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Abstract—Interventions to reduce violence among homeless
youth are difficult to implement due to the complex nature of
violence. However, a peer-based intervention approach would
likely be a worthy approach as it has been shown that individuals
who interact with more violent individuals are more likely to be
violent, suggesting a contagious nature of violence. We propose
Uncertain Voter Model to represent the complex process of diffu-
sion of violence over a social network, that captures uncertainties
in links and time over which the diffusion of violence takes place.
Assuming this model, we define Violence Minimization problem
where the task is to select a predefined number of individuals for
intervention so that the expected number of violent individuals in
the network is minimized over a given time-frame. We extend the
problem to a probabilistic setting, where the success probability
of converting an individual into non-violent is a function of
the number of “units” of intervention performed on them. We
provide algorithms for finding the optimal intervention strategies
for both scenarios. We demonstrate that our algorithms perform
significantly better than interventions based on popular centrality
measures in terms of reducing violence.

I. INTRODUCTION

Violence perpetuates violence and diffuses through a net-
work like a contagious disease [1]. Cure Violence program’
is based on a similar idea of treating violence as a contagious
disease, and has shown significant reduction in violence.
Motivated by the contagious nature, a diffusion model is ideal
for modeling spread of violence. Doing so can lead to optimal
intervention strategies under certain assumptions. To the best
of our knowledge, intervention strategy to reduce violence
using diffusion models has received very little attention in
the literature [2], [3]. The existing works take a macroscopic
approach, disregarding the network structure.

While many diffusion models exist that are variations of
Independent Cascade Models, Linear Threshold Model, and
Susceptible-infected, they are “progressive” models, i.e., they
assume that once activated (or infected), the individuals remain
activated. However, in the context of violence, it would mean
that a violent person can never become non-violent, which
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is not applicable. Although some non-progressive extensions
do exist, accurate analytical solutions of those models are
hard to obtain. A popular model that captures non-progressive
diffusion of competing behaviors on social networks is voter
model [4]. In voter model individuals are influenced by a
randomly selected neighbor?. But application of voter model
in real-life scenarios such as diffusion of violence has the
following drawbacks. (a) There is some uncertainty in the
network structure, in the sense that, individuals may forget
to mention someone as their peer, and yet be influenced
by them [5]. (b) The number of discrete time steps over
which the diffusion process unfolds (a parameter required
by Voter Model) is often unknown in practice. To deal with
these uncertainties, we propose Uncertain Voter Model (UVM)
as an extension of Voter Model. Under UVM, we find the
optimal intervention strategies to minimize violence. The task
is to perform interventions on individuals with constrained
“resources” so that they change their state from “violent” to
“non-violent” resulting in others adopting “non-violent” state,
eventually minimizing violence. We consider two types of
interventions: (i) deterministic, where selecting an individual
turns them into non-violent, with the constraint being the
number of individuals to select; (ii) probabilistic, where an
individual’s probability of being non-violent is increased based
on number of “units” (hours, sessions, etc.) of intervention,
with the constraint being the total number of units available.

II. MODEL

To model the spread of violence we model the network of
homeless youth as a graph G(V, E) where every individual is
a node which can exist in one of two states: ‘violent’ or ‘non-
violent’. We chose to model violence as a non-progressive
diffusion process, i.e, a node may switch its state unlike the
progressive diffusion where once a node is violent it cannot
become non-violent again. Next, we provide a background on
Voter Model [4] on which our model is based.

2We use the terms “neighbor” and “neighborhood” to refer to the links of
a given individual in the network and not their physical neighborhood



A. Voter Model

In Voter Model [4], at every time step a node u picks an
incoming neighbor v at random with a probability p(v, u). The
incoming probabilities are normalized such that > p(v,u) =
1. Let z,,; be the probability of node u being violent at time
t. According to the model, x,; = >, PvuTv,—1- Let X¢
represent the state of all the nodes at time ¢, with ith element
representing the probability that v; is violent at time ¢. Suppose
matrix M represents the transpose of the adjacency matrix
of the weighted network, i.e., M, , = p(v,u). Then x; =
Mx¢_q. It follows that x; = M'xq. Here xq is the initial
state of nodes.Define Ix for X C V as the vector in which
the i-th element is 1 if v; € X. Then the expected number of
violent nodes at time ¢ is given by I xy.

B. Uncertain Voter Model

A network formed through a survey may have missing
edges due to the uncertainty in a person’s ability to recall
all “friends” they might be influenced by [5]. To capture this
aspect, we propose the Uncertain Voter Model (UVM), where
we assume that a node which is not directly connected to
the node of interest may also influence it. In this model, two
mutually exclusive events happen: (i) with probability 6 a node
randomly selects one incoming neighbor and adopts its state,
(ii) with probability (1 — ) it selects a node that is not its
neighbor in the network and adopts its state. We propose two
ways of selecting the node form outside the neighborhood: (i)
random and (ii) Katz-based.

1) Random: In this case every node which is not a neighbor
is equally likely to be selected. Mathematically,

>
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If n is the total number of nodes and d, is the number
of incoming neighbors of u, then |{v|p, ., = 0}| = n — d,,.
Suppose we define,
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2) Katz-bazed: We treat the influence from outside the
neighborhood as the problem of finding missing edges. A
popular method for missing edge detection is using Katz
similarity [6], which is based on exponentially weighted
number of paths between two nodes, ie., K(u,v) =
>, o'|path of length i to u from v|. Since, we are only inter-
ested in nodes that are not directly in the neighborhood we take
the above summation for ¢ > 2. The entire similarity matrix is
given by K = > ,o, a'M" = o M?(I — aM)~* ,We choose
a small value of o = 0.005 [6]. We normalize the scores for
each node u over all nodes v which are not in its neighborhood,
so that the probability of selecting node v is proportional to
K(u,v), ie., K'(u,v) = K(u,v)/ )", K(u,w). Katz-based

UVM is given by

Lyt = 0 Z pv,uxv,t—l‘k(l*e) Z K'{L,i)xvvt_l .
{v|p(v,u)>0} {vlp(v,u)=0}
3)
Again, we can define
Opy if ppou >0
) = .’ ’ 4
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From Equations 2 and 4, both random and Katz-based UVM
lead to reduction of Equations 1 and Equations 3 to

Tyt = ZQ(Uyu)%,tfl or xg = QeXt—1 @)
v
where [Qglu,o = ¢o(u,v). Now, we define the problem of
Violence Minimization as follows.

Problem Definition 1 (Violence Minimization): Given a
weighted graph G(V, E), an initial set of violent nodes S,
a time frame ¢, and an integer k, find 77 C S such that
|T'| = k, turning the nodes in T into non-violent minimizes
the expected number of violent nodes after time ¢, i.e., I gxt
under Uncertain Voter Model.

III. GREEDY MINIMIZATION

Let xg be the vector formed by turning some & nodes into
non-violent, resulting in the vector of probabilities x at time
t. Now, minimizing I{-x} is equivalent to maximizing I (x¢—
xt) = IT Q% (x0—xg), i.e., the problem reduces to maximizing

Y. QL (®)

{u|Axg(u)=1}

I‘;Axt = I‘T;QZAXO =

which can be optimized using greedy strategy [4] as presented
in Algorithm 1.

Algorithm 1 Greedy algorithm to minimize violence
function MINVIOLENCE(G, S, 0, k, t)
Compute Q}, for G
Vu € S compute o(u) = Iy QhI,
Sort {o(u)} in descending order and return top k.
end function

A. Uncertainty in Time

Uncertain Voter Model requires ¢ as a parameter which is
unknown in real life. While we may have a certain time period
(days or weeks) over which we want the intervention to work,
finding a relation between that time period and the parameter
t is non-trivial as it depends on how often the individuals
interact. To capture this uncertainty, we assume that time ¢
takes a value 7 with probability P(t = 7). Now, we wish
to minimize E(/yx¢) where the expectation is taken over .
Therefore,

E(I{xy) =) P(t=7)IyQ5x = I}, (Z Pt = T)Q5> X0

(7
Notice that a greedy solution like Algorithm 1 still applies.



B. Probabilistic Intervention

In the previous section, we assumed that performing in-
tervention on a ‘“violent” node turns it into ‘“non-violent”,
i.e., an intervention is always successful. However, in real
life this may not be true, and some nodes may require more
“units” (hours, sessions, etc.) of intervention than others. Let
Su(2z,) be the probability of success after applying z, units
of intervention to node u. These functions can be different
for different nodes, as different individuals may respond
differently to interventions. We assume that these functions
{s;} are non-decreasing, i.e, adding more units of intervention
cannot decrease the probability of success. We also assume
that theses functions are concave, i.e., the marginal increase
in probability reduces with increasing number of interventions.
Such assumptions are similar to those made in immunization
literature [7]. Mathematically, if 2/ > z, s;(2') > s;(z), and
si(2'+1)—=s;(2") < si(2+1)—s;(2), Vi. Rewriting Equation 6
for probabilistic intervention, the utility (reduction in violence)
obtained by an allocation of {z1,22,...,2,},2; € NU{0} is

IQpAXe =Y I Q4Tusu(zu) ®)

Let fu(2z4) =1 ‘7; Q%4 1,54(%,). This leads to the probabilistic
intervention version of Violence Minimization problem, which
is equivalent to maximizing ), f.(2.), such that " z, = k.
Note that, I7Q41,, is a non-negative constant and s,,(2,) is
non-decreasing concave function, and so, f,(z,) is also non-
decreasing and concave. Formally, we define this as follows.

Problem Definition 2 (Units Assignment Problem): Given
k € Z resources and n concave non-decreasing utility func-
tions f; : Z — R, where f;(z;) represents the utility of
assigning z; units to function f;, maximize the total utility
F =", fi(z) subject to ). 2z = k.

Algorithm 2 Greedy Maximization using Marginal Returns
1: function GREEDYMAX((f1, fo, .., fn), k)
2 for i < 1:n do
3 2+ 0
4 end for

5: for j < 1:k do

6

7

8

idz + argmax;(f(z + 1) — f(z))
Zide € Zide + 1
end for
9: return (21, 22, . . .
10: end function

7Zn)

Lemma 1: For a non-decreasing concave function f : Z —
R, and h > 1,

fl@+h) = f(z) < h(f(z) - flz—1)) ©)
f@) = flz—h) = h(f(z) - f(z - 1)) (10)
Theorem 1: Algorithm 2 produces the optimal assignment

for Units Assignment Problem.
The proof has been omitted for brevity.

IV. EXPERIMENTS

We have shown that the greedy algorithms described in
Algorithms 1 and 2 are optimal under Uncertain Voter Model
for deterministic and probabilistic interventions, respectively.
However, to study how prominent the difference is from other
choices of intervention strategies, we compare it against the
following baselines:

o Degree: We define the degree of a node based on the
weighted graph as d, = >, .. Then we select top k
nodes.

o Betweenness Centrality: Top k£ nodes are selected based
on the betweenness centrality in the graph.

We have performed two sets of experiments:

a) Real-world Homeless Youth (HY) Network: We con-
structed the network obtained by our surveyed data [9], which
consists of 366 nodes and 558 directed edges. Due to the
lack of the knowledge of edge-weights, we assume that all
incoming links for a node are equally weighted.

b) Synthetic Kronecker graphs: We generated random
Kronecker graphs [8] with roughly same number of nodes and
edges as the real HY network. The results on synthetic graphs
were similar to those obtained on HY network, and have been
omitted due to lack of space.

A. Homeless Youth Network

We performed selection and simulated intervention on the
same graph, as the network that includes the “forgotten” links
is not available. Out of the 366 nodes in the network, 55.01%
were “violent” (r,0 = 1) and 42.55% are ‘“non-violent”
(zu,0 = 0). Data on the rest of 2.44% are missing and are
assumed to be equally likely to be of either state (z,,,0 = 0.5).
Based on this “initial state” we run Greedy Minimization for
Uncertain Voter Model.

Figure 1(a) show the comparison for expected number of
nodes that are violent after ¢t = 5 and ¢ = 10. Figure 1(b)
shows the comparison for probabilistic intervention. The value
of 6§ was set to 1 to generate these plots. Other values for
parameters ¢ and # show similar trends and hence, have been
omitted. We observe that the greedy algorithm significantly
outperforms both baselines.

The upper limit of number of time steps (¢) was chosen to
be a small number in our experiments, keeping in mind that
homeless youth networks are dynamic, and so in practice, the
intervention should be performed in short-term.

c) Choosing individuals in practice: So far we have
presented the comparison of our greedy method against the
baseline centrality measures in terms of reduction in violence.
Now, we proceed to examine individuals chosen for interven-
tion based on our method. We experimented with different
values for parameter 6 = 1,0.9,0.8,0.7,0.6 and 0.5, i.e., in-
creasing edge uncertainty. Table I presents the top 10 nodes (in
terms of PID assigned in the survey) chosen for intervention
(deterministic). Note that there are many nodes such as PIDs
47, 4, 2086, 2156, and 51, that consistently appear in the
top 10, suggesting that the set of chosen individuals is not



TABLE I
ToP 10 SEEDS FOR VARIOUS VALUES OF 6 OUTPUT BY GREEDY MINIMIZATION

Selected Seeds E(ITx]

1 47 4 2156 51 13 2086 169 2115 2099 2056 179.43
09 | 47 4 2156 2086 51 13 169 2115 2056 2099 183.327
0.8 | 47 4 208 2156 51 13 169 2115 2056 89 185.86
07 | 47 4 2086 2156 51 2115 13 169 2056 2125 187.54
06 | 47 4 208 2115 2156 51 169 13 2056 2125 188.66
05 | 47 4 208 2115 2156 51 169 13 2056 2125 189.43
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Fig. 1. Comparison of the baseline against the greedy algorithm for varying
intervention sizes under UVM.

highly sensitive to the choice of parameters within a sensible
range. However, the significant deviation from betweenness
and degree centralities (Figure 1(a)) suggests that finding this
set is non-trivial. We also varied the value of ¢t = 2,4, 6, 8, 10,
and 12. The lists of seeds obtained for different values of ¢
have not been presented for brevity, as they had the same
PIDs frequently occurring in the lists. These individuals were
selected based on deterministic intervention, which should be
applied when the knowledge of personal traits is not available.
However, with the availability of personal traits sufficient to
model how an individual may respond to intervention (s, (2)),
probabilistic intervention should be used.

V. CONCLUSIONS

We have proposed Uncertain Voter Model (UVM) to capture
the non-progressive diffusion of violence. Under UVM, a node
selects one of its neighbors with probability 6 or one of the

remaining nodes with probability 1 — 6, and adopts its state.
The model captures uncertainty in network links and time over
which the diffusion of violence takes place. We have shown
that a greedy algorithm is the optimal intervention strategy
to minimize violence under this model. We have extended
this deterministic intervention by considering a scenario where
the intervention succeeds only with a certain probability as a
function of number of resources allocated to the individual.
We have also shown that the greedy algorithm maximizing
marginal returns forms the optimal intervention strategy. Ex-
periments on synthetic Kronecker graphs suggest that UVM is
a better choice than the classic Voter Model, where edges may
have been omitted during data collection. Experiments on real-
world Homeless Youth network have demonstrated that our
intervention strategy significantly outperforms interventions
based on popular centrality based measures. We show in our
experiments that for sensible choices of parameters the top
individuals selected for intervention roughly remain the same.
We are in the process of performing more surveys and real-life
intervention to verify our model and the approach.

VI. ACKNOWLEDGMENTS

This work is supported by U.S. National Science Founda-
tion under EAGER Award No.:1637372 and DARPA HIVE
program.

REFERENCES
(1]
(2]

J. Fagan, D. L. Wilkinson, and G. Davies, “Social contagion of violence,”
2007.

D. J. Myers, “The diffusion of collective violence: Infectiousness, sus-
ceptibility, and mass media networks 1,” American Journal of Sociology,
vol. 106, no. 1, pp. 173-208, 2000.

D. J. Myers and P. E. Oliver, “The opposing forces diffusion model: the
initiation and repression of collective violence,” Dynamics of Asymmetric
Conflict, vol. 1, no. 2, pp. 164-189, 2008.

E. Even-Dar and A. Shapira, “A note on maximizing the spread of
influence in social networks,” in International Workshop on Web and
Internet Economics. Springer, 2007, pp. 281-286.

E. Rice, I. W. Holloway, A. Barman-Adhikari, D. Fuentes, C. H. Brown,
and L. A. Palinkas, “A mixed methods approach to network data collec-
tion,” Field methods, vol. 26, no. 3, pp. 252-268, 2014.

D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” journal of the Association for Information Science and
Technology, vol. 58, no. 7, pp. 1019-1031, 2007.

B. A. Prakash, L. Adamic, T. Iwashyna, H. Tong, and C. Faloutsos,
“Fractional immunization in networks,” in Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 659-667.
J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Journal
of Machine Learning Research, vol. 11, no. Feb, pp. 985-1042, 2010.
R. Petering, E. Rice, H. Rhoades, and H. Winetrobe, “The social networks
of homeless youth experiencing intimate partner violence,” Journal of
interpersonal violence, vol. 29, no. 12, pp. 2172-2191, 2014.

(3]

(4]

[5]

(6]

(71

(8]

(9]



