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Abstract—In this paper, we consider the problem of detecting
the presence (or absence) of an unknown but structured signal
from the space-time outputs of an array under strong, non-white
interference. Our motivation is the detection of a communication
signal in jamming, where often the “training” portion is known
but the “data” portion is not. We assume that the measurements
are corrupted by additive white Gaussian noise of unknown
variance and a few strong interferers, whose number, powers,
and array responses are unknown. We also assume the desired
signal’s array response is unknown. To address the detection
problem, we propose two GLRT-based detection schemes that
employ a probabilistic signal model and use the EM algorithm for
likelihood maximization. Numerical experiments are presented to
assess the performance of the proposed schemes.

I. INTRODUCTION

Consider the problem of detecting the presence or absence

of a signal s ∈ C
L from the measured output Y ∈ C

M×L

of an M -element antenna array. We are interested in the case

where s is known only in probability. A motivating example

arises with communications signals, where typically a few

“training” samples are known and the remainder (i.e., the

“data” samples) are unknown, except for their alphabet.

The signal-detection problem can be formulated as a binary

hypothesis test [1] between hypotheses H1 (signal present)

and H0 (signal absent), i.e.,

H1 : Y = hsH +BΦ
H +W ∈ C

M×L (1a)

H0 : Y = BΦ
H +W ∈ C

M×L. (1b)

In (1), h ∈ C
M models the array response, which we assume

is completely unknown (as in the case of a dense multi-

path environment). W models additive white Gaussian noise

(AWGN) with unknown variance ν > 0, and BΦ
H models

interference from N interferers, where N is unknown. If the

array responses of these N interferers are constant over the

measurement epoch and bandwidth, then rank(BΦ
H) = N .

The temporal interference component Φ
H is assumed white

and Gaussian, while the spatial interference component B is

deterministic and unknown.

Communications signals often take a form like

sH =
[
sH

t sH
d

]
, (2)

where st ∈ C
Q is a known training sequence, sd ∈ AL−Q

is an unknown data sequence, A ⊂ C is a finite alphabet,

and Q � L. Suppose that the measurements are partitioned
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as Y =
[
Y t Y d

]
, conformal with (2). For signal detection

and/or synchronization, the data measurements Y d are often

ignored (see, e.g., [2]). But these data measurements can be

very useful, especially when the training symbols (and thus

the training measurements Y t) are few. Our goal is to develop

detection schemes that use all measurements Y while handling

the incomplete knowledge of s in a principled manner.

We propose to probabilistically model the signal by treating

s as a random vector with prior pdf p(s). Although our method

supports arbitrary p(s), we sometimes focus (for simplicity)

on the case of statistically independent components, i.e.,

p(s) =
∏L

l=1 pl(sl). (3)

For example, with uncoded communication signals partitioned

as in (2), we would use (3) with

pl(sl) =

{
δ(sl − st,l) l = 1, . . . , Q
1

|Al|

∑
s∈Al

δ(sl − s) l = Q+ 1, . . . , L,
(4)

where δ(·) the Dirac delta and st,l the lth training symbol.

We now describe relevant prior work. For the case where the

entire signal s ∈ C
L is known, the detection problem (1) has

been studied in detail. For example, in the classical work of

Kelly [3], the interference-plus-noise BΦ
H+W was modeled

as temporally white and Gaussian with unknown (and unstruc-

tured) spatial covariance Σ > 0, and the generalized likelihood

ratio test (GLRT) [1] was derived. Detector performance can

be improved when the interference is known to have low rank.

For example, Gerlach and Steiner [4] assumed temporally

white Gaussian interference with known noise variance ν
and unknown interference rank N and derived the GLRT.

More recently, Kang, Monga, and Rangaswamy [5] assumed

temporally white Gaussian interference with unknown ν and

known N and derived the GLRT. Other structures on Σ were

considered by Aubry et al. in [6]. In a departure from the above

methods, McWhorter [7] proposed to treat the interference

components B ∈ C
M×N and Φ ∈ C

L×N , as well as the

noise variance ν, as deterministic unknowns, and then derived

the corresponding GLRT. Bandiera et al. [8] proposed yet a

different approach, based on a Bayesian perspective.

For adaptive detection of unknown but structured signals s,

Forsythe [9, p.110] described an iterative scheme for signals

with deterministic (e.g., finite-alphabet, constant envelope)

structure that alternates between maximum-likelihood (ML)

signal estimation and least-squares beamforming.

In this work, we propose GLRT-based detectors for (1).
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Under the probabilistic model s ∼ p(s), direct evaluation of

the GLRT numerator becomes intractable. Thus, we use expec-

tation maximization (EM) [10], and we derive computationally

efficient EM procedures for the independent prior (3).

Our first approach makes no attempt to leverage low in-

terference rank, like Kelly [3]. We show that this approach

is a variation on Forsythe’s iterative scheme [9, p.110] that

uses “soft” instead of “hard” symbol estimation. Our second

approach is an extension that exploits the possibly low-rank

nature of the interference. As in [4]–[6], the interference is

modeled as temporally white Gaussian but, different from [4]–

[6], the interference rank N and noise variance ν are unknown,

and the signal is probabilistic.

This paper is an abbreviated version of [11], which provides

the details of many derivations, as well as a third GLRT

approach that treats Φ as deterministic, as in McWhorter [7].

II. BACKGROUND

In our discussions below, we will use PA �
A(AHA)−1AH to denote orthogonal projection onto the col-

umn space of a given matrix A, i.e., and P⊥
A � I − PA to

denote the orthogonal complement.

The classical work of Kelly [3] tackled the binary hypothesis

test (1) by treating the interference-plus-noise BΦ
H +W as

temporally white and Gaussian with unknown spatial covari-

ance Σ > 0. This reduces (1) to

H1 : Y = hsH + CN (0,Σ) (5a)

H0 : Y = CN (0,Σ). (5b)

With known s, the GLRT [1] takes the form

maxh,Σ>0 p(Y |H1;h,Σ)

maxΣ>0 p(Y |H0;Σ)
� η, (6)

for some threshold η. Using results from [12], it was shown

in [3] that (6) reduces to∏M

m=1 λ0,m∏M

m=1 λ1,m

� η, (7)

for decreasing ordered (i.e., λi,m ≥ λi,m+1 ∀m, i) eigenvalues

{λ0,m}Mm=1 � eigenvalues
(
1
L
Y Y H

)
(8a)

{λ1,m}Mm=1 � eigenvalues
(
1
L
Y P⊥

s Y
H
)
. (8b)

Kelly’s approach was applied to the detection/synchronization

of communications signals by Bliss and Parker in [2] after

discarding the contribution of the unknown data symbols sd.

The low-rank property of the interference BΦ
H can be ex-

ploited to improve detector performance. For example, Kang,

Monga, and Rangaswamy [5] proposed the GLRT

maxh,Σ∈SN
p(Y |H1;h,Σ)

maxΣ∈SN
p(Y |H0;Σ)

� η, (9)

where

SN � {R+ νI : rank(R) = N,R ≥ 0, ν > 0}. (10)

Using [13], it can be shown that the GLRT (9) simplifies to∏M

m=1 λ̂0,m∏M

m=1 λ̂1,m

� η, (11)

with {λ̂i,m}Mm=1 a smoothed version of {λi,m}Mm=1 from (8):

λ̂i,m =

{
λi,m m = 1, . . . , N,

ν̂i m = N + 1, . . . ,M.
(12)

ν̂i =
1

M−N

∑M

m=N+1 λi,m. (13)

III. PROPOSED GLRT

We now consider the hypothesis test (1) with probabilistic

s ∼ p(s). Recalling that B is a deterministic unknown and

Φ
H is white and Gaussian, the interference-plus-noise matrix

N � BΦ
H +W (14)

is temporally white Gaussian with spatial covariance matrix

Σ = R + νIM , where both R ≥ 0 and ν > 0 are unknown.

For now, we will model R using a fixed rank N ≤ M . The

N = M case is reminiscent of Kelly [3], and the N < M
case is reminiscent of Kang, Monga, and Rangaswamy [5].

For a fixed rank N , the hypothesis test (1) reduces to

H1 : Y = hsH + CN (0, IL ⊗Σ) (15a)

H0 : Y = CN (0, IL ⊗Σ), (15b)

where h and Σ ∈ SN (defined in (10)) are unknown and

s ∼ p(s). When N = M , note that Σ ∈ SN reduces to

Σ > 0. The corresponding GLRT is

maxh,Σ∈SN
p(Y |H1;h,Σ)

maxΣ∈SN
p(Y |H0;Σ)

� η. (16)

As a consequence of s ∼ p(s), the numerator likelihood in

(16) differs from that in (9), as detailed in the sequel.

A. GLRT Denominator

For the denominator of (16), equations (15b) and (10) imply

p(Y |H0;Σ) =

[
exp(− tr{ 1

L
Y Y H

Σ
−1})

πM |Σ|

]L
. (17)

We first find the ML estimate Σ̂0 of Σ ∈ SN under H0. When

N < M , the results in [13] (see also [5]) imply that

Σ̂0 = V 0Λ̂0V
H
0 , Λ̂0 = Diag(λ̂0,1, . . . , λ̂0,M ), (18)

where {λ̂0,m}Mm=1 follow the definition in (12) with i = 0.

That is, {λ̂0,m}Mm=1 is a smoothed version of the eigenvalues

{λ0,m} of the sample covariance matrix 1
L
Y Y H in decreasing

order, where the smoothing averages the M − N smallest

eigenvalues to form the noise variance estimate ν̂0, as in (13).

When N = M , the results in [12] (see also [3]) imply that

λ̂0,m = λ0,m ∀m. In either case, the columns of V 0 are the

corresponding eigenvectors of the sample covariance matrix
1
L
Y Y H. It is straightforward to show [11] that

1
L
ln p(Y |H0; Σ̂0) = −M −

∑M

m=1 ln λ̂0,m −M lnπ. (19)
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B. GLRT Numerator

For the numerator of (16), s ∼ p(s) and (15a) imply

p(Y |H1;h,Σ) =

∫
p(Y |s,H1;h,Σ) p(s) ds (20)

=

∫
exp(− tr{(Y − hsH)H

Σ
−1(Y − hsH)})

πML|Σ|L
p(s) ds.

(21)

Exact maximization of p(Y |H1;h,Σ) over h and Σ ∈ SN

appears to be intractable. We thus propose to approximate the

maximization by applying EM [10] with hidden data s. This

implies that we iterate the following over t = 0, 1, 2, . . . :(
ĥ
(t+1)

, Σ̂
(t+1)

1

)
(22)

= argmax
h∈CM ,Σ∈SN

E
{
ln p(Y , s|H1;h,Σ)

∣∣Y ; ĥ
(t)
, Σ̂

(t)

1

}
The EM algorithm is guaranteed to converge to a local maxima

or saddle point of the likelihood (20) [14]. Furthermore, at

each iteration t, the EM-approximated log-likelihood increases

and lower bounds the true log-likelihood [15].

Because p(s) is invariant to h and Σ, (22) becomes

argmax
h∈CM ,Σ1∈SN

E
{
ln p(Y |s,H1;h,Σ)

∣∣Y ; ĥ
(t)
, Σ̂

(t)

1

}
. (23)

It was shown [11] that

ĥ
(t+1)

= Y ŝ
(t)/E(t) (24)

ŝ
(t) � E{s|Y ; ĥ

(t)
, Σ̂

(t)

1 } (25)

E(t) � E{‖s‖2|Y ; ĥ
(t)
, Σ̂

(t)

1 }. (26)

Setting h = ĥ
(t+1)

in (23) and simplifying, [11] shows that

tr
{
Y P̃

⊥

ŝ
(t)Y H

Σ
−1

}
+ ln |Σ|L (27)

is the cost that must be minimized over Σ ∈ SN , where

P̃
⊥

ŝ
(t) � IL − ŝ

(t)
ŝ
(t)H/E(t). (28)

Note that P̃
⊥

ŝ
(t) mimics a projection matrix, but is not one in

general. Minimizing (27) is equivalent to maximizing

exp(− tr{Y P̃
⊥

ŝ
(t)Y H

Σ
−1})

πML|Σ|L
. (29)

As with (17), when N < M , the results in [13] imply

Σ̂
(t+1)

1 = V
(t+1)
1 Λ̂

(t+1)

1 V
(t+1)H
1 , (30)

Λ̂
(t+1)

1 = Diag(λ̂
(t+1)
1,1 , . . . , λ̂

(t+1)
1,M ) (31)

λ̂
(t+1)
1,m =

{
λ
(t+1)
1,m m = 1, . . . , N

ν̂
(t+1)
1 m = N + 1, . . . ,M

(32)

ν̂
(t+1)
1 � 1

M−N

∑M

m=N+1 λ
(t+1)
1,m , (33)

where {λ
(t+1)
1,m }Mm=1 are the eigenvalues of the matrix

1
L
Y P̃

⊥

ŝ
(t)Y H in decreasing order, and the columns of V

(t+1)
1

are the corresponding eigenvectors.

Algorithm 1 EM update under white Gaussian interference

Require: Data Y ∈ CM×L, signal prior p(s) =
∏L

l=1
pl(sl).

1: Initialize ŝ and E > 0 as described in text

2: repeat

3: ĥ ← 1

E
Y ŝ

4: Σ̂1 ← 1

L
Y Y H − E

L
ĥĥ

H

5: Estimate interference rank N via (39).

6: g ← Σ̂
−1

1 ĥ

7: ξ ← ĥ
H
g

8: r ← 1

ξ
Y Hg where r ∼ CN (s, I/ξ)

9: ŝl ← E{sl|rl; ξ} ∀l = 1, . . . , L

10: E ←
∑L

l=1
E{|sl|

2|rl; ξ}

11: until Terminated

The EM updates of ŝ
(t)

and E(t) in (25)-(26) depend on

p(s). For any independent prior (3), we can MMSE-estimate

the symbols one at a time from the measurement equation

yl = ĥ
(t)
s∗l + CN (0, Σ̂

(t)

1 ). (34)

Since whitened matched-filter (WMF) outputs form sufficient

statistics [1], we can also estimate the symbols from

r
(t)
l �

1

ξ(t)
y
(t)H
l (Σ̂

(t)

1 )−1ĥ
(t)

= sl + CN

(
0,

1

ξ(t)

)
(35)

ξ(t) � ĥ
(t)H

(Σ̂
(t)

1 )−1ĥ
(t)
. (36)

For the Gaussian prior p(sl) = CN (sl;μl, vl) and discrete

priors of the form p(sl) =
∑Kl

k=1 ωlkδ(sl−dlk), with alphabet

Al = {dlk}
Kl

k=1 and prior symbol probabilities ωlk ≥ 0,

expressions for E{sl|rl} and E{|sl|2|rl} are given in [11].

The EM update procedure is summarized in Alg. 1.

Let us denote the final EM-based estimates of s, h, and Σ

under H1 as ŝ, ĥ, and Σ̂1, respectively. Then

1
L
ln p(Y |H1; ĥ, Σ̂1) = −M −

M∑
m=1

ln λ̂1,m −M lnπ (37)

following steps similar to (19). Recalling (16), the log-domain

GLRT is obtained by subtracting (19) from (37), yielding

M∑
m=1

ln
λ̂0,m

λ̂1,m

� η′. (38)

It was shown in [11] that Alg. 1 becomes equivalent to

Forsythe’s iterative scheme from [9, p.110] if N = M and

the “soft” estimates ŝ = E{s|r; ξ} and E = E{‖s‖2 |r; ξ}
in lines 9-10 are replaced by the “hard” ML estimates ŝML =
argmins∈AL ‖r − s‖2 and EML = ‖ŝML‖

2. In Sec. IV, we

show that soft estimates lead to improved detection perfor-

mance due to reduced error propagation.

The interference rank N = rank(R) in line 5 can be

estimated using the standard model-order selection approach

described in, e.g., [16], [17], which specifies

N̂ = argmax
N=0,...,Nmax

ln p(Y |H1; Θ̂N )− J(D(N)), (39)
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where J(·) is a penalty function, Θ̂N is the ML parameter es-

timate under rank hypothesis N , and D(N) is the degrees-of-

freedom (DoF) in the parameters ΘN = {h,Σ} for h ∈ C
M

and Σ ∈ SN . Thus, D(N) = (2M−N)N+2M+1. Common

choices of J(·) result from AIC, BIC, and MDL. For our

numerical experiments, we used the Generalized Information

Criterion, i.e., J(D) = GD, with G = 12.5.

The initialization of (ŝ, E) in Alg. 1 affects the quality of

the final EM estimate. We now propose an initialization for

the training/data structure in (2), i.e., Y =
[
Y t Y d

]
with

Y t = hsH
t +N t, vec(N t) ∼ CN (0, IQ ⊗Σ) (40)

Y d = hsH
d +Nd, vec(Nd) ∼ CN (0, IL−Q ⊗Σ), (41)

and s = [sH
t , s

H
d ]

H. Essentially, we would like to estimate the

random vector sd ∼
∏L

l=Q+1 pl(sl) from measurements Y

under known st but unknown sd,h,Σ,N .

Recall that the WMF outputs (35) are sufficient statistics

[1] for estimating sd. Because Σ and h are unknown during

initialization, we propose to estimate them from the training

data Y t and use the results to compute approximate-WMF

outputs of the form

r̂l � yH
l Σ̂

−1

t ĥt. (42)

With appropriate scaling β ∈ C, we get an unbiased statistic

βr̂l ≈ sl + CN (0, 1/ξ̂) for l ∈ {Q+ 1, . . . , L} (43)

that can be converted to MMSE symbol estimates ŝl and

energy E as described in [11]. For (Σ̂t, ĥt) in (42), we use

the ML estimate

ĥt � Y tst/‖st‖
2 (44)

and a regularized covariance estimate of the form [18]

Σ̂
(α)

t = (1− α)Σ̂t + αcIM , α ∈ (0, 1], (45)

with Σ̂t � 1
Q
Y tP

⊥
st
Y H

t and c � tr(Σ̂t)/M . We choose

α to maximize the precision ξ̂, as estimated by leave-one-

out cross-validation (LOOCV) [19] on the training data. Our

LOOCV approach is similar to the “SEO” scheme from [20]

but targets minimum-variance unbiased estimation rather than

MMSE estimation and, more significantly, handles non-white

interference. Details are provided in [11].

For a given α, the unbiasing gain β(α) (recall (43)) obeys

E
{
β(α)r̂

(α)
l

∣∣sl} = sl, l ∈ {1, . . . , Q}, (46)

and thus can be estimated as

β(α) =
1

E
{
r̂
(α)
l /sl

} ≈
Q∑Q

l=1 r̂
(α)
l /sl

� β̂(α). (47)

After scaling by β̂(α), the error precision ξ̂(α) is

ξ̂(α) =
1

1
Q

∑Q

l=1

∣∣β̂(α)r̂
(α)
l − sl

∣∣2 . (48)

The value of α can be optimized by maximizing ξ̂(α) over a

grid of possible values.

IV. NUMERICAL EXPERIMENTS

We now present numerical experiments to evaluate the

proposed detectors. Unless otherwise noted, we used M = 64
array elements, L = 1024 total symbols, Q = 32 training

symbols, and N = 5 interferers. (Note that Q � M .)

The signal s was i.i.d. QPSK with variance 1, the noise

W was i.i.d. Gaussian with variance ν, and the interference

Φ was i.i.d. Gaussian with variance σ2
i /N , giving a total

interference power of σ2
i . For the array, we assumed a uniform

planar array (UPA) with half-wavelength element spacing

operating in the narrowband regime. For the signal’s array

response h, we assumed that the signal arrived from a random

(horizontal,vertical) angle pair drawn uniformly on [0, 2π)2.

For the nth interferer’s array response bn, we used the arrival

angle corresponding to the nth largest sidelobe in h. Detection

performance was quantified using the rate of correct detection

when the detector threshold η is set to achieve a false-alarm

rate of 10−4. All simulation results represent the average of

10 000 independent draws of {h, s,B,Φ,W }.

We considered two existing methods that use only the

training data Y t: Kelly’s full-rank approach (7), i.e., “kel-tr,”

and the Kang/Monga/Rangaswamy approach (11) with rank N
estimated as in (39), i.e., “kmr-tr.” We also tested the proposed

EM-based methods, which use the full data Y : Alg. 1 with

full rank N = M , i.e., “kel-em,” and Alg. 1 with N estimated

as in (39), i.e., “kmr-em.” For the EM algorithm, we used a

maximum of 50 iterations but terminated at iteration i > 1
if ‖ŝ(i) − ŝ

(i−1)‖/‖ŝ(i)‖ < 0.01. We also tested Forsythe’s

iterative method [9, p. 110] by running Alg. 1 with full rank

N = M and hard symbol estimates. Finally, we tested a low-

rank version of Forsythe’s method by running Alg. 1 with hard

estimates and N estimated via (39).

A. Performance versus SINR

Figure 1 shows detection-rate at false-alarm-rate=10−4 ver-

sus ν = σ2
i for various detectors. There we see that the

proposed EM-based, full-data detectors, kel-em and kmr-em,

significantly outperformed their training-based counterparts,

kel-tr and kmr-tr. We also see that the proposed detectors

outperformed their hard-detection counterparts, forsythe and

forsythe-lowrank, and we attribute this result to a reduction

in error propagation. Finally, we see that the low-rank methods

outperformed the corresponding full-rank methods.

B. Performance versus SIR at fixed SNR

Figure 2 shows detection-rate at false-alarm-rate=10−4 ver-

sus interference power σ2
i at the fixed noise power ν = Q.

The proposed EM-based, low-rank detector kmr-em gave no

errors over 10 000 trials. The proposed EM-based, full-rank

detector kel-em outperformed its training-based counterpart

kel-tr, but succumbed to error propagation at low σ2
i . The

non-monotonic behavior of the training based schemes kel-tr,

kmr-tr, and mcw-tr results from imperfect rank estimation.
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Fig. 1. Detection-rate at false-alarm-rate=10−4 versus ν = σ2

i .
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Fig. 2. Detection-rate at false-alarm-rate=10−4 versus σ2

i under ν = Q.

C. Performance versus training length Q

Figure 3 shows detection-rate at false-alarm-rate=10−4 ver-

sus training length Q for various detectors under ν = σ2
i = Q.

Here, ν and σ2
i grew with Q to prevent the error-rate from

vanishing with Q due to spreading gain. The kel-tr trace is

clipped on the left because Kelly’s approach cannot be applied

when Q < M . Figure 3 shows that the proposed EM-based,

low-rank detectors kmr-em and mcw-em far outperformed

the others when Q was between 32 and 128. When Q =
1024 = L, there are no data symbols, in which case kmr-em

is equivalent to kmr-tr.

REFERENCES

[1] L. L. Scharf, Statistical Signal Processing. Reading, MA: Addison-
Wesley, 1991.

[2] D. W. Bliss and P. A. Parker, “Temporal synchronization of MIMO
wireless communication in the presence of interference,” IEEE Trans.

Signal Process., vol. 58, no. 3, pp. 1794–1806, 2010.
[3] E. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp. Elec-

tron. Syst., vol. 22, no. 1, pp. 115–127, 1986.
[4] K. Gerlach and M. J. Steiner, “Fast converging adaptive detection of

Doppler-shifted, range-distributed targets,” IEEE Trans. Signal Process.,
vol. 48, no. 9, pp. 2686–2690, 2000.

101 102 103
10-4

10-3

10-2

10-1

100

kel-tr
kmr-tr
kel-em
kmr-em

d
e
te

c
ti
o
n
-r

a
te

a
t

fa
ls

e
-a

la
rm

-r
a
te

=
10

−
4

training length Q

Fig. 3. Detection-rate at false-alarm-rate=10−4 versus training length Q
under ν = σ2

i = Q.

[5] B. Kang, V. Monga, and M. Rangaswamy, “Rank-constrained maximum
likelihood estimation of structured covariance matrices,” IEEE Trans.

Aerosp. Electron. Syst., vol. 50, no. 1, pp. 501–515, 2014.
[6] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Radar detection of

distributed targets in homogeneous interference whose inverse covari-
ance structure is defined via unitary invariant functions,” IEEE Trans.

Signal Process., vol. 61, pp. 4949–4961, Oct. 2013.
[7] L. T. McWhorter, “A high resolution detector in multi-path environ-

ments,” in Proc. Workshop Adapt. Sensor Array Process., (Lexington,
MA), 2004.

[8] F. Bandiera, A. De Maio, A. S. Greco, and G. Ricci, “Adaptive radar
detection of distributed targets in homogeneous and partially homoge-
neous noise plus subspace interference,” IEEE Trans. Signal Process.,
vol. 55, no. 4, pp. 1223–1237, 2007.

[9] K. W. Forsythe, “Utilizing waveform features for adaptive beamforming
and direction finding with narrowband signals,” Lincoln Lab. J., vol. 10,
no. 2, pp. 99–126, 1997.

[10] A. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-likelihood from
incomplete data via the EM algorithm,” J. Roy. Statist. Soc., vol. 39,
pp. 1–17, 1977.

[11] E. Bryne and P. Schniter, “Adaptive detection of structured signals in
low-rank interference,” arXiv:1808.05650, 2018.

[12] N. R. Goodman, “Statistical analysis based on a certain multivariate
complex Gaussian distribution (an introduction),” Ann. Math. Statist.,
vol. 34, no. 1, pp. 152–177, 1963.

[13] T. W. Anderson, “Asymptotic theory for principal component analysis,”
Ann. Math. Statist., vol. 34, no. 1, pp. 122–148, 1963.

[14] C. F. J. Wu, “On the convergence properties of the EM algorithm,” Ann.

Statist., vol. 11, no. 1, pp. 95–103, 1983.
[15] R. Neal and G. Hinton, “A view of the EM algorithm that justifies

incremental, sparse, and other variants,” in Learning in Graphical

Models (M. I. Jordan, ed.), pp. 355–368, MIT Press, 1998.
[16] M. Wax and T. Kailath, “Detection of signals by information theoretic

criteria,” IEEE Trans. Acoust. Speech & Signal Process., vol. 33, no. 2,
pp. 387–392, 1986.

[17] P. Stoica and Y. Selén, “Model-order selection: A review of information
criterion rules,” IEEE Signal Process. Mag., vol. 21, pp. 36–47, July
2004.

[18] J. P. Hoffbeck and D. A. Landgrebe, “Covariance matrix estimation
and classification with limited training data,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 18, pp. 763–767, 1996.
[19] S. Arlot and A. Celisse, “A survey of cross-validation procedures for

model selection,” Statist. Surv., vol. 4, pp. 40–79, 2010.
[20] J. Tong, P. J. Schreier, Q. Guo, S. Tong, J. Xi, and Y. Yu, “Shrinkage of

covariance matrices for linear signal estimation using cross-validation,”
IEEE Trans. Signal Process., vol. 64, pp. 2965–2975, June 2016.

����


