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Abstract—Deep generative networks provide a powerful tool
for modeling complex data in a wide range of applications. In
inverse problems that use these networks as generative priors
on data, one must often perform inference of the inputs of
the networks from the outputs. Inference is also required for
sampling during stochastic training of these generative models.
This paper considers inference in a deep stochastic neural net-
work where the parameters (e.g., weights, biases and activation
functions) are known and the problem is to estimate the values
of the input and hidden units from the output. A novel and
computationally tractable inference method called Multi-Layer
Vector Approximate Message Passing (ML-VAMP) is presented.
Our main contribution shows that the mean-squared error (MSE)
of ML-VAMP can be exactly predicted in a certain large system
limit. In addition, the MSE achieved by ML-VAMP matches the
Bayes optimal value recently postulated by Reeves when certain
fixed point equations have unique solutions.

I. INTRODUCTION

Deep neural networks are increasingly used for describing
probabilistic generative models of complex data such as images,
audio and text. This paper considers the inference problem of
estimating the input and hidden units of an (already trained)
deep neural network from its output. The problem arises, for
example, in image reconstruction where a deep network is used
as a generative prior of an image with additional layers added
to model the measurements (such as blurring, occlusion or
noise) [1], [2]. While optimal inference is generally intractable,
there are several methods that have worked well in practice,
including MAP estimation via gradient descent [1], [2] and the
use of a separate learned deep network, as is done in variational
autoencoders [3], [4] and adversarial networks [5]. However,
similar to the situation in deep learning in general, there are few
analytic tools for understanding how these algorithms perform
or how far the estimates are from optimal.

In this work, we address this shortcoming by considering
inference based on approximate message passing (AMP) [6]. A
recent variant of AMP, called multi-layer AMP, has been propo-
sed for inference in deep networks [7]. That work characterizes
the replica prediction for optimality in multi-layer networks
and argues that the proposed ML-AMP method can achieve
this optimal inference in certain scenarios. Unfortunately, the
convergence of ML-AMP in [7] is not rigorously proven. In
addition, ML-AMP assumes Gaussian i.i.d. weight matrices
Wy, and it is well-known that AMP methods often fail to
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converge when this assumption does not hold [8], [9], [10],
[11], [12].

In this work, we present a novel AMP method called multi-
layer vector AMP (ML-VAMP) that builds on the recent VAMP
method of [13] and its extensions to generalized linear models
(GLMs) in [14], [15]. The VAMP algorithm of [13] was itself
derived from the expectation consistent approximate inference
framework of [16], [17], [18] and applies to the special case of
a single linear layer. The ML-VAMP algorithm proposed here
extends the VAMP method to networks with multiple layers
and separable nonlinearities.

We analyze ML-VAMP in a setting where the number
of layers is fixed and the weight matrices are orthogonally
invariant random matrices with dimensions that grow to infinity.
This class of random matrices is much larger than i.i.d.
Gaussian ensembles. Importantly, it includes weight matrices
with arbitrary condition numbers, which is known to be the
main failure mechanism in conventional AMP convergence [8].
Our main theoretical contribution (Theorem 1) shows that the
mean squared error (MSE) of ML-VAMP algorithm can be
precisely predicted by a simple set of scalar state evolution
(SE) equations. In addition, a recent work by Reeves [19] has
shown that the fixed point equations for the MSE of ML-VAMP
exactly match those of the postulated optimal MSE as predicted
by information theoretic techniques. Hence, ML-VAMP may
be Bayes optimal when certain fixed point equations have
unique solutions. ML-VAMP thus enables computationally
tractable inference with rigorous analysis of its performance
and testable conditions for optimality. A full version of this
paper is available in [20], which includes proofs, simulation
details, and further discussion of previous work.

II. ML-VAMP ALGORITHM

We consider the following L/2-layer (for even L) neural-
network-based generative stochastic model: A random input
zo with some density p(zo) generates a sequence of vectors,
zg RN 0=1,... L, through operations of the form

z¢ = Wyzp +be + &,
{=13,...,L—-1
Zy) = (bf(zf—héﬁ)a ££ ~ p(Ef)7

Equation (1a) describes the linear stages of the network, which
are defined by the weight matrices Wy, the bias vectors by,
and the Gaussian noise terms &;. Equation (1b) describes the
nonlinear stages, which involve the activation functions ¢(+)

Er ~ ./\/’(0,1/[11)7
(la)

¢(=24,...,L. (1b)
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and the possibly non-Gaussian noise terms &;,. We will assume
separable ¢¢(-) and i.i.d. &, i.e.,

(@e(ze1,€0)],, = be(2e-1,n5E0,n) 2
Ny
0 =[] rn) 3)

n=1

for scalar-valued functions ¢y(-). This model covers many acti-
vation functions commonly used in neural networks, including
rectified linear units (ReLUs) and sigmoids. The final output
z7, 1s observed.

We consider the problem of estimating the hidden network
variables zy, £ = 0, ..., L—1 from the observed output y = zj,.
Importantly, the activation functions ¢,(-) noise precisions vy,
weight matrices W, and bias terms by are known (i.e., already
trained). Thus, we do not consider the learning problem.

The proposed ML-VAMP algorithm for this inference
problem is shown in Algorithm 1. It can be derived as an
extension of the GEC-SR algorithm [14] proposed for inference
in a GLM, which is a special case of our multi-layer problem
with L = 2 stages (i.e., one layer). The GEC-SR can also be
derived from TAP methods [21], [22]. We take a Bayesian
approach, where zg is i.i.d. with known density p(zg). The
noise terms &, are independent random vectors, so that the
sequence zy in (1) is Markov. As described in the full paper
[20], the ML-VAMP algorithm can be derived similar to GEC-
SR using a Gaussian approximation of belief propagation on the
factor-graph representation of the Markov chain. The quantities
r;e and 'y,:rg represent the mean and precision (inverse variance)
of the Gaussian messages in the forward direction, and r&
and vy, represent the same quantities in the reverse direction.

The terms rfﬁ and ’Yw are updated by estimation functions
g:(-) that are defined as follows. For £ = 1,..., L—1, we first
define the belief

be(ze, zea|v) vy v,y ) o< exp [=He(ze,2e0)],  (4)
which is a probability density, using the energy function
Ho(z¢,201) == —Inp(z¢|ze1)
7?1
+ fHsz P e P )

2

At each iteration k, the belief (4) represents an estimate of the
posterior density p(z.1,2¢|y). The estimation functions g (-)
are defined as the functions that compute the expected value
of z,; and z, with respect to that belief, i.e.,

(6a)
(6b)

[zdr}r_l,r[,’yzil,'y[] )

E [Z€71|r2171'g_a’75t17’7[] )

g/ (W—p r, 771—17 V)=
g, (r[ 1Ty 77@ e )

where the expectations are with respect to the density by in (4).
For the end points ¢ = 0 and L in the factor graph, we define

bo(zolrg .70 ), br(zralr] .vi),

similar to (4)-(5), but in the case of by we omit the rzl term
and replace p(z¢|z,) by p(zo) in (5), and in the case of b,
we omit the r,” term in (5).

Algorithm 1 ML-VAMP
+

Require: Forward estimation functions g, (-), { =0,...,L—1
and reverse estimation functions g, (-), £ =1,..., L.
: Initialize ry, = 0, 75, =0, £=0,..., L—1.

1

2: for k=0,1,...,Niy — 1 do

3: /] Forward Pass

4. for(=0,...,L—1do

5: if / =0 then

6: Zu &/ (T Vie)

7 = (08 (s Vi) /Ory)

8 else

9 Zke A CAI oYM z-p’Yke)
10: i = (O8] (r:l 1 Tt Vet Vo) /Ocg)
11: end if

12 W = M~ Ve e = et/ e
13: Yoo = (Mg — Vetro) i

14:  end for
15:  // Reverse Pass

16: for { =L—1,...,0 do
17: if /= L—1 then
18: 2y = 8 (T, Vkev ) .
19: ey = (08 (U0 Vi) /9T y)
20: else
21 Zry = 8ot (Chs Tt s> Vo Vvt o1
: ke = Bert ko> T e Voo Tt e .
22: e = (0801 (Tip Trp en > Vaies Vierr 1)/ OT0)
23: end if
) e
24 Ver,e = Mot = Voo sz N VMJ{ Qpp
25: Yo = MeeZie — VieTre) [Vigae
26:  end for
27: end for

We also use the followmg notation. For any vector u € RY,
(u) := (1/N) Z" | Un, Which is the empirical average over
the components. For a matrix Q € RN we let (Q) =
(1/N)Tr(Q ) which is the average of the diagonal components.
Fmally, agz denotes the Jacobian of the estimation function

:RN¢ 5 RN? with respect to its first argument.

As shown in the full paper [20], an appealing feature of
ML-VAMP is that the estimation functions gzt(-) can be easily
computed for the network (1). By this, we mean the following.

Nonlinear stages: Consider ¢ € {2,4,... L}, corre-
sponding to a nonlinear stage (1b). For separable activation
function ¢,(-) and i.i.d. noise &, the estimation functions (6)
are themselves separable in that [gzt(re_l,rg,'yj_l,'y[ )Nn =
gei (Pet,ms Tons ’thp v, ). The corresponding scalar estimation
functions gzE can often be evaluated analytically, or if not by
two-dimensional numerical integration.

Linear stages: Consider ¢ € {1,3,...,L—1}. Since the
transformation in (la) is linear and the noise is Gaussian, the
belief (4) is also Gaussian. Therefore, the expectation in (6) and
covariance can be computed in closed form. For the purpose of
analysis, we compute the estimate using an SVD. Specifically,
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suppose that the weight matrix W, has the SVD

Diag(s¢) O

W, =V,%, Ve, 3= [ 0 0

:| c RNgXNg,17
(N

where V, and V,; are orthogonal matrices, the vector sy =
(se1,- - SZRZ) contains singular values, and rank(Wy) < Ry.
Also, let b, = VTbg and & := V] ;& so that

N3 ®)

Then, as shown in the full paper [20], the estimation functions
(6) reduce to matrix-vector multiplications with V;, and VZ
and scalar inversions.

b, = Viby, & =

III. STATE EVOLUTION ANALYSIS OF ML-VAMP
A. Large System Limit Model

Our main contribution is to rigorously analyze ML-VAMP
in a certain large system limit (LSL). The LSL analysis is
widely-used in studying AMP algorithms and their variants
[23], [13]. For this, we consider a sequence of problems indexed
by N. The number of stages L is fixed and the dimensions
Ny = Ny(N) and ranks R, = Ry;(N) in each stage are
deterministic functions of N. We assume that limy oo N¢/N
and limy _, o R¢/N converge to non-zero constants, so that the
dimensions grow linearly with N. We follow the framework of
Bayati and Montanari [23], which models various sequences
as deterministic, but with components converging empirically
to a distribution. See [20] for a review of this framework.
Specifically, let us denote the “true” realization of z, using
the superscripted variable Ze Then we assume that the signal
realization z! 7 € € RN for £ = 0, and the noise realizations &, in
the nonlinear stages ¢ = 2,4, ..., L, all converge empirically
to random variables Z° and =y, i.e.,

} PL(2) PL(2) _

ZOa lim {&,n} = Zy, Z = Zm,
N—o00

©
For the linear stages ¢ = 1,3, ..., L—1, let s, be a version of the
singular-value vector s, zero-Eadded to length N,. We assume
that Sy, the transformed bias b, = V/z by, and the transformed

noise realization £ = V) ;& all converge empirically as

lim 1z
N o0 { 0,n

PL(2
dim {5 benen} "2 (S0

Bg7ug) {=2m+1,

(10)
to independent random variables S;, By, and =, with =; ~
N(O,v, 1), where 1, is the noise precision. We assume that
Sy >0 and Sy < Spax for some upper bound Sy ax.

We assume that the matrices V, are Haar distributed (i.e.,
uniform on the set of N, x N, orthogonal matrices) as well as
independent of one another. For any linear stage ¢, the weight
matrix Wy, bias by, and noise &, are then generated from (7)

and (8). Finally, the true z? are generated from the recursions,

2) =Wz, +b,+&, (=13, ...
20 = ¢o(20,,&), (=24,... L.

,L—1  (1la)

(11b)

Algorithm 2 ML-VAMP State Evolution

Require: Random variables Zg, =y, By, Su, Es.
1:

2: Initialize %, = 0

2 Q=20 Py~ N(0,70),

4: for {=1,2,...,L—1do

5. if £ is odd then

6

7

8

9

= E(Qp)?

Q) =S, P+ B+ =
else

Q7 = (P}, Er)
end if

10: PP =N(0,70), 70 =EQ))?
11: end for
12:

13: for K =0,1,... do
14: /] Forward Pass
15 W = 1/& (o)

—F o+ == 4 4t
16: Vo =Tho — Veor o = Vro/ Mo
172 for/=1,...,L —1do
18: ﬁ;e = 1/52_ (7:,1371»71;#75971)

) —+ == —+ ¥+
19: Yie = The — Voo Ope = Vie/Tre
20:  end for
21:

22: /] Reverse Pass
20 T = YEL (i)

. —t —F 4t
240 Vo =TMhra — Tert O =Veo1/Me
5. for = L— 1 .,0 do

) — _q1/e—(=+ = .0
26: Mg = 1/513 (Vi1 Voo Tea) .

. e —+ —  _ = =
27 Veor = Mo — Vhear Qe = Viea/Teea
28:  end for
29: end for

B. State Evolution Equations

Define the quantities

qj =z, p{=Vea) =V (=02 L
q?::V[ng, p?::zg:ngg7 (=1,3,...,L—1,

12)

which represent the true vectors z) and their transforms.
Similarly, define the ML-VAMP estimates

-+

ai, =2 PL =V, (=02,...,L (13a)
a.,=Vizh, ph=25 (=1,3,...,L-1. (13b)

Our goal is to describe the mean squared error of these estimates
in the LSL. To this end, similar to those in VAMP [13], we
introduce the concept of error functions. Let { = 2,4,...,L—2
be the index of a nonlinear stage and suppose that we are given
parameters *yj_l, v, » and 719_1. Define a set of random variables
(R}, 22,29, R, ) by the Markov chain
1
Ve

Rl—l ~ N(Ov Tlp—l - 1/’7211)7 Z?_l ~N (Rzr_l,

Z? = ¢E(Zg—1731€)7 RZ ~ Z? +N(0,1/’Y;).
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Define the error functions

5;(72;1’%_’7'?—1) = var(Z?|RZl,RZ),

g[ (721177[7 7—lgl) = Var(ngﬂRetp RZ)’
which represent the error variances in estimating the inputs
and outputs. For ¢ = 0, we can define & (7, ) by dropping
the terms associated with R, and Z{) ;. For { = L, we define
E; 4 (vf . 7)) by dropping the terms associated with R, .
Next, let £ = 1,3,..., L—1 be the index of a linear stage, and
consider a Markov chain,

RE ~ N, 70 = 1/7), Py~ N(RE 1),
Q) =5SPL +B+EZ, R, ~QU+N(0,1/y,), (15
which represents the inputs and outputs of a scalar linear

channel with parameters S, B and =h given from variables
(10). Define

52_(72;1’7(_’7'?—1) = Var(Q?\RZ17RZ,§g7Bg),
E (Va7 s ) = var(PLy R Ly, Ry, Se, Bo),
Under these definitions, the SE equations for ML-VAMP are

given in Algorithm 2, which defines a sequence of random
variables and constants.

(14)

16)

Theorem 1. Consider the outputs of the ML-VAMP algorithm,
Algorithm 1, and the corresponding outputs of the SE equations
in Algorithm 2. In addition to the assumptions in Section III-A,
assume:
(i) The constants a,fe € (0,1) for all k and ¢.
(ii) The activation functions ¢¢(zp1,&e) in (2) are pseudo-
Lipschitz continuous of order two.
(iii) The components of the estimation functions gzt(-) are
uniformly Lipschitz continuous (see [20] for more details).
Then, for any fixed iteration k and index /,

a7

almost surely, where the quantities on the right hand side are
from the SE equations, Algorithm 2. In addition, the components
of the transformed true vectors p and Y and their estimates
ﬁkie and a;fe converge empirically as

. + 4+ 4+ 4+t
A}lm Yiee» %% Met) = Teos QCieos M)
— 00

. . . PL(2) o~
]\}gnoo{(pgﬁn’qu"’pfﬁ,n’ql::&n)} = (P£7Q27P$7Qkiﬁ)v
(18)
where the random-variable limits have moments
= ~ 1
E(PS - PO)? =E(Q5, - Q9)* = = (9
ke

Theorem 1 shows that the components of the true sig-
nals pY and q¢ and the corresponding ML-VAMP estima-
tes ﬁfe and qj, converge empirically to random variables
(P?,Q%ﬁka,@kié). The full paper [20] provides a complete
description of the joint distribution of these variables and thus
gives an exact characterization of the asymptotic behavior of
the true signal and their estimates. In particular, the asymptotic
MSE of the ML-VAMP can be exactly computed from (19).

Importantly, this asymptotic MSE can be information theore-
tically optimal. Specifically, following a pre-print of this paper

— actual
— pred

1
wu

| )
- —
wn o

Normalized MSE (dB)
'L
o

0 20 40 60 80 100
Half iteration

Normalized MSE (dB)

o 50 100 150 200 250 300
Num measurements

Fig. 1. Simulation with a randomly generated neural network. Top: Normalized
mean squared error (NMSE) for ML-VAMP and the predicted MSE as
a function of the iteration with M/ = 100 measurements. Bottom: Final
NMSE for ML-VAMP and the predicted MSE as a function of the number of
measurements, M.

[20], Reeves [19] has postulated the optimal MSE for inference
in deep networks using information theoretic methods. It is
shown there that the fixed points of the SE of this work satisfy
the same fixed point equations for the postulated optimal MSE.
Hence, when the fixed points are unique, ML-VAMP achieves
the postulated information-theoretically optimal MSE.

IV. NUMERICAL EXPERIMENTS

Synthetic random network: To illustrate the SE analysis,
we first consider a randomly generated neural network that
follows the theoretical model of the paper. (Details are in
[20].) Briefly, the network accepts Ny = 20 dimensional unit-
variance Gaussian noise zg, and has three hidden layers, of
dimension 100, 500 and 784, respectively. (Similar dimensions
will be used for the MNIST experiment below). The observed
output is a compressed linear measurement y = Azs + w,
where zs5 is the vector from the final hidden layer, the matrix
A is M x 784, and w is Gaussian noise, scaled to achieve a
sigal-to-noise ratio of 30 dB. The number of measurements
M is varied from 100 to 600. To follow the theory, the weight
matrices are drawn from the i.i.d. Gaussian ensemble and the
observation matrix A is drawn from the orthogonally invariant
matrix ensemble with singular values spaced logarithmically to
give condition number ~ = 10. This model cannot be treated
by the ML-AMP algorithm in [7].

The left panel of Fig. 1 shows the normalized mean squared
error (NMSE) for the estimation of the inputs to the networks
zo as a function of the iteration number for a fixed number of
measurements M = 300. Also plotted is the state evolution
(SE) prediction. Plotted values are the average of 1000 random
realizations. We see that the SE predicts the ML-VAMP
behavior remarkably well, within approximately 1 dB. The right
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Fig. 2. Inpainting of handwritten digits using MAP estimation, stochastic
gradient Langevin dynamics (SGLD) and ML-VAMP.

panel shows the NMSE after 50 iterations (100 half-iterations)
for various values of M. We again see an excellent agreement
between the actual values and the SE predictions.

MNIST inpainting: To demonstrate the feasibility of ML-
VAMP on a real dataset, we performed inpainting on the
MNIST dataset, as in [1], [2], [24]. The MNIST dataset consists
of 28 x 28 = 784 pixel images of hand-written digits as shown
in the first column of Fig. 2. Following [4], a generative model
for these digits was trained using a variational autoencoder
(VAE), so that each image x is modeled as the output of an
L-stage neural network. In this experiment, we used a network
with 20 input units, 400 hidden units, and 784 output units,
corresponding to the dimension of the images. (Details about
the network and its training are given in [20].) For each image
x, we then created an occluded image, y, by removing the
rows 10-20 of the original image, as shown in the second
column of Fig. 2. Combining the generative layers with the
occlusion layer creates a deep network model for the occluded
image y. ML-VAMP was then used to recover the original
image x from the occluded image y.

Fig. 2 shows a typical reconstructions from i) ML-VAMP,
ii) MAP estimation via numerical optimization of the posterior
density as performed in [1], [2], and iii) estimation of the
posterior mean E(x|y) via Stochastic Gradient Langevin
Dynamics (SGLD) [25]. (See [20] for details.) We see that,
visually, the ML-VAMP, MAP, and SGLD estimates are similar.
However, the ML-VAMP algorithm was significantly faster
than its competitors: ML-VAMP used only 20 iterations, while
MAP used 500 iterations, and SGLD used 10000. Thus, this
experiment suggests that, in addition to providing theoretical
guarantees, ML-VAMP may be a computationally efficient
approach to reconstruction. Of course, further experimentation
on a variety of data sets is still needed to evaluate its practical
applicability.

V. CONCLUSIONS

We have presented a principled and computationally tractable
method for inference in deep networks whose performance
can be rigorously characterized in certain high-dimensional

random settings. Importantly, the asymptotic MSE of ML-
VAMP satisfies a fixed point equation that is identical to that
of the optimal MSE postulated by Reeves [19].
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