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Joint Channel-Estimation/Decoding With
Frequency-Selective Channels and Few-Bit ADCs

Peng Sun ', Zhongyong Wang

Abstract—We propose a fast and near-optimal approach to joint
channel-estimation, equalization, and decoding of coded single-
carrier (SC) transmissions over frequency-selective channels with
few-hit analog-to-digital converters (ADCs). Our approach lever-
ages parametric bilinear generalized approximate message passing
to reduce the implementation complexity of joint channel estima-
tion and (soft) symbol decoding to that of a few Fast Fourier trans-
forms. Furthermaore, it learns and exploits sparsity in the channel
impulse response. This paper is motivated by millimeter-wave sys-
tems with bandwidths on the order of Gsamples/sec, where few-hit
ADCs, SC transmissions, and fast processing all lead to signifi-
cant reductions in power consumption and implementation cost.
We numerically demonstrate our approach using signals and chan-
nels generated according to the IEEE 802.11ad wireless local area
network standard, in the case that the receiver nses analog beam-
forming and a single ADC,

Index Terms—Low resolution analog-to-digital converter, mil-
limeter wave, joint channel estimation and equalization, turbo
equalization, approximate message passagre,

I. INTRODUCTION

HE trend towards ever-wider-bandwidths in communi-
T cations systems results in major implementational chal-
lenges. This trend is evident in millimeter-wave (mmWave)
systems, which exploit large chunks of bandwidth at car-
rier frequencies of 30 GHz and above [1]. For example, the
IEEE 802.11ad standard [2] specifies channels of bandwidth
1.76 GHz centered near 60 GHz. Future 5G cellular systems are
also likely o incorporate mmWave technology [3], [4].
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A main challenge in wideband systems comes from the
analog-to-digital converters (ADCs) used at the receiver. At
bandwidths above 1 Gs/sec, ADC power consumption grows ap-
proximately quadratically with bandwidth [5], [6]. Meanwhile,
ADC power consumption grows exponentially in the number
of bits used in conversion. At GHz bandwidths, many-bit (e.g.,
10 bit) ADCs may consume several watts of power, which is
impractical for handheld mobile devices. For this reason, there
has been a growing interest in few-bit (i.e., 1-4 bit) ADCs for
communications receivers (e.g., [7]-[25]).

Wide bandwidth also results in challenges at the transmit-
ler. In particular, wide-bandwidth linear amplifiers are expen-
sive in terms of power consumption and cost [26]. For this
reason, it is beneficial to transmit signals with low peak-1o-
average power ratio (PAPR), which allow power-amplifier lin-
earity requirements to be relaxed. The desire for low PAPR
suggests single-carrier (SC) transmission, as opposed to multi-
carrier transmission such as orthogonal frequency division mul-
tiplexing (OFDM) [27]. Because wide bandwidth receivers may
need to decode billions of bits per second, it is important that
the SC transmission is amenable to computationally efficient
channel-equalization, e.g., via fast Fourier transform (FFT)
processing [26].

Although wide bandwidth brings many challenges, there is
a silver lining: the measured channel responses are relatively
sparse in the angle and delay domains, in both indoor [28] and
outdeor [29], [30] settings. With sparse channels, the fundamen-
tal performance of a communications link can be significantly
improved (e.g., [31], [32]).

We now review relevant existing work on few-bit-ADC
receiver design. For flat-fading multiple-input/multiple-output
(MIMO) channels, channel estimation (e.g., [T1-[111), symbol
detection (e.g., [12]-[16]), and joint channel estimation and
symbol detection (e.g., [17], [18]) have been considered. How-
ever, wideband channels are frequency selective in practice.

For frequency-selective channels, channel estimation has
been considered in [19], [20] using comb-type pilots that allow
the channel to be treated as effectively flat-fading, but these ap-
proaches perform poorly under PAPR limits, Channel estimation
for 2-tap channels was considered in [21], but realistic wide-
band channels have many more taps. An approach for longer
channels was recently proposed in [22], but it applies only to
OFDM. An ilerative expeclation-maximization (EM)-like chan-
nel estimation scheme for S5C transmissions was proposed in
[23], but it is computationally expensive and does not leverage
sparsity. More recently, pilot-aided sparsity-exploiting channel-
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estimation schemes were proposed in [24], and a known-channel
symbol-detection scheme was proposed in [25]. Both [24] and
[25] are made computationally efficient by the use of generalized
approximate message passing (GAMP) [33] and FFT process-
ing. But, as we will show, significantly improved performance
can be obtained through joint channel estimation, symbol de-
tection, and bit decoding. A joint channel-estimation/decoding
approach was proposed in [34], but it does not leverage sparsity
and requires OFDM.

In this paper, we propose a computationally efficient ap-
proach to joint channel-estimation, equalization, and decoding
of single-carrier transmissions over frequency-selective chan-
nels with few-bit ADCs. Our approach is an instance of turbo-
equalization [35], [36], which iterates soft equalization (and,
in our case, joint channel estimation) with soft decoding. For
joint channel estimation and equalization, we use the recently
proposed Parametric Bilinear GAMP (PBiGAMP) framework
[37], which—when specialized to our application—consurmnes
only a few FFT's per equalizer iteration and demands relatively
few equalizer iterations, We then mate PBIGAMP to the soft
decoder using the turbo- AMP framework from [38]. To exploit
the channel's (approximate) sparsity, we use a Gaussian mix-
ture model (GMM), as in [39], and learn the GMM parameters
via the EM algorithm, building on [40]. Portions of this work
were published in [41]. Relative to [41], this paper includes de-
tailed derivations and explanations, a refined channel-estimation
scheme, and additional numerical experiments.

In this work, we assume the use of analog beamforming, and
thus a single (few-hit) ADC, at the receiver. Our approach can
be contrasted with digital (e.g., [24]) or hybrid (e.g., [42]) beam-
forming, which requires the use of multiple ADCs. Tt is possible
that, for large arrays, with our architecture, the power consumnp-
tion of the analog beamforming becomes more significant than
that of the ADCs; The exact calculation is architecture-specific
(see, ez, [43]) and we leave an investigation of these issues to
future work. Extensions of our approach to digital beamforming
systems and to hybrid analog/digital systems are worthwhile, but
outside the scope of this work. To evaluate our receiver design,
we consider a system that complies with the IEEE 802.1 1ad
60 GHz mmWave standard [2], which supports analog beam-
forming. Our numerical results for the TEEE 802.11ad “confer-
ence room™ channel [44] (under perfect synchronization) show
onlya3dB SNR gapata BER of 10~ for a 2-hit ADC compared
to infinite bit resolution also using joint decoding. Further, we
show how embracing the nonlinearity of the quantization helps
to avoid a substantial SNE gap thal arises when pilot-only chan-
nel estimation is used or when Bussgang linearization is used
with very-few-bit ADCs at high SNR.

The paper is organized as follows. In Section 11, we present
our models for SC block transmission, channel propagation, and
few-bit reception, as well the GMM-based channel model that
we use with PBiGAMEP. In Section 111 after a briefl introduction
to beliel propagation and PBIGAMF, we propose our soft joint
channel-estimation/decoding method and describe how it can
be mated with a soft decoder, We also describe our EM-based
method 1o learn the GMM channel parameters. In Section
IV, we detail several benchmarks that will be used in our

Fig. 1. {a) The transmission structure, containing cyclic-prefived pilots
[®e, ®p] and data blocks @, ¢ separated by puard blocks ®g. (B) The block
structure of the pilot sequence @ep.

numerical —comparisons, including  Bussgang-lincarized
PBIiGAMP and linear-MMSE symbol decoding with pilot-
aided channel estimation. In Section V, we report numerical
results, and in Section VI we conclude,

Notation—We use boldface uppercase letiers like B to de-
note matrices and boldface lowercase letters like b to denote
vectors, where b; represents the ith element of b, and [B]; ;
represents the ith row and jth column of B. Also, Ty is the
M = M identity matrix, 1,4 is the M-length vector of ones, 0y
is the M -length vector of zeros, Diag(h) is the diagonal matrix
formed from the vector b, diag(B) is the vector formed from
the diagonal of matrix B, F'y is the N = N unitary discrete
Fourier transform (DFT) matrix, F'};" is the matrix formed by
the first L columns of Fy, fi is the ith column of Fy, and
fi isthe (i+1, j+1)th element of F y. For matrices and vec-
tors, ()7 denotes transpose, ()" denotes conjugate transpose,
(-)* denotes conjugate, and = denotes the Kronecker product.
Likewise, =, ¢, and | - |** denote element-wise multiplication,
division, and absolute-value squared, respectively. Finally, the
probability density function (pdf) of a multivariate complex
Gaussian random vector @ with mean ¥ and covariance ¥ will
be denoted by CN (z; &, E).

II. S5¥STEM MODEL
A. Single-Carrier Block Transmission Model

We consider a single-carrier block transmission system where
the transmilted frame takes the form
z = [z}, zp]', (1)
with @p a pilot frame and @y a data frame. For compati-
bility with the IEEE B02.11ad standard [2], we assume that
the data frame consists of A guard-separated data blocks
with guard length Ng, and the pilot frame consists of Kp
pilot blocks with a cyclic-EmIix (CP) structure. In particular,
op = [af, 2 1, 2, ... ,xﬁ,mﬂlh-n,mE]T, where xg c CMs,
Tp, € &Y, and S is a 2 -ary complex symbol alphabet. Note
the CP structure induced by the guards. Furthermore, we assume
thatap = [£c, &)y, .., B |7, where the last N elements of
gach xp; € CM equal @ € CVv, so that the tail of each pilot
block acts as the CP for the next block. Finally, we assume that
M = Np + Ng. The assumed frame structure is illustrated in
Fig. 1(a).
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The data sequences @p 4 are constructed as follows. First,
N, information bits b £ [by, . .. ,Iwh]T are coded and then in-
terleaved, yielding the coded bits ¢ € {0, 1}*#0¥? and a code
rate of R = .-1_1?1:\'_,, Next, the coded bits are partitioned into
KpNp groups of A bits, e 2 [e],..., ﬂ;rc:..f'-'n 1T, where each
group e, = lenty- .. . ¢n.4 " determines the value of one data
symbol. By partitioning the KpNp data symbols into Kp
blocks of Np symbols, one obtains the data sequences @p s
fork=1,....HAp.

B. Propagation and Few-Bit ADC Model

The frame & is modulated using a square-root raised-cosine
pulse, upconverted, propagated through a noisy and frequency-
selective channel (using possibly many antennas with ana-
log beamforming at the transmitter and/or receiver), downcon-
verted, filtered with a square-root raised cosine pulse, and sam-
pled at the baud rate. We will assume that the beamformed
baseband channel impulse response, h = [y, ..., h; ], has
length L < min{ N¢, Ng} — 1 and is invariant during the trans-
mission of I. In this case, after discarding the received samples
corresponding to the first x¢ and g sequences, the unquantized
received samples can be collected into the matrix

U=HX+W, (2)

where K 2 Kp + Ky In(2), H = CM*M ig the circulant ma-
trix with first column [RT 0], ]T, W € C™*¥ contains addi-
tive white Gaussian noise (AWGN) with variance a;{.. which is
assumed to be known,' and the kth column of X = CM*K

equals wpy when k< {1,... Kp} or [af, . ,al]" when
k = Kp. Likewise, we can wrile (2) in vectorized form as
w={(Ix @ H)r+w, (3

with u = vec(U), @ = vec[X ), w = vec(W ), and = denoting
the Kronecker product. Tt can be shown that iz equals # with the
first e and g sequences removed.

The output of the few-bit ADC is modeled as

y = Q(u), )

where the quantization C(-) applies component-wise. Although
not required by our methodology, we will assume in our numer-
ical experiments that B-hit uniform mid-rise quantization [46] is
separately applied to the real and imaginary parts, i.e.,

o fRe(m)|] i) L
Um = sign(Re(tn ) (rnm { [T-‘ ,2¢ } 2)

+ ] sign(Im(y ) (min { [%‘:ﬂ ?25_1} - %)
(5)

where g, 2 E[Re(tum )] Ape A 4 [E[Im{uy, )2] &y,

and /v, is chosen to minimize the mean-squared error (MSE)

I'The noise variance could be estimated using the EM-FPRIGAMP procedure
described in [37], but we leave the verification of this approach to future work.
See [45] for AWGN-variance leaming under 1-bit quantization, referred to as
the “probit link™ in the context of binary classification.

E[|ym — ww|?] under Gaussian w,. The average powers
I [Re(uy, )*] and E [Im{u,, }*] can be measured by analog cir-
cuits before the ADC. When b = 1. such measurements are
typically performed as part of automatic gain control.

C. Channel Model for Propagation

For signal propagation, we used the 60 GHz wircless lo-
cal area network (WLAN) channel model adopted by the
IEEE #02.11ad task group [44], which was a result of
extensive channel measurement studies in [28]. Tt speci-
fies that the continuous-space/time channel impulse response
Rty Oix: Py, O ), a8 a function of the lag ¢, the azimuth an-
gles (g, o ), and the elevation angles (8, 0 ), takes the form

ho(t; e, Bz Drx s Bex)

i
= Eﬂ'“jc[i](!‘a - T[i];d’tx - i"I:S.-:E:':'i}l!: - eg:lr
i=1

I — B0, 0 — 1)) (6a)
C“]“E ".f-l"m 9.1, e H“}
Url:‘
- 3 (= )8 - )3 0 — )
u=1
% 8(dn — D)0 (0 — O™, (6b)
where

o o' and C(t; dy, B, drx, Orx) are the gain and channel
impulse response of the ith cluster, respectively,
e i} @f:} . Elf;], @' el are the delay-angle coordinates
of the ith cluster,
* "%} js the gain of the uth ray of the ith cluster,
» pliu] ﬁrl[:m, B.[;’“], &% gl are the relative delay-
angle coordinates of the uth ray of the ith cluster,
[ is the number of clusters and [/'*) is the number of rays
in the ith cluster, and
* §(-) is the Dirac delta.
The discrete-time impulse response coefficients { & | are con-
structed from h(t; dy, B, P, Pr) via pulse-shaping and beam-
forming, i.e.,

by =fh{t: s Bhixs sy B ) g ([T — 1)

% b (e, O )bex (D, O ) dE Ay dblix Ay A, (T)

where g(-) is the pulse shape specified in the 802.11ad standard
(i.e., raised-cosine with rolloff 0.25), T is the baud interval, and
B (i, B ) and by (ey, O ) are beam responses.

Based on extensive physical channel measurements, statisti-
cal models for the 60 GHz WL AN channel parameters were pro-
posed in [44], and Matlab code Lo generate realizations from this
model (including optimized analog beamforming) was provided
in [47]. Typical realizations of the resulting {|h;|}; ' from the
“conference room™ environment are shown in Figs, 2{a)~(b),
which show that the channel taps are approximately sparse. The
channel power-delay profile (PDP), E {|h;|*} versus [, is plotted
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Fig. 2. For the 802.11ad 60 GHz “conference room™ channel, typical realiza-

tions of |ky| versus | are shown in (2) and (), and the power-delay profile is

shown in (c).

in Fig. 2(c), with the expectation approximated by an average
of 50 000 realizations. There it can be seen that the PDP decays
exponentially with lag [, i.e., the index into f.

D, Channel Model for Estimation

The channel model as given in (7) is difficult to directly exploit
for channel estimation. Therefore, for channel estimation, we
propose to use a D-state Gaussian-mixiure model (GMM) for
the channel vector ki, as suggested in [39] for I = 2. For general
I} = 1, the GMM specifies a pdf of the form

L-1
plhs A w) = T olhi; dsw)

=0
o

plhi; A ) = z Mg CN (R 0,04,q),
d=1

(Ba)

(8b)

where Ay 4 = 0 and v 3 = 0 are the weight and variance of the
dth mixture component of the I tap, and %%, X 4 = 171 Also,
M2 N, hp]Tand X2 (A7, . A7 |7, with similar
definitions for 14 and 1. In principle, the GMM parameters, A
and 1+, could be empirically estimated from a corpus of training
data using the standard EM-based approach to fitting a GMM
[48, p. 435]). As an alternative, these parameters can be estimated
online from the quantized measurements y using the EM-AMP-
based method described in Section 1T1-E.

I, Turpo EQuaLizaTion WIiTH PBIGAMP

Our principle goal is to infer the information bits b from the
few-bit measurements ¢ under the block-transmission model
from Section TI-A, the few-bit ADC model from Section 11-B,
and the GMM channel model from Section I-D. In partic-
ular, we aim to compute the marginal posterior probabilities

Fig. 3.
mation bits {5, }. 4 interleavedicoded bits {£n 2 }..A = 2 bits/symbol, Np = 2
data symbols per block, Ng = 0 guard symbols per block, Kp = 1 pilot blocks,
K = 1 data blocks, block length M = Np + Ng = 2, pilot symbols xy and
11, data symbols z9 and xy, and I = 3 channel taps. The mode 1y, represents
Pl |2m | and the node M, represents the bit-to-symbol mapping for data
symbols or the indicator pof for pilot symbols.

The fector graph comesponding to a oy example with Ny = 3 infor-

{p(hy|y) ;-‘":", , which can be decomposed as

bip(b
b_; b, P{y] b

- Z ];:r, plulh, x)p(h)p(z|c)ple|b) dh

b,

ply|b) (%)

(10}

MK

= Eﬂ*’f'—""?gfci I1

m=1

L-1

ﬁl.’ymlh,zfl] [1_[ p{hz}]dh

=i

Ko No—1
= H H PIEg Ky k1M +nlC—1) Ny +n }]1

k=1 n=0
(11}

for b_; 2 [by,....bi1,bis1s..., by, ]T. Above, (9) is due to
Bayes rule and the assumption that the information bits b are uni-
formly distributed; (10) is due to the dependency relationships
among the random vectors y, i, @, ¢, and b; and (11) is due tothe
separable nature of p(y|h, ), p(h), and p(z|c). In particular,
the pmfs p(T g k—1)M+n | Clk-1)8p+n ) fork = 1,..., Kpand
n=>0,...,Np — 1 are determined by the bit-to-symbol map-
ping, and the likelihood function p(y,, i, ©) can be obtained
from (3)}-(4). Details are provided in the sequel.

The structure in (11) can be visualized using the bipartite
factor graph shown in Fig. 3, where the solid rectangles repre-
sent the pdf factors and the open circles represent the variable
nodes. We find it convenient o partition the factor graph into
two subgraphs: the left subgraph corresponds to soft decoding
and the right subgraph corresponds to soft equalization with an
unknown channel.

A, Belief Propagation

The posterior bit marginals {p(b;|y)}*, can in principle
be computed from (11), but doing so is impractical from the
standpoint of complexity. A practical alternative is to perform
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belief-propagation (BP) using the sum-product algorithm (SPA)
[49], which passes messapes along the edges of the factor graph
in Fig. 3. For discrete-valued variables like by, ey, 4,25, these
messages come in the form of pmifs, while for continuous vari-
ables like by, these messages come in the form of pdfs. When
there are no loops (i.e., cycles) in the factor graph, BP computes
exact marginals. But Fig. 3 has loops, and so BP computes only
approximate marginals. This is to be expected, given that exact
inference in loopy graphs is NP hard [50]. Still, loopy BP often
gives very good results, and so it has become popular for, e.g.,
rbo decoding, LDPC decoding, turbo equalization, inference
of Markov random fields, multiuser detection, and compressive
sensing.

Exact implementation of the SPA is intractable for the soft-
equalization subgraph in Fig. 3. For exact SPA, the messages
in and out of the h; nodes would take the form of Gaussian
mixtures, with a mixture order that grows exponentially in the
iterations. As an alternative, one might consider passing only
Ganssian approximations of these problematic SPA messages,
an approach known as expectation propagation (EP) [51]. But
since there are M KL edges between the { by | and { y, } nodesin
Fig. 3, the per-symbol complexity of EP would be O L), which
contrasts with the O log L} complexity of FFT processing. Also,
the fixed-points of EP are generally not well understood.

B. Backgrownd on PBIGAMP

We now briefly provide some background on PBIGAMP,
since many readers may not be familiar with the algorithm,
PBIGAMP [37] is a computationally efficient approach to
approximating the marginal posteriors of independent ran-
dom variables {X, } ") and {h;}/" from measurements y =
[Yos- - -, yp—1]" generated under a likelihood of the form

P-1

pywlz) = T Pym oy (7

m=I

(12a)

N-1L-1

z’ﬂ! = Z Zx’hlzr[;llr:lht'

n=0 =0

(12b)

where =" are known paramelers. Throughout this subsec-

tion, we typesel random variables in san-serif font (e.g2., i)
and non-random variables in serif font (e.g., vy, ) for clarity.
Note that, in (12), Z,, can be interpreted as noiseless bilinear
measurements of the random vectors x = Koy Xy l]T and
h = [hg,...,he1]7, and py, iz, (%m |zm ) can be interpreted as
anoisy measurement channel. Applications of (12) include ma-
trix compressive sensing, self-calibration, blind deconvolution,
and joint channel/symbol estimation.

The PBIGAMP algorithm from [37] is summarized in Ta-
ble 1. There, the priors on X, and h; are denoted by py, (@)
and g, ( by ), respectively. The approximate marginal posteriors,
denoted by py, iq,. (n |Gn: 241 ) and ph, |, (Fy|73; 07 ), are specified
in lines {D2)3(D3). Here, &mu,f,',ﬁ._ v are quantities computed
iteratively by PBIGAMP.

In [37], PBIGAMP was derived as a computationally effi-
cient approximation of the SPA for the likelihood model (12),

TABLE T
THE SCALAR-VARIANCE PERIGAMP ALGORITHM FROM [37]

Definitions:
o b Py izl | 5} EA (S0P

Prolp,, (2 | H707) & TPro, el | 2 TR 5 0P on
P Py, L] SN [Frhe)
Phg|r (e | 75 67) = T g (RT3 CNTF AT WTT ARy w2
(=] CA (&=, 09)
Prfon (3 | T34} & o2 S el %)
Initialization:
T 2 B ||.']| =1 (I1}
Wa, - choose  F, 1), 0%[1], W 1], * 1] (12
Far ¢ = 1. N -‘I'-nu -
¥ BN = SR R ) (R1)
Wl B = 205 Saltlst™ (R2)
F ] = SN EalE (o i ha[HEC ] R
Pt = & (1 0 1E )
F L [E ) (R4)

VIE =TI+ e el B sy Eisg =Y Rs)
Pltl == [¢] - Fe—1[PF[¢] (R6)
Pt = T8 var{zo |y = Fm t]; (2]} (R7)
Wm o F [t = B2, | Py = B [#: 2 7[H] (RE)
w't] = (1 — " [8] /e [] 107 [t] (RS
a[t] = (2[e] — Ble])/v"[e] RI0)
V[t = (g Si5 IE ) ®11)

WLz il =Tt + o' [t 20 N ]
— (8]0 [t]0 [t [t] oy M=t R12)
Wit = ([l T 1))~ ®13)

W G t] = Talt] + ﬂ[t]‘E[“"]“[!J‘ELI]

—uAfeet [e)e [t]Ea [t B0t 1= (R14)
Ple+l] =+ DL varfhy | =7t [t} (R15)
Wiz Byfe+1) = E[by | =5 e[t (R16)
e+ = g SN var{xn | Q. =alt) 81t]} R®IT)
n o Tt 1] = EKy |9, = [t]: e[t (R18)

end

assuming that 2t are independent realizations of a zero-mean

Gaussian random variable. This approximation is, in fact, ex-
act in the large-system limit (ie., P, N, L — oo with fixed
N/P and L/F). In [52), PBIiGAMP was analyzed using the
replica method from statistical physics. There it was shown that
the large-system-limit performance of PBIGAMP can be accu-
rately predicted by a scalar state-evolution. For the case of i.i.d.
Bernoulli-Gaussian &, and fy, this state evolution was studied
in detail and found to exhibit a sharp “phase-transition” behav-
ior. Moreover, for certain combinations of measurement rates
{i.e.. N/P and L/ P) and sparsity rates on ., and ;. PBiGAMP
was shown to converge to the MMSE estimates of = and h. For
other, more difficult, combinations of measurement and sparsity
rates, PBIGAMP may not yield accurate estimates. However, it
is conjectured that no other polynomial-time method will yield
accurale estimates in that case [52].

C. Soft Equalization via PBiGAMP

In this section, we describe how PBIGAMP can be applied to
soft equalization of SC block transmissions over unknown FS
channels measured by few-bit ADCs.

We begin by adapting the PRIGAMP likelihood model (12)
to the few-bit SC block-transmission model (3)—(4). First, we
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write the circulant channel matrix as H = 357 hy.J;, where
J; & RM>*M ig the [-circulant delay matrix. Then (4) becomes

-1 MK-1

L
HYm = Q (Z Z ri't-] [I!‘[' ?-'J!]fu.nzrt ‘I’wm) ] (IB}
i=0 n=0

where [|m » extracts the mth row and nth column of its ma-
trix argument. From (12} and (13), we can readily identify the
PBIGAMP guantities

Z;E:J] = [IK @ JI];u_n {I4}
Py |20 (U |Zm ) 2 Pr{ym = Qlzm + Wn )} (15)
— f ﬂ'_."'\-"{w;zm_,a?p}dw, (16)

Q71 [y )

where Q1w ) c T is the region quantized 1o i, . We also
identify the PBiGAMP dimensions P = N = M K.

For PBIGAMP’s prior on by, we assign the GMM from (8).
For PBiIGAMP’s prior on x;, we treal the indices n of data
symbols differently from those of pilor and guard symbaols. For
lhcdatamd]ccsnE{{Kp-l-k—l L Kp+ k- 1M +

Np — 1}7, | we assign

, -:rj. Z'—:fu_]' Ty — 5['”}3 {l?}

where 4(-) is the Dirac delta, {s'", ..., 5"} £ § s the data-
symbol alphabet, and =, ; = Pr{x, = s/} is the prior data-
symbol pmf, which depends c-n the decoder outputs as described
below. For pilot indices n = . KpM — 1 and guard in-
dices n e {{(Kp+Fk— 1]M+ ND, K+ k)M — 1,'-Jr 1
we assign the trivial prior p_ (x) = 8(x — =, ) because the pi-
lots and guards take on known deterministic values. Note that,
although the data symbols X, are discrete, PBIiGAMP treals
them as continuous random variables in C.

The data-symbol pmft {~, 4 }3;, is determined by the coded-

bit priors Pr{c, . = (1) } coming from the soft decoder, ie.,

T 2 Prf ¢, = ¢} (18)

o4
Xy, =5{j]} = Z Pr{xu :3[j}r
=1

:!.-1.
= E Prix, =5, = "} Pric, = 77} (19)
=1 aa
' d;-y
=Pric, = lil} = H Pric, , = clil}, (20)
a=1

where ¢t =[cif,...,c"T € {0,1}" is the coded-bit se-
quence carresptmdmg to the symbol value s/, and 4, is the
Kronecker delta sequence.

We are now ready to apply PBiGAMP from Table 1. In the
sequel, we omit the iteration index “[¢]™ for brevity, From (14)

and z("0 2 000 0 TT lines (R1)4R3) of Table 1

become
L-1 .
gl = Zhl[IK & Jl]:,ﬂ =[x = H]:,n (21)
=0
ME-1
0 = N Rk @ Tow = vee(I X)) (22)
n=(0
L-1 . o
2 =3 "k vee(J,X) = vec(HX), (23)
I=n
where [-]. ., extracts the nth column of its matrix argument, F —

E:L_nl hyd, € CM*M s the circulant matrix with first column

[h 0}; ;|7 and X & CM*K is such that & = w:d:{f]l Given
(21)~(23), the structure of H and J; imply

2™ = |R]* ¥n 24)
2002 = |1 8)1° = X2 v (25)
|20 = 19n,L, (26)

With (23)4(26), PBiGAMP steps (R4)—(R6) reduce to
R @
v =7 + L (28)
p=vec(HX) 75, (29)

Furthermore, because H is circulant, its eigendecomposition
takes the form

H = VM FY Diag(FYFh)Fyy (30)
after which the frequency-domain quantities
X2FuX (31)
h2Fi'h (32)
can be used to rewrite J as
— vec(VMFY Diag(h)X) — 7¥%. (33)

Next we discuss PBiGAMP's nonlinear steps (R7)-(RS),
which—according to (D1)}—compute the posterior mean and
variance of Z,, given the likelihood function py | (Y |2m )
from (16) and the prior Z, ~ CN'(Fm . 7). Recall that the real
and imaginary parts of CA (5, ,»") are independent Gaussian
with means 5% and 5™, respectively, and variance »®/2. Then,
because the quantization O(-) is applied separately to real and
imaginary components, we can separately compute the posterior
means and variances for the real and imaginary components of
Zy. Using (gy 1,54 B to denote the interval of w quan-
tized to i , the posterior mean and variance of the real part of
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Z,, can be expressed as

g _ e VDR
ru pru 2 Em {34)
L - : e oey?
Vi _?+E_f:{(§) — (5 — Pm) (35)
where
DR = N(p5 — gu-1:0,(o5 +7)/2)
—N(7 — gu3 0, (o3, +17)/2) (36)
B — @(M) - q;(M) 37)
(oq +17)/2 (os +vP)/2
_ Prn f . a
m = —Egz 073V (P~ 030,00 +9)/2)

R [ﬁ"“ +i;);:2“~f(” — gu-130, (o +27)/2).
(38)

Similarly, the posterior mean and variance of the imaginary part
of z,, can b-e computed using the same procedure, but with 5"
replacing @, . Finally, for (R7}~(R8), the real and imaginary
parts are cnmbmcd as

MK -1
~ i 1
Zm = T +iZm L’Izﬁ Z :':m+-°'rxr:m]

m=0

(39)

Equations (34)—(38) can be derived following the procedures in
[53, Chapter 3.97; see [17, Appendix A] for further details.

Next we consider PBIGAMP steps (R11)—(R14). From (21)—
(22), steps (R11) and (R13) become

1
r__
Y= TR o
1
= — (41)
Ve[ l®
For step (R12), we use (22) and (26) to write
. . MK -1
= Ty + v 2HE — sy E 122 42)
n=0
— Bl — MEv 5®) + vivee(J, X Hvee(8)  (43)
— ﬁ-
= Rl — MEvAv) + 07y (T )1, (4
k=1

where § & CM*¥ i3 areshaping of & and where & and &, are

the kth columns of X and S. Thus ¥ 2 [rp,. .., 7r_1]7 takes
the form
- i H
F=h(l- MEKvvv) + 0"y [Jofk,..., Jo_13] Bk
k=1
(45)

Since [JoF, ..., Jp 1] are the first L columns of the cir-
culant matrix with first column &y, (30) implies

[Jog, ..., Jo_1@] = V’HFTfD’iﬂE(FMEkJFi}L-
F T (ie., the kth

(46)

Plugging (46) into (45] and defining I,
column of X} and 5, £ Fjy 5, we gct

F=h(l - MKvv"v*) + VMV (FY

E

(47)
A similar derivation reduces PBIGAMP step (R14) to

§ = 3(1 - Lo"®) + vV Muivec(F' Diag(R)M8), (48)

where § 2 Fy 5.

Mext we consider PBIGAMP steps (R15)—(R16), which—
according to (D2}—compute the posterior mean and variance
of h; given the GMM prior (8) and the likelihood function
CN(73; by, v'). From [40], the posterior is

& L";.-gﬂ M.{L‘r
Ry | 7)) = X dCN |y —= .'!)
Prin (A [725v1) ;A‘r’d ( D a ] va v
(49)
- r
pIppE R AU R ) R

=1 AL CN (7 0,0 0 + o)

which is also a GMM. The corresponding mean and variance
follow straightforwardly as

Z-XJ rI

d=1

L P r!'r'i

(31)

Yyl

r

M gl
L‘!=E-I{,d( - JT+| —
d=1 vy d +yr P'E:d'i'.y!

Finally, we consider PBIGAMP steps (R17)-(R18), which—
according to (D3)}—compute the posterior mean and variance
of x; given the discrete symbol prior (200 and the likelihood
function CN (G ; zn, 9). In this case, the posterior is

2 e
) —RE (2)

g
Pln|q.{Iu ||§:t,U:” = Zﬁﬂ-j&'[l:il — S[ﬂ]
i=1
Pr{xn =5{jj}ca'\'r{gtjj;$*,1ﬁ}
Zf::] Pr{x, =sli") }-C_.n'h'"(_g[.‘.i']; @t:yﬁ} '
(54)

(53)

?11,_; =

which is a discrete distribution with support on 5. The posterior
mean and variance follow as

2.-1

B = Fugs (55)
J=1
ad

=D Fnyls" = El" (56)
J=1
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TARLET
SOFT EQUALIZATION VIA SCALAR-VARIANCE PRIGAMP

Diefinitioms:
- 2y, W | =) CA (23,07
Prp o (2| B3 07) & fp:r'ﬁl T ENC? .:.-»P] " @1
. (h) EA (PR
Pryleglh | 75 V) & f.-::;’]c NTEA T ane o2
P o1 T7) & PN Gty (®3)
Initialization: - lﬂlrn:BEJT
%|1| =J_WP.'.I.>-- 1T Ky OG- - vxoc], (1] = i&%&
R[] = b, 2"[1] =l B[0] = Ong s
Farf=1,...Tmax N
X[t = Fp X[t) (E1)
Rt = FLER]Y (K2}
o] = o) | Re]||* + ggee) | X015 (E3)
wP[t] = T[] + Lol [t]er[1] (Bd)
P(t| = VM FY, Diag(hl)) X [t] — 7°[1]8[t—1] (ES)
v = ple Ty ey var{Zome | Frnk[d: o[} (56}
ki Tk t] = EZme | Prg = P [t 27[2]] (ET)
et = (1 — " [e]/ee]} e 1] (E8)
Bt] = (Z[e] — PJe]) /®]t] (E%)
&[t] = F s Sl1] (ElH
] = {:.-’[f.]”i’[t]“}] - (E11)
Flt = o [ VIR (X0 @ Bl 1k
+ (1 — ME e ] Rl {E12)
vi[E] = (e[| R1g %) (EL3)
Q1] = v/ M o [t] 'y Ding(Afe]) ¥ 5]
b (1= LaA ]t [t]e[£]) X 2] (E14)
le1] = £ Bt var{h |n = Rilel o [e]} {E15)
WEs by [e4-1] —E[he [ e = [t]; " (2] {Elf)
vrt+1] = '.FTF Em-u E;‘ 1 var {Xmk | Tk |t]; 17[2]} (E1T)
Wi, ks Bk [t 1] = E[fnk | G0 = T (1] 19[2]) (ELE)
end

Note that {7, Ij}}‘:, is the posterior pmf on %;. It can be con-
verted to posterior pmfs on the coded bits {¢,, , 12 | via

>

24 |ofi =1

Pr{.cmn:l |(T'n1" = P[‘{_C;,:{':[j] |'ﬁrﬂ}

Jj=1.

(57)

> ZPr{c, — V= s9) Prix s |}
=1..¢ 3'=1
! J =g 'ﬁ,f 3

Fl"rh‘;
(38)

>

J=1..24 |l =1

T g (59)

The PBIGAMP-hased soft equalization procedure is summa-
rized in Table 11 usmg (M » K)-matricized versions of p, g,
and ¥ denoted by P,Q, and X, respectively, Tts complexity is
dominated by the 4K + 2 DFT-matrix multiplies in steps (E1),
(E2). (E5), (E10), (E12), and (E14), which consume a total of
(MK log M) operations per iteration, or (Ylog M) opera-
tions per symbol per iteration, when an FFT is used. All other
lines in Table II consume a total of O(MK) operations per
iteration, or O 1) operations per symbol per iteration.

For notational simplicity, the table does not reflect the fact
that the first Kp columns of X are known pilots and the last
Ng elements of the remaining columns in X are known guards.
For those known elements, the mean and variance computations
in (E17)—(E1&) can be omitted. Likr:wigc there is no need o
compute the first Kp columns of X in {El) or the first Kp
columns of Q in (E14), reducing the number of required FFTs
h}' 2K P

D. Turbo Equalization

As described in Section II-A, we would like to compute
(approximate) posterior marginal bit probabilities {p(b:|y) };*,
using the SPA, which is the usual approach to turbo equalization
[36]. Because exact SPA is intractable for the sofl-equalization
subgraph in Fig. 3, we use the PBIiGAMP approximation, as
described in Section IT1-B, on that subgraph. We now detail the
remaining steps in the SPA, for completeness.

Roughly speaking, messages are passed on the factor graph in
Fig. 3 from the left to the right and back again. One such forward-
backward pass will be referred to as a turbo iteration. During a
single turbo iteration, soft equalization using PBiGAMP is alter-
nated with soft decoding using a standard decoder/interleaver.
The SPA dictates that “extrinsic” information is passed between
nodes on the graph and hence between the subgraphs in Fig. 3.
For a discrete random variable, the extrinsic message is a pmft
formed by dividing the posterior pmf by the prior pmf. Addi-
tional details are given below.

During each turbo iteration, extrinsic information on the
coded bits ¢, , is passed from the soft decoder 1w PBIGAME,
where it is treated as prior information in (20) to determine
the symbel priors <, ;. PBIGAMP is then run (o convergence,
generating the symbol posieriors 7, ;. The symbol posteriors
are used in (59) to determine the coded-bit posteriors, which
are then converted to extrinsic form and passed to the soft
decoder. The soft decoder accepts this exirinsic information
trom PBiGAMP, treating it as a prior on the coded bits. It then
compules posteriors on the coded bits, converts them o ex-
trinsic form, and passes them to PBIGAMP for the next turbo
ileration.

E. Learning the Channel Prior

The GMM prinr {8} requires specification of the weights and
variances {A;, v}/ . In the simple case where the coel‘ﬁcmm,s
are modeled as identically distributed, the set {A;, v }-! p TE-
duces to the pair A, 1. The "EM-GM-AMP" paper [40] showed
how this pair can be learned from the observations y using a
combination of EM and AMP., and [37] showed how EM can be
combined with PBIGAMP in a similar manner. In Section V, we
investigate the performance of this EM-GM-PBIGAMP method
on the channels described in Section 1I-C using GMM order
D =2, More generally, one could partition the coefficients
{hy}}, into subsets and learn a different weight and variance
for each subset, as discussed in [39]. Typically, the EM update
is performed in line (E16) once per PBIGAMP ileration, o that
the computational burden of EM is very minor.
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FE Scaling the Channel Estimate

With few-bit ADCs, channel amplitude information is de-
graded due to quantization (and completely lost in the case of
a one-bit ADC). Thus, we find that channel-estimation perfor-
mance can be improved by appropriately scaling the channel
estimate. To do this, we exploit the fact that

E[|lu|* | h] = tr{E[uu"| h]}
=tr{(Ix @ H)E[zz")(Ix & H"} + MKo?,

(60)

(61)
=ottr{lx @ HH"} + MKo2, (62)
= Koltr{HH"} + MKJ? (63)
= MKaZ||h|* + MKal (64)
due to the circulant nature of H, and so
Bl = \XIE[HuHE |n1ﬁwﬂ o 65)

Assuming that the average received-signal power
E[||u/* |h]/(MK) can be measured’ prior to the ADC
(as is typically done as part of automatic gain control), the
true channel norm can be computed from (65) and the channel
estimate h can be scaled so that its norm malches the true
one. We note that a similar technique was used in [24]. With
PBIGAMP, we scale the output of line (E16) in this manner at
each iteration.

I'V. BENCHMARK METHODS

We now describe two methods that will be used later for per-
formance evaluation: PBIGAMP with Bussgang linearization,
and pilot-aided channel estimation plus LMMSE decoding.

A, PBIiGAMP With Bussgang Linearization

The PBiGAMP method proposed in Section 11l uses a non-
Gaussian likelihood function py,, 1z, that results directly from
the gquantization model (5). An alternative explored in the litera-
ture is the use of an AWGN approximation of gy,  based on a
Bussgang linearization [54]. This leads to a simplified approach
that tends to perform well under mild quantization. We briefly
summarize the Bussgang approach below.?

The Bussgang linearization first writes the nonlinear quanti-
ration operation y = O(u) as

y=Gyu+e, (66)
where G, is the LMMSE estimator of y from w, i.e.,
Gy = E[yuM|E[uu"] ", (67)

1o measure the average received-signal power, it suffices to use an ADC
with a relatively low sampling rate, which is inexpensive in both cost and power
consumption.

}0ur summary includes an explanation of why the effective noise 1w is uncor-
related with the signal e, which is missing from [54], as well as specializations

relevant Lo (3).

and e 2 y — Gyu is the estimation error. Due to the orthogo-
nality principle, we know that E[ue™] = 0, i.c., the Bussgang
error € is uncorrelated with the quantizer input .

Plugging the expression for w trom (3) into (00), we get

y=0G,Iy = Hjx+ Gw+e, (68)
[

T
where we can interpret Gy(Iy @ H) as the effective channel

and w as the effective noise. Although non-Gaussian, w is
approximately uncorrelated with the signal @, in that

E[rit"] = EfzuH|GY + E[zet] (69)
= E[xe"] (70)
= E{E[ze"|u]} = E{E[z[ule"} (1)
= E[Gyue"] = G,Efuet| (72)
—0, (73)

where (70) follows from E[zw"] = 0, (71) follows from the
fact that ¢ = Qu) — Gyu is deterministic when conditioned
on u, and (72) approximates E[x|u] by the LMMSE estimate
Gy of i from w. This approximation becomes exact when @
and u are jointly Gaussian. Finally, equation (73) follows from
E[uef] = 0.

MNote that w and e are also uncorrelated, in that

Efwe"] = E[E[we" u]] (74)
= E[E[w]|u]et] (75)
= E[Gyue"] = G E[ue"] (76)
=1, (77

where (73) results because & is deterministic conditioned on .,
(76) results because w and w are jointly Gaussian, with G,
denoting the LMMSE estimator of w from u, and (77) follows
from E[ue™] = 0. As a consequence of (77), the covariance of
1ir reduces to

Efii"] - o) GG} + EleeH]. (78)

For uniform quantization with MMSE stepsize Ay, [55] (recall
(5)), the LMMSE matrix Gy has a simple form. To see this, we
first define the quantization error

qg=y - u. (79)

Note, from (3) and the fact that H is circulant with first col-
umn fi, that w,, = E:;“Hl P —ty0g {0 131 10 Where (nj
denotes n-modulo-M . Thus, if we treat the components of - as
i.id., then the components of u will be identically distributed.
Consequently, the components of y = Q{u) will be identically
distributed, as will those of ¢. In this case, the results in [54]
imply

Elug"] = —nE[uu"] = E[lgu"]

Elgq"] ~ nEuuM] - (1 - 5)n Nondiag(E[uu")

(80)
(81)
= °E[uu"] + (1 — n)nDiag(diag(E [uu"])), (82)
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where

E“ﬁ'mm
" Ellum ]

The approximation (81) would be exact if g, and y,. were
jointly Gaussian for all m = m’. From (67), we now see that

Gy =E[(u + gluE[uut]! (84)
=(1 -y, (85)

where (85) follows from (80).
We can now compute the effective noise covariance (78).
Noting from (66), (79), and (85) that

[l

(33)

e=y—Gu=u+qg—(l-nlu=nu+gqg, (86)
we have
Elee”] = E[(u + q)(u + q)F] (37

= 7' Eluu] + nE[ug"] + nElqu*] + Elgq"] (88)
= Elqq"] — 7*Efuu"] (89)
= (1 — u)nDiag(diag(E[uu"])), (90)
where (89) follows from (807 and (90) follows from (82). Since
Eltt|*] = E{[I @ H]p zx"[T @ HI} .} +02 (91
= o E[|h)’] + oy, 92)

equations (78), (83, (90), and (92) imply

Efww!] = (1 - nn(e?E{ |k} + 2 )T + (1 n)*cl T

(93)

= (1= )moE{IRI*} + o2)T. o)

A

o5

Note that, in practice, E[|u, |*] can be estimated by measuring
the input power to the ADC.
Finally, plugging (85) into (68), we get

y=(1-—n)(Ig = H)x+w.

For the Bussgang approximation, we use (95), while treating
the non-Gaussian effective noise w as it it was AWGN with
variance o3, from (94).

In going from standard (o Bussgang-linearized PBiGAMP,
changes manifest only in lines (R7)—(R8) of Table L. In either
case, the complexity of lines (RTHR8) is O(M K') operations
per frame, or O(1) operations per symbol, recalling the dis-
cussion at the end of Section III-C. So, like PBIGAMP, the
complexity of Bussgang-linearized PBIGAMP is O(log M) op-
erations per symbaol.

(95)

B. Pilot-Aided Channel Estimation and LMMSE Decoding

A computationally simpler benchmark is as follows. First,
using the standard correlation-based approach that leverages the
perfect aperiodic auntocorrelation property of Golay sequences
described in [56, Section 7.3.3.1], we obtain H. Next, treating

the channel estimate as if it were perfect, we perform linear-
MMSE (LMMSE) turbo decoding on the Bussgang-linearized
maodel (95). Details on the latter are provided below.

For each turbo iteration, we first convert the extrinsic informa-
tion output by the coder into the data-symbol pmis =, ; via (20),
and then we convert these pmfs into the prior symbol mean and
variance vectors g¢ and © via (35)-(56). At the very first turbo
iteration, however, we set p, — 0 and », = 1 for data indices
n (assuming unit-variance symbols) and p, = xp and v, =0
for the pilot/guard indices . Next, we compute the LMMSE
symbol estimales & and posterior symbaol variance vector 1+* as

F=p+Gly— Ap) (96)
" = v — diag(G ADiag(v}), (97
where
AL (1 -y @H) (98)
G £ Diag(v) A" (ADiag(v) A" + 02T) . (99)

We then convert the posterior mean and variance T and °
to extrinsic quantitics by solving for the §, and v that yield
/v = 1/vg + /v, and %, /v = G /1% + jt, [, which is
accomplished by

Un 1‘:‘,

X
Uy — Uy

vl = (100)

—~ i?:ra Uy — P:ny:

In (101)

I

Finally we convert the extrinsic means and variances g, and v
into extrinsic coded-bit probabilities using (34) and (59), and
pass them to the decoder. The decoder treats them as coded-bit
priors, computes coded-bit posteriors, and passes the extrinsic
information back to the LMMSE equalizer to begin the next
turbo iteration.

As aresult of the matrix inverse in (99), the LMMSE scheme
(96)—(99) incurs a complexity of O( K M*) multiplies per block
of KM symbols, or O{M?®) multiplies per symbol. Com-
pared to the Olog M) per-symbol per-iteration complexity of
PBiGAMP, this is not favorable with regards to the scaling ver-
sus M. However, if in (99) we approximaie the vector v by
its average value, then the per-symbol complexity could be re-
duced to Oflog M), since H is circulant and thus amenable
Lo fast convolution. In particular, this LMMSE approximation
would use 4K + 1 FFTs per symbol block (i.e. 1 to compute
the eigenvalues of H . 2K for the multiplication by A in (96),
and 2K for the multiplication by G in (96)). Since PBiGAMP
uses 4K + 2 FFTs, its per-iteration complexity would be only
slightly higher. Of course, PBIGAMP pertforms several itera-
tions. Still, we show in Section V-D that the total computa-
tional complexity of PBIiGAMP is only a bit higher than the
fast LMMSE scheme, in part because it requires fewer turbo
iterations on average.
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Fig. 4. (a) SC packet structure in the TEEE 802.11ad standard, including

the Short Training Field (STF), Channel Estimation Field (CEF), Header field,
Data field, and optional Training (TRM) field for beamforming; (b) inner struc-
ture of the CEF, constructed from length-128 Golay complementary sequences
{8 . @y, }: and (¢) inner structure of the Data block, compoesed of data sequences
{xn, 1, ®p, 2 } and guard intervals @g.

V. NUMERICAL RESULTS

We now present numerical results comparing the pro-
posed PBIGAMFP method with the benchmarks discussed in
Section IV. As a reference, we also consider the performance
of PBiGAMP with perfect channel-state information (PCS1). In
this latter case, PBIGAMP reduces to GAMP.

A, Setup

Unless otherwise noted, our numerical experiments are based
on the following setup, which is compatible with the 802.11ad
standard [2]. Recalling the SC block-transmission model from
Section TI-A, Ny, = 3584 information bits were coded at rate
R = 1/2by an irregular low-density parity-check (LDPC) code
with average column weight 3, as specified by [2]. The 7168
coded bits were then Gray-mapped to 1792 16-QAM symbols
(i.e., A = 4). The data symbols were then partitioned into K'p =
4 blocks of N = 448 symbols, resulting in {zp[k|}i_, . Each
data-symbol sequence xplk] was merged with an Ng = 64-
length guard sequence g, resulting in a M = 512-length data-
guard sequence. The set was then merged with Kp = 2 blocks
of M = 512 pilot symbols, as shown in Figs. 1 and 4.

The 802.11ad standard specifies the use of Golay sequences
[57] for constructing both @p and @g. In particular, the pilot
xp is construcied using the Golay complementary sequences
{g.. 9} asshown in Fig. 4(b), where both g, and g, have length
M4 =128, and the guard xq is generated by an Ng = 6d-
length Golay sequence. A correlation-based channel-estimation
scheme that exploits the perfect aperiodic correlation property
of Golay sequences is described in [56, Section 7.3.3.1]. We
used that scheme for the benchmark described in Section TV-B,
as well as to initialize the proposed PBIGAMP approach.

For the channel, we adopted the o0 GHz WLAN model
described in Section TI-C, whose Matlab implementation was
obtained from [47]. We used the “conference room”™ sce-
nario at baud rate 1.76 GHz with default parameter settings.
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Fig.5. BER and channel MMSE versus £y /N, in dB for 16-QAM with cc-bit

ADC under 60 GHx WLAN “conference room™ channel.

Interestingly, the delay spread of this channel exceeds the guard
length (Ng = 64), implying some amount of inter-block inter-
ference (IBI). However, the PDP in Fig. 2(b) suggests that the
IBI power is relatively small.

In the experiments below, one should remember that Fy /N,
values correspond to post-beamforming SNRs, which include
the gain of beamforming at both the transmitter and receiver. In
multi-antenna systems, the pre-beamforming SNRs are much
lower.

B. BER and NMSE Performance With /2-16-0AM

Figures 5-8 show the bit error rale (BER) and the channel-
estimation normalized MSE (NMSE) versus E; /N, for ADCs
with 2c-bit, 4-bit, 3-bit, or 2-bit precision. With an oco-bit ADC
(i.e., no quantization), PBIGAMP achieves a BER that is nearly
indistinguishable from the PCSI bound, while Golay/LMMSE
is 0.4 dB worse in BER and 10 dB worse in NMSE. With a
4-bit ADC the resulls are similar: PBIGAMP and PBiGAMP-
Bussgang achieve BERs nearly indistinguishable from the PCSI
bound (which has degraded 0.25 dB from the oo-bit case), while
Golay/LMMSE is 0.5 dB worse in BER and 10 dB worse in
NMSE. With a 3-bit ADC, PBIGAMP’s BER iz siill nearly
indistinguishable from the PCSL bound (which has degraded
0.8 dB from the ~c-bit case), while that of PBIGAMP-Bussgang
is 0.7 dB worse and Golay/LMMSE is 0.9 dB worse in BER and
10 dB worse in NMSE. With a 2-bit ADC, PBiGAMP's BER
is still nearly indistinguishable from the PCSI bound (which
has degraded 3.2 dB from the co-bit case), but the PBIGAMP-
Bussgang and Golay/LMMSE BER traces show alarge gap from
the PCST bound at high Fy /V,. The 2-bit NMSE traces are non-
monetonic as a result of the *stochastic resonance” phenomenon
[B]. [24], referring o the phenomemon where noise improves
the performance of a nonlinear system [58].
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C. BER and NMSE Performance With w/2-BPSK

In our experiments with 1-bit ADC, we found that none of the
schemes under lest were able to reliably decode the 16-QAM
transmission described in Section V-B. We now show that 1-
bit reception is feasible for «/2-BPSK transmissions, which is
a mandatory mode of the 802.11ad standard [2]. For this, we
coded Ny, = 806 information bits as before (i.e., at rate R =
1/2 using an irregular LDPC code with average column weight
3). The 1792 coded bits were then randomly interleaved and
Gray-mapped o Np = 1792 symbols using F-BPSK (which
rotates a standard BPSK transmission by =2 radians each baud
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interval for improved PAPR). All other settings were the same
as described earlier.

Figs. 9-12 show the bit error rate (BER) and the channel-
estimation normalized MSE (NMSE) versus E; /IV, for ADCs
with oc-bit, 3-bit, 2-bit, and [-bit precision, respectively. With an
~o-hit ADC (i.e.. no quantization), PBIGAMP achieves a BER
that is nearly indistinguishable from the PCSI bound, while
Golay/LMMSE is 0.9 dB worse in BER and 13 dB worse in
NMSE. With a 3-bit ADC the resulls are similar: PBIiGAMP
and PBiGAMP-Bussgang achieve BERs nearly indistinguish-
able from the PCSI bound (which has degraded 0.3 dB from
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the ~o-bil case), while Golay/LMMSE is (1.9 dB worse in BER
and 13 dB worse in NMSE. With a 2-bit ADC, the BERs of
PBIGAMP and PBIGAMP-Bussgang are nearly indistinguish-
able from the PCSI bound (which has degraded 0.6 dB from the
oo-bit case), while Golay/LMMSE is 1 dB worse in BER and
13 dB worse in NMSE. With a 1-bit ADC, PBIiGAMP's BER
is still nearly indistinguishable from the PCSI bound {which
has degraded 2.2 dB from the -c-bit case), but the PBiGAMP-
Bussgang and Golay/LMMSE BER traces show a large gap
from the PCST bound at high Fy/N,. The 1-bit NMSE traces
are non-monotonic as a result of the “stochastic resonance”
phenomenon [54].
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1-bit ADC under 60 GHz WLAN “conference room” channel.

). BER Versus Runtime With 16-0AM

To assess the computational complexity of PBIGAMP rel-
ative to the benchmark methods, we now present the results
of runtime experiments in Matlab on a 3.3 GHz CPU.* The
algorithms under test were PBIGAMP, Bussgang-linearized
PBIGAMP, the exact Golay/LMMSE scheme (96)—(99), and
the fast approximate Golay/LMMSE scheme described at the
end of Section IV-B. PBIGAMP was terminated at the small-
est iteration ¢ = 7 at which 3, o [Trme(t + 1] — Tmilt])* <
0013, i [Tmelt +1] 2.

Figs. 13 and 14 plot BER versus average runtime for 16-QAM
modulation and Ey /N, = 14 dB at 2-bit and 3-bit quantization,
respectively. The markers in each trace show the average BER
and the average (cumulative) runtime al the end of each turbo
iteration, indexed from 1 through 20. For each Monte-Carlo
trial, a parity check was used to determine whether the BER
was zero at the beginning of each turbo ileration and, il so,
the equalization and decoding operations in that iteration were
skipped. Thus, the average mntime contribution of the ¢th turbo
iteration decrease with the iteration index {, because it is more
likely that the BER equals zero in later turbo iterations.

Fig. 13 shows that, with 2-bit quantization, the fastest output
comes from Golay/LMMSE-Fast after a single turbo iteration,
However, the corresponding BER is relatively poor. At 2 turbo
iterations, PBIGAMP yields a much lower BER than all other
schemes, while consuming the same runtime as only 3 turbo
iterations of Golay/LMMSE-Fast. And PBIGAMF yields even
lower BERs after > 2 turbo iterations. Overall, Fig. 13 shows
that PBiGAMP’s accuracy-complexity tradeoff is vastly supe-
rior to those of the other methods.

Fig. 14 shows similar behavior with 3-bil quantization. As
before, Golay/LMMSE-Fast achieves the fastest decoding, but

4The runtimes would be much faster in an ASIC or FPGA implementation.
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its BER is relatively poor. After only 2 turbo iterations, the
BER of PBiGAMP surpasses the BERs achieved by all other
methods. And the time it takes for PBIGAMP (o complete
2 turbo iterations is only about 40% more than the time it
takes for Golay/LMMSE-Fast to complete 2 turbo iterations.
S0, PBIGAMP gives a significant improvement in BER for a
modest increase in complexity.

Several other observations can be made from Figs. 13—14.
First the fast/approximate LMMSE scheme is much faster than
the exact LMMSE scheme, although it yields slightly worse
BER. Both behaviors are expected. Second, lower BER trans-
lates to faster average runtime per turbo iteration, because fewer
turbo iterations need to be performed. So, more accurate equal-
ization leads to improvements in runtime.
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E. Robustness to Noise-Variance Mismatch

Recall that all methods under test take the noise variance o7,
as an imput. We now examine robustness to mismatch between
the assumed and true values of a2.

Fig. 13 shows the BER and channel-estimation NMSE versus
oo -mismalch in dB for 16-QAM with 3-bit ADC guantization
at By /I, = 14 dB. The figure shows that, as the assumed value
of o2 grows larger than the true o2, (i.c., the mismatch in dB
grows positive), the BERs of all methods degrade at a similar
rate. However, as the assumed value of o2, grows smaller than
the true o3, (i.e., the mismatch in dB grows negative), the BERs
of all methods slightly improve before finally degrading. Fig. 15
also shows that PBIGAMP’s channel estimation NMSE slightly
degrades in the presence of noise-variance mismatch, while that
of the Golay/LMMSE scheme remains relatively constant (but
far worse than the value achieved by PBIGAMP).

Importantly, the BER of PBiGAMP closely tracks that of the
perfect-CST benchmark over the entire range of mismatch, This
is the best possible outcome among schemes that take the noise
variance o, as an input parameter. Of course, it would be better
to learn &> from y rather than trust the supplied value of o2 .
As discussed in footnote 1, while extending PBIGAMP to learn
a2 should not be difficult, we leave it for future work.

oy

VI. CoNCLUSIONS

In this paper we proposed a fast and near-optimal approach to
joint channel-estimation, equalization, and decoding of coded
SC transmissions over frequency-selective channels with few-
bit ADCs. Our approach leverages the PBIGAMP algorithm to
reduce the implementation complexity of joint channel estima-
tion and symbol decoding to that of a few FFTs per iteration, Fur-
thermore, it learns and exploils sparsity in the channel impulse
response. Our work is motivated by millimeter-wave systems
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with bandwidths on the order of Gsamples/fsec, where few-bit
ADCs, SC transmissions, and fast processing all lead to sig-
nificant reductions in power consumption and implementation
cost. We demonstrated our approach using signals and chan-
nels generated according to the IEEE B02.11ad wircless LAN
standard, in the case that the receiver uses analog beamforming
and a single ADC. Our experiments showed that the proposed
approach yields BER almost indistinguishable from the known-
channel oracle for ADCs with as few as 2-bit precision when
recovering coded 16-QAM transmissions, and for ADCs with as
few as 1-bit precision when recovering coded BPSK transmis-
sions. Although it should be possible to recover coded QPSK
transmissions with 1-bit ADCs, none of the schemes considered
in this paper were able to do reliably with the 802.11ad codes
and 302.11ad channels, and thus further work in this direction
is warranted. As future work, it would also be interesting to ex-
tend our method to learn the noise variance 2, and to work with
multiple few-bit ADCs, as in digital or hybrid beamforming
systems.
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