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Regularization by Denoising: Clarifications and
New Interpretations

Edward T. Reehorst and Philip Schniter , Fellow, IEEE

Abstract—Regularization by denoising (RED), as recently pro-
posed by Romano, Elad, andMilanfar, is powerful image-recovery
framework that aims to minimize an explicit regularization objec-
tive constructed from a plug-in image-denoising function. Exper-
imental evidence suggests that the RED algorithms are a state of
the art. We claim, however, that explicit regularization does not
explain the RED algorithms. In particular, we show that many of
the expressions in the paper by Romano et al. hold only when the
denoiser has a symmetric Jacobian, and we demonstrate that such
symmetry does not occur with practical denoisers such as nonlocal
means, BM3D, TNRD, and DnCNN. To explain the RED algo-
rithms, we propose a new framework called Score-Matching by
Denoising (SMD), which aims to match a “score” (i.e., the gradient
of a log-prior). We then show tight connections between SMD, ker-
nel density estimation, and constrained minimum mean-squared
error denoising. Furthermore, we interpret the RED algorithms
from Romano et al. and propose new algorithms with acceleration
and convergence guarantees. Finally, we show that the RED algo-
rithms seek a consensus equilibrium solution, which facilitates a
comparison to plug-and-play ADMM.

Index Terms—Equilibriummethods, image denoising, image re-
construction, kernel density estimation, score matching.

I. INTRODUCTION

CONSIDER the problem of recovering a (vectorized) image
x0 ∈ RN from noisy linear measurements y ∈ RM of the

form

y = Ax0 + e, (1)

where A ∈ RM×N is a known linear transformation and e is
noise. This problem is of great importance in many applications
and has been studied for several decades.
One of the most popular approaches to image recovery is

the “variational” approach, where one poses and solves an opti-
mization problem of the form

x̂ = argmin
x

{
ℓ(x;y) + λρ(x)

}
. (2)

In (2), ℓ(x;y) is a loss function that penalizes mismatch to
the measurements, ρ(x) is a regularization term that penalizes
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mismatch to the image class of interest, and λ > 0 is a design
parameter that trades between loss and regularization. A prime
advantage of the variational approach is that, in many cases,
efficient optimization methods can be readily applied to (2).
A key question is: How should one choose the loss ℓ(·;y) and

regularization ρ(·) in (2)? As discussed in the sequel, the MAP-
Bayesian interpretation suggests that they should be chosen in
proportion to the negative log-likelihood and negative log-prior,
respectively. The trouble is that accurate priormodels for images
are lacking.
Recently, a breakthrough was made by Romano, Elad, and

Milanfar in [1]. Leveraging the long history (e.g., [2], [3]) and
recent advances (e.g., [4], [5]) in image denoising algorithms,
they proposed the regularization by denoising (RED) frame-
work, where an explicit regularizer ρ(x) is constructed from
an image denoiser f : RN → RN using the simple and elegant
rule

ρred(x) =
1
2
x⊤(

x− f(x)
)
. (3)

Based on this framework, they proposed several recovery al-
gorithms (based on steepest descent, ADMM, and fixed-point
methods, respectively) that yield state-of-the-art performance in
deblurring and super-resolution tasks.
In this paper, we provide some clarifications and new inter-

pretations of the excellent RED algorithms from [1]. Our work
was motivated by an interesting empirical observation: With
many practical denoisers f(·), the RED algorithms do not min-
imize the RED variational objective “ℓ(x;y) + λρred(x).” As
we establish in the sequel, the RED regularization (3) is jus-
tified only for denoisers with symmetric Jacobians, which un-
fortunately does not cover many state-of-the-art methods such
as non-local means (NLM) [6], BM3D [7], TNRD [4], and
DnCNN [5]. In fact, we are able to establish a stronger result:
For non-symmetric denoisers, there exists no regularization ρ(·)
that explains the RED algorithms from [1].
In light of these (negative) results, there remains the question

of how to explain/understand the RED algorithms from [1]when
used with non-symmetric denoisers. In response, we propose a
framework called score-matching by denoising (SMD), which
aims to match the “score” (i.e., the gradient of the log-prior)
rather than to design any explicit regularizer. We then show tight
connections between SMD, kernel density estimation [8], and
constrained minimum mean-squared error (MMSE) denoising.
In addition, we provide new interpretations of the RED-ADMM
and RED-FP algorithms proposed in [1], and we propose novel
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RED algorithms with faster convergence. Inspired by [9], we
show that the RED algorithms seek to satisfy a consensus equi-
librium condition that allows a direct comparison to the plug-
and-play ADMM algorithms from [10].
The remainder of the paper is organized as follows. In

Section II we provide more background on RED and related
algorithms such as plug-and-play ADMM [10]. In Section III,
we discuss the impact of Jacobian symmetry on RED and test
whether this property holds in practice. In Section IV, we pro-
pose the SMD framework. In Section V, we present new inter-
pretations of the RED algorithms from [1] and new algorithms
based on accelerated proximal gradient methods. In Section VI,
we perform an equilibrium analysis of the RED algorithms, and,
in Section VII, we conclude.

II. BACKGROUND

A. The MAP-Bayesian Interpretation

For use in the sequel, we briefly discuss the Bayesian maxi-
mum a posteriori (MAP) estimation framework [11]. The MAP
estimate of x from y is defined as

x̂map = argmax
x

p(x|y), (4)

where p(x|y) denotes the probability density of x given y.
Notice that, from Bayes rule p(x|y) = p(y|x)p(x)/p(y) and
the monotonically increasing nature of ln(·), we can write

x̂map = argmin
x

{
−ln p(y|x)− ln p(x)

}
. (5)

MAP estimation (5) has a direct connection to variational op-
timization (2): the log-likelihood term− ln p(y|x) corresponds
to the loss ℓ(x;y) and the log-prior term− ln p(x) corresponds
to the regularization λρ(x). For example, with additive white
Gaussian noise (AWGN)e ∼ N (0,σ2

e I), the log-likelihood im-
plies a quadratic loss:

ℓ(x;y) =
1

2σ2
e

∥Ax− y∥2 . (6)

Equivalently, the normalized loss ℓ(x;y) = 1
2 ∥Ax− y∥2

could be used if σ2
e was absorbed into λ.

B. ADMM

A popular approach to solving (2) is through ADMM [12],
which we now review. Using variable splitting, (2) becomes

x̂ = argmin
x

{
ℓ(x;y) + λρ(v)

}
s.t. x = v. (7)

Using the augmented Lagrangian, problem (7) can be reformu-
lated as

min
x,v

max
p

{
ℓ(x;y) + λρ(v) + p⊤(x− v) +

β

2
∥x− v∥2

}

(8)

using Lagrange multipliers (or “dual” variables) p and a design
parameter β > 0. Using u ! p/β, (8) can be simplified to

min
x,v

max
u

{
ℓ(x;y) + λρ(v) +

β

2
∥x− v + u∥2 − β

2
∥u∥2

}
.

(9)

Algorithm 1: ADMM [12].
Require: ℓ(·;y), ρ(·),β, λ,v0 ,u0 , and K
1: for k = 1, 2, . . . ,K do
2: xk = argminx{ℓ(x;y) + β

2 ∥x− vk−1 + uk−1∥2}
3: vk = argminv{λρ(v) + β

2 ∥v − xk − uk−1∥2}
4: uk = uk−1 + xk − vk

5: end for
6: Return xK

The ADMM algorithm solves (9) by alternating the minimiza-
tion of x and v with gradient ascent of u, as specified in
Algorithm 1. ADMM is known to converge under convex ℓ(·;y)
and ρ(·), and other mild conditions (see [12]).

C. Plug-and-Play ADMM

Importantly, line 3 of Algorithm 1 can be recognized as vari-
ational denoising of xk + uk−1 using regularization λρ(x) and
quadratic loss ℓ(x; r) = 1

2ν ∥x− r∥2 , where r = xk + uk−1 at
iteration k. By “denoising,” we mean recovering x0 from noisy
measurements r of the form

r = x0 + e, e ∼ N (0, νI), (10)

for some variance ν > 0.
Image denoising has been studied for decades (see, e.g., the

overviews [2], [3]), with the result that high performance meth-
ods are now readily available. Today’s state-of-the-art denoisers
include those based on image-dependent filtering algorithms
(e.g., BM3D [7]) or deep neural networks (e.g., TNRD [4],
DnCNN [5]). Most of these denoisers are not variational in
nature, i.e., they are not based on any explicit regularizer λρ(x).
Leveraging the denoising interpretation of ADMM,

Venkatakrishnan, Bouman, and Wolhberg [10] proposed to re-
place line 3 of Algorithm 1 with a call to a sophisticated image
denoiser, such as BM3D, and dubbed their approach Plug-and-
Play (PnP) ADMM. Numerical experiments show that PnP-
ADMM works very well in most cases. However, when the
denoiser used in PnP-ADMM comes with no explicit regu-
larization ρ(x), it is not clear what objective PnP-ADMM is
minimizing, making PnP-ADMM convergence more difficult to
characterize. Similar PnP algorithms have been proposed using
primal-dual methods [13] and FISTA [14] in place of ADMM.
Approximate message passing (AMP) algorithms [15] also

perform denoising at each iteration. In fact, when A is large
and i.i.d. Gaussian, AMP constructs an internal variable statisti-
cally equivalent to r in (10) [16]. While the earliest instances of
AMP assumed separable denoising (i.e., [f(x)]n = f(xn ) ∀n
for some f ) later instances, like [17], [18], considered non-
separable denoising. The paper [19] by Metzler, Maleki, and
Baraniuk proposed to plug an image-specific denoising algo-
rithm, like BM3D, into AMP. Vector AMP, which extends AMP
to the broader class of “right rotationally invariant” randomma-
trices, was proposed in [20], and VAMP with image-specific
denoising was proposed in [21]. Rigorous analyses of AMP and
VAMP under non-separable denoisers were performed in [22]
and [23], respectively.
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D. Regularization by Denoising (RED)

As discussed in the Introduction, Romano, Elad, andMilanfar
[1] proposed a radically new way to exploit an image denoiser,
which they call regularization by denoising (RED). Given an
arbitrary image denoiser f : RN → RN , they proposed to con-
struct an explicit regularizer of the form

ρred(x) ! 1
2
x⊤(x− f(x)) (11)

to use within the variational framework (2). The advantage of
using an explicit regularizer is that awide variety of optimization
algorithms can be used to solve (2) and their convergence can
be tractably analyzed.
In [1], numerical evidence is presented to show that image

denoisers f(·) are locally homogeneous (LH), i.e.,

(1 + ϵ)f(x) = f
(
(1 + ϵ)x

)
∀x (12)

for sufficiently small ϵ ∈ R \ 0. For such denoisers, Romano
et al. claim [1, Eq.(28)] that ρred(·) obeys the gradient rule

∇ρred(x) = x− f(x). (13)

If ∇ρred(x) = x− f(x), then any minimizer x̂ of the varia-
tional objective under quadratic loss,

1
2σ2 ∥Ax− y∥2 + λρred(x) ! Cred(x), (14)

must yield∇Cred(x̂) = 0, i.e., must obey

0 =
1
σ2 A

⊤(Ax̂− y) + λ(x̂− f(x̂)). (15)

Based on this line of reasoning, Romano et al. proposed several
iterative algorithms that find an x̂ satisfying the fixed-point
condition (15), which we will refer to henceforth as “RED
algorithms.”

III. CLARIFICATIONS ON RED

In this section, we first show that the gradient expression (13)
holds if and only if the denoiser f(·) is LH and has Jacobian
symmetry (JS). We then establish that many popular denoisers
lack JS, such as the median filter (MF) [24], non-local means
(NLM) [6], BM3D [7], TNRD [4], and DnCNN [5]. For such
denoisers, the RED algorithms cannot be explained by ρred(·)
in (11). We also show a more general result: When a denoiser
lacks JS, there exists no regularizer ρ(·) whose gradient ex-
pression matches (13). Thus, the problem is not the specific
form of ρred(·) in (11) but rather the broader pursuit of explicit
regularization.

A. Preliminaries

Wefirst state some definitions and assumptions. In the sequel,
we denote the ith component of f(x) by fi(x), the gradient of
fi(·) at x by

∇fi(x) !
[

∂fi (x)
∂x1

· · · ∂fi (x)
∂xN

]⊤
, (16)

and the Jacobian of f(·) at x by

Jf(x) !

⎡

⎢⎢⎢⎢⎢⎢⎣

∂f1 (x)
∂x1

∂f1 (x)
∂x2

. . . ∂f1 (x)
∂xN

∂f2 (x)
∂x1

∂f2 (x)
∂x2

. . . ∂f2 (x)
∂xN

...
...

. . .
...

∂fN (x)
∂x1

∂fN (x)
∂x2

. . . ∂fN (x)
∂xN

⎤

⎥⎥⎥⎥⎥⎥⎦
. (17)

Without loss of generality, we take [0, 255]N ⊂ RN to be
the set of possible images. A given denoiser f(·) may in-
volve decision boundaries D ⊂ [0, 255]N at which its behav-
ior changes suddenly. We assume that these boundaries are a
closed set of measure zero and work instead with the open set
X ! (0, 255)N \ D, which contains almost all images.
We furthermore assume that f : RN → RN is differentiable

onX , which means [25, p. 212] that, for anyx ∈ X , there exists
a matrix J ∈ RN×N for which

lim
w→0

∥f(x+w)− f(x)− Jw∥
∥w∥ = 0. (18)

When J exists, it can be shown [25, p. 216] that J = Jf(x).

B. The RED Gradient

We first recall a result that was established in [1].
Lemma 1 (Local homogeneity [1]): Suppose that denoiser

f(·) is locally homogeneous. Then [Jf(x)]x = f(x).
Proof: Our proof is based on differentiability and avoids the

need to define a directional derivative. From (18), we have

0 = lim
ϵ→0

∥f(x+ ϵx)− f(x)− [Jf(x)]xϵ∥
∥ϵx∥ ∀x ∈ X (19)

= lim
ϵ→0

∥(1 + ϵ)f(x)− f(x)− [Jf(x)]xϵ∥
∥ϵx∥ ∀x ∈ X (20)

= lim
ϵ→0

∥f(x)− [Jf(x)]x∥
∥x∥ ∀x ∈ X , (21)

where (20) follows from local homogeneity (12). Equation (21)
implies that [Jf(x)]x = f(x) ∀x ∈ X . "
We now state one of the main results of this section.
Lemma 2 (RED gradient): For ρred(·) defined in (11),

∇ρred(x) = x− 1
2
f(x)− 1

2
[Jf(x)]⊤x. (22)

Proof: For any x ∈ X and n = 1, . . . , N ,

∂ρred(x)
∂xn

=
∂

∂xn

1
2

N∑

i=1

(
x2
i − xifi(x)

)
(23)
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=
1
2

∂

∂xn

⎛

⎝x2
n − xnfn (x) +

∑

i ̸=n

x2
i −

∑

i ̸=n

xifi(x)

⎞

⎠ (24)

=
1
2

⎛

⎝2xn − fn (x)− xn
∂fn (x)

∂xn
−

∑

i ̸=n

xi
∂fi(x)
∂xn

⎞

⎠ (25)

= xn − 1
2
fn (x)−

1
2

N∑

i=1

xi
∂fi(x)
∂xn

(26)

= xn − 1
2
fn (x)−

1
2

[
[Jf(x)]⊤x

]
n
, (27)

using the definition of Jf(x) from (17). Collecting
{ ∂ρ red(x)

∂xn
}Nn=1 into the gradient vector (13) yields (22). "

Note that the gradient expression (22) differs from (13).
Lemma 3 (Clarification on (13)): Suppose that the denoiser

f(·) is locally homogeneous. Then the RED gradient expression
(13) holds if and only if Jf(x) = [Jf(x)]⊤.

Proof: If Jf(x) = [Jf(x)]⊤, then the last term in (22) be-
comes − 1

2 [Jf(x)]x, which equals − 1
2f(x) by Lemma 1, in

which case (22) agrees with (13). But if Jf(x) ̸= [Jf(x)]⊤,
then (22) differs from (13). "

C. Impossibility of Explicit Regularization

For denoisers f(·) that lack Jacobian symmetry (JS),
Lemma 3 establishes that the gradient expression (13) does not
hold. Yet (13) leads to the fixed-point condition (15) onwhich all
RED algorithms in [1] are based. The fact that these algorithms
work well in practice suggests that “∇ρ(x) = x− f(x)” is a
desirable property for a regularizer ρ(x) to have. But the reg-
ularization ρred(x) in (11) does not lead to this property when
f(·) lacks JS. Thus an important question is:
Does there exist some other regularization ρ(·) for which

∇ρ(x) = x− f(x) when f(·) is non-JS?
The following theorem provides the answer.
Theorem 1 (Impossibility): Suppose that denoiser f(·) has

a non-symmetric Jacobian. Then there exists no regularization
ρ(·) for which ∇ρ(x) = x− f(x).

Proof: To prove the theorem, we view f : X → RN as a
vector field. Theorem 4.3.8 in [26] says that a vector field f
is conservative if and only if there exists a continuously differ-
entiable potential ρ : X → R for which ∇ρ = f . Furthermore,
Theorem 4.3.10 in [26] says that if f is conservative, then the
Jacobian Jf is symmetric. Thus, by the contrapositive, if the
Jacobian Jf is not symmetric, then no such potential ρ exists.
To apply this result to our problem, we define

ρ(x) ! 1
2
∥x∥2 − ρ(x) (28)

and notice that

∇ρ(x) = x−∇ρ(x) = x− f(x). (29)

Thus, if Jf(x) is non-symmetric, then J [x− f(x)] = I −
Jf(x) is non-symmetric, which means that there exists no ρ
for which (29) holds. "

Thus, the problem is not the specific form of ρred(·) in (11)
but rather the broader pursuit of explicit regularization. We note
that the notion of conservative vector fields was discussed in
[27, App. A] in the context of PnP algorithms, whereas here we
discuss it in the context of RED.

D. Analysis of Jacobian Symmetry

The previous sections motivate an important question: Do
commonly-used image denoisers have sufficient JS?
For some denoisers, JS can be studied analytically. For ex-

ample, consider the “transform domain thresholding” (TDT)
denoisers of the form

f(x) ! W⊤g(Wx), (30)

where g(·) performs componentwise (e.g., soft or hard) thresh-
olding and W is some transform, as occurs in the context of
wavelet shrinkage [28], with or without cycle-spinning [29].
Using g′n (·) to denote the derivative of gn (·), we have

∂fn (x)
∂xq

=
N∑

i=1

wing
′
i

(
N∑

j=1

wijxj

)
wiq =

∂fq (x)
∂xn

, (31)

and so the Jacobian of f(·) is perfectly symmetric.
Another class of denoisers with perfectly symmetric Jaco-

bians are those that produce MAP or MMSE optimal x̂ under
some assumed prior p̂x. In the MAP case, x̂ minimizes (over
x) the cost c(x; r) = 1

2ν ∥x− r∥2 − ln p̂x(x) for noisy input
r. If we define φ(r) ! minx c(x; r), known as the Moreau-
Yosida envelope of − ln p̂x, then x̂ = f(r) = r − ν∇φ(r), as
discussed in [30]. (See also [31] for insightful discussions in the
context of image denoising.) The elements in the Jacobian are
therefore [Jf(r)]n,q = ∂fn (r)

∂ rq
= δn−q − ν ∂ 2 φ(r)

∂ rq ∂ rn
, and so the

Jacobian matrix is symmetric. In the MMSE case, we have that
f(r) = r −∇ρTR(r) for ρTR(·) defined in (52) (see Lemma 4),
and so [Jf(r)]n,q = δn−q − ∂ 2 ρTR(r)

∂ rq ∂ rn
, again implying that the

Jacobian is symmetric. But it is difficult to say anything
about the Jacobian symmetry of approximate MAP or MMSE
denoisers.
Now let us consider the more general class of denoisers

f(x) = W (x)x, (32)

sometimes called “pseudo-linear” [3]. For simplicity, we assume
that W (·) is differentiable on X . In this case, using the chain
rule, we have

∂fn (x)
∂xq

= wnq (x) +
N∑

i=1

∂wni(x)
∂xq

xi, (33)

and so the following are sufficient conditions for Jacobian sym-
metry.
1) W (x) is symmetric ∀x ∈ X ,
2)

∑N
i=1

∂wn i (x)
∂xq

xi =
∑N

i=1
∂wq i (x)

∂xn
xi ∀x ∈ X .

WhenW isx-invariant (i.e., f(·) is linear) and symmetric, both
of these conditions are satisfied. This latter case was exploited
for RED in [32]. The case of non-linear W (·) is more compli-
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TABLE I
AVERAGE JACOBIAN-SYMMETRY ERROR ON 16× 16 IMAGES

TABLE II
AVERAGE GRADIENT ERROR ON 16× 16 IMAGES

cated. AlthoughW (·) can be symmetrized (see [33], [34]), it is
not clear whether the second condition above will be satisfied.

E. Jacobian Symmetry Experiments

For denoisers that do not admit a tractable analysis, we can
still evaluate the Jacobian of f(·) at x numerically via

fi(x+ ϵen )− fi(x− ϵen )
2ϵ

!
[
Ĵf(x)

]
i,n

, (34)

where en denotes the nth column of IN and ϵ > 0 is small (ϵ =
1× 10−3 in our experiments). For the purpose of quantifying
JS, we define the normalized error metric

eJf (x) !
∥∥Ĵf(x)− [Ĵf(x)]⊤

∥∥2
F

∥Ĵf(x)∥2F
, (35)

which should be nearly zero for a symmetric Jacobian.
Table I shows1 the average value of eJf (x) for 17 different

image patches2 of size 16× 16, using denoisers that assumed a
noise variance of 252 . The denoisers tested were the TDT from
(30) with the 2D Haar wavelet transform and soft-thresholding,
the median filter (MF) [24] with a 3× 3 window, non-local
means (NLM) [6], BM3D [7], TNRD [4], and DnCNN [5].
Table I shows that the Jacobians of all but the TDT denoiser are
far from symmetric.
Jacobian symmetry is of secondary interest; what we really

care about is the accuracy of the RED gradient expressions (13)
and (22). To assess gradient accuracy, we numerically evaluated
the gradient of ρred(·) at x using

ρred(x+ ϵen )− ρred(x− ϵen )
2ϵ

!
[
∇̂ρred(x)

]
n

(36)

and compared the result to the analytical expressions (13) and
(22). Table II reports the normalized gradient error

e∇f (x) ! ∥∇ρred(x)− ∇̂ρred(x)∥2

∥∇̂ρred(x)∥2
(37)

for the same ϵ, images, and denoisers used in Table I. The
results in Table II show that, for all tested denoisers, the numer-
ical gradient ∇̂ρred(·) closely matches the analytical expression
for ∇ρred(·) from (22), but not that from (13). The mismatch

1Matlab code for the experiments is available at http://www2.ece.ohio-
state.edu/∼schniter/RED/index.html.

2We used the center 16 × 16 patches of the standard Barbara, Bike,
Boats, Butterfly, Cameraman, Flower, Girl, Hat, House, Leaves, Lena, Parrots,
Parthenon, Peppers, Plants, Raccoon, and Starfish test images.

TABLE III
AVERAGE LOCAL-HOMOGENEITY ERROR ON 16× 16 IMAGES

between ∇̂ρred(·) and ∇ρred(·) from (13) is partly due to in-
sufficient JS and partly due to insufficient LH, as we establish
below.

F. Local Homogeneity Experiments

Recall that the TDT denoiser has a symmetric Jacobian, both
theoretically and empirically. Yet Table II reports a disagreement
between the ∇ρred(·) expressions (13) and (22) for TDT. We
now show that this disagreement is due to insufficient local
homogeneity (LH).
To do this, we introduce yet another REDgradient expression,

∇ρred(x)
LH= x− 1

2
[Jf(x)]x− 1

2
[Jf(x)]⊤x, (38)

which results from combining (22) with Lemma 1. Here, LH=
indicates that (38) holds under LH. In contrast, the gradient
expression (13) holds under both LH and Jacobian symmetry,
while the gradient expression (22) holds in general (i.e., even in
the absence of LH and/or Jacobian symmetry). We also intro-
duce two normalized error metrics for LH,

eLH,1f (x) !
∥∥f((1 + ϵ)x)− (1 + ϵ)f(x)

∥∥2

∥(1 + ϵ)f(x)∥2 (39)

eLH,2f (x) !
∥∥[Ĵf(x)]x− f(x)

∥∥2

∥f(x)∥2 . (40)

which should both be nearly zero for LH f(·). Note that eLH,1f
quantifies LH according to definition (12) and closely matches
the numerical analysis of LH in [1]. Meanwhile, eLH,2f quantifies
LH according to Lemma 1 and to how LH is actually used in
the gradient expressions (13) and (38).
The middle row of Table II reports the average gradient error

of the gradient expression (38), and Table III reports average
LH error for the metrics eLH,1f and eLH,2f . There we see that the

average eLH,1f error is small for all denoisers, consistent with the

experiments in [1]. But the average eLH,2f error is several orders
of magnitude larger (for all but the MF denoiser). We also note
that the value of eLH,2f for BM3D is several orders of magnitude
higher than for the other denoisers. This result is consistent
with Fig. 2, which shows that the cost function associated with
BM3D is much less smooth than that of the other denoisers.
As discussed below, these seemingly small imperfections in LH
have a significant effect on the RED gradient expressions (13)
and (38).
Starting with the TDT denoiser, Table II shows that the gra-

dient error on (38) is large, which can only be caused by insuf-
ficient LH. The insufficient LH is confirmed in Table III, which
shows that the value of eLH,2f (x) for TDT is non-negligible,
especially in comparison to the value for MF.
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Continuing with the MF denoiser, Table I indicates that its
Jacobian is far from symmetric, while Table III indicates that
it is LH. The gradient results in Table II are consistent with
these behaviors: the ∇ρred(x) expression (38) is accurate on
account of LH being satisfied, but the∇ρred(x) expression (13)
is inaccurate on account of a lack of JS.
The results for the remaining denoisers NLM,BM3D, TNRD,

and BM3D show a common trend: they have non-trivial levels
of both JS error (see Table I) and LH error (see Table III). As a
result, the gradient expressions (13) and (38) are both inaccurate
(see Table II).
In conclusion, the experiments in this section show that the

RED gradient expressions (13) and (38) are very sensitive to
small imperfections in LH. Although the experiments in [1]
suggested that many popular image denoisers are approximately
LH, our experiments suggest that their levels of LH are insuffi-
cient to maintain the accuracy of the RED gradient expressions
(13) and (38).

G. Hessian and Convexity

From (26), the (n, j)th element of the Hessian of ρred(x)
equals

∂2ρred(x)
∂xn∂xj

=
∂

∂xj

(
xn − 1

2
fn (x)−

1
2

N∑

i=1

xi
∂fi(x)
∂xn

)
(41)

= δn−j −
1
2

∂fn (x)
∂xj

− 1
2

∂fj (x)
∂xn

− 1
2
xj

∂2fj (x)
∂xn∂xj

− 1
2

∑

i ̸=j

xi
∂2fi(x)
∂xn∂xj

(42)

= δn−j −
1
2

∂fn (x)
∂xj

− 1
2

∂fj (x)
∂xn

− 1
2

N∑

i=1

xi
∂2fi(x)
∂xn∂xj

. (43)

where δk = 1 if k = 0 and otherwise δk = 0. Thus, the Hessian
of ρred(·) at x equals

Hρred(x) = I − 1
2
Jf(x)− 1

2
[Jf(x)]⊤ − 1

2

N∑

i=1

xiHfi(x).

(44)

This expression can be contrasted with the Hessian expression
from [1, (60)], which reads

I − Jf(x). (45)

Interestingly, (44) differs from (45) even when the denoiser
has a symmetric Jacobian Jf(x). One implication is that, even
if eigenvalues of Jf(x) are limited to the interval [0, 1], the
Hessian Hρred(x) may not be positive semi-definite due to
the last term in (44), with possibly negative implications on
the convexity of ρred(·). That said, the RED algorithms do not
actually minimize the variational objective ℓ(x;y) + λρred(x)
for common denoisers f(·) (as established in Section III-H), and
so the convexity of ρred(·)may not be important in practice. We
investigate the convexity of ρred(·) numerically in Section III-I.

Fig. 1. RED cost Cred(xk ) and fixed-point error ∥A⊤(Axk − y)/σ2 +
λ(xk − f(xk ))∥2 versus iteration k for {xk }Kk=1 produced by the RED-
SD algorithm from [1]. Although the fixed-point condition is asymptotically
satisfied, the RED cost does not decrease with k.

H. Example RED-SD Trajectory

We now provide an example of how the RED algorithms
from [1] do not necessarily minimize the variational objective
ℓ(x;y) + λρred(x).

For a trajectory {xk}Kk=1 produced by the steepest-descent
(SD) RED algorithm from [1], Fig. 1 plots, versus iteration k,
the RED Cost Cred(xk ) from (14) and the error on the fixed-
point condition (15), i.e., ∥g(xk )∥2 with

g(x) ! 1
σ2 A

⊤(Ax− y) + λ
(
x− f(x)

)
. (46)

For this experiment, we used the 3× 3median-filter forf(·), the
Starfish image, and noisy measurements y = x+N (0,σ2I)
with σ2 = 20 (i.e.,A = I in (14)).
Fig. 1 shows that, although the RED-SD algorithm asymp-

totically satisfies the fixed-point condition (15), the RED cost
function Cred(xk ) does not decrease with k, as would be ex-
pected if the RED algorithms truly minimized the RED cost
Cred(·). This behavior implies that any optimization algorithm
that monitors the objective value Cred(xk ) for, say, backtrack-
ing line-search (e.g., the FASTA algorithm [35]), is difficult to
apply in the context of RED.

I. Visualization of RED Cost and RED-Algorithm Gradient

We now show visualizations of the RED cost Cred(x) from
(14) and the RED algorithm’s gradient field g(x) from (46),
for various image denoisers. For this experiment, we used the
Starfish image, noisy measurements y = x+N (0,σ2I) with
σ2 = 100 (i.e., A = I in (14) and (46)), and λ optimized over
a grid (of 20 values logarithmically spaced between 0.0001 and
1) for each denoiser, so that the PSNR of the RED fixed-point
x̂ is maximized.
Fig. 2 plots the RED cost Cred(x) and the RED algorithm’s

gradient field g(x) for the TDT, MF, NLM, BM3D, TNRD,
and DnCNN denoisers. To visualize these quantities in two
dimensions, we plotted values of x centered at the RED fixed-
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Fig. 2. Contours show RED cost Cred(xα ,β ) from (14) and arrows show
RED-algorithm gradient field g(xα ,β ) from (46) versus (α, β), wherexα ,β =
x̂+ αe1 + βe2 with randomly chosen e1 and e2 . The subplots show that the
minimizer of Cred(xα ,β ) is not the fixed-point x̂, and that Cred(·) may be
non-smooth and/or non-convex.

point x̂ and varying along two randomly chosen directions. The
figure shows that the minimizer of Cred(x) does not coincide
with the fixed-point x̂, and that the RED cost Cred(·) is not
always smooth or convex.

IV. SCORE-MATCHING BY DENOISING

As discussed in Section II-D, the RED algorithms proposed
in [1] are explicitly based on gradient rule

∇ρ(x) = x− f(x). (47)

This rule appears to be useful, since these algorithms work
very well in practice. But Section III established that ρred(·)
from (11) does not usually satisfy (47). We are thus motived
to seek an alternative explanation for the RED algorithms. In
this section, we explain them through a framework that we call
score-matching by denoising (SMD).

A. Tweedie Regularization

As a precursor to the SMD framework, we first propose a
technique based on what we will call Tweedie regularization.
Recall the measurement model (10) used to define the “de-

noising” problem, repeated in (48) for convenience:

r = x0 + e, e ∼ N (0, νI). (48)

To avoid confusion, we will refer to r as “pseudo-
measurements” and y as “measurements.” From (48), the like-
lihood of x0 is p(r|x0 ; ν) = N (r;x0 , νI).
Now, suppose that we model the true image x0 as a realiza-

tion of a random vector x with prior pdf p̂x. We write “p̂x” to
emphasize that the model distribution may differ from the true
distribution px (i.e., the distribution from which the image x is
actually drawn). Under this prior model, the MMSE denoiser of
x from r is

Ep̂x{x|r} ! f̂mmse,ν (r), (49)

and the likelihood of observing r is

p̂r(r; ν) !
∫

RN

p(r|x; ν)p̂x(x) dx (50)

=
∫

RN

N (r;x, νI)p̂x(x) dx. (51)

We will now define the Tweedie regularizer (TR) as

ρTR(r; ν) ! −ν ln p̂r(r; ν). (52)

As we now show, ρTR(·) has the desired property (47).
Lemma 4 (Tweedie): For ρTR(r; ν) defined in (52),

∇ρTR(r; ν) = r − f̂mmse,ν (r), (53)

where f̂mmse,ν (·) is the MMSE denoiser from (49).
Proof: Equation (53) is a direct consequence of a classical

result known as Tweedie’s formula [36], [37]. A short proof,
from first principles, is now given for completeness.

∂

∂rn
ρTR(r; ν) = −ν

∂

∂rn
ln

∫

RN

p̂x(x)N (r;x, νI) dx (54)

= −
ν

∫
RN p̂x(x) ∂

∂ rn
N (r;x, νI) dx

∫
RN p̂x(x)N (r;x, νI) dx

(55)

=
∫
RN p̂x(x)N (r;x, νI)(rn − xn ) dx∫

RN p̂x(x)N (r;x, νI) dx
(56)

= rn −
∫

RN

xn
p̂x(x)N (r;x, νI)∫

RN p̂x(x′)N (r;x′, νI) dx′ dx (57)

= rn −
∫

RN

xn p̂x|r(x|r; ν) dx (58)

= rn − [f̂mmse,ν (r)]n , (59)

where (56) used ∂
∂ rn

N (r;x, νI) = N (r;x, νI)(xn − rn )/ν.
Stacking (59) for n = 1, . . . , N in a vector yields (53). "

Thus, if the TR regularizer ρTR(·; ν) is used in the optimiza-
tion problem (14), then the solution x̂ must satisfy the fixed-
point condition (15) associated with the RED algorithms from
[1], albeit with an MMSE-type denoiser. This restriction will be
removed using the SMD framework in Section IV-C.
It is interesting to note that the gradient property (53) holds

even for non-homogeneous f̂mmse,ν (·). This generality is im-
portant in applications under which f̂mmse,ν (·) is known to lack
LH. For example, with a binary image x ∈ {0, 1}N modeled by
p̂x(x) =

∏N
n=1 0.5(δ(xn ) + δ(xn − 1)), the MMSE denoiser
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takes the form [f̂mmse,ν (x)]n = 0.5 + 0.5 tanh(xn/ν), which
is not LH.

B. Tweedie Regularization as Kernel Density Estimation

We now show that TR arises naturally in the data-driven,
non-parametric context through kernel-density estimation
(KDE) [8].
Recall that, in most imaging applications, the true prior px

is unknown, as is the true MMSE denoiser fmmse,ν (·). There
are several ways to proceed. One way is to design “by hand”
an approximate prior p̂x that leads to a computationally efficient
denoiser f̂mmse,ν (·). But, because this denoiser is not MMSE
for x ∼ px, the performance of the resulting estimates x̂ will
suffer relative to fmmse,ν .
Another way to proceed is to approximate the prior using a

large corpus of training data {xt}Tt=1 . To this end, an approxi-
mate prior could be formed using the empirical estimate

p̂x(x) =
1
T

T∑

t=1

δ(x− xt), (60)

but a more accurate match to the true prior px can be obtained
using

p̃x(x; ν) =
1
T

T∑

t=1

N (x;xt , νI) (61)

with appropriately chosen ν > 0, a technique known as kernel
density estimation (KDE) or Parzen windowing [8]. Note that
if p̃x is used as a surrogate for px, then the MAP optimization
problem becomes

x̂ = argmin
r

1
2σ2 ∥Ar − y∥2 − ln p̃x(r; ν) (62)

= argmin
r

1
2σ2 ∥Ar − y∥2 + λρTR(r; ν) for λ =

1
ν
, (63)

with ρTR(·; ν) from (50)–(52) constructed using p̂x from (60).
In summary, TR arises naturally in the data-driven approach
to image recovery when KDE is used to smooth the empirical
prior.

C. Score-Matching by Denoising

A limitation of the above TR framework is that it results
in denoisers f̂mmse,ν with symmetric Jacobians. (Recall the
discussion of MMSE denoisers in Section III-D.) To justify
the use of RED algorithms with non-symmetric Jacobians, we
introduce the score-matching by denoising (SMD) framework
in this section.
Let us continuewith theKDE-basedMAPestimation problem

(62). Note that x̂ from (62) zeros the gradient of the MAP
optimization objective and thus obeys the fixed-point equation

1
σ2 A

⊤(Ax̂− y)−∇ ln p̃x(x̂; ν) = 0. (64)

In principle, x̂ in (64) could be found using gradient descent or
similar techniques. However, computation of the gradient

∇ ln p̃x(r; ν) =
∇p̃x(r; ν)
p̃x(r; ν)

=
∑T

t=1(xt − r)N (r;xt , νI)
ν

∑T
t=1 N (r;xt , νI)

(65)

is too expensive for the values of T typically needed to generate
a good image prior p̃x.
A tractable alternative is suggested by the fact that

∇ ln p̃x(r; ν) =
f̂mmse,ν (r)− r

ν
(66)

for f̂mmse,ν (r) =
∑T

t=1 xtN (r;xt , νI)∑T
t=1 N (r;xt , νI)

, (67)

where f̂mmse,ν (r) is the MMSE estimator of x ∼ p̂x from
r = x+N (0, νI). In particular, if we can construct a good
approximation to f̂mmse,ν (·) using a denoiser fθ(·) in a com-
putationally efficient function class F ! {fθ : θ ∈ Θ}, then
we can efficiently approximate the MAP problem (62).
This approach can be formalized using the framework of

score matching [38], which aims to approximate the “score”
(i.e., the gradient of the log-prior) rather than the prior itself.
For example, suppose that we want to want to approximate the
score ∇ ln p̃x(·; ν). For this, Hyvärinen [38] suggested to first
find the best mean-square fit among a set of computationally
efficient functions ψ(·;θ), i.e., find

θ̂ = argmin
θ

Ep̃x

{
∥ψ(x;θ)−∇ ln p̃x(x; ν)∥2

}
, (68)

and then to approximate the score∇ ln p̃x(·; ν) byψ(·; θ̂). Later,
in the context of denoising autoencoders, Vincent [39] showed
that if one chooses

ψ(x;θ) =
fθ(x)− x

ν
(69)

for some function fθ(·) ∈ F , then θ̂ from (68) can be equiva-
lently written as

θ̂ = argmin
θ

Ep̂x

{∥∥fθ

(
x+N (0, νI)

)
− x

∥∥2
}
. (70)

In this case, f θ̂(·) is the MSE-optimal denoiser, averaged over
p̂x and constrained to the function class F .
Note that the denoiser approximation error can be directly

connected to the score-matching error as follows. For any de-
noiser fθ(·) and any input x,

∥fθ(x)− f̂mmse,ν (x)∥2

= ν2
∥∥∥∥
fθ(x)− x

ν
−∇ ln p̃x(x; ν)

∥∥∥∥
2

(71)

= ν2 ∥ψ(x;θ)−∇ ln p̃x(x; ν)∥2 (72)

where (71) follows from (66) and (72) follows from (69). Thus,
matching the score is directly related to matching the MMSE
denoiser.
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Plugging the score approximation (69) into the fixed-point
condition (64), we get

1
σ2 A

⊤(Ax̂− y) + λ
(
x̂− fθ(x̂)

)
= 0 for λ =

1
ν
, (73)

which matches the fixed-point condition (15) of the RED algo-
rithms from [1]. Here we emphasize that F may be constructed
in such a way that fθ(·) has a non-symmetric Jacobian, which
is the case for many state-of-the-art denoisers. Also, θ does not
need to be optimized for (73) to hold. Finally, p̂x need not be the
empirical prior (60); it can be any chosen prior [39]. Thus, the
score-matching-by-denoising (SMD) framework offers an ex-
planation of the RED algorithms from [1] that holds for generic
denoisers fθ(·), whether or not they have symmetric Jacobians,
are locally homogeneous, or MMSE. Furthermore, it suggests
a rationale for choosing the regularization weight λ and, in the
context of KDE, the denoiser variance ν.

D. Relation to Existing Work

Tweedie’s formula (53) has connections to Stein’s Unbiased
Risk Estimation (SURE) [40], as discussed in, e.g., [41, Thm. 2]
and [42, Eq. (2.4)]. SURE has been used for image denoising
in, e.g., [43]. Tweedie’s formula was also used in [44] to inter-
pret autoencoding-based image priors. In our work, Tweedie’s
forumula is used to provide an interpretation for the RED algo-
rithms through the construction of the explicit regularizer (52)
and the approximation of the resulting fixed-point equation (64)
via score matching.
Recently, Alain and Bengio [45] studied the contractive auto-

encoders, a type of autoencoder that minimizes squared recon-
struction error plus a penalty that tries to make the autoencoder
as simple as possible. While previous works such as [46] con-
jectured that such auto-encoders minimize an energy function,
Alain and Bengio showed that they actually minimize the norm
of a score (i.e., match a score to zero). Furthermore, they showed
that, when the coder and decoder do not share the same weights,
it is not possible to define a valid energy function because the
Jacobian of the reconstruction function is not symmetric. The
results in [45] parallel those in this paper, except that they focus
on auto-encoders while we focus on variational image recovery.
Another small difference is that [45] uses the small-ν approxi-
mation

f̂mmse,ν (x) = x+ ν∇ ln p̂x(x) + o(ν), (74)

whereas we use the exact (Tweedie’s) relationship (53), i.e.,

f̂mmse,ν (x) = x+ ν∇ ln p̃x(x), (75)

where is p̃x the “Gaussian blurred” version of p̂x from (51).

V. FAST RED ALGORITHMS

In [1], Romano et al. proposed several ways to solve the
fixed-point equation (15). Throughout our paper, we have been
referring to these methods as “RED algorithms.” In this section,
we provide new interpretations of the RED-ADMM and RED-
FP algorithms from [1] and we propose new RED algorithms
based on accelerated proximal gradient methods.

Algorithm 2: RED-ADMM with I Inner Iterations [1].
Require: ℓ(·;y),f(·),β, λ,v0 ,u0 ,K, and I
1: for k = 1, 2, . . . ,K do
2: xk = argminx{ℓ(x;y) + β

2 ∥x− vk−1 + uk−1∥2}
3: z0 = vk−1
4: for i = 1, 2, . . . , I do
5: zi = λ

λ+β f(zi−1) + β
λ+β (xk + uk−1)

6: end for
7: vk = zI

8: uk = uk−1 + xk − vk

9: end for
10: Return xK

A. RED-ADMM

The ADMM approach was summarized in Algorithm 1 for
an arbitrary regularizer ρ(·). To apply ADMM to RED, line 3 of
Algorithm 1, known as the “proximal update,” must be special-
ized to the case where ρ(·) obeys (13) for some denoiser f(·).
To do this, Romano et al. [1] proposed the following. Because
ρ(·) is differentiable, the proximal solution vk must obey the
fixed-point relationship

0 = λ∇ρ(vk ) + β(vk − xk − uk−1) (76)

= λ
(
vk − f(vk )

)
+ β(vk − xk − uk−1) (77)

⇔ vk =
λ

λ + β
f(vk ) +

β

λ + β
(xk + uk−1). (78)

An approximation to vk can thus be obtained by iterating

zi =
λ

λ + β
f(zi−1) +

β

λ + β
(xk + uk−1) (79)

over i = 1, . . . , I with sufficiently large I , initialized at z0 =
vk−1 . This procedure is detailed in lines 3-6 of Algorithm 2.
The overall algorithm is known as RED-ADMM.

B. Inexact RED-ADMM

Algorithm 2 gives a faithful implementation of ADMMwhen
the number of inner iterations, I , is large. But using many inner
iterations may be impractical when the denoiser is computation-
ally expensive, as in the case of BM3D or TNRD. Furthermore,
the use of many inner iterations may not be necessary.
For example, Fig. 3 plots PSNR trajectories versus runtime for

TNRD-based RED-ADMM with I = 1, 2, 3, 4 inner iterations.
For this experiment, we used the deblurring task described in
Section V-G, but similar behaviors can be observed in other
applications of RED. Fig. 3 suggests that I = 1 inner iterations
gives the fastest convergence. Note that [1] also used I = 1
when implementing RED-ADMM.
With I = 1 inner iterations, RED-ADMM simplifies down

to the 3-step iteration summarized in Algorithm 3. Since
Algorithm 3 looks quite different than standard ADMM (recall
Algorithm 1), one might wonder whether there exists another
interpretation of Algorithm 3. Noting that line 3 can be rewritten
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Fig. 3. PSNR versus runtime for RED-ADMM with TNRD denoising and I
inner iterations.

Algorithm 3: RED-ADMM with I = 1.
Require: ℓ(·;y),f(·),β, λ,v0 ,u0 , and K
1: for k = 1, 2, . . . ,K do
2: xk = argminx{ℓ(x;y) + β

2 ∥x− vk−1 + uk−1∥2}
3: vk = λ

λ+β f(vk−1) + β
λ+β (xk + uk−1)

4: uk = uk−1 + xk − vk

5: end for
6: Return xK

as

vk = vk−1 −
1

λ + β

[
λ∇ρ(vk−1) + β(vk−1 − xk − uk−1)

]

(80)

= vk−1 −
1

λ + β
∇

[
λρ(v) +

β

2
∥v − xk − uk−1∥2

]

v=vk −1

(81)

we see that the I = 1 version of inexact RED-ADMM replaces
the proximal step with a gradient-descent step under stepsize
1/(λ + β). Thus the algorithm is reminiscent of the proximal
gradient (PG) algorithm [47], [48]. We will discuss PG further
in the sequel.

C. Majorization-Minimization and Proximal-Gradient RED

We now propose a proximal-gradient approach inspired by
majorization minimization (MM) [49]. As proposed in [50], we
use a quadratic upper-bound,

ρ(x;xk ) ! ρ(xk ) + [∇ρ(xk )]⊤
(
x− xk

)
+

L

2
∥x− xk∥22 ,

(82)

on the regularizer ρ(x), in place of ρ(x) itself, at the kth al-
gorithm iteration. Note that if ρ(·) is convex and ∇ρ(·) is Lρ -
Lipschitz, then ρ(x;xk ) “majorizes” ρ(x) at xk when L ≥ Lρ ,

Algorithm 4: RED-PG Algorithm.
Require: ℓ(·;y),f(·), λ,v0 , L > 0, and K
1: for k = 1, 2, . . . ,K do
2: xk = argminx{ℓ(x;y) + λL

2 ∥x− vk−1∥2}
3: vk = 1

L f(xk )− 1−L
L xk

4: end for
5: Return xK

i.e.,

ρ(x;xk ) ≥ ρ(x) ∀x ∈ X (83)

ρ(xk ;xk ) = ρ(xk ). (84)

The majorized objective can then be minimized using the proxi-
mal gradient (PG) algorithm [47], [48] (also known as forward-
backward splitting) as follows. From (82), note that the ma-
jorized objective can be written as

ℓ(x;y) + λρ(x;xk )

= ℓ(x;y) +
λL

2

∥∥∥∥x−
(
xk − 1

L
∇ρ(xk )

)∥∥∥∥
2

+ const

(85)

= ℓ(x;y) +
λL

2

∥∥∥∥x−
(
xk − 1

L

(
xk − f(xk )

))

︸ ︷︷ ︸
! vk

∥∥∥∥
2

+ const,

(86)

where (86) follows from assuming (47), which is the basis for
all RED algorithms. The RED-PG algorithm then alternately
updates vk as per the gradient step in (86) and updates xk+1
according to the proximal step

xk+1 = argmin
x

{
ℓ(x;y) +

λL

2
∥x− vk∥2

}
, (87)

as summarized in Algorithm 4. Convergence is guaranteed if
L ≥ Lρ ; see [47], [48] for details.
We now show that RED-PG with L = 1 is identical to the

“fixed point” (FP) RED algorithm proposed in [1]. First, notice
from Algorithm 4 that vk = f(xk ) when L = 1, in which case

xk = argmin
x

{
ℓ(x;y) +

λ

2
∥x− f(xk−1)∥2

}
. (88)

For the quadratic loss ℓ(x;y) = 1
2σ 2 ∥Ax− y∥2 , (88) becomes

xk = argmin
x

{
1

2σ2 ∥Ax− y∥2 + λ

2
∥x− f(xk−1)∥2

}

(89)

=
(

1
σ2 A

⊤A+ λI

)−1 (
1
σ2 A

⊤y + λf(xk−1)
)
, (90)

which is exactly the RED-FP update [1, (37)]. Thus, (88) gen-
eralizes [1, (37)] to possibly non-quadratic3 loss ℓ(·;y), and

3The extension to non-quadratic loss is important for applications like phase-
retrieval, where RED has been successfully applied [51].
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Algorithm 5: RED-DPG Algorithm.
Require: ℓ(·;y),f(·), λ,v0 , L0 > 0, L∞ > 0, and K
1: for k = 1, 2, . . . ,K do
2: xk = argminx{ℓ(x;y) + λLk −1

2 ∥x− vk−1∥2}
3: Lk =

( 1
L∞

+ ( 1
L0

− 1
L∞

) 1√
k+1

)−1

4: vk = 1
Lk

f(xk )− 1−Lk
Lk

xk

5: end for
6: Return xK

RED-PG generalizes RED-FP to arbitrary L > 0. More impor-
tantly, the PG framework facilitates algorithmic acceleration, as
we describe below.
The RED-PG and inexact RED-ADMM-I=1 algorithms

show interesting similarities: both alternate a proximal update
on the loss with a gradient update on the regularization, where
the latter term manifests as a convex combination between the
denoiser output and another term. The difference is that RED-
ADMM-I=1 includes an extra state variable, uk . The experi-
ments in Section V-G suggest that this extra state variable is not
necessarily advantageous.

D. Dynamic RED-PG

Recalling from (86) that 1/L acts as a stepsize in the PG
gradient step, it may be possible to speed up PG by decreasing
L, althoughmakingL too small can prevent convergence. If ρ(·)
was known, then a line search could be used, at each iteration k,
to find the smallest value of L that guarantees the majorization
of ρ(x) by ρ(x;xk ) [47]. However, with a non-LH or non-JS
denoiser, it is not possible to evaluate ρ(·), preventing such a
line search.
We thus propose to vary Lk (i.e., the value of L at iteration k)

according to a fixed schedule. In particular, we propose to select
L0 and L∞, and smoothly interpolate between them at interme-
diate iterations k. One interpolation scheme that works well in
practice is summarized in line 3 of Algorithm 5. We refer to this
approach as “dynamic PG” (DPG). The numerical experiments
in Section V-G suggest that, with appropriate selection of L0
and L∞, RED-DPG can be significantly faster than RED-FP.

E. Accelerated RED-PG

Another well-known approach to speeding up PG is to apply
momentum to the vk term in Algorithm 4 [47], often known as
“acceleration.” An accelerated PG (APG) approach to RED is
detailed in Algorithm 6. There, the momentum in line 5 takes
the same form as in FISTA [52]. The numerical experiments in
Section V-G suggest that RED-APG is the fastest among the
RED algorithms discussed above.
By leveraging the principle of vector extrapolation (VE) [53],

a different approach to accelerating RED algorithms was re-
cently proposed in [54]. Algorithmically, the approach in [54] is
much more complicated than the PG-DPG and PG-APG meth-
ods proposed above. In fact, we have been unable to arrive at
an implementation of [54] that reproduces the results in that
paper, and the authors have not been willing to share their

Algorithm 6: RED-APG Algorithm.
Require: ℓ(·;y),f(·), λ,v0 , L > 0, and K
1: t0 = 1
2: for k = 1, 2, . . . ,K do
3: xk = argminx{ℓ(x;y) + λL

2 ∥x− vk−1∥2}

4: tk = 1+
√

1+4t2k −1
2

5: zk = xk + tk −1−1
tk

(xk − xk−1)
6: vk = 1

L f(zk )− 1−L
L zk

7: end for
8: Return xK

implementation with us. Thus, we cannot comment further on
the difference in performance between our PG-DPG and PG-
APG schemes and the one in [54].

F. Convergence of RED-PG

Recalling Theorem 1, the RED algorithms do notminimize an
explicit cost function but rather seek fixed points of (15). There-
fore, it is important to know whether they actually converge to
any one fixed point. Below, we use the theory of non-expansive
and α-averaged operators to establish the convergence of RED-
PG to a fixed point under certain conditions.
First, an operatorB(·) is said to be non-expansive if its Lips-

chitz constant is at most 1 [55]. Next, for α ∈ (0, 1), an operator
P (·) is said to be α-averaged if

P (x) = αB(x) + (1− α)x (91)

for some non-expansiveB(·). Furthermore, ifP 1 andP 2 areα1
and α2-averaged, respectively, then [55, Prop. 4.32] establishes
that the composition P 2 ◦ P 1 is α-averaged with

α =
2

1 + 1
max{α1 ,α2 }

. (92)

Recalling RED-PG from Algorithm 4, let us define an oper-
ator called T (·) that summarizes one algorithm iteration:

T (x) ! argmin
z

{
ℓ(z;y) + λL

2

∥∥z −
( 1
L f(x)−

1−L
L x

)∥∥2
}

(93)

= proxℓ/(λL)
( 1
L (f(x)− (1− L)x)

)
(94)

Lemma 5: If ℓ(·) is proper, convex, and continuous; f(·) is
non-expansive; and L > 1, then T (·) from (94) is α-averaged
with α = max{ 2

1+L ,
2
3 }.

Proof: First, because ℓ(·) is proper, convex, and continuous,
we know that the proximal operator proxℓ/(λL)(·) is α-averaged
with α = 1/2 [55]. Then, by definition, 1

L f(z)−
1−L
L z is α-

averaged with α = 1/L. From (94), T (·) is the composition of
these two α-averaged operators, and so from (92) we have that
T (·) is α-averaged with α = max{ 2

1+L ,
2
3 }. "

With Lemma 5, we can prove the convergence of RED-PG.
Theorem 2: If ℓ(·) is proper, convex, and continuous; f(·) is

non-expansive; L > 1; and T (·) from (94) has at least one fixed
point, then RED-PG converges.
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Proof: From (94), we have that Algorithm 4 is equivalent to

xk+1 = T (xk ) (95)

= αB(xk ) + (1− α)xk (96)

whereB(·) is an implicit non-expansive operator that must exist
under the definition of α-averaged operators from (91). The
iteration (96) can be recognized as a Mann iteration [30], since
α ∈ (0, 1). Thus, from [55, Thm. 5.14], {xk} is a convergent
sequence, in that there exists a fixed point x⋆ ∈ RN such that
limk→∞ ∥xk − x⋆∥ = 0. "

We note that similar Mann-based techniques were used in [9],
[56] to prove the convergence of PnP-based algorithms. Also,
we conjecture that similar techniques may be used to prove the
convergence of other RED algorithms, but we leave the details to
future work. Experiments in Section V-G numerically study the
convergence behavior of several RED algorithms with different
image denoisers f(·).

G. Algorithm Comparison: Image Deblurring

We now compare the performance of the RED algorithms
discussed above (i.e., inexact ADMM, FP, DPG, APG, and PG)
on the image deblurring problem considered in [1, Sec. 6.1].
For these experiments, the measurements y were constructed
using a 9× 9 uniform blur kernel forA and using AWGN with
variance σ2 = 2. As stated earlier, the image x is normalized to
have pixel intensities in the range [0, 255].
For the first experiment, we used the TNRD denoiser. The

various algorithmic parameters were chosen based on the rec-
ommendations in [1]: the regularization weight was λ = 0.02,
the ADMM penalty parameter was β = 0.001, and the noise
variance assumed by the denoiser was ν = 3.252 . The proxi-
mal step on ℓ(x;y), given in (90), was implemented with an
FFT. For RED-DPG we used4 L0 = 0.2 and L∞ = 2, for RED-
APG we used L = 1, and for RED-PG we used L = 1.01 since
Theorem 2 motivates L > 1.
Fig. 4 shows

PSNRk ! −10 log10

(
1

N2562
∥x− x̂k∥2

)

versus iteration k for the starfish test image. In the figure, the
proposed RED-DPG and RED-APG algorithms appear signif-
icantly faster than the RED-FP and RED-ADMM-I=1 al-
gorithms proposed in [1]. For example, RED-APG reaches
PSNR= 30 in 15 iterations whereas RED-FP and inexact RED-
ADMM-I = 1 take about 50 iterations.
Fig. 5 shows the fixed-point error

1
N

∥∥∥∥
1
σ2 A

H (Axk − y) + λ(xk − f(xk ))
∥∥∥∥
2

verus iteration k. All but the RED-APG and RED-ADMM algo-
rithms appear to converge to the solution set of the fixed-point
equation (15). The RED-APG and RED-ADMM algorithms ap-
pear to approximately satisfy the fixed-point equation (15), but

4Matlab code for these experiments is available at http://www2.ece.ohio-
state.edu/∼schniter/RED/index.html.

Fig. 4. PSNR versus iteration for RED algorithms with TNRD denoising
when deblurring the starfish.

Fig. 5. Fixed-point error versus iteration for RED algorithms with TNRD
denoising when deblurring the starfish.

not exactly satisfy (15), since the fixed-point error does not
decay to zero.
Fig. 6 shows the update distance 1

N ∥xk − xk−1∥2 vs. it-
eration k for the algorithms under test. For most algorithms,
the update distance appears to be converging to zero, but for
RED-APG and RED-ADMM it does not. This suggests that the
RED-APG and RED-ADMM algorithms are converging to a
limit cycle rather than a unique limit point.
Next, we replace the TNRD denoiser with the TDT de-

noiser from (30) and repeat the previous experiments. For the
TDT denoiser, we used a Haar-wavelet based orthogonal dis-
crete wavelet transform (DWT)W , with the maximum number
of decomposition levels, and a soft-thresholding function g(·)
with threshold value 0.001. Unlike the TNRD denoiser, this
TDT denoiser is the proximal operator associated with a con-
vex cost function, and so we know that it is 1

2 -averaged and
non-expansive.
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Fig. 6. Update distance versus iteration for RED algorithms with TNRD
denoising when deblurring the starfish.

Fig. 7. PSNR versus iteration for RED algorithms with TDT denoising when
deblurring the starfish.

Fig. 7 shows PSNR versus iteration with TDT denoising.
Interestingly, the final PSNR values appear to be nearly identical
among all algorithms under test, but more than 1 dB worse
than the values around iteration 20. Fig. 8 shows the fixed-
point error vs. iteration for this experiment. There, the errors of
most algorithms converge to a value near 10−7 , but then remain
at that value. Noting that RED-PG satisfies the conditions of
Theorem 2 (i.e., convex loss, non-expansive denoiser,L > 1), it
should converge to a fixed-point of (15). Therefore, we attribute
the fixed-point error saturation in Fig. 8 to issues with numerical
precision. Fig. 9 shows the normalized distance versus iteration
with TDT denoising. There, the distance decreases to zero for
all algorithms under test.
We emphasize that the proposed RED-DPG, RED-APG, and

RED-PG algorithms seek to solve exactly the same fixed-point
equation (15) sought by the RED-SD, RED-ADMM, and RED-
FP algorithms proposed in [1]. The excellent quality of the RED
fixed-points was firmly established in [1], both qualitatively and

Fig. 8. Fixed-point error versus iteration for RED algorithms with TDT de-
noising when deblurring the starfish.

Fig. 9. Update distance versus iteration for RED algorithms with TDT de-
noising when deblurring the starfish.

quantitatively, in comparison to existing state-of-the-art meth-
ods like PnP-ADMM [10]. For further details on these com-
parisons, including examples of images recovered by the RED
algorithms, we refer the interested reader to [1].

VI. EQUILIBRIUM VIEW OF RED ALGORITHMS

Like the RED algorithms, PnP-ADMM [10] repeatedly calls
a denoiser f(·) in order to solve an inverse problem. In [9],
Buzzard, Sreehari, and Bouman show that PnP-ADMM finds
a “consensus equilibrium” solution rather than a minimum of
any explicit cost function. By consensus equilibrium, we mean
a solution (x̂, û) to

x̂ = F (x̂+ û) (97a)

x̂ = G(x̂− û) (97b)
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for some functions F,G : RN → RN . For PnP-ADMM, these
functions are [9]

Fpnp(v) = argmin
x

{
ℓ(x;y) +

β

2
∥x− v∥2

}
(98)

Gpnp(v) = f(v). (99)

A. RED Equilibrium Conditions

We now show that the RED algorithms also find consensus
equilibrium solutions, but with G ̸= Gpnp. First, recall ADMM
Algorithm 1with explicit regularization ρ(·). By taking iteration
k → ∞, it becomes clear that the ADMM solutions must satisfy
the equilibrium condition (97) with

Fadmm(v) = argmin
x

{
ℓ(x;y) +

β

2
∥x− v∥2

}
(100)

Gadmm(v) = argmin
x

{
λρ(x) +

β

2
∥x− v∥2

}
, (101)

where we note that Fadmm = Fpnp.
The RED-ADMM algorithm can be considered as a special

case of ADMM Algorithm 1 under which ρ(·) is differentiable
with ∇ρ(x) = x− f(x), for a given denoiser f(·). We can
thus find Gred-admm(·), i.e., the RED-ADMM version of G(·)
satisfying the equilibrium condition (97b), by solving the right
side of (101) under ∇ρ(x) = x− f(x). Similarly, we see that
the RED-ADMM version of F (·) is identical to the ADMM
version of F (·) from (100). Now, the x̂ = Gred-admm(v) that
solves the right side of (101) under differentiable ρ(·) with
∇ρ(x) = x− f(x) must obey

0 = λ∇ρ(x̂) + β(x̂− v) (102)

= λ
(
x̂− f(x̂)

)
+ β(x̂− v), (103)

which we note is a special case of (15). Continuing, we find that

0 = λ
(
x̂− f(x̂)

)
+ β(x̂− v) (104)

⇔ 0 =
λ + β

β
x̂− λ

β
f(x̂)− v (105)

⇔ v =
(

λ + β

β
I − λ

β
f

)
(x̂) (106)

⇔ x̂ =
(

λ + β

β
I − λ

β
f

)−1

(v) = Gred-admm(v), (107)

where I represents the identity operator and (·)−1 represents
the functional inverse. In summary, RED-ADMMwith denoiser
f(·) solves the consensus equilibrium problem (97) with F =
Fadmm from (100) and G = Gred-admm from (107).
Nextwe establish an equilibrium result forRED-PG.Defining

uk = vk − xk and taking k → ∞ in Algorithm 4, it can be seen
that the fixed points of RED-PG obey (97a) for

Fred-pg(v) = argmin
x

{
ℓ(x;y) +

λL

2
∥x− v∥2

}
. (108)

Furthermore, from line 3 of Algorithm 4, it can be seen that the
RED-PG fixed points also obey

û =
1
L
(f(x̂)− x̂) (109)

⇔ x̂− û = x̂− 1
L
(f(x̂)− x̂) (110)

=
(
L+ 1
L

I − 1
L
f

)
(x̂) (111)

⇔ x̂ =
(
L+ 1
L

I − 1
L
f

)−1

(x̂− û), (112)

which matches (97b) when G = Gred-pg for

Gred-pg(v) =
(
L+ 1
L

I − 1
L
f

)−1

(v). (113)

Note that Gred-pg = Gred-admm when L = β/λ.

B. Interpreting the RED Equilibria

The equilibrium conditions provide additional interpretations
of the RED algorithms. To see how, first recall that the RED
equilibrium (x̂, û) satisfies

x̂ = Fred-pg(x̂+ û) (114a)

x̂ = Gred-pg(x̂− û), (114b)

or an analogous pair of equations involving Fred-admm and
Gred-admm. Thus, from (108), (109), and (114a), we have that

x̂ = Fred-pg

(
x̂+

1
L
(f(x̂)− x̂)

)
(115)

= Fred-pg

(
L− 1
L

x̂+
1
L
f(x̂)

)
(116)

= argmin
x

{
ℓ(x;y) +

λL

2

∥∥∥∥x− L− 1
L

x̂− 1
L
f(x̂)

∥∥∥∥
2
}
.

(117)

When L = 1, this simplifies down to

x̂ = argmin
x

{
ℓ(x;y) +

λ

2
∥x− f(x̂)∥2

}
. (118)

Note that (118) is reminiscent of, although in general not equiv-
alent to,

x̂ = argmin
x

{
ℓ(x;y) +

λ

2
∥x− f(x)∥2

}
, (119)

which was discussed as an “alternative” formulation of RED in
[1, Sec. 5.2].
Insights into the relationship between RED and PnP-ADMM

can be obtained by focusing on the simple case of

ℓ(x;y) =
1

2σ2 ∥x− y∥2 , (120)
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where the overall goal of variational image recovery would be
the denoising of y. For PnP-ADMM, (90) and (98) imply

Fpnp(v) =
1

1 + λσ2 y +
λσ2

1 + λσ2 v, (121)

and so the equilibrium condition (97a) implies

x̂pnp =
1

1 + λσ2 y +
λσ2

1 + λσ2 (x̂pnp + ûpnp) (122)

⇔ ûpnp =
x̂pnp − y

λσ2 . (123)

Meanwhile, (99) and the equilibrium condition (97b) imply

x̂pnp = f(x̂pnp − ûpnp) (124)

= f

(
λσ2 − 1

λσ2 x̂pnp +
1

λσ2 y

)
. (125)

In the case that λ = 1/σ2 , we have the intuitive result that

x̂pnp = f(y), (126)

which corresponds to direct denoising of y. For RED, ûred is
algorithm dependent, but x̂red is always the solution to (15),
where now A = I due to (120). That is,

y − x̂red = λσ2(x̂red − f(x̂red)
)
. (127)

Taking λ = 1/σ2 for direct comparison to (126), we find

y − x̂red = x̂red − f(x̂red). (128)

Thus, whereas PnP-ADMM reports the denoiser output f(y),
RED reports the x̂ for which the denoiser residual f(x̂)− x̂
negates the measurement residual y − x̂. This x̂ can be ex-
pressed concisely as

x̂ = (2I − f)−1(y) = Gred-pg(y)
∣∣
L=1 . (129)

VII. CONCLUSION

The RED paper [1] proposed a powerful new way to exploit
plug-in denoisers when solving imaging inverse-problems. In
fact, experiments in [1] suggest that the RED algorithms are
state-of-the-art. Although [1] claimed that the RED algorithms
minimize an optimization objective containing an explicit reg-
ularizer of the form ρred(x) ! 1

2x
⊤(x− f(x)) when the de-

noiser is LH, we showed that the denoiser must also be Jacobian
symmetric for this explanation to hold. We then provided exten-
sive numerical evidence that practical denoisers like the median
filter, non-local means, BM3D, TNRD, or DnCNN lack suffi-
cient Jacobian symmetry. Furthermore, we established that, with
non-JS denoisers, the RED algorithms cannot be explained by
explicit regularization of any form.
None of our negative results dispute the fact that the RED

algorithms work very well in practice. But they do motivate
the need for a better understanding of RED. In response, we
showed that the RED algorithms can be explained by a novel
framework called score-matching by denoising (SMD), which
aims to match the “score” (i.e., the gradient of the log-prior)
rather than design any explicit regularizer. We then established

tight connections between SMD, kernel density estimation, and
constrained MMSE denoising.
On the algorithmic front, we provided new interpretations of

the RED-ADMM and RED-FP algorithms proposed in [1], and
we proposed novel RED algorithms with much faster conver-
gence. Finally, we performed a consensus-equilibrium analysis
of the RED algorithms that lead to additional interpretations of
RED and its relation to PnP-ADMM.
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