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Sundeep Rangan

Abstract—We consider the problem of jointly recovering the vec-
tor b and the matrix C from noisy measurements Y = A(b)C +
W, where A(-) is a known affine linear function of b (i.e., A(b) =
Ag + Z?=1 b; A; with known matrices A;). This problem has
applications in matrix completion, robust PCA, dictionary learn-
ing, self-calibration, blind deconvolution, joint-channel/symbol es-
timation, compressive sensing with matrix uncertainty, and many
other tasks. To solve this bilinear recovery problem, we propose the
Bilinear Adaptive Vector Approximate Message Passing (VAMP)
algorithm. We demonstrate numerically that the proposed ap-
proach is competitive with other state-of-the-art approaches to bi-
linear recovery, including lifted VAMP and Bilinear Generalized
Approximate Message Passing.

Index Terms—Approximate message passing, expectation prop-
agation, expectation maximization, self-calibration, computed
tomography, dictionary learning.

1. INTRODUCTION
A. Motivation

ANY problems of interest in science and engineering

can be formulated as estimation of a structured matrix

Z from noisy or incomplete measurements. The type of structure
in Z determines the specific subproblem to be solved.

For example, when Z has a low-rank structure and only

a subset of its entries are observed, the problem is known

as matrix completion [1]. When Z = L + S for low-rank L

and sparse S, the problem of estimating L and S is known

as robust principle components analysis (RPCA) [2]. When

Z = BC with sparse C, the problem of estimating B and

C' is known as dictionary learning [3]. When Z = BC with
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nonnegative B and C, the problem is known as nonnegative
matrix factorization (NMF) [4].

Sometimes Z has a more complicated structure. For example,
the problems of self-calibration and blind (circular) deconvo-
lution [5] can be formulated using Z = Diag(H b)¥ C, where
H and ¥ are known and b and C are to be estimated.! The
problem of compressive sensing (CS) with matrix uncertainty
[6] can be formulated using z =Y, b;A;c, where {A;} are
known and where b and sparse ¢ are to be estimated. The latter
covers the problem of joint channel-symbol estimation [7], in
which case b; are the data symbols, ¢ contains (possibly sparse)
channel coefficients, and the known {A;} are determined by
the modulation scheme. The more general problem of matrix
CS [8], [9] results from

zm = tr{Al (L+ S)} form =1,..., M, (1)

where { A, } are known and the goal is to estimate low-rank L
and sparse S.

B. Prior Work

Many algorithms have been developed to solve the above
problems. Some solve a convex relaxation of the original prob-
lem, while others attack non-convex formulations via alternat-
ing methods, greedy methods, variational methods, message-
passing methods, and other techniques.

For matrix completion, well-known approaches include the
nuclear-norm-based convex optimization method IALM [10],
the non-convex successive over-relaxation approach LMAFit
[11], the Grassmanian gradient-descent approach GROUSE
[12], the greedy hard-thresholding approach Matrix-ALPS [13],
and the variational-Bayes method VSBL [14]. For RPCA, there
are also versions of TALM [10], LMaFit [11], and VSBL [14],
as well as a robust cousin of GROUSE, called GRASTA [15].
For dictionary learning, there is the greedy K-SVD algorithm
[16], the online SPAMS approach [17], and the ER-SpUD ap-
proach from [18]. A unified approach to matrix completion,
RPCA, and dictionary learning was proposed in [19]-[21] us-
ing an extension of the approximate message-passing (AMP)
methodology from [22], [23]. The resulting “bilinear general-
ized AMP” (BiGAMP) algorithm was compared to the afore-
mentioned methods in [20] and found (empirically) to be com-
petitive, if not superior, in phase transition and runtime. A related
approach known as LowR AMP was proposed [24] and analyzed
in [25], [26].

'Here and in the sequel, we use lowercase bold notation for vectors and
uppercase bold notation for matrices.
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For self-calibration and blind deconvolution, well-known ap-
proaches include the convex relaxations from [5], [27], [28] and
the alternating method from [29]. For CS with matrix uncer-
tainty, there is the award-winning non-convex method [6]. For
matrix CS, the well-known papers [8], [30], [31] proposed con-
vex approaches and [9]. [13] proposed greedy approaches. See
the recent overview [32] for many other works. An AMP-based
approach to self-calibration, blind deconvolution, CS with ma-
trix uncertainty, and matrix CS was proposed in [33] and an-
alyzed in [34]. This “parametric BIGAMP” (PBiGAMP) was
compared to the above works in [33] and found to yield im-
proved empirical phase transitions.

More recently, AMP methods for bilinear inference were pro-
posed using the “lifting” approach (see, e.g., [5], [28], [32], [35]
for seminal papers on lifting). To illustrate the idea, suppose that
the measurement vector y € R™ takes the form

Q N
Yy = Z Zbiag-,jcj + w,

i=1 j=1

@

where a; ; € RM is known for all 4,5 and the goal is to re-
cover b = [by,...,bg]" and ¢ = [c1,...,cn]T in the presence
of white noise w. Rewriting the measurements as

Q
y=Y bilais,. ..,ain]ectw 3)
- —_—
i=1 éA‘_
blc
=[A;---Ag] +w @)
——
LA bQC
=Azt+wforx=b®c= vec(ch), (5)

we see that the noisy bilinear recovery problem (2) can be rewrit-
ten as the noisy linear recovery problem (5) with a rank-one
structure on (the matrix form of) . Thus, if this low-rank signal
structure can be exploited by a linear inference algorithm, then
bilinear inference can be accomplished. This is precisely what
was proposed in [36], building on the non-separable-denoising
version of the AMP algorithm from [37]. A rigorous analysis of
“lifted AMP” was presented in [38].

The trouble with AMP is that its behavior is understood only
in the case of large [39] or infinitely large, i.i.d. (sub) Gaus-
sian A [40], [41]. Even small deviations from this scenario
(e.g., mildly ill-conditioned and/or non-zero-mean A) can cause
AMP to diverge [42]-[44]. To address this issue, an alterna-
tive called Vector AMP (VAMP) was proposed and analyzed
in [45], with close connections to expectation propagation [46]
(see also [47]-[49]). There it was established that, if A is an in-
finitely large right-rotationally invariant” random matrix and the
denoising function used by VAMP is separable and Lipschitz,
then VAMP’s performance can be exactly predicted by a scalar

Uf Ais ?ght—rotationa]]y invariant then its singular value decomposition
A =USV' has Haar distributed V', i.e., V' is uniformly distributed over the
group of orthogonal matrices.
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state-evolution that also provides testable conditions for opti-
mality. Since the class of right-rotationally invariant matrices is
much larger than the class of i.i.d. Gaussian matrices, VAMP is
much more robust than AMP with regards to the construction of
A. For example, VAMP has no problem with ill-conditioned or
mean-shifted matrices [45].

Very recently, [50] performed a rigorous analysis of VAMP
under non-separable Lipschitz denoisers, showing that—here
too—VAMP’s behavior is exactly predicted by a scalar state-
evolution when A is infinitely large and right-rotationally invari-
ant. Furthermore, [ 50] demonstrated the success of lifted VAMP
on bilinear problems such as self-calibration and CS with matrix
uncertainty. In addition, [50] gave evidence that, like AMP, the
PBiGAMP algorithm is sensitive to deviations from the i.i.d. as-
sumptions used in its derivation [33] and analysis [34]. For this
reason, lifted VAMP significantly outperformed PBiGAMP in
some cases [50].

Despite its good performance and rigorous analyses under in-
finitely large right-rotationally invariant random A, lifted VAMP
suffers from computational issues brought on by the lifting itself:
The N + @Q unknowns [b, €] in the bilinear problem (2) manifest
as N unknowns x after lifting to (5). This is a serious problem
when NV and () are both large. As a concrete example, consider
the application of lifting to (square) dictionary learning, where
the goal is to recover B € RV*N and sparse C' € RV*L from
noisy measurements Y = BC' + W . This bilinear relationship
can be lifted via

Y =Y bijAi,C+W ©)
ij
= [A111---AN,N] (b@C) + W, (7
e —_— N —

2 ARV & x cRNL

where A; j € RN is constructed with a 1 in the (3, j)th posi-
tion and zeros elsewhere, and where b = [by 1,...,by, S
R™N*. Even at the relatively small patch size of 8 x 8 (i.e.,
N = 64), the matrix A has dimension 64 x 262 144, and the
unknown matrix X has dimension 262 144 x L. The rule-of-
thumb L = 5N In N [18] then gives L = 1331, in which case
X contains 3.5 x 10® entries, which leads to difficulties with
computation and memory.

C. Contributions

In this paper, we present a novel VAMP-based approach to
bilinear recovery. With the aim of computational efficiency, we
avoid lifting and instead build on the recently proposed Adap-
tive VAMP framework from [51]. However, different from [51],
which focused on noisy linear recovery, we focus on noisy bi-
linear recovery.

In particular, we focus on recovering {b;} and C' from noisy
measurements Y € RM*L of the form

Q
Y =) bAC+W,

i=1

)



SARKAR et al.: BILINEAR RECOVERY USING ADAPTIVE VECTOR-AMP

where {A;} are known and W contains white noise. Note
that (8) is a multiple-measurement vector (MMYV) extension
of (3), and that it covers all of the motivating problems dis-
cussed in Section I-A. For example, in self-calibration, where
we estimate b and C' from Y = Diag(Hb)¥C + W, we
can set A; = Diag(h;)¥, where h; is the ith column of
H. Or, in dictionary learning, where we estimate B and C
from Y =BC +W, we can write B = Zfif b; A; for
A =ey_1), e{(i—l)/M’J’ where (i) denotes i-modulo-M,
|| denotes floor, and {e;} is the standard basis.

When deriving? the proposed method, we treat {b; } as deter-
ministic unknowns and the entries of C' as random variables.
The prior distribution on C' is assumed to be known up to some
(possibly) unknown hyperparameters, which are learned jointly
with {b;} and C. Also, W is treated as additive white Gaussian
noise (AWGN) with an unknown variance that is also learned.
More details are provided in the sequel.

We show (empirically) that the proposed Bilinear Adaptive
VAMP (BAd-VAMP) method performs as well as the EM-
PBiGAMP algorithm from [33], with regard to accuracy and
computational complexity, when the underlying matrices are
i.i.d., as assumed for the derivation of PBiGAMP. However,
we will show that BAd-VAMP outperforms EM-PBiGAMP
when the underlying matrices become ill-conditioned. In the ill-
conditioned case, we show that BAd-VAMP performs as well as,
and sometimes significantly better than, lifted VAMP. However,
BAd-VAMP is much more computationally efficient due to its
avoidance of lifting. In this sense, the proposed BAd-VAMP is
shown to be accurate, robust, and computationally efficient.

Notation: In this paper, we use boldface uppercase letters to
denote matrices (e.g., X), boldface lowercase letters for vec-
tors (e.g., «) and non-bold letters for scalars (e.g., ). Given
a matrix X, we use x; to denote the [th column and =,; to
denote the element in the nth row and /th column. We use
E[f(x)|b] to denote the expectation of f(x) w.r.t. the density
b.ie., E[f(z)|b] = [ f(x)b(x)dx, and we use var[f(x)|b] for
the corresponding variance. We use Diag(x) to denote the diag-
onal matrix created from vector x, and diag(X ) to denote the
vector of elements on the diagonal of the matrix X .

II. PROPOSED FRAMEWORK

In an effort to make our algorithmic development more consis-
tent with the VAMP papers [45], [50], [51], we now make some
minor notational changes relative to (8). First, we will use the
notation A(b) £ 37, b;A; to be concise. Second, the quantities
b; and C in (8) will be changed to 6.4 ; and X, respectively.

The problem of interest can thus be stated as follows: es-
timate the matrix X € R™V*L and learn the parameters © =
{04, 0,7y } in the statistical model

Y =A0)X +W (9a)
ii.d.

X ~px(50z), wn = N(0,750), (9b)

3 Although the derivation treats the entries of €' as random variables and the
associated denoiser as Bayesian, the final algorithm is more general in that it
only requires the denoiser to be Lipschitz.
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where A(-) is a known matrix-valued linear function, and
px(-;85) is a density on X parameterized by the vector 6.
Here, 7, is the noise precision, i.e., the inverse noise variance.

More precisely, we aim to compute the maximum-likelihood
(ML) estimate of © and, under that estimate, compute the min-
imum mean-squared error (MMSE) estimate of X, i.e.,

Oy = argmaxpy(V; ©) (10)

Xmmse — E[X|Y; Om. (11)

In(10), py(Y'; ®) is the likelihood function of ®, which can be
written as

p(Y:©) = [ px(X; @)prx(Y|X:©)dX.
In (11), the expectation is taken over the posterior density

_ px(X; Om)pyx(Y | X; Om)

12)

pxiy(X[Y; Om) = (13)
| py(Y;Om)
The statistical model (9) implies that*

L
pyix(Y1X;0) = [[ pyx(wil®:: ©) (14)

=1

where

pyx(ylx; ©) = N (y; A(04), I /7). (15)

For simplicity, we treat {z; }/- | as ii.d. in the sequel, so that

L
px(X;0) =[] px(@s; 62) (16)

=1

for some density px(-; 8, ) parameterized by 8. In this case, the
posterior density decouples as

L
pxv(X[Y;0) o< [ px(@1; ©)pypp(wi|z1; ©).

=1

an

ITI. BACKGROUND

A. Background on VAMP

Recalling (11), we are interested in computing the MMSE
estimate of X from the noisy measurements Y . This problem is
solved (under certain conditions) by the VAMP approach from
[45]. We now review VAMP at the detail needed for further
development of BAd-VAMP.

From (11), the MMSE estimate of X equals the mean of the
posterior pdf px|y. Because py|y decouples across the columns
of X, as in (17), it suffices to consider a single column and drop
the [ notation for simplicity. Also, for now, we will assume that
© are the true parameters used to generate (Y, X') and drop the
O notation for simplicity; we will revisit the estimation of ® in
Section ITI-B. With these simplifications, (9) reduces to

y:Am—I—N(U:I/FYw): :I:NPJ(' (18)

4In (14)<(16), to promote notational simplicity, the left side of the equation
is written using © even though the right side depends on a subset of ©.
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Recall that the MMSE estimate of x equals

Elzly] ~ [ = pay(aly) de (19)
for the posterior density
Pxiy(@lY) = Z(y) " px(@)pyin(yl2), (20)
where Z(y) is the normalizing constant
20) 2 [ pel@lpyalyle) do. @

For high-dimensional x, the integrals in (19) and (21) are diffi-
cult to compute directly. Thus other methods must be used.
Variational inference (VI) [52] can be used to bypass the com-
putation of Z (). For example, notice that the true posterior py|y
can be recovered by solving the variational optimization (over
densities)
qg= a:fgngDKL(ti‘Hwa), (22)

where Dy (q | p) denotes the KL divergence from p to g, i.e.,

Dlallp) 2 [ @) 2 az. 23)
p(x)
Plugging (20) into (23), we see that
Dy (¢ |l pxly) = Dri(g |l px) + Dx(g || pyix) + H(q)
+InZ(y) (24)

where H(g) £ — [ g(z)Ing(x)dz is the differential entropy
of  ~ ¢. Thus it follows from (22) and (24) that

q = argmin {Dxu(gllpx) + Dxilgllpyix) + H(q)},  (25)

which bypasses Z (). Still, solving (25) is difficult in most cases
of interest. The typical response is to impose constraints on g,
but doing so compromises g and its mean.

We take a different approach. Using the “Gibbs free energy”

J(q1,492,93) = Dx(q1|lpx) + Dku(g2llpyix) + H(gs), (26)

one can rewrite (25) as’

arg min min max J(q1, g2, g3) (27a)
q1 qz qa
s.t. g1 = g2 = gs. (27b)

But, as discussed earlier, (27) is difficult to solve. In the expec-
tation consistent approximate inference (EC) scheme proposed
by Opper and Winther in [46], the density constraint (27b) is
relaxed to moment-matching constraints, i.e.,

arg min min max J(q1, g2, g3) (28a)
s gz qa
s.t. E[z|q1] = E[z|gs] = E[z|g3] (28b)

tr{Cov[z|g1]} = tr{Cov|[x|g2]} = tr{Cov[z|gs]}, (28¢c)

SWe minimize over g1 and g2 because Dy (g1 px) and Dy (g2([py|x) are
convex, while we maximize over g3 because H (gs) is concave.
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Algorithm 1: VAMP algorithm [45].
I: initialize:
i

2: fort=0,...,Tha do

3 @t = g1(r§, 1)

4 L/t = (g1 (ri, 1))/

5: v5=ni — i

6: ry = (niei —1r)/7

7: xh = g2(1%,75)

8 1/ns = (g5(r5,73)) /75

9 M =nh—44

10 ritt = (nbach — ~rb)/(nb — )
11: end for

where E[z|q"] denotes E [z] under = ~ ¢*. This yields stationary
points of the form

g1(x) o< px(x) exp (—%H:B -7y ||%) (29a)
g2() o< py x(y|@) exp (— L[|z — 72||3) (29b)
g3(w) ocexp (— 2|z — 2(3), (29)

for {r1,71, 72,72, &, n} that lead to satisfaction of (28b)—
(28c). Various approaches can be used to solve for
{r1,71, 72,72, &, n}. One is to alternate the update of { (1, 1),
(z,7m)} and {(r2,v2), (Z,n)} such that, at each iteration, the
moments of g3 are consistent with either g; or go. This approach
is summarized in Algorithm 1 using®

J @ px(e)N (2371, I /7)) dee
J ex(®)N (571, 1 /71) dee

Jzpyx(ylT)N (2572, I /72) dz
[ pyx(ylE)N (2572, 1 /7;) dz '
which, under these definitions of g; and g2, can be recog-
nized as an instance of expectation propagation (EP) [53,
Section 3.2], [54], [55]. In lines 4 and 8, g}(r;,~;) € RY de-
notes the diagonal of the Jacobian matrix of g;(-,;) at r;, i.e.,

39::(7'51%))

gi(ri,m) = (30)

Il

g2(r2,72) (31)

(32)

g:(7i, i) £ diag ( ar,

and (z) denotes the average coefficient value, i.e., (x) =
% Ef‘;l x; for & € RY. Due to the form of pyx in (15), it can
be shown that

92(r2,7%2) = (I + 7 ATA) (1273 + 7, ATY)

(gh(r2,72)) = Yotr{ (72T + 7ATA)}/N.

Meanwhile, the form of g1(-) depends on py through (30).
Based on the description above, one might wonder whether
the EC stationary point & = E[x|q;] = E[z|g] = E[x|gs] is
a good approximation of the true conditional mean E[z|y],
and additionally one might question whether Algorithm 1
converges to this Z. Both of these concerns were resolved in
the VAMP paper [45]. In particular, [45] showed that, when

(33)
(34)

SIn [47], different g and go were proposed so that the EP algorithm accom-
plishes joint MAP estimation of z from v, i.e., T = arg max,, p(z|y).
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A is right rotationally invariant and asymptotically large, the
per-iteration behavior of Algorithm 1 with ga(-) from (33)
and Lipschitz’ g;(-) is exactly predicted by a scalar state
evolution. Furthermore, in the case where g1(-) is matched to
generating py from (18) as in (30), and where ga(-) uses the
true AWGN precision 7, < oo as in (31), the MSE of the fixed
point T of Algorithm 1 was shown in [45] to match the MMSE
predicted by the replica method [56]. This replica prediction is
conjectured to be correct [57], in which case the Z generated by
Algorithm 1 under (30) and (33) will be MMSE for infinitely
large, right-rotationally invariant A when the state evolution
has unique fixed points. Note that, for infinitely large i.i.d. A,
the replica prediction has been proven to be correct [58], [59].

In the sequel, we will refer to Algorithm 1 with generic Lip-
schitz g4(-) as the VAMP algorithm, noting that it coincides
with EP in the special case of Bayesian g (-) from (30). VAMP
is more general than EP because it can be used with denois-
ers g1(-) that have no probabilistic interpretation and still lead
to precisely predictable behavior under infinitely large, right-
rotationally A [45], [50]. We note that, when VAMP is applied
to the MMV model (9a), a separate copy of {71, v1, 72, 72, T, n}
must be tracked for each column of Y.

B. Background on Expectation Maximization

We now return to the case where © is unknown and the goal
is to compute its ML estimate, @y_. From (10) and (12), we
have

G —argmin—In [ px(X; ©)pyx(Y|X;©)dX, (3)

but (35) is impractical to optimize directly due to the high
dimensional integral.

Expectation-maximization (EM) [60] is a well known iterative
approach to ML that alternates between i) minimizing an upper-
bound of the negative log-likelihood and ii) tightening the upper-
bound. The EM algorithm is usually written as

Q(©;8)2 —E[lnpxy(X,Y;0)|Y;0]  (36a)

(36b)

-~ 1
Letting ¢" = px|y(:|Y; © ), we can write

Q(©;8") = —E [Inpx(X;©) |Y; 6]

~E[lnpyx(Y|X;0)|Y;0]  (37a)
= —E [Inpx(X;0) |¢]

—E [lnpyx(Y|X;0) 4] (37b)
= J(¢', ¢", q'; ©) + const. (37¢)

where J, also known as the Gibbs free energy, is defined as
J(g1,42,93; ©) = Dxi(ai[lpx(-, ©))
+ D (@2llpyix(Y]-;©)) + H(gs). (38)

TWhile the original VAMP paper [45] focused on separable Lipschitz g1 (-),
[50] extended the results to non-separable Lipschitz g (-).
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Thus, (36) can also be written as [61]

-~ F
g =pxy(-|Y;0)

~t+1
e ZMgHgnJ(q‘,q‘,qt;@)-

(39a)
(39b)

Note that J(¢*, ¢%, ¢*; ©) is an upper bound on — In py(Y'; ©)
for any ¢" since

J(q',q", ¢";©) = —Inpy(Y;O) + Dxi(¢" || pyix(Y | ©)),
(40)

where Dk > 0 by construction. Thus, while the specific choice
of ¢" in (39a) yields a tight upper bound in that

~1 ~ T
J(¢',q",q:0) = —Inpy(Y;0), (41)

other choices of bounding g* can also be used in EM [61].

1V. BILINEAR ADAPTIVE VAMP

We now propose an algorithm that approximates the quantities
in (10)—(11), i.e., the ML estimate of @ = {6 4, 8, v, } and the
MMSE estimate of X under the statistical model (9). We start
by developing Bilinear EM-VAMP and then add “variance auto-
tuning” to obtain Bilinear Adaptive VAMP (BAd-VAMP).

A. Bilinear EM-VAMP

From the descriptions of VAMP and EM in Section III, we
see that they both minimize the same Gibbs free energy cost
J(q1, g2, g3; ©) from (38), but w.r.t. different variables; VAMP
minimizes J w.r.t. the moment-constrained beliefs {q1, g2, 43}
for a given ®, while EM minimizes J w.r.t. ® for a given
{q1,92,93}. As a result, the two approaches can be straight-
forwardly merged for joinf estimation of {q;, g2, g3} and @. In
doing so, the goal is to solve the optimization problem

arg min min max J(q1, g2, g3; ©) (42a)
©.q1 g9z 4gs

st. E[z|q] = E[z|g2] = E[w|qs] (42b)

tr{Cov[z|g:]} = tr{Cov[z|go]} = tr{Cov[z[gs]}, (42¢)

and the proposed methodology is to “interleave” the VAMP and
EM algorithms, as specified in Algorithm 2. There, the estima-
tion functions g; in lines 3-4 and g2 ; in lines 9-10 are defined
as

g1(ria, 71,05 02)
s Jxpx(x;0)N (2571, 1 /71,) de

£ 43

fpx(ﬂ?;ng(iﬂ;T'l,,hI/‘Yl,,z)d‘r @3
g2.1(T2.1,72,1;0 4, Yw)

a fmpy\x(yﬂfﬂ;9A=’Yw)N($;T2,c,I/’72,c)d33 (44)

I oy(yil®; 0.4, vu)N (@5 720, T/ y2,0) da
The other lines in Algorithm 2 will be detailed in Section IV-C.

B. Bilinear Adaptive VAMP

The VAMP state-evolution from [45, Eq. (34), (35)] shows
that when i) A(8%) is infinitely large and right-rotationally in-
variant and ii) the estimation functions g, and g» ; are “matched”
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Algorithm 2: Bilinear EM-VAMP.
1: initialize:
i ""11:%;:9 0070

2: fort=0,. .Tmaxdo

3 i a:i,! :Ql(rﬁ,,z:'Tf,:E 0;)

4 VL1 /ny, = (g1 (r] 171, 02)) /7,

5: ¢ (X) x H!  Pxlx; 05 )e—j‘h llz—rg 112

6: 0%+ = argmaxg, E[ln px(X; 62)|qf]

T VEiys, =M — Yy

8 Vi 7’5,: = ('-'?i,,z"—”?i,: - ’ﬁ,ﬂ"i,z)/‘rﬁ,z

9: Vi - 33%,; = 9‘211(9’%,31 ’Y%,z; 0%, )

10: Vi 1/n5, = (g5 c(rgh’?’;;iefm’ﬁu))/ﬁ,c

11: 3(X) o H: 1 Py(Yi|T; 0%, 7 )e e~ rialmi—rs, P
12: 0% = argmaxy, E[lnpyx(Y[X;60.4,7%)[Y, ¢f]
13: 7“1 = argmax.,, E[lnpyx(Y|X; 05", 7,)|Y, i
14 Vi ’Yﬁl "Iﬁz - 7%1

15: i Tﬁl (5, 13’2; 7%,!7'%1!)/7:—,1;1

16: end for

(i.e., MMSE) for the statistical model generating (X ,Y"), the
VAMP quantities {(r},,~7 )}/, fori = 1,2 obey

i =2+ N(0,I/4%,) Vi
Ty = Tg,g +N(0: I/FYBI) VI!

where x; is the Ith column of the true signal realization X that
we aim to recover. That is, rf, ; is an AWGN-corrupted version
of the true signal @; with known AWGN precision Fﬁ,!, and the
true signal a; is an AWGN-corrupted version of r5 , with known
AWGN precision 75, ;- In the context of EM-VAMP under 9),
this “matched” condition requires that 6%, 6%, and ~%, are all
perfect estimates. When 6%, 6%, or ~% are not perfect, so that
g1 and g5 ; are mismatched, the VAMP state-evolution shows
that rf, ; is still an AWGN corrupted version of x;, but with an
AWGN precision different than +% ,. The impact on EM-VAMP
is the following. While the algor,ithm is trying to learn © =
{64,6,7,}, the value of vf, does not correctly characterize
the noise precision in 7 ,. As a result, the beliefs ¢} and g}
in lines 5 and 11 of Algorithm 2 become mismatched, which
compromises the EM updates of ©°.

To remedy this situation, it was proposed in [62] (in the context
of EM-GAMP [63]) to explicitly estimate the precision of the
AWGN corruption on 7% ; and 7%, and use it in place of the
AMP-supplied estimates fy{ ; and fy;" ;- This approach was coined
“Adaptive” GAMPin [62] and later extended to (linear) Adaptive
VAMP in [51].

For Bilinear Adaptive VAMP, the first goal is to replace the
estimation of 8% in line 6 of Algorithm 2 with the joint ML
estimation

(45a)
(45b)

(65,71) = arg max p(R;71,62) (46)
under the statistical model
rii =+ N(0,I/y,) v, x; ~ px(:02) VI,  (47)
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with independence across! = 1,.. ., L. For this subproblem, we
propose to use (inner) EM iterations indexed by T, i.e.,

(6T+1 ‘T+1)

= arg max E [In p(X, R}; 71, 6z) | Ri;~T.67]  (48)
= arg max { E [Inp(X:6) | R} 77, 6%
+E [Inp(RX;571) | BSAT, 03] }. (49)
The previous optimization decouples into
HT+1—aIgmax]E[h1pX (7] )|R1,’}fl,97] (50)
and
71" = argmaxE [Inp(Ri|X;71) | R;0T,6] (5D
L
= acrgrrggXZ]E [Inp(r} | vi) | 55970 02],
=1
(52)
where the latter optimization decouples further into
N
T+1 -
M. —arglgtfafc{ 5 In7
Y,
— 5 Efllm = rilE [ risi 9;]} (53)
T 111
= NA{E [llz1 — 4,013 | 7§51 03]} (54
1 & h
- { = S B [ = ) P2 9;]} (59)
n=1
1 1)
={ Fleti—rid*+—1¢ (56)
{N 1 Ty .
forl=1,...,L and
@1y 2 E [@i|r] 0], 07 (57)
= 91(r11,71,4:6%) (58)
1/1y = tr{ Cov [mi|ri s 71, 07] /N (59)
= (01(r1 71,5 02)) /71, (60)

Above, we detailed the re-estimation of 4%. A similar pro-
cedure can be used for re-estimation of 5. The resulting Bi-
linear Adaptive VAMP (BAd-VAMP) is summarized in Algo-
rithm 3 using 71 max EM iterations for the first inner loop and
T2,max EM iterations for the second inner loop. To avoid the
complications of a dual-index notation (i.e., ¢ and 7), we use
only the single index ¢ in Algorithm 3 and over-write the quan-
tities in each inner loop. Note that, when 71 max = T2,max = 0,
BAd-VAMP (i.e., Algorithm 3) reduces to bilinear EM-VAMP
(i.e., Algorithm 2).

C. Algorithm Details

We now provide additional details on the steps in Algorithm 3.
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Algorithm 3: Bilinear Adaptive VAMP.
I: initialize:
vl rilj,i!!'}'{ljh 03, 0% 70,

2: fort=0,..., Tomax do

3 forT=0,...,7T; max do

4: Vil :1:3113 +— gl(?‘h,’yf,!; 0%)

3 Vi 1/ni = (gi(r] 571 5 02)) /1,

6: vi: 1/’7%,,1 — %”xtl,t - ri,,z”Z + 1/’?3,1

7 4§(X) oc [Tizy pa(ary; 6)e 2rhalmrial?

8: 9; +— argmaxg_ E[lnpx(X; 6¢)|q’i]

9: end for

10: oI+l =0t

11: i ’Y%,,z = '-'?i,e - ’Yiz

12: vi: Tg,z = ("?i,:l’i,z - ’Yi,z'*"i,:)/’!%,z

13: for 7 =0,...,73 max do

14 i m%,,i! = 9213(T%,137§,1; 6?4.1 '}'Ltu)

15: vi: 1/’?5,; — (Qé,t(rg,zﬁ%,z;9?@7&))/’75,;

16: Vi:1/v5, ﬁIlGBE,g - rg,,z”Z +1/m5,

17: g5(X) o< TT, pyiw(wnlms; 04y, 78, e~ 2eal= bl
18: 0’y + argmaxy, Elln pyx(Y | X604, 7;,)|Y, g3
19: Ve argmax%Eﬂnpy|x(Y|X;9ﬁ,‘,7w)|Y,q§]
20: end for
21: 0! =6
2 A=,
23: Vi ’Yﬁl M0 — Yoy
24: i : ""tltl = (’?%13‘1’%,: - 75,,37'3,3)/’?’%1

25: end for

1) Estimating X : Recalling the definition of g5 ;(-) in (44),
the form of py|x in (15) implies that

g2,1(7h 1,78 1304, 9%) = Ch(vhrs, +75,A(0%) yr) (61)
(95,(r51,75,05 0%, 1)) = 715, {C1}/N (62)
for

Ci 2 (o In +7,A(0Y )TA(6Y, ))

To avoid computing a separate matrix inverse (63) for each

(63)

l=1,...,L, onecould instead compute the eigenvalue decom-
position

A(6Y }TA(G ) = U" Diag(s )UtT (64)
and then leverage the fact that

C} = U' Diag(y4 1 +44,8") U, (65)

which reduces to the inversion of a diagonal matrix for each
I=1,...,L

2) Learning 6 o: We now provide details on the update of 8 4
and 7y, in lines 18-19 of Algorithm 3. Given the form of py x in
(14)—(15), we have that

Inpyx(Y| X564, vw)

— MLny, — 2|V — A(64)X|% +const  (66)
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= MLnqy, — %(tr{YYT} — 2tr{A(6.4)XY"}

+tr{A(0.4)XXTA(6.4)"}) + const. (67)
Since
E [X|q}] = X} (68)
L
E [XXT|¢5] = ZE @] | g5 ] XEXET"‘ZC?:
=1
£ ct
(69)
we have that
E [Inpyx(Y|X;604,%)|Y, 4]
ML Y . -
= S Ing — 2 (e{Y YT} —20{A(04) X5V}
+tr{A(6.4)X5X5TA(6.4)") +tr{A(9A)CtA(6A)T})
(70)
ML
= Iy, — 22 (1Y - A@0) X3
T tr{A(BA)C‘A(BA)T}) + const. 1)

To maximize (71) over 8 4 = [64 1, - -
we consider the affine-linear model

,0.4,¢] with fixed 7,

Q
A(Ba) =Ao+ ) 0a.As, (72)
i=1

noting that non-linear models could be handled using similar
techniques. Plugging (72) into (70), we get

E [Inpyx(Y|X;604,7)|Y, 4]

Q Q
o' T
— const — ?‘“'E ) autr{A(CT+ XEXE)AT}0a,

i=1 j=1
Q T
—w Y 04 (tr{A(C* + XEXE ) AT} —tr{ A XY T})
i=1
(73)
- —%‘”(GLH‘GA - 26},@‘) + const (74)
for
[Hiy = tr{ Ai(C* + X5X3T) AT} (75)
= tr{ AJA,(C* + XX 3"} (76)
and

(81, = tr{ A, X5Y T} — tr{A,(C* + X, XA} (77)

— tr{YTA; X5} — tr{AJA(C + X X3T)},
(78)
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where A}Ai and YT A; can be pre-computed. Zeroing the gra-
dient of (74) w.r.t. 8 4, we find that the maximizer is

9:‘344-1 _ (Ht)_lﬁt, (79)
A special case of (72) is where A(-) has no structure, i.e.,

M N
A(04) =D Oammemer,.

m=1n=1

(80)

where e, denotes the mth standard basis vector. In this case, it

can be shown that
A0 =Y X5 (CT + XX 81)

3) Learning ~,,: To maximize (71) over -y, with fixed 8 4 =
Bi,_“, we search for the values of ~,, that zero the derivative of
(71). The unique solution is straightforwardly shown to be

1
I+l

+ tr{A(ij‘l)C‘A(ijl)T}).

(I - a@sHxsI

(82)

4) Summary: In Algorithm 4, BAd-VAMP is rewritten with
detailed expressions for the updates of x4 ;, 75 ;, 8%, and 7.

D. Algorithm Enhancements

We now propose several enhancements to the BAd-VAMP
algorithm presented in Algorithm 3 and detailed in Algorithm 4.

1) Damping: For fixed ©! and infinitely large right-
rotationally invariant A(6?%), the state-evolution of VAMP
guarantees its convergence. But when A (8%, ) deviates from this
assumption, damping the VAMP iterations can help maintain
convergence [45]. With damping, lines 25-26 of Algorithm 4
(or lines 23-24 of Algorithm 3) would be replaced by

’}’iﬁl =1 =5+ <5 —750)

T’tl—;l =(1- C)?’iz + C("]’%,zmg,} - ’Y%,z”%g)/(’?%,z - 75,,:)
(84)

(83)

for some ¢ € (0, 1). The case { = 1 corresponds to no damping.

2) Negative Precisions: Somelimes the precisions {71,;,
2, 11 can be negative. We suggest to restrict the precisions to the
interval [Ymin, 00), for very small 4 > 0, in lines 11 and 25
of Algorithm 4 (or lines 11 and 23 of Algorithm 3).

3) Restarts: Due to the non-convex nature of the bilinear in-
ference problem, the algorithm may get stuck at local minima
or slowed by saddle points. To mitigate these issues, it some-
times helps to restart the algorithm. For each restart, we sug-
gest to initialize 69 at the final estimate of 6 4 returned by the
previous run.

E. Relation to Previous Work

The proposed Bilinear Adaptive VAMP algorithm extends
the (linear) Adaptive VAMP algorithm of [51] from the case
where A(6,) is known to the case where A(f 4) is unknown.
In the known-A(6 4) setting, where A (6 4) is infinitely large
and right-rotationally invariant, it was rigorously established in
[51] that Adaptive VAMP obeys a state-evolution similar to that
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Algorithm 4: Bilinear Adaptive VAMP (Detailed).

1: initialize:
VI : fP(]:_',g:v ’T]D‘II,: 62: GUA: 71.0!:

2: fort=0,...,Tha do

3 for 7 =0,...,7 max do

4 Vi@t gi(rh 7 05)

5: YU 1/mi <+ (gu (] 571 08)) /1,

6 Vi - 1/’}’{,1 — %"wi,g - rﬁ,..'.”z + l/ni,t

7 04(X) o [Ty pela; 6L )¢ Hrhalmrial”
8 6L arg maxg_ E[ln px(X; 02)lqi]

9: end for

10: 05+ =0y

11: Vi ’}’%,z = '-'?i,: - ’Yiz

12: Viirh = (el — 1) /s

13: for 7 =0,...,72 max do

14: W CL e (o4 I + 75 A(0%)TA(0Y)) "
15: Vl:axh, < Cf(v5m5, +70,A(6%) yr)
16: vl: 1/}, « tr{C}}/N

17: C'+ 3, C}

18: Vi, j 1 [Hy + tr{ AJA;(Ct + X1X4")}

Vi: [BY; + tr{YTA, X5}

19:
2 —tr{ AJA,(Ct + X5X5T)}
20: 0%, « (H) 3¢
21 U« mz(IY - A@OX5IE
+tr{ A(6%)C*A(6%)"})
22: end for
23: 6 =6
24: it t:_l_;yfu
25: vi: 71,11 =T~ Y, .
26: Vi ""EE = ("?5,,;‘3%,: - ’Y%,,z"%,z)/ﬁ,t
27: end for

of VAMP, and that its estimates of {6, } are asymptotically
consistent under certain identifiability conditions, i.e., they con-
verge to the true values as ¢ — oc. As future work, it would be
interesting to understand whether Bilinear Adaptive VAMP also
obeys a state evolution for certain classes of A(-).

The proposed BAd-VAMP algorithm targets the same class®
of bilinear recovery problems as the EM-PBiGAMP algorithm
from [33], and both leverage EM for automated hyperparameter
tuning. However, the “AMP” aspects of these algorithms are fun-
damentally different. PBIGAMP treats the vectors {a; ;} in (2)
as i.i.d. Gaussian for its derivation, whereas BAd-VAMP treats
the matrix A(b) = Z?:1 b; A; as right rotationally-invariant for
its derivation. The latter allows more freedom in the singular val-
ues of A(b), which leads to increased robustness in practice, as
demonstrated by the numerical experiments in Section V.

BAd-VAMP and lifted VAMP both leverage the VAMP ap-
proach from [45] to solve bilinear inference problems. However,

8Note that the BIGAMP algorithm [19]-[20] is a special case of the PBIGAMP
algorithm [33]. BIGAMP applies to the recovery of A and X from measure-
ments of the form ¥ = AX + W, whereas PBiIGAMP applies to the recovery
of b and X from ¥ = A(b)X + W under known affine linear A(-). Both
can be combined with EM for hyperparameter learning.
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they do so in very different ways. As discussed in Section L, lifted
VAMP “lifts” the bilinear problem into a higher-dimensional lin-
ear problem, and then uses non-separable denoising to jointly
estimate b and ¢ in (5). An unfortunate consequence of lifting is
a possibly significant increase in computational complexity and
memory. In contrast, BAd-VAMP avoids lifting, and it employs
EM to estimate b and VAMP to estimate c. Interestingly, Sec-
tion V shows BAd-VAMP performing equal or better to lifted
VAMP in all experiments.

V. NUMERICAL SIMULATIONS

In this section, we present the results of numerical simula-
tions that study the behavior of the BAd-VAMP algorithm from
Algorithm 4, in comparison to other state-of-the-art algorithms,
on several bilinear recovery problems. In all cases, we ran BAd-
VAMP with 71 ;yax = 1 and 73 1yax = 0 inner EM iterations and
we assumed that the signal prior py is fully known (i.e., 6 is
known). We nominally used a damping coefficient of { = 0.8
and minimum precision of 7y, = 10~%. We initialized BAd-
VAMP by 73 = 0.1, 47, = 1073 ¥/, and we set r¥ , and 89 to
random vectors drawn i.i.d. from A/(0, 10) and (0, 1) respec-
tively. Unless otherwise noted, no restarts were used.

A. CS With Matrix Uncertainty

In compressive sensing (CS) with matrix uncertainty [6],
the goal is to recover the K -sparse signal ¢ € RN and the
uncertainty parameters b from measurements y = A(b)e +
w with w ~ N (0,1/7y,). Here, A(b) = Ag+ Y2, biA,,
where {A; }?zu are known. For our experiments, we used () =
10, N = 256, and K = 10, and we selected ~,, so that SNR £
E[||Ac||?]/ E[||w|?] = 40 dB. Also, the uncertainty parame-
ters b were drawn N(0, ), and ¢ was drawn with uniformly
random support and with K non-zero elements from A(0,I).
We measured performance using NMSE(b) £ ||b — b||2/||b||?
and NMSE(2) £ ||& — ¢||2/||c||?. As a reference, we consid-
ered two oracle estimators: the MMSE estimator for b assuming
¢ is known, and the MMSE estimator for ¢ assuming b and the
support of ¢ are known.

For our first experiment, the elements of { A; }?Zl were drawn
i.i.d. N(0,1) and the elements of Ay were drawn A/(0, 20).
BAd-VAMP was run for a maximum of 200 iterations with a
maximum of 2 restarts and damping ¢ = 0.86.

Figure 1 shows that the AMP-based algorithms gave near-
oracle performance for the tested range of M /N, although
lifted VAMP performed slightly worse than the others when
M/N = 0.2. In contrast, the performance of WSS-TLS from
the award-winning paper [6] was significantly worse than the
AMP approaches. WSS-TLS aims to solve the non-convex op-
timization problem

2
(3, €) = arg min
b,c =1

Q
(Ao + ZbiAi) c-y

+ b1 /7w + Mlells (85)
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Fig. 1. CS with matrix uncertainty: Median NMSE (over 50 trials) on signal

¢ and uncertainty parameters b versus sampling ratio M /N
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Fig. 2. CS with matrix uncertainty: Median NMSE (over 50 trials) on signal

¢ and uncertainty parameters b versus mean of matrices A; at M/N = 0.6.

using alternating minimization. For WSS-TLS, we used oracle
knowledge of +,,, oracle tuning of the regularization parameter
A, and code from the authors’ website.

For our second experiment, we tested algorithm robustness
to non-zero mean in A(b),” since this is a known issue with
many AMP algorithms [42]-[44]. For this, we fixed the sampling
ratio at M/N = 0.6, drew the elements of {A;}%_, from i.i.d.
N{(u,1), and drew the elements of Ag from i.i.d. A(g,20).
Figure 2 reports the median NMSE versus mean ., and shows
that BAd-VAMP is much more robust to ¢z > 0 than the other
tested AMP algorithms as well as WSS-TLS.

Figure 3 shows the runtime of the algorithms in Figure 1. Our
implementation used MATLAB (R2015b) on an RHEL worksta-
tion with an 8-core Intel i7 processor. Although, for WSS-TLS,
we used a grid-search to optimize A in (85), Figure 3 only shows
the runtime of WSS-TLS after A was chosen. Figure 3 shows
BAd-VAMP running much faster than lifted VAMP and WSS-
TLS, and slightly slower than PBiGAMP.

?For the simpler case where b is known and the objective is to recover ¢ from
y = Ac + w, modifications of AMP that temporarily remove the mean from
A have been proposed [44]. However, it is not clear how to extend this approach
to the bilinear problem of recovering b and c from y = A(b)c + w.
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B. Self-Calibration

In self-calibration [5], the goal is to recover the K -sparse
signal vector ¢ and the calibration parameters b from measure-
ments of the form y = Diag(H b)¥e with known H € RM*@
and ¥ € RM*N_ Here, Hb represents an unknown vector of
gains on the measurements, where the gain vector is believed to
lie in the @)-dimensional subspace spanned by the columns of
H. For our experiment, M = 128, N = 256, ¥ and b where
drawn i.i.d. (0, 1), H was constructed using @ randomly se-
lected columns of the Hadamard matrix, and ¢ was drawn with
uniformly random support and with K non-zero elements from
N(0,I).

Figure 4 shows the rate of successful recovery versus sub-
space dimension @ and sparsity K for several algorithms.
A recovery (b ¢) was considered “successful” when ||b’.§T —
be'|2./||beT||% < —50 dB. From the figure, we see that the
performance of BAd-VAMP is similar to that of EM-PBiGAMP,
and even slightly better when () is small and K is large. Mean-
while, BAd-VAMP appears significantly better than both lifted
VAMP and SparseLift from [5]. SparseLift is a convex relax-
ation with provable guarantees [5]. For computational reasons
(recall the discussion in Section [-B), it was difficult to simulate
lifted VAMP for @) > 10.

C. Calibration in Tomography

We consider the problem of reconstructing an image from
a sequence of tomographic projections, where the projections
along each direction are scaled by an unknown calibration gain.
In particular, let ¥, be the tomographic projection matrix'” (i.e.,
Radon transform) corresponding to angle w € [0, 7]. Our goal
is to reconstruct the image x from measurements
bl ‘le
x + w for w ~ N(0,

Yo' 1), (86)

bK"I'wK

10wWe used the matrix form of the Radon transform instead of the operator
form to avoid numerical error when implementing the adjoint.
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Fig. 4. Self-calibration: Empirical success rate (over 50 trials) for several al-

gorithms versus number of calibration parameters ¢} and sparsity K. For com-
putational reasons, VAMP-Lift was simulated only for @ < 10.

where b, ~ N (1, 02) are unknown. Note that, by defining Ay, =
[0,.. wh,O]T we can write y = A(b)x + N (0, ,,I) for
A(b) = Ek:l b A, which matches (8).

In an attempt to solve the above problem, we used BAd-VAMP
to recover the image @ while simultaneously learning the calibra-
tion gains b. For this, we used BAd-VAMP in “plug-and-play”
mode, where the BM3D image denoiser [64] was used to im-
plement the g;(-) function in Algorithm 1. Due to the inherent
scaling ambiguity of the problem (i.e., if (Z, S) is a solution then
sois (a@, a~1b) forany a > 0), we scaled the image estimate &
by the a that minimized ||z — o|| before computing the PSNR.

As baselines, we also tested the VAMP [45], total variation
(TV) [65], [66] and regularization-by-denoising (RED) [67],
[68] approaches (see descriptions below). These approaches
all assume a noisy linear data model of the form y = Az +
N(0,~,'T) with known A.To apply them to (86), we consid-
ered two cases: the genie-calibrated (GC) case, where a genie
supplies the true gains b and the algorithm uses A = A(b),
and the un-calibrated (UC) case, where b is unknown and
the algorithms assume A= A(1). In the latter case, the A-
based model is mismatched to the data-generation model (86).
For fair comparison, we scaled the GC and UC image esti-
mates ¥ by the o that minimized ||@ — a&||2 before computing
the PSNR.

We now provide additional details on the experimental setup.
For @, we used the modified Shepp-Logan phantom of size 64 x
64, shown in the top-left panel of Fig. 5. For A(-), we used K =
25 projections spaced uniformly in w € [0, 7]. The calibration
gains b were generated using o, = 0.06, and the noise precision
yw Was set to achieve an SNR of E[||A(b)z|?]/E[||w|?] =
40 dB. The TV method [65] computes

~ .1 ~
 — angmin { 5y — Al + MVelas | 67
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Fig. 5. Calibration in tomography: Reconstruction PSNR (dB) of 64 x 64
Shepp-Logan phantom from 25 equally spaced tomographic projections. In the

genie-calibrated (GC) case, A = A(b), while in the un-calibrated (UC) case,
A=AQ)

TABLE1I
PSNR (DB) IN THE TOMOGRAPHY EXPERIMENT

measurements BAd-VAMP | VAMP | RED TV
genie calibrated (GC) — 39.57 | 36.56 | 33.27
un-calibrated (UC) 38.27 31.62 | 31.24 | 26.79

for the isotropic TV operator

IVallag =3 /(g — a5 12+ (@05 — 3619)% (88)
i,J

We solved (87) using FASTA [69], and tuned A; to maximize
the PSNR. RED [67], [68] solves the fixed-point equation

A"(A% - y) + M@ - p(@, 7)) = 0 (89)

for T, where p(-, 7) is an image denoising algorithm with noise-
variance 7. For our experiment, we used BM3D for p(-,7),
solved (89) using the ADMM method from [67] with 200 it-
erations, and tuned both A, and 7 to maximize PSNR. For
BAd-VAMP, we initialized b to 1, used damping { = 0.1, as-
sumed known noise precision +,,, and used at most 100 itera-
tions. For VAMP, we initialized 7§ = 10~ and used at most 100
iterations.

Table I reports the median PSNR achieved by each algo-
rithm across 10 random draws of b and w, Fig. 5 shows ex-
ample image recoveries, and Fig. 6 shows the corresponding
error images. From Table I, we see that the PSNR performance
of BAd-VAMP (which does not know b) is nearly as good as
genie-calibrated VAMP, and 1.7 dB better than genie-calibrated
RED. Furthermore, the PSNR performance of BAd-VAMP is
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BAdVAMP

VAMP (GC)

VAMP (UC) RED (UC)

Fig. 6.
in Fig. 5.

Calibration in tomography: Error images for the reconstructions shown

more than 6.6 dB better than un-calibrated VAMP and 7 dB bet-
ter than un-calibrated RED. The uncalibrated VAMP, RED, and
TV recoveries in Fig. 5 are plagued by either streaking artifacts
and/or loss of detail (e.g., note the disappearance of the small
white dots in uncalibrated TV). But the BAdVAMP image re-
covery in Fig. 5 shows no streaking artifacts and a high level of
detail. Likewise, Fig. 6 shows that TV has trouble correctly re-
covering the white outer ellipse, RED has trouble in the interior
region, but BAd-VAMP does well throughout.

D. Noiseless Dictionary Learning

In dictionary learning (DL) [3], the goal is to find a dictio-
nary matrix A € RM*N and a sparse matrix X € RV*L such
that a given matrix Y € RM >~ can be approximately factored
asY = AX. In this section, we test the proposed BAd-VAMP
algorithm for DL by generating Y = A X such that X has K-
sparse columns, and measuring the NMSE on the resulting esti-
mates of A and X.

We consider two cases: i) where the true A is structured
as A = Y9, b;A; with known {A,}2, (recall (72)), and ii)
where the true A is unstructured (recall (80)). In either case,
the pair (A, X') is recoverable only up to an ambiguity: a scalar
ambiguity in the structured case and a generalized permutation
ambiguity in the unstructured case. Thus, when measuring re-
construction quality, we consider

- _|A= A2
NMSE(A) £ mJn”iF 90)
(4) =t AR (
in the structured case and
e . |A-AP|}
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Fig. 7. BAd-VAMP dictionary learning with NV x IV dictionary A and N x
L code matrix X with sparsity rate K /N = 0.2. Top left: success-rate for
unstructured dictionary versus /N and L. Top right: success-rate for structured

dictionary with @@ = N free parameters. Bottom: Median NMSE(E) over 20
trials versus V for an unstructured dictionary with L = 6 N In V.

in the unstructured case, where P denotes the set of general-
ized permutation matrices.!! For our experiments, we drew the
coefficients of {A;}% | and b as i.i.d. N'(0,1) with Q = N in
the structured case, and we drew the coefficients of A as i.i.d.
N(0,1) in the unstructured case.

In our first experiment, we fixed the sparsity rate at K/N =
0.2 and we varied both the dictionary dimension N and the
training length L. The top-right panel of Fig. 7 suggests that, as
the dimension N grows, a fixed training length L is sufficient
to successfully recover A in the structured case with Q@ = N.
By “successfully recover,” we mean that NMSE(A) < —50dB.
Note that this latter prescription for L is consistent with the the-
oretical analysis in [18]. In the unstructured case, the bottom
panel of Figure 7 shows the median NMSE(:&) versys N when
L = 6N In N. Together, the top-left and bottom panels of Fig. 7
suggest that a training length of L = O(N In N) suffices to suc-
cessfully recover A.

In our second experiment, we focused on the unstructured
case, fixed the training length at L = 5N In N, and varied both
the dictionary dimension N and the sparsity K in the columns
of X. Figure 8 shows that BAd-VAMP performed similarly to
EM-BiGAMP [20] for all but very small N, and much better than
K-SVD [16] and SPAMS [17]. The advantage of BAd-VAMP
over EM-BiGAMP for DL will be illustrated in the sequel.

E. Noisy, Ill-Conditioned Dictionary Learning

In this section, we show the robustness of BAd-VAMP over
EM-BiGAMP [19] when learning ill-conditioned dictionaries

If P is a generalized permutation matrix then P — ITD, where IT is a
permutation matrix and D is a diagonal matrix.
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condition number x(A) for unstructured A € RN >N with N = 64, sparsity
K = 13, training length L. = 5N In NV, and SNR = 40 dB.

from noisy measurements. To do so, we generated the mea-
surements as ¥ = AX + W and tested the algorithms in re-
covering A and X (up to appropriate ambiguities). The el-
ements of W were drawn iid. N (0,1/v,) with v, cho-
sen to achieve SNR = E[||AX ||2]/ E[||W||Z] = 40 dB. The
true dictionary was generated as A = U Diag(s)VT, where
U and V were drawn uniformly over the group of orthogo-
nal matrices, and where the singular values in s were chosen
so that s;/s; 1 = p Vi. The values of sy and p were selected
to obtain a desired condition number (A ) while also ensuring
Al = N. i _

Figure 9 reports median NMSE(A) and NMSE(X') versus
condition number x(A) for the recovery of A € RV*V and
K-sparse X € RV*L from noisy measurements Y. For this
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figure, we used K = 13, N =64, L = 5N In N, the unstruc-
tured definition of NMSE(A) from (91), and a similar defini-

tion for NMSE(E). In addition to showing the performance
of BAd-VAMP and EM-PBiGAMP, the figure shows the per-
formance of the known-X oracle for the estimation of A, as
well as the known-A and known-support oracle for the estima-
tion of X. Figure 9 shows that EM-BiGAMP gave near-oracle
NMSE for x(A) < 40, but its performance degraded signifi-
cantly forlarger k(A ). In contrast, BAd-VAMP gave near-oracle
NMSE for k(A) < 110, which suggests increased robustness to
ill-conditioned dictionaries A.

VI. CONCLUSION

In this paper, we considered the problem of jointly recovering
the vector b and the matrix C' from noisy measurements ¥ =
A(b)C + W, where A(-) is a known affine linear function of b
(ie, A(b) = Ag + E?Zl b; A; with known matrices A;). To
solve this problem, we proposed the BAd-VAMP algorithm,
which combines the VAMP algorithm [45], the EM algorithm
[61], and variance auto-tuning [62] in a manner appropriate for
bilinear recovery. We demonstrated numerically that the pro-
posed approach has robustness advantages over other state-of-
the-art bilinear recovery algorithms, including lifted VAMP [50]
and EM-PBiGAMP [33]. As future work, we plan to rigorously
analyze BAd-VAMP through the state-evolution formalism.
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