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Abstract—In this paper, we consider the problem of detecting
the presence (or absence) of an unknown but structured signal
from the space-time outputs of an array under strong, non-white
interference. Our motivation is the detection of a communication
signal in jamming, where often the “training” portion is known
but the “data” portion is not. We assume that the measurements
are corrupted by additive white Gaussian noise of unknown
variance and a few strong interferers, whose number, powers,
and array responses are unknown. We also assume the desired
signal’s array response is unknown. To address the detection
problem, we propose two GLRT-based detection schemes that
employ a probabilistic signal model and use the EM algorithm for
likelihood maximization. Numerical experiments are presented to
assess the performance of the proposed schemes.

I. INTRODUCTION

Consider the problem of detecting the presence or absence
of a signal s € Cl from the measured output Y € CM*L
of an M-element antenna array. We are interested in the case
where s is known only in probability. A motivating example
arises with communications signals, where typically a few
“training” samples are known and the remainder (i.e., the
“data” samples) are unknown, except for their alphabet.

The signal-detection problem can be formulated as a binary
hypothesis test [1] between hypotheses 7 (signal present)
and H (signal absent), i.e.,

H,:Y = hs' + B&" + W e cM*L
Ho:Y = B®" + W e CM*E,

(1a)
(1b)

In (1), h € CM models the array response, which we assume
is completely unknown (as in the case of a dense multi-
path environment). W models additive white Gaussian noise
(AWGN) with unknown variance v > 0, and B®" models
interference from N interferers, where N is unknown. If the
array responses of these N interferers are constant over the
measurement epoch and bandwidth, then rank(B®") = N.
The temporal interference component ®" is assumed white
and Gaussian, while the spatial interference component B is
deterministic and unknown.
Communications signals often take a form like

st = [s{" sg'] , 2)

where s; € C® is a known training sequence, sq € AX~¢
is an unknown data sequence, A C C is a finite alphabet,
and Q < L. Suppose that the measurements are partitioned
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as Y = [Yt Yd], conformal with (2). For signal detection
and/or synchronization, the data measurements Yy are often
ignored (see, e.g., [2]). But these data measurements can be
very useful, especially when the training symbols (and thus
the training measurements Y'y) are few. Our goal is to develop
detection schemes that use all measurements Y~ while handling
the incomplete knowledge of s in a principled manner.

We propose to probabilistically model the signal by treating
s as a random vector with prior pdf p(s). Although our method
supports arbitrary p(s), we sometimes focus (for simplicity)
on the case of statistically independent components, i.e.,

p(s) =TT mi(s0). 3)

For example, with uncoded communication signals partitioned
as in (2), we would use (3) with

m@n—{““““
T Lsea, 0051 = 5)

where d(-) the Dirac delta and st; the [th training symbol.

We now describe relevant prior work. For the case where the
entire signal s € C* is known, the detection problem (1) has
been studied in detail. For example, in the classical work of
Kelly [3], the interference-plus-noise B &+ W was modeled
as temporally white and Gaussian with unknown (and unstruc-
tured) spatial covariance 3 > 0, and the generalized likelihood
ratio test (GLRT) [1] was derived. Detector performance can
be improved when the interference is known to have low rank.
For example, Gerlach and Steiner [4] assumed temporally
white Gaussian interference with known noise variance v
and unknown interference rank N and derived the GLRT.
More recently, Kang, Monga, and Rangaswamy [5] assumed
temporally white Gaussian interference with unknown v and
known N and derived the GLRT. Other structures on 3 were
considered by Aubry et al. in [6]. In a departure from the above
methods, McWhorter [7] proposed to treat the interference
components B € CM*N and & € CI*N, as well as the
noise variance v, as deterministic unknowns, and then derived
the corresponding GLRT. Bandiera et al. [8] proposed yet a
different approach, based on a Bayesian perspective.

For adaptive detection of unknown but structured signals s,
Forsythe [9, p.110] described an iterative scheme for signals
with deterministic (e.g., finite-alphabet, constant envelope)
structure that alternates between maximum-likelihood (ML)
signal estimation and least-squares beamforming.

In this work, we propose GLRT-based detectors for (1).

1=1,...,Q

1=Q+1,...,L, @
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Under the probabilistic model s ~ p(s), direct evaluation of
the GLRT numerator becomes intractable. Thus, we use expec-
tation maximization (EM) [10], and we derive computationally
efficient EM procedures for the independent prior (3).

Our first approach makes no attempt to leverage low in-
terference rank, like Kelly [3]. We show that this approach
is a variation on Forsythe’s iterative scheme [9, p.110] that
uses “soft” instead of “hard” symbol estimation. Our second
approach is an extension that exploits the possibly low-rank
nature of the interference. As in [4]-[6], the interference is
modeled as temporally white Gaussian but, different from [4]-
[6], the interference rank N and noise variance v are unknown,
and the signal is probabilistic.

This paper is an abbreviated version of [11], which provides
the details of many derivations, as well as a third GLRT
approach that treats ® as deterministic, as in McWhorter [7].

II. BACKGROUND

In our discussions below, we will use P,y =2
A(A"A)~1 AM 1o denote orthogonal projection onto the col-
umn space of a given matrix A, i.e., and Pj L2T_—Pato
denote the orthogonal complement.

The classical work of Kelly [3] tackled the binary hypothesis
test (1) by treating the interference-plus-noise BoH LW as
temporally white and Gaussian with unknown spatial covari-
ance X > (. This reduces (1) to

H,:Y =hs™" +CN(0,%) (5a)
Ho: Y =CN(0,%). (5b)
With known s, the GLRT [1] takes the form
maxp w0 (Y |Hi;h, X) - 0. ©)
maxssop(Y|[He; X) =

for some threshold 7. Using results from [12], it was shown
in [3] that (6) reduces to

M
Hm:1 /\O,m >
M <
HTH:I )\177”

for decreasing ordered (i.e., Aj.m > Ai m+1 Ym, 1) eigenvalues

Uz )

{Ao,m ﬁle e eigenvalues(%YYH) (8a)
{)\Lm}ﬁf:l e eigenvalues(%YPj‘YH). (8b)

Kelly’s approach was applied to the detection/synchronization
of communications signals by Bliss and Parker in [2] after
discarding the contribution of the unknown data symbols sq.

The low-rank property of the interference B®" can be ex-
ploited to improve detector performance. For example, Kang,
Monga, and Rangaswamy [5] proposed the GLRT

maXxp seSy p(Y|H17 h7 E)
maxsesy P(Y [Ho; X)

Z, ©)
where

Sy £ {R+vI :rank(R) = N,R>0,v > 0}.  (10)

Using [13], it can be shown that the GLRT (9) simplifies to

M~

[zt dom >
M 7 <

H'rn:l )‘1,m

with {Xz-ﬁm}%:l a smoothed version of {)\mn}%zl from (8):

n, (1D

N i,m :17"'7N7

R = 4 o " (12)
' v m=N+1,..., M.
N M
Ui = 5N omen 41 Nim- (13)

III. PROPOSED GLRT

We now consider the hypothesis test (1) with probabilistic
s ~ p(s). Recalling that B is a deterministic unknown and
®" is white and Gaussian, the interference-plus-noise matrix

N2Be"+w (14)

is temporally white Gaussian with spatial covariance matrix

3> = R+ vI,;, where both R > 0 and v > 0 are unknown.

For now, we will model R using a fixed rank N < M. The

N = M case is reminiscent of Kelly [3], and the N < M

case is reminiscent of Kang, Monga, and Rangaswamy [5].
For a fixed rank N, the hypothesis test (1) reduces to

Hi:Y =hst+CN(0, I, 2 %) (15a)
Ho:Y =CN(0,I,®3%), (15b)
where h and ¥ € Sy (defined in (10)) are unknown and

s ~ p(s). When N = M, note that ¥ € Sy reduces to
3 > 0. The corresponding GLRT is

maxp, sesy P(Y [Hi; b, %)
maxses,y P(Y|Ho§ 2)

(16)

>,
Zr].

As a consequence of s ~ p(s), the numerator likelihood in
(16) differs from that in (9), as detailed in the sequel.
A. GLRT Denominator

For the denominator of (16), equations (15b) and (10) imply
exp(— tr{2YY"E})1"

p(Y [P0 ) = =]

a7

We first find the ML estimate io of 3 € Sy under Hy. When
N < M, the results in [13] (see also [5]) imply that

20 = ‘/01/&0‘/(';'7 KO :Diag(}\\o_’l,...,/)\\o’M), (18)

where {Xoym}ﬁle follow the definition in (12) with ¢ = 0.
That is, {Ao,m }2_, is a smoothed version of the eigenvalues
{Ao,m } of the sample covariance matrix %YYH in decreasing
order, where the smoothing averages the M — N smallest
eigenvalues to form the noise variance estimate 7y, as in (13).
When N = M, the results in [12] (see also [3]) imply that
Ao,m = Ao,m Vm. In either case, the columns of Vg are the
corresponding eigenvectors of the sample covariance matrix
%YYH. It is straightforward to show [11] that

Linp(Y|Ho; 80) = -M - XM InXg,, — MInw. (19)
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B. GLRT Numerator
For the numerator of (16), s ~ p(s) and (15a) imply

p(Y|Hi;h,2) = /p(Y|s,7-{,1;h,E)p(s) ds (20)
—tr{(Y — hs""=~"1 (Y — hsH
[ R k)
2D

Exact maximization of p(Y'|H1;h,X) over h and X € Sy
appears to be intractable. We thus propose to approximate the
maximization by applying EM [10] with hidden data s. This
implies that we iterate the following over t =0,1,2,...:

(i\b(t+l) §(f+1)) ( )
T 1) &
= argmax E{Inp(Y,s/Hi;h,%) |Yh 2}

heCM eSy

The EM algorithm is guaranteed to converge to a local maxima
or saddle point of the likelihood (20) [14]. Furthermore, at
each iteration ¢, the EM-approximated log-likelihood increases
and lower bounds the true log-likelihood [15].

Because p(s) is invariant to h and X, (22) becomes

argmax  E{Inp(Y]s, H;h 2) | V:57 8} 23)
heCM 3eSn
It was shown [11] that
(t+1)

T =ys? /E(t> (24)

50 AE{lY'h =% 25)

B0 2 B{|s|?v;R"”, ) 26)

Setting h = h( +) in (23) and simplifying, [11] shows that

o {Y P30 YS!} 4+ In 3|t 27

is the cost that must be minimized over X € Sy, where
—5Wz0H B,

~ | A
Py =1y (28)

~1
Note that P mimics a projection matrix, but is not one in
general. Minimizing (27) is equivalent to maximizing

~1
exp(— tr{Y P, Y"E71}) 29
TML|$|L 29)
As with (17), when N < M, the results in [13] imply
~(t+1 ~(t41
2§t+ ) Vgt+1)A(t+ )V(t+1)H (30)
~(t+1) .
Ay =Diag(ATY,. ) (3D)
t+1
/A\(tJrl) _ )‘g,m ) m=1,...,N (32)
b A m:N+1...M
I//\<t+1) é N m=N-+1 lt:—nl)7 (33)
where {A(tH) M_| are the eigenvalues of the matrix

ZYPng in decreasing order, and the columns of Vgtﬂ)
are the corresponding eigenvectors.

Algorithm 1 EM update under white Gaussian interference
Hl 1 D1 Sl)

Require: Data Y € CM XL signal prior p(s
1: Initialize 3 and E > 0 as described in text
2: repeat
. i 1va
3: h+ £Y3s

S ~~H
4 T« 1YY" - Zhp
5: Estimate interference rank N via (39).
6: g+ f]l_lﬁ
~H
7 E+~h g
8:

< %YHg where 7 ~ CN (s, I/€)
9: S« E{s|rp¢}vli=1,...,L

10: B 3 Bflsif?lri; €}

11: until Terminated

The EM updates of 5 and E® in (25)-(26) depend on
p(8). For any independent prior (3), we can MMSE-estimate
the symbols one at a time from the measurement equation

~ t
Y, i s; +CN(O0, E(1>).

Since whitened matched-filter (WMF) outputs form sufficient
statistics [1], we can also estimate the symbols from

(34)

a1
IOk
g(t) 2 <t)H

g1 — +CN< g(lt)) (35)

(t)

&) 1h (36)

For the Gaussian prior p(sl) = CN(s;; 1, v;) and discrete
priors of the form p(s;) = Zk 1 wird (s —dyy,), with alphabet
A = {dlk}k , and prior symbol probabilities wy, > 0,
expressions for E{s;|r;} and E{|s;|?|r;} are given in [11].
The EM update procedure is summarized in Alg. 1.
Let us denote the ﬁnal EM-based estimates of s, h, and X
under H; as s, h, and X1, respectively. Then
Tp(Y[Hih,B1) = M = > InXypm— Moz (37)
m=1
following steps similar to (19). Recalling (16), the log-domain
GLRT is obtained by subtracting (19) from (37), yielding
M
> In

m=1 s

,m

=24 (38)

It was shown in [11] that Alg. 1 becomes equivalent to
Forsythe’s iterative scheme from [9, p.110] if N = M and
the “soft” estimates 3 = E{s|r;¢} and E = E{||s||? |r; &}
in lines 9-10 are replaced by the “hard” ML estimates Sy =
argminge 4z |7 — s||? and By = [[Sm]|?. In Sec. IV, we
show that soft estimates lead to improved detection perfor-
mance due to reduced error propagation.

The interference rank N = rank(R) in line 5 can be
estimated using the standard model-order selection approach
described in, e.g., [16], [17], which specifies

N = argmax Inp(Y|H1;Oy) — J(D(N)),

0,...;Nmax

(39)
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where J(-) is a penalty function, e ~ 1s the ML parameter es-
timate under rank hypothesis N, and D(N) is the degrees-of-
freedom (DoF) in the parameters ® 5 = {h, X} for h € CM
and ¥ € Sy. Thus, D(N) = (2M —N)N+2M +1. Common
choices of J(-) result from AIC, BIC, and MDL. For our
numerical experiments, we used the Generalized Information
Criterion, i.e., J(D) = GD, with G = 12.5.

The initialization of (8, F) in Alg. 1 affects the quality of
the final EM estimate. We now propose an initialization for
the training/data structure in (2), i.e., ¥ = [Yt Yd} with

(40)
(41)

Y= hsf' + Ny, vec(Ny) ~ CN (0,1 ® %)
Y4 =hs{ + Ny, vec(Ng) ~CN(0,I, oo X),

and s = [s}!, s]H. Essentially, we would like to estimate the

random vector sq ~ HleQ 41 Di(s1) from measurements Y’
under known s; but unknown sq, h, 3, INV.

Recall that the WMF outputs (35) are sufficient statistics
[1] for estimating sy. Because ¥ and h are unknown during
initialization, we propose to estimate them from the training
data Y; and use the results to compute approximate-WMF
outputs of the form

. o ls
72 ys he 42)
With appropriate scaling € C, we get an unbiased statistic

(43)

BF ~ 51+ CN(0,1/€) for 1 € {Q +1,...,L}
that can be converted to MMSE symbol estimates &; and
energy F as described in [11]. For (X4, ht) in (42), we use
the ML estimate

hi 2 Yis/||si]| (44)
and a regularized covariance estimate of the form [18]
S~ (1 - a)Si+ acly, a € (0,1], (45)

with 3% 2 LY PLYY and ¢ 2

) = tr(f]t)/M. We choose
o to maximize the precision &, as estimated by leave-one-
out cross-validation (LOOCYV) [19] on the training data. Our
LOOCYV approach is similar to the “SEO” scheme from [20]
but targets minimum-variance unbiased estimation rather than
MMSE estimation and, more significantly, handles non-white
interference. Details are provided in [11].

For a given «, the unbiasing gain 3(® (recall (43)) obeys

E{ﬁ(a)ﬂ(a>|5l} = 51, le{lw"aQ}a (46)
and thus can be estimated as
1 Q A D
) = e~ 28wy
E{ﬁl )/Sl} Z?:l?\l( )/Sl
After scaling by E(O‘), the error precision E (@) ig
1
) = P T (48)
& L [BORY — sl
The value of « can be optimized by maximizing E,A("‘) over a

grid of possible values.

IV. NUMERICAL EXPERIMENTS

We now present numerical experiments to evaluate the
proposed detectors. Unless otherwise noted, we used M = 64
array elements, L. = 1024 total symbols, () = 32 training
symbols, and N = 5 interferers. (Note that Q < M.)
The signal s was ii.d. QPSK with variance 1, the noise
W was i.i.d. Gaussian with variance v, and the interference
® was ii.d. Gaussian with variance o?/N, giving a total
interference power of af. For the array, we assumed a uniform
planar array (UPA) with half-wavelength element spacing
operating in the narrowband regime. For the signal’s array
response h, we assumed that the signal arrived from a random
(horizontal,vertical) angle pair drawn uniformly on [0, 27)2.
For the nth interferer’s array response b,,, we used the arrival
angle corresponding to the nth largest sidelobe in k. Detection
performance was quantified using the rate of correct detection
when the detector threshold 7 is set to achieve a false-alarm
rate of 10™%. All simulation results represent the average of
10000 independent draws of {h, s, B, ®, W}.

We considered two existing methods that use only the
training data Y: Kelly’s full-rank approach (7), i.e., “kel-tr,”
and the Kang/Monga/Rangaswamy approach (11) with rank NV
estimated as in (39), i.e., “kmr-tr.” We also tested the proposed
EM-based methods, which use the full data Y: Alg. 1 with
full rank N = M, i.e., “kel-em,” and Alg. 1 with N estimated
as in (39), i.e., “kmr-em.” For the EM algorithm, we used a
maximum of 50 iterations but terminated at iteration ¢ > 1
it |59 —307Y)/15" | < 0.01. We also tested Forsythe’s
iterative method [9, p. 110] by running Alg. 1 with full rank
N = M and hard symbol estimates. Finally, we tested a low-
rank version of Forsythe’s method by running Alg. 1 with hard
estimates and N estimated via (39).

A. Performance versus SINR

Figure 1 shows detection-rate at false-alarm-rate=10"% ver-
sus v = o2 for various detectors. There we see that the
proposed EM-based, full-data detectors, kel-em and kmr-em,
significantly outperformed their training-based counterparts,
kel-tr and kmr-tr. We also see that the proposed detectors
outperformed their hard-detection counterparts, forsythe and
forsythe-lowrank, and we attribute this result to a reduction
in error propagation. Finally, we see that the low-rank methods
outperformed the corresponding full-rank methods.

B. Performance versus SIR at fixed SNR

Figure 2 shows detection-rate at false-alarm-rate=10"* ver-
sus interference power o2 at the fixed noise power v = Q.
The proposed EM-based, low-rank detector kmr-em gave no
errors over 10000 trials. The proposed EM-based, full-rank
detector kel-em outperformed its training-based counterpart
kel-tr, but succumbed to error propagation at low o?. The
non-monotonic behavior of the training based schemes kel-tr,
kmr-tr, and mcw-tr results from imperfect rank estimation.
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Fig. 2. Detection-rate at false-alarm-rate=10~* versus o' under v = Q.

C. Performance versus training length ()

Figure 3 shows detection-rate at false-alarm-rate=10"* ver-
sus training length Q for various detectors under v = 02 = Q.

Here, v and o? grew with @ to prevent the error-rate from
vanishing with @ due to spreading gain. The kel-ir trace is
clipped on the left because Kelly’s approach cannot be applied
when Q < M. Figure 3 shows that the proposed EM-based,
low-rank detectors kmr-em and mcw-em far outperformed
the others when @@ was between 32 and 128. When @ =
1024 = L, there are no data symbols, in which case kmr-em
is equivalent to kmr-tr.
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