. to the degree allowed by the bound-
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ary conditions) two-dimensionality if the magnetic field is sufficiently strong to suppress

three-dimensional instabilities inherently present in such a flow (Thess & Zikanov 2007).

The term anisotropy is used in this paper with the meaning commonly employed in

the research of MHD turbulence (see, e.g., Zikanov & Thess 1998; Vorobev et al. 2005;

Knaepen & Moin 2004; Knaepen et al. 2004)–as the persistent inequality of the typical

length scales of the flow structures in the directions along and across the magnetic field.

The anisotropy of the Reynolds stress tensor (the inequality of velocity components) is,

as discussed, e.g., by Burattini et al. (2010); Favier et al. (2010, 2011); Verma & Reddy

(2015) not caused directly by the magnetic field and strongly affected by the presence of

walls and other features of a particular flow, as well as the typical length scale at which

the velocity is considered.

It must be stressed that while the picture outlined above is generally correct for any

transformation of conventional three-dimensional turbulence, MHD flows exhibit complex

and often counterintuitive behavior. Good examples are the flow regimes with spatially

localized or intermittent turbulence reported by Zikanov et al. (2014a); Boeck et al.

(2008); Krasnov et al. (2013); Brethouwer et al. (2012); Krasnov et al. (2012); Zikanov

et al. (2014b), and the experimental demonstration by Pothérat & Klein (2014, 2017)

that under certain circumstances the magnetic field can, in fact, enhance turbulence.

A starting point of the modern understanding of the decay of quasi-static MHD turbu-

lence in a uniform field is the theoretical analysis of Moffatt (1967). A linearized model

based on the assumption of a very strong magnetic field acting on an initially isotropic

flow was used and the concept of the magnetically induced anisotropy was established,

which largely formed the basis of the future work. The other results of Moffatt (1967),

such as the power law of the energy decay ∼ t−1/2 and the asymptotically reached energy

partition such that the energy of the field-parallel velocity component becomes two times
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larger than in the transverse components, have later been found to be non-universal (see,

e.g., discussion in Burattini et al. 2010). Verma (2017) also critically reviews some of

Moffatt’s ideas.

A theoretical model of decaying homogeneous turbulence was developed by Davidson

(1997) (see also Davidson 2016). Estimates of the rates of viscous and Joule dissipation

in terms of the integral length scales along and across the magnetic field have led to a

simple model of the decay. It shows that power-law scaling of energy with time is only

possible when one dissipation mechanism is much stronger than the other. In general,

the decay rate varies with the flow’s anisotropy in the course of the process.

Numerical simulations of homogeneous decaying MHD turbulence in the framework of

the periodic box model were performed by Schumann (1976); Knaepen & Moin (2004);

Burattini et al. (2010); Favier et al. (2011). The results of simulations of Schumann

(1976) and, to a lesser degree, of Favier et al. (2011) were limited to the behavior at

small Reynolds numbers due to the DNS accuracy requirements and the rapid magnetic

suppression of turbulence. The limitations were avoided by Knaepen & Moin (2004)

and Burattini et al. (2010) via the use of the dynamic Smagorinsky LES model, which

had been demonstrated to be reliably accurate for the MHD quasi-static turbulence

by Knaepen & Moin (2004); Vorobev et al. (2005); Vorobev & Zikanov (2007). It was

confirmed by Burattini et al. (2010) that the linear model of Moffatt (1967) is only valid

for very strong magnetic suppression and during short (less than one turnover time)

transformation of the flow. Otherwise, the evolution is complex and strongly influenced by

the large-scale anisotropic structures forming in the flow during the initial decay period.

This implies inevitable influence of the boundaries and, in general, lack of universality

of the decay behavior.

Experimental reproduction of the decay of homogeneous MHD turbulence was at-
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tempted by Alemany et al. (1979). Turbulence was generated by a grid falling through

a cylindrical vessel filled with mercury and positioned within a uniform axially oriented

magnetic field. At moderate distances x from the grid, the fluctuation energy of the

field-parallel velocity component was found to fall as ∼ x−1. Farther from the grid, the

decay accelerated to approximately ∼ x−1.7. This change of behaviour was attributed

by Alemany et al. (1979) to the increase of the effective local magnetic interaction pa-

rameter N (we define the parameter in section 2.1). An interesting result was found for

the energy power spectra, whose slope gradually approached ∼ k−3 indicating strong

anisotropy or even approximate two-dimensionality. It is pertinent to mention in view of

our following discussion that in the experiment of Alemany et al. (1979) turbulence was

generated entirely within the zone of the applied magnetic field. Furthermore, we note

that the energy spectrum is difficult to ascertain in strongly suppressed flows at high

N . Dependencies other than ∼ k−3, for example, exponential decay ∼ exp(−bk) with a

decay length b, are also found to be consistent with the experimental and computational

data for the energy power spectrum (Verma 2017).

A series of similarly configured experiments with GaInSn as a working fluid was re-

ported by Voronchikhin et al. (1985). Several parameters of these experiments make

them potentially more interesting for our study than those of Alemany et al. (1979).

In particular, the use of stationary velocity probes allowed the authors to record longer

decay histories. Similarly to our study, two types of decay were considered. In one, as in

Alemany et al. (1979), turbulence was generated within the magnetic field. In the other,

the magnetic field was imposed after full passage of the grid through the cylinder, i. e.

on an already developed turbulent flow.

Only a limited portion of the data obtained in the course of the experiments was

reported by Voronchikhin et al. (1985). This prevents an in-depth comparison between
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their results and the computational results reported in this paper. One important con-

clusion directly relevant to our study was, however, made. The effect of accelerated decay

of turbulence caused by the magnetic field was found to be much stronger when the field

was imposed on the developed turbulent flow than when turbulence formed within the

field.

Extensive experimental studies of the mercury flows in ducts with imposed transverse

magnetic fields were carried out from the late 1960s to 1980s in Riga (see e.g. Bra-

nover et al. 1970; Kolesnikov & Tsinober 1974; Votsish & Kolesnikov 1976a,b; Kljukin

& Kolesnikov 1989). A major motivation of the experiments was to explain the so-called

residual fluctuations of velocity found in the flows with strong magnetic fields when the

measurements of pressure drop indicated full laminarization. It was hypothesized that the

fluctuations were manifestations of nearly two-dimensional flow structures forming in the

flow. It was argued that the decay rate of turbulence would be reduced by the presence

of such structures in two ways. Their quasi-two-dimensionality would mean that they are

only weakly suppressed by the magnetic field. Furthermore, the strong anisotropy would

imply reduction of the energy cascade to small length scales or inversion of the cascade,

thus leading to reduction of the viscous dissipation rate.

The existence of quasi-two-dimensional structures was confirmed in the experiments.

The flow was also found to be strongly influenced by the mechanism of turbulence gen-

eration. A particularly interesting example was the experiment of Kljukin & Kolesnikov

(1989). Turbulence in a duct was generated by a grid combining two sets of cylindrical

bars, one parallel and one perpendicular to the magnetic field. Two experiments were

performed: with the bars parallel to the magnetic field located on the downstream or the

upstream side of the grid. No significant difference between the two flows was found at

weak magnetic fields. In the strong field case, however, the flow with the field-parallel
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bars on the downstream side of the grid demonstrated residual fluctuations with intensity

decreasing very slowly along the duct. No such behavior was found in the flow with the

field-parallel bars located on the upstream side of the grid. The effect was attributed

by Kljukin & Kolesnikov (1989) to formation of strong quasi-two-dimensional vortical

structures in the former case.

Recent numerical simulations of MHD duct flows by Zikanov et al. (2014a); Krasnov

et al. (2013, 2012); Zikanov et al. (2014b) have shown that the presence of velocity

perturbations at apparently laminar pressure drop along the duct can also be caused by

turbulence in the sidewall (parallel to the magnetic field) boundary layers, which survives

at much stronger magnetic fields than the turbulence in the core of the duct and in the

Hartmann boundary layers normal to the field. Such turbulence could not be registered

in the experiments of Branover et al. (1970); Kolesnikov & Tsinober (1974); Votsish &

Kolesnikov (1976a,b), where the measured pressure drop was dominated by the friction

in the thin Hartmann layers. At the same time, the alternative explanation proposed by

the Riga researchers certainly had substantial experimental support.

The present work follows closely the experiments of Sukoriansky et al. (1986), in which

the phenomenon of turbulent fluctuations persisting along the duct in the presence of a

strong magnetic field was revisited on a higher level of accuracy and technical sophisti-

cation. Flows of mercury in a duct of 2 × 4.8 cm cross-section were studied. Magnetic

field of strength up to 1.1 T with the main component transverse to the flow’s direction

and parallel to the shorter side of the duct was imposed in the test section by a long

(pole length about 90 cm) electromagnet. The inlet into the test section was equipped

with a honeycomb consisting of densely packed round tubes of diameter 2.4 mm with

electrically insulating 0.5 mm thick walls (common drinking straws). The purpose of

the honeycomb was two-fold. It generated approximately isotropic and uniform field of
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velocity fluctuations and reduced or even prevented the M-shaped mean velocity profile

normally forming at the entrance into the magnetic field (see e.g. Branover 1978). The

Reynolds and Hartmann numbers were

ReD ≡
DU

ν
= 7.85 × 104, HaD ≡ BD

(

σ

ρν

)1/2

= 0, . . . , 780, (1.1)

where D was the duct’s hydraulic diameter, U was the mean velocity, and ν, σ, and ρ were

the kinematic viscosity, electric conductivity, and density of the fluid. The experimental

setup and the key results are shown in figures 1a and b, respectively.

The striking and, at first glance, paradoxical results were obtained in the hot-film

measurements of velocity fluctuations 43 cm downstream of the honeycomb’s exit. The

measurements showed completely different signals for the two distributions of the mag-

netic field illustrated in figure 1a. In the situation identified in Sukoriansky et al. (1986)

and this paper as Case 1, the entire length (27 cm) of the honeycomb was located between

the magnet poles (see the upper schematic illustration in figure 1b), and turbulence was

generated and decayed entirely within the practically uniform transverse magnetic field.

In the situation identified as Case 2, the magnet poles were shifted downstream so that

the axial distance between the honeycomb’s exit and the nearest corner of the pole was

15.5 cm (see the lower schematic illustration in figure 1b). In this case, turbulence was

generated at negligible magnetic field and traveled about 5.5 convective times D/U before

entering the space between the poles and thus experiencing the full magnetic suppression

effect.

The key results are shown in figure 1b reproduced from figure 5 of Sukoriansky et al.

(1986). The curves show the turbulence intensity u′/U based on the streamwise velocity

fluctuations measured on the duct axis 43 cm downstream of the honeycomb, i.e. well in

the zone of the uniform magnetic field. The signals measured in the two cases are about

the same for weak magnetic fields, approximately at HaD/ReD < 3 × 10−3. Owing to
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(a)

(b)

Figure 1. (a), Schematic diagram of the experimental facility of Sukoriansky et al. (1986). (b),

Experimental results. Turbulence intensities on the duct axis as functions of Ha/Re at different

magnet positions (reprinted with the permission of Springer).

the turbulence suppression by the magnetic field, the intensities decrease with growing

HaD reaching ∼ 0.02 at HaD/ReD = 3×10−3. For stronger magnetic fields, however, the

signals show entirely different trends. In the case 2, the intensity continues to decrease

to about 0.015 at high HaD. In the case 1, the intensity grows rapidly with growing
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HaD and reaches 0.09 (almost twice the intensity in the flow without magnetic field) at

HaD/ReD = 10−2.

The appearance of high-amplitude fluctuations for strong magnetic fields in the case

1 configuration was explained in Sukoriansky et al. (1986) by the effect described above,

i.e by development of quasi-two-dimensional flow structures with weak gradients along

the magnetic field lines. Such structures would experience weak magnetic suppression

and a reduced energy cascade to small length scales thus preserving the strength of

the associated velocity fluctuations as the fluid moved downstream. The explanation

is consistent with other experiments, e.g. of Kljukin & Kolesnikov (1989). No direct

evidence of this scenario has, however, been obtained. The type of the flow structures

and the degree of their anisotropy could also not be determined in the experiments and

has not been a subject of numerical analysis.

In this paper, we present high-resolution numerical simulations designed to explore

validity of the hypothesized scenario leading to the residual velocity fluctuations and to

produce a detailed description of the flow. The numerical model reproduces the geometry

and parameters of the experiment of Sukoriansky et al. (1986) with one adjustment. For

the purpose of understanding the effect of walls on decaying turbulence, two orientations

of the transverse magnetic field, along the shorter (as in Sukoriansky et al. (1986)) and

longer sides of the duct are considered. The role of the anisotropy introduced by the hon-

eycomb is also addressed. The problem formulation, parameters and numerical procedure

are described in section 2. The structure and statistical properties of the computed flows

are presented in section 3 . The concluding remarks are provided in section 4.
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Figure 2. Setting of the problem. (a) Scheme of the computational domain shown in the x− y

cross-section. The x- and y-axes of the coordinate system used in the simulations are shown.

The non-dimensional width of the domain in the z-direction is 2.0. The profiles of the main

component B of the magnetic field computed according to the model of Votyakov et al. (2009)

are shown (see text). x1 is the location of the upstream corner of the magnet pole-pieces in the

case 2. The two crosses in the downstream part of the flow domain indicate the locations where

the velocity fluctuation signals are recorded in the experiment of Sukoriansky et al. (1986) and

in the simulations. (b) Distribution of the streamwise velocity uinlet imposed at the inlet to

imitate the flow exiting the honeycombs of type A and type B (see text).

2. Problem formulation, method and parameters

2.1. Problem formulation

An isothermal flow of an incompressible electrically conducting Newtonian fluid in a

duct of rectangular cross-section is considered. A transverse magnetic field, the exact

configuration of which is specified below, is imposed. Assuming the asymptotic limit of

low magnetic Reynolds and Prandtl numbers, the quasi-static (non-inductive) approxi-
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mation of the magnetohydrodynamic interactions (see e.g. Davidson 2016) is used. The

non-dimensional governing equations are

∂v

∂t
+ (v·∇)v = −∇p +

1

Re
∇2

v +
Ha2

Re
(−∇φ × B + (v × B) × B) , (2.1)

∇ · v = 0, (2.2)

∇2φ = ∇ · (v × B), (2.3)

where v, p, and φ are the fields of velocity, pressure and electric potential and B is the

non-dimensionalized magnetic field. The typical scales used to derive (2.1)–(2.3) are the

mean streamwise velocity U for velocity, shorter half-width H of the duct for length,

H/U for time, ρU2 for pressure, the maximum strength B0 of the transverse component

for the magnetic field, and UB0H for electric potential. The non-dimensional parameters

are the Reynolds number

Re ≡
UH

ν
(2.4)

and the Hartmann number

Ha ≡ B0H
√

σ/ρν (2.5)

related to the parameters (1.1) based on the hydraulic diameter as Re = 0.3542ReD and

Ha = 0.3542HaD.

We will also use the magnetic interaction parameter

N ≡
Ha2

Re
=

B2
0Hσ

ρU
. (2.6)

Further settings of the problem are illustrated in figure 2. The computational domain

reproduces the test section of the experiment of Sukoriansky et al. (1986). It is a duct

segment of length 0 6 x 6 Lx and cross-section −Ly/2 6 y 6 Ly/2, −Lz/2 6 z 6 Lz/2

with Lx = 16π, Ly = 4.8 and Lz = 2.0.
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The sidewalls are of zero slip and perfect electric insulation:

v = 0,
∂φ

∂n
= 0 at sidewalls. (2.7)

At the inlet x = 0, we require that

∂φ

∂x
= 0. (2.8)

A velocity distribution imitating the flow exiting the honeycomb is applied. In the ex-

periment, the tubes of the honeycomb are densely packed and have the inner diameter

d ≈ 2.4 mm and wall thickness about 0.5 mm. The parameters for the flow in a single

tube are Red = 6600 and Had = 45 and the non-dimensional pipe length is Ld/d = 112.5.

At such parameters, the flow is expected to be weakly turbulent in the case 2. In the case

1, the magnetic field suppresses turbulence and slightly deforms the streamwise velocity

profile (see Zikanov et al. 2014a; Müller & Bühler 2001; Li & Zikanov 2013). The nu-

merical model ignores the differences and uses the same velocity distribution in the two

cases (see figure 2b). The flow in the space between the tubes present in the experiment

is also ignored.

To compute the velocity distribution, the inlet plane is covered by hexagons, into which

circles of inner diameters and wall thickness corresponding to those of the honeycomb

tubes are fitted. The axisymmetric parabolic profile of streamwise velocity is imposed

within each tube. At each time step, random three-dimensional velocity perturbations of

relative amplitude 10−4 are added, after which the entire distribution is rescaled so that

the mean streamwise velocity is equal to 1.0.

As illustrated in figure 2b, the tubes of the honeycomb can be packed so that they

form straight rows along the longer (the honeycomb type A in the following discussion)

or shorter (type B) walls of the duct. The results of the simulations presented in section

3.2 demonstrate that the two arrangements produce noticeably different flows.
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Soft boundary conditions

∂v

∂x
=

∂φ

∂x
= 0 (2.9)

are applied at the exit x = Lx of the computational domain.

Two orientations of the main component of the magnetic field, parallel to the longer

(By) or shorter (Bz) walls of the duct are used. In each case, the distribution of the

magnetic field is approximated in the simulations using the model suggested by Votyakov

et al. (2009). The model provides simple formulas for divergence-free, two-dimensional,

two-component field created by a magnet with two infinitely wide rectangular pole-pieces.

The accuracy of the model was verified in comparison with measurements in Zikanov et al.

(2013). The input parameters of the model are the coordinates of the corners of the pole-

pieces, for which we take y = ±2.6 (for By) or z = ±1.2 (for Bz), and x1 = −27, x2 = 63

in the case 1 and x1 = 15.5, x2 = 105.5 in the case 2. The resulting magnetic field has the

main component illustrated in figure 2a and the component Bx, which is much weaker

and only significant within the flow domain around the entrance into the magnetic field

in the case 2.

The problem is solved numerically using the finite-difference scheme first described

as the scheme B in Krasnov et al. (2011) and extended to spatially evolving flows in a

duct e.g. in Zikanov et al. (2014b). The solver has been successfully applied in numerous

simulations of turbulent and transitional MHD flows at high Re and Ha (see e.g. Zikanov

et al. 2014a; Krasnov et al. 2013, 2012; Zikanov et al. 2014b; Li & Zikanov 2013). The

scheme is explicit and of the second order in time and space. The discretization is on the

structured collocated grid built along the lines of the Cartesian coordinate system. The

exact conservation of mass, momentum, and electric charge, as well as near-conservation

of kinetic energy are achieved by using the velocity and current fluxes obtained by in-

terpolation to staggered grid points. The standard projection technique is applied to
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compute pressure and enforce incompressibility. The numerical algorithm is parallelized

using the hybrid MPI-OpenMP approach.

The modification of the algorithm in comparison with the original version of Krasnov

et al. (2011) concerns the solution of the Poisson equations for pressure and electric

potential. The fast cosine decomposition is used in the streamwise direction, for which the

right-hand side of the equation is modified to achieve homogeneous Neumann boundary

conditions at x = 0 and x = Lx. The direct cyclic reduction solver implemented in the

subroutines of the library FishPack (Adams et al. 1999) is used in the y − z-plane.

The computational results reported below are obtained on the grid consisting of Nx ×

Ny × Nz = 3072 × 512 × 192 points. The points are clustered towards the duct’s walls

using the coordinate transformation

y =
Ly

2

[

0.9 sin
(π

2
η
)

+ 0.1η
]

, z =
Lz

2

[

0.9 sin
(π

2
ζ
)

+ 0.1ζ
]

, (2.10)

where −1 6 η 6 1 and −1 6 ζ 6 1 are the transformed coordinates, in which the grid is

uniform.

A grid sensitivity study was performed to determine that the model sufficiently ac-

curately reproduced the essential features of the flow, such as mixing and instabilities

of the honeycomb jets, generation of turbulence, and its decay in the presence of the

magnetic field. Additional simulations for the case 1 and case 2 configurations with

the magnetic field parallel to the longer sides of the duct on the smaller grid with

Nx × Ny × Nz = 2048 × 384 × 128 and the same clustering scheme were carried out.

The results were qualitatively the same as on the larger grid with minor quantitative

differences. In particular, the time-averaged wall friction coefficients computed for the

entire flow domain changed by less than 1%. The effect of the numerical resolution on

the results is further discussed in section 4.

Several additional tests were performed at Ha = 0 to analyze the effect of the grid size,
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grid clustering, and the amplitude of the noise added at the inlet on the instability and

mixing of jets in the portion of the duct just downstream of the inlet. It has been found

that at the grid clustering associated with (2.10) further increase of the grid size and

further decrease of the noise amplitude do not result in visible changes in the formation

of turbulence.

3. Results

The parameters of the simulations are listed in Table 1. For convenience of the readers,

the runs are numbered such that odd indices 1,3,5,7 correspond to case 1 with homo-

geneous field, whereas even indices 2,4,6,8 – to case 2 with non-homogeneous field (see

Fig. 2a). Each simulation is initialized with a laminar state and continued for 100 non-

dimensional time units, whereby a fully developed flow is established. Subsequently, the

simulation is continued for a “production phase” of 100 (in the runs 1-4) or 50 (in the

runs 5-8) time units. The turbulence statistics in this paper are based on the, respectively,

1000 or 500 flow samples collected during this phase with the time interval 0.1.

The simulations 1 and 2 are for Ha/Re = HaD/ReD = 2.0 × 10−3, i.e., for the pa-

rameters in the range of moderate magnetic fields where a strong (two-fold) reduction of

turbulence intensity was detected in the experiment of Sukoriansky et al. (1986) for both

the field configurations (see figure 1b). The simulations 3-8 are for Ha/Re = HaD/ReD =

7.0×10−3. For this strong magnetic field, the experiment shows anomalous behavior with

the turbulence intensity in the case 2 configuration remaining low, but the intensity in

the case 1 configuration growing to a level about 50% higher than without the magnetic

field.

In the following discussion, the properties of the computed flows are analyzed using
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Field Field Honeycomb

Run # Orientation Configuration Type Re Ha N = Ha2

Re R = Re
Ha

1 By Case 1 A 27800 55 0.1088 505.5

2 By Case 2 A 27800 55 0.1088 505.5

3 By Case 1 A 27800 195 1.368 142.6

4 By Case 2 A 27800 195 1.368 142.6

5 Bz Case 1 A 27800 195 1.368 142.6

6 Bz Case 2 A 27800 195 1.368 142.6

7 Bz Case 1 B 27800 195 1.368 142.6

8 Bz Case 2 B 27800 195 1.368 142.6

Table 1. Simulation parameters.

the fields of turbulent fluctuations defined as

v
′ = v − 〈v〉, (3.1)

where 〈v〉(x) is the mean velocity obtained by time-averaging over the entire production

phase of the run.

We start the discussion with the main results summarized in Table 2. The time-

averaged root-mean-square amplitudes of the velocity fluctuations computed at x = 43,

z = 0 and two values of y are shown. The values for u′ correspond to the experimental

measurements of Sukoriansky et al. (1986) (see figure 1b) and show that the seemingly

paradoxical dependence of the fluctuation amplitude on the strength of the magnetic

field and magnet’s location is reproduced by the simulations. Weak fluctuations of all the

velocity components are found in the runs 1 and 2 performed at Ha = 55. Equally weak

fluctuations are found in the runs 4, 6, and 8 performed at Ha = 195 when the poles of

the magnet shifted downstream (the case 2 configuration in figure 2). Anomalously high

fluctuation amplitudes are found in the runs 3, 5, and 7, i.e. in the flows with Ha = 195
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and the honeycomb exit located within the zone of uniform magnetic field (the case 1

configuration in figure 2). The amplitudes of two velocity components are increased: the

streamwise component u′ and the component orthogonal to the magnetic field (w′ in the

run 3 and v′ in the runs 5 and 7). The increase in comparison to the other cases is about

four-fold in the runs 3 and 7 and two-fold in the run 5.

Table 2 shows that the flow’s behaviour is affected by the magnetic field strength,

magnet location, orientation of the magnetic field with respect to the duct walls, and

the honeycomb arrangement. The following discussion is separated into two parts. The

mechanism of the generation of high-amplitude fluctuations is explained and illustrated

in section 3.1 on the basis of the results obtained in the runs 1-4. Further investigation

of the fluctuations is presented in section 3.2, where the influence of the magnetic field

orientation and honeycomb arrangement is analyzed using the data from the runs 5-8.

A comment is in order concerning the comparison between the simulations and the

experiments of Sukoriansky et al. (1986). As we have already mentioned and discuss in

detail below, the qualitative agreement is quite satisfactory. The quantitative agreement

is, however, poor. From table 2 and figure 1b and figure 6 of Sukoriansky et al. (1986) we

see that in all the simulations the computed rms fluctuations are about five times lower

than in the experiment. Possible reasons for this are discussed in section 4.

3.1. Effect of magnetic field on turbulence decay

The following discussion is primarily based on simulations 1-4.

3.1.1. Velocity fluctuations

Figure 3 shows the time signals of the velocity components computed at the point

x = 43, y = z = 0 corresponding to the point of velocity measurements in the experiment

of Sukoriansky et al. (1986) (see figure 1b). The rms amplitudes listed in table 2 are
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Run #
center (y = 0) off center (y = −1.4)

u′ v′ w′ u′ v′ w′

1 4.35 × 10−3 3.90 × 10−3 3.47 × 10−3 4.40 × 10−3 4.41 × 10−3 3.79 × 10−3

2 4.67 × 10−3 4.55 × 10−3 3.55 × 10−3 4.82 × 10−3 5.23 × 10−3 4.12 × 10−3

3 1.35 × 10−2 4.45 × 10−3 1.13 × 10−2 1.35 × 10−2 4.30 × 10−3 1.21 × 10−2

4 3.35 × 10−3 2.65 × 10−3 2.38 × 10−3 4.11 × 10−3 2.56 × 10−3 2.78 × 10−3

5 5.30 × 10−3 5.40 × 10−3 1.61 × 10−3 5.62 × 10−3 5.75 × 10−3 1.61 × 10−3

6 3.76 × 10−3 3.87 × 10−3 1.87 × 10−3 3.84 × 10−3 3.27 × 10−3 2.78 × 10−3

7 1.23 × 10−2 1.05 × 10−2 3.46 × 10−3 1.18 × 10−2 1.25 × 10−2 3.59 × 10−3

8 5.03 × 10−3 4.66 × 10−3 1.48 × 10−3 5.17 × 10−3 4.69 × 10−3 2.81 × 10−3

Table 2. RMS amplitudes of fluctuations of velocity components at the points x = 43, z = 0,

y = 0 (center) and x = 43, z = 0, y = −1.4 (off center) computed using the entire signals of

fully developed flow. Since the time-averaged streamwise velocity at these points is about 1.0

in our units, the values approximately correspond to the respective turbulence intensities. The

data for flows with anomalously high fluctuation amplitudes are marked by gray colour.

calculated using these signals and similar signals recorded at x = 43, y = −1.4, z = 0.

We see that the behaviour indicated by the rms data is not subject to significant variations

at long time scales. Consistent anomalously high fluctuation amplitudes of streamwise

(u) and field-normal transverse (w) velocity components are found in the run 3 when the

magnetic field is strong and has the case 1 configuration.

3.1.2. Flow structure

The spatial structures of the fully developed flows in the simulation runs 1-4 are illus-

trated in figures 4 and 5. We see that at Ha = 55 (runs 1 and 2 in figure 4) the flows

remain turbulent, although the velocity fields are significantly modified by the magnetic

fields. The modifications include development of the mean flow profile with a nearly flat
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Figure 3. Time signals of velocity components computed at x = 43, z = 0 and y = 0 shown for

the second half of the fully developed flow stages of the simulations 1-4. Runs 1,2 at Ha = 55

and runs 3,4 at Ha = 195 are shown in, respectively, left and right columns. From top to bottom:

streamwise u, spanwise v (transverse and parallel to the main component of the magnetic field)

and vertical w (transverse and perpendicular to the main component of the magnetic field)

velocity components.

core and characteristic Hartmann and sidewall boundary layers (see figure 4) and reduc-

tion of turbulence intensity. Since the Reynolds number based on the Hartmann thickness

R ≡ Re/Ha = 505, this result is in agreement with the earlier studies of the flows in long

ducts with uniform transverse magnetic field. As discussed, for example, in the review

by Zikanov et al. (2014a), fully laminar and fully turbulent flows are typically found at,

respectively, R < 200 and R > 400, with the transitional range at 200 < R < 400. We
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Run 1 Run 2

Run 3 Run 4

Figure 4. Instantaneous distributions of the streamwise velocity u at several locations along

the duct shown for the fully developed flows in the simulations 1-4 (see table 1 for the flow

parameters).

also note that at Ha = 55 no substantial differences are observed between the case 1 and
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Run 3 Run 4

Figure 5. Isosurfaces of the vertical velocity component w (transverse and perpendicular to

the main component of the magnetic field By) for the runs 3 and 4. Two iso-levels of the same

magnitude and opposite signs (yellow – positive, blue – negative) are visualized. The insert on

the left shows the honeycomb pattern and the main component of the magnetic field By.

Figure 6. Instantaneous distribution of the vorticity component ωy parallel to the magnetic

field in the (x, z) cross-section through the duct’s axis. The transformation of jets into vortices

is shown for the run 3 by a close-up of the inlet region at 0 6 x 6 12.

case 2 configurations except that the flow modification happens farther downstream in

the run 2.

In the simulations 3 and 4 performed at Ha = 195, we have R = 143, which is

below the laminar-turbulent transition range. Turbulence is, therefore, suppressed (albeit

not completely, as we will see in the following analysis) as the fluid moves through the

magnetic field (see figure 4). The flows obtained for the two configurations of the magnetic

field are, however, clearly different.
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In the case 2 configuration, there is a distance between the honeycomb and the be-

ginning of the zone of full-amplitude magnetic field. The plots for the run 4 in figures 4

and 5 clearly show that the distance is sufficient for the instability and mixing of the jets

generated by the honeycomb. Three-dimensional turbulence develops. Upon entering the

magnetic field, the turbulent fluctuations are quickly suppressed, which is reflected by

the strong reduction of the rms velocity fluctuations at x = 43 shown in table 2.

In the case 1 configuration, the formation of turbulence near the honeycomb exit occurs

in the presence of a full-amplitude magnetic field. As shown in figures 4 and 5, the velocity

field in the run 3 quickly becomes strongly anisotropic. The instability of the honeycomb

jets does not lead to a three-dimensional turbulent state, but to a quasi-two-dimensional

flow dominated by structures aligned with the magnetic field.

The illustrations in figures 4 and 5, the distribution of the vorticity component ωy

parallel to the magnetic field in the (x, z) cross-section of the duct shown in figure 6,

and the additional visualizations analyzed in the course of our work (not shown) suggest

the following scenario of the evolution of the spatial structure of the flow. In the inlet

portion of the duct, approximately at x < 3, the dominant feature of the evolution is the

transformation of the round jets exiting the honeycomb into quasi-two-dimensional planar

(nearly parallel to the (x, y) plane) jets. Already in the course of this transformation,

the jets experience the Kelvin-Helmholtz instability that leads to noticeable waviness at

x between 3 and 4 and to roll-up into quasi-two-dimensional vortices at around x = 5.

The following evolution is characterized by quasi-two-dimensional vortices superimposed

on the plug-like profile of the streamwise velocity. It is indicated by figures 4-6 and

confirmed by the quantitative analysis presented later in this paper that the dynamics

of the vortices is that of quasi-two-dimensional turbulence.

The last preceding paragraph summarizes our key observation. It provides the basis
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for the explanation suggested earlier for the anomalously strong velocity fluctuations

observed in the experiments of Sukoriansky et al. (1986) and, likely, other experiments

such as those of Kljukin & Kolesnikov (1989). Due to their weak gradients along the

magnetic field lines, the quasi-two-dimensional vortices do not generate strong Joule

dissipation. Furthermore, the quasi-two-dimensionality reduces the energy flux from large

to small length scales, which implies weaker viscous dissipation. The flow structures are

still suppressed by the Joule and viscous dissipation in the boundary layers, but the

effect is not strong. The quasi-two-dimensional vortices are visible till the end of the flow

domain (see figures 4 and 5), and are responsible for the generation of high-amplitude

velocity fluctuations at far downstream locations.

3.1.3. Turbulence decay along the duct

The distributions of the turbulent kinetic energy in each velocity component 〈u′2〉,

〈v2〉, 〈w2〉 are computed as functions of x along the lines y = z = 0 and y = −1.4, z = 0.

The turbulence decay curves obtained at y = z = 0 are shown in figures 7 and 8. The

intervals 0 6 x < 0.1 in figure 7 and 0 6 x < 1 in figure 8 are excluded to highlight the

decay stage of the flow evolution and to eliminate the initial stage of jet instability and

mixing, at which the data are strongly influenced by the position of the point y = z = 0

with respect to the honeycomb pattern. The slope lines are plotted to illustrate the decay

rate rather than to suggest a specific scaling.

For the runs 1 and 2, the energy decay curves obtained at two locations of the magnet

are not very different from each other. This suggests weak influence of the magnetic field

in agreement with the low magnetic interaction parameter N = 0.1088. For small x, the

magnetic damping causes somewhat more rapid decay in the run 1 than in the run 2. At

larger x, approximately at x > x1 where the strength of the magnetic field is about the

same in the two flows, turbulence decays faster for the run 2. We attribute that to the
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Figure 7. Time-averaged turbulent kinetic energy 〈u′2 + v′2 +w′2〉 as a function of x along the

centerline of the duct y = z = 0. The vertical dotted line indicates the location of the corners

of the magnet pole-pieces in the runs 2 and 4. The slope line ∼ x−5/3 is shown for comparison.

stronger Joule dissipation caused by the stronger velocity gradients in the field direction

retained by the flow. At the end of the duct, the turbulent kinetic energy in the two flows

decreases to approximately the same level.

The curves in figure 8a,b show significant level of fluctuations in all three velocity

components. This is in agreement with the three-dimensional fully turbulent nature of

the flow visualized in figure 4. At the same time, the Reynolds stress tensor is not

isotropic. At small x, 〈u′2〉 > 〈v′2〉 ∼ 〈w′2〉. At larger x, approximately at x > 12 in the

flow 1 and x > 20 in the flow 2, we see significant anisotropy with 〈u′2〉 ∼ 〈v′2〉 > 〈w′2〉.

The effect of the magnetic field is much more pronounced in the flows 3 and 4. For the

run 4, the energy decay curves is practically indistinguishable from those for the run 2

curve for x < x1 (see figure 7). For x > x1, the strong imposed magnetic field results in

rapid decay and the lowest value of the turbulent kinetic energy at the duct exit among

all the simulations 1-4. Interestingly, during the initial stages of this decay, in the interval

15 < x < 30, the fluctuations of the velocity component v parallel to the magnetic field
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Figure 8. Time-averaged turbulent kinetic energies in separated velocity components 〈u′2〉,

〈v′2〉, 〈w′2〉 as functions of x along the centerline of the duct y = z = 0. The inlet section of

the duct 0 6 x 6 1 is excluded. Slope lines are shown for comparison. The vertical dotted line

indicates the location of the corners of the magnet pole-pieces in the runs 2 and 4.

remain stronger than the fluctuations of the other two components (see figure 8d). We

do not have data that would allow us to precisely identify the specific flow structures

responsible for this effect. We note that the behaviour is consistent with the evolution of

homogeneous, initially isotropic turbulence after sudden application of a strong magnetic

field. As predicted by Moffatt (1967) and confirmed by Burattini et al. (2010) and Favier

et al. (2010), the initial stages of the decay are characterized by the energy of field-parallel

velocity fluctuation component substantially larger (two times larger in the asymptotic

limit N ≫ 1) than the energy of the field-perpendicular components. Far downstream,

approximately for x > 30, the remaining fluctuations u′ and w′ decay very slowly, with

the rate approaching 〈u′2〉 ∼ 〈w′2〉 ∼ x−0.5.
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For the most interesting simulation 3, figures 7 and 8 show a very strong effect of

the magnetic field. In the entrance portion of the duct, the generation of turbulence is

inhibited and the turbulent kinetic energy is an order of magnitude smaller than in the

other three cases. The energy grows slightly for x < 0.3 and then decays, but much slower

than in the other cases. The energy becomes larger than in the other flows at x ≈ 3.

Interesting behaviour is observed in the interval 3 < x < 6. While the fluctuation

energy 〈v′2〉 of the field-parallel velocity component continues to decay along the duct,

the fluctuation energies of the other two components grow. This behaviour manifests

substantial energy transfer from the mean flow to the fluctuations. The visualizations of

the flow structure in figures 4-6 allow us to attribute it to the Kelvin-Helmholtz instability

of the quasi-two-dimensional planar jets, which develop quite rapidly at already x ≈ 3,

and the resulting formation of quasi-two-dimensional vortices.

The turbulence decay at x > 6 is characterized by 〈u′2〉 ∼ 〈w′2〉 ≫ 〈v′2〉 (see figure

8c), which is expected for quasi-two-dimensional vortical structures extending wall-to-

wall in the field direction. The energy remains much larger than in the other three flows.

For x > 8, the decay is well approximated by the power law ∼ x−5/3 (see figure 7). It

should be stressed that we do not have theoretical arguments supporting this decay rate.

The same is true for the decay rates indicated by the slope lines in figure 8. The lines

are shown purely for comparison, as illustrations of the decay trends obtained in the

simulations.

3.1.4. Turbulence statistics

The velocity fields computed in the runs 1-4 for fully developed flows at 100 < t < 200

are used to accumulate the turbulence statistics discussed in this section. Energy power

spectra are calculated from the velocity fluctuation signals at x = 43, y = z = 0 (see figure

3). To comply with the periodicity condition, we have used a window function w(τ), based
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on a superposition of two hyperbolic tangents w(τ) = tanh(aτ3) + tanh(a(Tm − τ)3)− 1

with a = 0.03. Here it is assumed that the argument τ varies from 0 to the maximum

Tm = 100. This function provides smooth transition from zero to unity at both ends and

retains more than 90% of the unmodified sequence.

A possible alternative to this approach would be to compute the spatial wavenumber

spectra in the cross-section x = const. For that, we would have to use the data recorded

in the core (excluding the boundary layers) portion of the cross-section. The data would

have to be interpolated to a uniform grid and time-averaged. We see our approach as

preferable for the following several reasons. It is free from the errors associated with the

interpolation and the variation of flow properties in the cross-section. The spectra based

on the time signal directly correspond to the measurements made in the experiment.

Finally, one-dimensional spectra are more informative in the case of strongly anisotropic

turbulence than three-dimensional or two-dimensional ones.

The spectra are shown in figure 9. We see that even at Ha = 195 the spectra are

continuously populated in a wide range of frequencies ω, so the flows can be classified as

turbulent. The inertial ranges cannot be reliably determined due to their shortness typical

for turbulence decay in the presence of MHD suppression. Still, one sees portions of the

spectra with the slope close to ∼ ω−5/3 at Ha = 55 and ∼ ω−3 at Ha = 195. The latter

can be viewed as an indication of the quasi-two-dimensional character of the turbulence,

although, as argued by Alemany et al. (1979) and Sommeria & Moreau (1982), the same

spectrum may appear as a result of the equilibrium between the local angular energy

transfer and the Joule dissipation in the core flow or the Hartmann boundary layers.

The spectrum of w2 is particularly convenient for characterization of the anomalous

high-amplitude turbulent fluctuations observed in the flow 3 (see figure 9f). The energy
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Figure 9. Power spectra of the kinetic energy based on the velocity signals computed at x = 43,

y = z = 0 in the fully developed flows at Ha = 55 (runs 1,2 shown in the left column) and

Ha = 195 (runs 3 and 4 shown in the right column). The spectra of the total kinetic energy

E = u2 + v2 + w2 and the energy in two velocity components u and w are shown. For the sake

of clarity, the filtered spectra (using Bezier spline) are shown, the original raw data are only

demonstrated on plots (a,b). Also shown, for the sake of comparison, are the power laws ∼ ω−3

and ∼ ω−5/3. The spectra of the energy in the velocity component v (not shown) demonstrate

practically no difference between the four flows.

peak at ω ≈ 10 is evidently associated with the characteristic streamwise size of the

vortices (see figure 5).

We have also evaluated two-point velocity correlation functions along the direction
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Figure 10. Integral length scales based on the correlation data obtained in the runs 1-4: (a, b)

parallel to the magnetic field, (c, d) perpendicular to the field. The scales Ly
‖, Ly

⊥ and Lz
‖, Lz

⊥

are shown as functions of the streamwise coordinate x. The nature of the peak at x = 16 in

figure (c) is explained in appendix A.

parallel (y) and perpendicular (z) to the magnetic field. The coefficients are defined as

(here for the velocity component w)

Rw(ℓy) =

∫ Lz−δz

−Lz+δz

w(x∗, 0, z)w(x∗, ℓy, z)dz +
∫ Lz−δz

−Lz+δz

w(x∗, 0, z)w(x∗,−ℓy, z)dz

2
∫ Lz−δz

−Lz+δz

w2(x∗, 0, z)dz
(3.2)

Rw(ℓz) =

∫ Ly−δy

−Ly+δy

w(x∗, y, 0)w(x∗, y, ℓz)dy +
∫ Ly−δy

−Ly+δy

w(x∗, y, 0)w(x∗, y,−ℓz)dy

2
∫ Ly−δy

−Ly+δy

w2(x∗, y, 0)dy
.(3.3)

The magnetohydrodynamic boundary layers of thicknesses δy = Ly/Ha and δz = Lz/Ha1/2

are excluded from the integration, so the estimation of the correlations is limited to the

zone of approximately homogeneous turbulence in the core flow. The integrals are calcu-

lated at the time moments separated by 0.1 and time-averaged over the period of fully

developed flow. The calculations are performed for several duct’s cross-sections x = x∗,

namely at x∗ = 1, 2, 3, 4 and at 7 6 x∗ 6 49 with a step of 3.
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The computed correlation curves provide detailed information on the development of

the dimensional anisotropy along the duct. The results are presented in appendix A.

Here, we discuss the longitudinal (L‖) and transverse (L⊥) length scales along (y) and

across (z) the magnetic field derived as:

Ly
‖ =

∫ 1−δy

0

Rv(ℓy)dℓy, (3.4)

Ly
⊥ =

∫ 1−δy

0

Rw(ℓy)dℓy, (3.5)

Lz
‖ =

∫ 1−δz

0

Rw(ℓz)dℓz, (3.6)

Lz
⊥ =

∫ 1−δz

0

Rv(ℓz)dℓz. (3.7)

In isotropic turbulence, we would find Ly
‖ ≈ Lz

‖ ≈ 2Ly
⊥ ≈ 2Lz

⊥. These relationships

are, quite expectedly, not satisfied by the flows 3 and 4 with strong magnetic field. For

the flows 1 and 2 with weak magnetic field, the relationships hold for Lz
‖ and Lz

⊥ at

large distances from the inlet, where the honeycomb-created jets are properly mixed (see

figures 10c and d), but not for Ly
‖ and Ly

⊥ (not clearly visible in figures 10a and b, but

verified in our analysis). We also see that at weak magnetic field the scales Ly
‖ and Ly

⊥

remain practically constant, while Lz
‖ and Lz

⊥ grow downstream. The outlying point in

figure 10c corresponds to the effect of the local flow transformation in the run 4 discussed

in appendix A.

In the runs 3 and 4, the strong magnetic field causes rapid growth of Ly
‖, Ly

⊥, and Lz
‖,

but not Lz
⊥. The most interesting for us are the length scales Ly

⊥ and Lz
‖ computed on

the basis of the fluctuations of the velocity component w. We see that the length scale

Ly
⊥ along the magnetic field grows monotonically downstream after the full-strength

magnetic field is introduced (at x = 0 in the run 3 and at x = x1 in the run 4) as

an indication of flow’s transition into strongly anisotropic form. Interestingly, the large

vortices developing in the flow 3 result in slower growth, so at the end of the domain, Ly
⊥
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is smaller than in the flow 4. The length scale Lz
‖ in the direction perpendicular to the

magnetic field grows very rapidly at small x in the flow 3 and stabilizes at about 0.25

at x above approximately 20. This value as associated with the typical transverse size of

the quasi-two-dimensional vortices. On the contrary, in the flow 4, where the vortices do

not form, Lz
‖ grows continuously downstream.

3.2. Effect of walls and anisotropy of inlet conditions

The discussion of section 3.1 as well as previous works by various authors (see e.g. Moffatt

1967; Sukoriansky et al. 1986; Kljukin & Kolesnikov 1989; Burattini et al. 2010) suggest

that the development and persistence of quasi-two-dimensional structures aligned with

the strong imposed magnetic field is a general physical phenomenon to be observed, in

some form, in all decaying MHD turbulent flows. At the same time, features of the flow’s

configuration may strongly affect the realization of the phenomenon in a specific case.

For our system, the most important such features are: (i) the location of the duct’s walls

non-parallel to the magnetic field, which limit the longitudinal size of the quasi-two-

dimensional flow structures and (ii) the design of the honeycomb, which may introduce

anisotropy into the initial state of the flow.

The importance of these features is due to the presence of the strong transverse mag-

netic field. Without the field, approximately homogeneous and isotropic turbulence in-

sensitive to such details of the system’s geometry is expected to form in the core of the

duct downstream of the honeycomb’s exit.

The two effects are explored in our study in the simulation runs 5-8 (see table 1 for

parameters). The strong magnetic field corresponding to Ha = 195 is applied in all the

simulations, so we expect the behaviour similar to that observed earlier in the simulations

3 and 4. The main component of the magnetic field is oriented along the shorter side of

the duct (Bz) and not along the longer side as before. The case 1 and case 2 distributions
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of the magnetic field along the duct are considered. In addition to allowing us to see the

effect of the distance between the field-crossing walls, the new simulations provide a direct

comparison with the experiment of Sukoriansky et al. (1986), in which the magnetic field

is in the z-direction.

Two arrangements of the honeycomb tubes are considered. As illustrated in figure 2b,

the tubes are arranged into straight rows along the longer (Type A) or shorter (Type B)

sides of the duct. This implies different anisotropies of the flows exiting the honeycomb.

The type A (runs 5 and 6) produces structures with weaker average gradients in the

y-direction, i.e. perpendicularly to the magnetic field. The type B (runs 7 and 8) results

in the flow structures with weaker gradient in the z-direction, i.e. the direction of the

magnetic field.

The rms velocity fluctuations in fully developed flows are presented in table 2. We see

that the situation is generally similar to that observed earlier in the simulations 3 and

4. The anomalously strong velocity fluctuations appear when the magnetic field has the

configuration of case 1 (runs 5 and 7) but not of case 2 (runs 6 and 8). Also as before, the

strong fluctuations develop in the streamwise velocity component u and the transverse

component perpendicular to the magnetic field v.

The effect of the anisotropy introduced by the honeycomb is clearly visible. The fluc-

tuation amplitude in the run 7 is about the same as in the run 3, while it is about two

times smaller in the run 5.

To explain these results, we will consider the spatial structure of the flows visualized

in figures 11–12. As in section 3.1, profiles of the streamwise velocity (figure 11) and

isosurfaces of the transverse velocity component perpendicular to the magnetic field

(figure 12) are shown.

We start with the simulations 6 and 8, in which the magnet poles are shifted down-
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Run 5 Run 6

Run 7 Run 8

Figure 11. Instantaneous distributions of the streamwise velocity u at several locations along

the duct shown for the fully developed flows in simulations 5-8 (see table 1 for flow parameters).

stream of the honeycomb exit (the case 2 configuration, see figures 1b and 2a). One can

see that, similarly to the simulation 4, three-dimensional turbulence forms before the
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Run 5 Run 6

Run 7 Run 8

Figure 12. Isosurfaces of the velocity component v (transverse and perpendicular to the main

component of the magnetic field Bz) for the simulations 5, 6 (top) and 7,8 (bottom). Two

iso-levels of the same magnitude and opposite signs (yellow – positive, blue – negative) are

visualized. The insert on the left shows the honeycomb patterns of Type A and B, and the main

component of the magnetic field Bz.

fluid enters the zone of strong magnetic field. Subsequent effective magnetic damping

results in the low amplitude of remaining velocity fluctuations reported in table 2.

The flows of the simulations 6 and 8 also have prominent M-shaped profiles of stream-

wise velocity (see figure 11). Such a profile is expected when the flow in a duct with

electrically insulating walls enters the zone of strong transverse magnetic field (see e.g.

Branover 1978; Andreev et al. 2006). The profile can also be noticed in the run 4 (see
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figure 4), but it is more pronounced in the runs 6 and 8 due to the larger distance between

the sidewalls (the walls parallel to the magnetic field).

The two just discussed flow features are equally observed in the simulations 6 and 8.

The only difference between the two flows is that we see significant velocity fluctuations

near the sidewalls in the far downstream portion of the duct in the flow 6 but not in flow

8 (see figures 11 and 12). The physical nature of this phenomenon has been verified in

additional simulations. We attribute its existence to the strong shear layer associated with

the planar side-wall jets forming in the M-shaped profile. Such layers are known to be be

very susceptible to instabilities (see e.g. Kobayashi et al. 2012). Similar phenomenon is

also known in another configuration with planar side-wall jets, as Hunt’s flow (Braiden

et al. 2016). The fact that side-wall turbulence appears in the run 6, but not in the run

8, is the effect of the honeycomb arrangement. Stronger flow instability is triggered in

the run 6, since the perturbations introduced into the side-wall layers by the honeycomb

of type A are less aligned with the magnetic field and, therefore, can destabilize earlier.

In the simulations 5 and 7, the honeycomb exit is located within the zone of strong

transverse magnetic field (the case 1 configuration, see figures 1b and 2a). Similarly to

the flow 3, the simulations show development of quasi-two-dimensional structures that

are poorly suppressed by the magnetic field and have the from of large-scale vortices

aligned with the field. Interestingly, the strength of the structures and the amplitude of

the associated velocity fluctuations is about the same in the runs 7 and 3 (see table 2).

The process of formation of the quasi-two-dimensional vortices is practically unaffected

by the orientation of the magnetic field.

On the contrary, the effect of the initial flow anisotropy introduced by the honeycomb

is quite strong. The vortices are noticeably weaker and the fluctuation amplitude is about
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two times smaller in the run 5 (when the honeycomb produces structures elongated across

the magnetic field) than in the runs 3 and 7 (when the elongation is along the field).

4. Discussion and concluding remarks

We performed numerical simulations inspired by the experiment of Sukoriansky et al.

(1986). The main goal was to understand the mechanisms leading to the anomalous

high-amplitude velocity fluctuations detected in the experiment when a strong magnetic

field covered the entire test section including the honeycomb. This goal has been largely

achieved. The simulation results are in good qualitative agreement with the experimental

data. The presence or absence of anomalously strong fluctuations is found, respectively,

at the same flow parameters as in the experiment (cf. the experimental data in figure 1b

and computed data in table 2).

The computed spatial structure and statistical properties of the flow provide the ex-

planation of the experimental observations. The jets forming at the honeycomb exit are

unstable and serve as a source of small-scale turbulence. When the magnetic field is weak

(runs 1 and 2), the kinetic energy injected into the flow is transferred to small length

scales in the conventional process of development of three-dimensional turbulence. The

turbulence then decays under the combined action of viscous and Joule dissipation.

Similar formation of three-dimensional turbulence occurs in the flows 4, 6 and 8, in

which the magnetic field is strong but begins at a distance from the honeycomb exit.

When the fluid enters the strong magnetic field zone, the turbulence experiences strong

magnetic suppression. Its subsequent evolution is characterized by low amplitude of ve-

locity fluctuations (see figures 3, 4, 5, 11, 12 and table 2) and development of weak

quasi-two-dimensional structures (see figure 10).

High-amplitude velocity fluctuations develop in the runs 3, 5 and 7 when the strong
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magnetic field imposed at the exit from the honeycomb leads to rapid development of

strongly anisotropic flow structures. This degenerates the mechanism of vortex stretch-

ing and suppresses the energy cascade to small length scales thus preventing formation

of conventional three-dimensional turbulence. The dominant flow structures evolve into

quasi-two-dimensional vortices, which are aligned with the magnetic field and, therefore,

only weakly suppressed and retain their strength and structure till the end of the com-

putational domain, i.e. at the streamwise distance of at least 25 shorter duct widths. It

appears highly plausible that the anomalously strong velocity fluctuations recorded in

the experiment are caused by such vortices.

The difference in the flow evolution between the cases with weak and strong magnetic

fields can be related to the differences in the values of the magnetic interaction parameter

(the Stuart number) N ≡ Ha2/Re. This parameter estimates the typical ratio between

the Lorentz and inertial forces and, therefore, is often used as a measure of expected

transformation of turbulence by an imposed magnetic field (see e.g. Zikanov & Thess

1998; Vorobev et al. 2005; Krasnov et al. 2008; Burattini et al. 2010; Krasnov et al. 2012).

The values of N about and higher than 1 are typically required for strong transformation

(there are inevitable variations of this rule due to various definitions of the length and

velocity scales, various types of the flow, and the variation of the transformation effect

with the typical length scale). In our study, N = 0.1088 in the runs 1, 2 and N = 1.368 in

the runs 3-8. The fact that the suppression of three-dimensional turbulence and dramatic

changes of the flow structure are found in the simulations with strong magnetic field but

not with weak one is, therefore, fully consistent with the known trend.

We have explored the effect of the geometric features of the system on the flow’s

behaviour at strong magnetic field. It has been found that the role of the orientation of

the magnetic field, which can also be interpreted as the role of the wall-to-wall distances
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across and along the field, is minimal. This is demonstrated by the lack of noticeable

differences between the flows in the runs 3 and 4 on the one hand and runs 7, 8 on the

other hand.

On the contrary, the initial anisotropy introduced by the honeycomb has strong effect

on the flow with the quasi-two-dimensional vortices. As demonstrated by the simulations

3, 5 and 7, the amplitude of the vortices is substantially reduced when the flow structures

formed at the exit of the honeycomb are elongated across rather than along the magnetic

field.

We would like to stress that the flow evolution observed in the runs 3, 5, and 7 does

not include development of an inverse energy cascade. For inverse cascade to exist, the

quasi-two-dimensional turbulence has to be continuously forced. In our case the turbulent

energy is injected locally near the honeycomb by the instability of the jets leaving it. Part

of this energy is dissipated by Joule friction, but the rest feeds quasi-two-dimensional

vortices. Downstream, the flow is unforced and is a subject to anisotropic Joule dissipation

and wall friction. Without constant supply of energy, the inverse cascade (in a strict sense

of this term) does not develop, but the vortices grow in size due to quasi-two-dimensional

dynamics.

As we have already mentioned, the results of the simulations are in good qualitative

agreement with the experimental data of Sukoriansky et al. (1986). The high-amplitude

fluctuations appear at the same values of Ha. Assuming that the simulation 7 is the

closest analogue of the experiment, we notice that the ratios between the fluctuation

amplitudes in the case 1 and case 2 configurations of the magnetic field are of the same

order of magnitude: about 5 in the experiment and about 2.5 in the simulations (see

table 2).

However, the turbulence intensity in the computed flows is about five times lower
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than measured in the experiment. This is true for both low and high values of Ha and

for different orientations and spatial structures of the magnetic field. Several possible

explanations are related to both the numerical and experimental procedures. We cannot

reliably discuss the possible role of the experimental procedure due to the substantial

time that has passed since the experiment was completed. Likely numerical causes are

the insufficient resolution of the shear layers in the jets exiting the honeycomb and the

assumption of laminar, with weak random noise, nature of the jets. It is well known

(see e.g. Kim & Choi 2009) that, in numerical simulations, the instability and mixing

of submerged jets are strongly affected by the resolution and the inlet conditions. This

may potentially lead to lower energy injection from the jets into the small-scale turbulent

fluctuations. We should also mention that in the experiment the flow between the tubes

of the honeycomb is not zero, which may result in additional shear and stronger mixing.

This effect is ignored in the numerical model.

From the viewpoint of the turbulent decay theory, our work provides a good example

of non-universality of decay of MHD turbulence. The curves in figures 7 and 8 show

complex behaviour of the fluctuation energy. The decay rate varies with the stage of the

process and among the velocity components. The values of the two independent non-

dimensional parameters (for example, N and Re) do not determine the decay scenario

in a unique way. The process is strongly affected by the development, or lack thereof,

of quasi-two-dimensional structures. The appearance and nature of such structures is, in

turn, determined not just by the strength of the magnetic field, but also by the features

of the flow evolution, most importantly, by the state of the flow at the moment the

magnetic field is introduced.
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Appendix A

The two-point correlation functions obtained for the transverse velocity components

w and v in the simulations 1-4 are shown in figures 13 and 14. Long-range correlations

remain weak in the flows 1 and 2 during the entire decay and that there is practically

no difference between the two curves. This confirms the essentially three-dimensional

small-scale structure of turbulence in these flows.

The development of of strong correlations along the magnetic field in the flows 3

and 4 is consistent with the results of earlier simulations and theoretical models (see e.g.

Moffatt 1967; Davidson 1997; Zikanov & Thess 1998; Krasnov et al. 2008; Burattini et al.

2010) of transformation of turbulent flow under the impact of a strong magnetic field.

While the growth of the typical scale of the turbulent structures in the field direction

is always stronger and the only one caused directly by the Joule dissipation, the growth

of the typical transverse size is caused by the enlargement of the quasi-two-dimensional

vortices.

The results obtained for the correlation coefficient Rv in flow 4 at x = 16 (see figure 14f)

may appear surprising. The flow has nearly constant significant correlations (Rv ≈ 0.2)

over almost the entire duct width. This is not observed for any other computed correlation

coefficient in any other cross-section. The reason for this behavior is illustrated in figure

15. From x = 13 to x = 16, the streamwise velocity u changes its profile in the way

typical for a duct flow entering a strong magnetic field (see e.g. Andreev et al. 2006,
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Figure 13. Two-points correlations in the cross-sections at x = 3, 13, 16, 31 and 43 for the

velocity component w in runs 1-4. Left: correlation coefficients Rw(ly) versus distance ly. Right:

correlation coefficients Rw(lz) versus distance lz.

for a discussion of the flow transformation). Along the y-axis parallel to the magnetic

field, the Hartmann profile with nearly uniform velocity in the core and thin Hartmann

boundary layers develops. Along the z-axis, the profiles acquires the typical M-shape.
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Figure 14. Two-points correlations in the cross-sections at x = 3, 13, 16, 31 and 43 for the

velocity component v in runs 1-4. Left: correlation coefficients Rv(ly) versus distance ly. Right:

correlation coefficients Rv(lz) versus distance lz.

The redistribution of the streamwise velocity is accompanied by a non-zero mean flow

toward the walls at y = ±1 (clearly visible in the distribution of v at x = 16) and in

the z-direction (visible in the distribution of w at x = 14.5, i.e. slightly upstream of the
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x = 13 u v w

x = 14.5 u v w

x = 16 u v w

Figure 15. Transformation of the flow in the run 4 at the entrance into the strong magnetic

field zone. Instantaneous distributions of the three velocity components at x = 13, 14.5 and 16

are shown.

beginning of full-strength magnetic field, in agreement with the scenario of formation

of the M-shaped profile). The elevated correlation coefficient Rv in flow 4 at x = 16 is

caused by the flow in the y-direction.
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Pothérat, A. & Klein, R. 2014 Why, how and when mhd turbulence at low rm becomes

three-dimensional. J. Fluid Mech. 761, 168–205.
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