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Adaptive Detection of Structured Signals in

Philip Schniter

Abstract—In this paper, we consider the problem of detecting the
presence (or absence) of an unknown but structured signal from the
space-time outputs of an array under strong, non-white interfer-
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Ho (signal absent), i.e.,
Hi:Y =hs" + B&" + W e cM*E (1a)
Ho:Y = B + W e CM*L, (1b)

ence. Our motivation is the detection of a communication signal in
jamming, where often the training portion is known but the data
portion is not. We assume that the measurements are corrupted
by additive white Gaussian noise of unknown variance and a few
strong interferers, whose number, powers, and array responses are
unknown. We also assume that the desired signal’s array response
is unknown. To address the detection problem, we propose several
GLRT-based detection schemes that employ a probabilistic signal
model and use the EM algorithm for likelihood maximization. Nu-
merical experiments are presented to assess the performance of the
proposed schemes.

Index Terms—Array processing, adaptive detection, generalized
likelihood ratio test, expectation maximization.

1. INTRODUCTION

A. Problem Statement

ONSIDER the problem of detecting the presence or ab-
C sence of a signal s € CL from the measured output Y €
CMx*L of an M-element antenna array. We are interested
in the case where s is unknown but structured. A motivating
example arises with communications signals, where typically
a few “training” symbols are known and the remaining “data”
symbols are unknown, apart from their alphabet. We will as-
sume that the signal’s array response h € CM is completely
unknown but constant over the measurement epoch and signal
bandwidth. The complete lack of knowledge about h is appro-
priate when the array manifold is unknown or uncalibrated (e.g.,
see the discussion in [1]), or when the signal is observed in a
dense multipath environment (e.g., [2]). Also, we will assume
that the measurements are corrupted by white noise of unknown
variance and N > 0 possibly strong interferers. The interference
statistics are assumed to be unknown, as is V.
The signal-detection problem can be formulated as a binary
hypothesis test [3] between hypotheses H; (signal present) and
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In (1), W refers to the noise and B®" (o the interference.
We model W as white Gaussian noise (WGN)! with unknown
variance v > 0. If the array responses of the N interferers are
constant over the measurement epoch and bandwidth, then the
rank of B®" will be at most N. As will be discussed in the
sequel, we will sometimes (but not always) model the temporal
interference component ®" as white and Gaussian.

Communications signals often take a form like

SH:[S{-i sy], )
where s; € C¥ is a known training sequence, Sq € AL=Q i
an unknown data sequence, A C C is a finite alphabet, and
() < L. Suppose that the measurements are partitioned as Y =
[ Y Yq], conformal with (2). For the purpose of signal detec-
tion or synchronization, the data measurements Y 4 are often
ignored (see, e.g., [2]). But these data measurements can be
very useful, especially when the training symbols (and thus the
training measurements Y'y) are few. Our goal is to develop de-
tection schemes that use all measurements Y while handling the
incomplete knowledge of s in a principled manner.

We propose to model the signal structure probabilistically.
That is, we treat s as a random vector with prior pdf p(s), where
s is statistically independent of h, B, ®, and W. Although
the general methodology we propose supports arbitrary p(s),
we sometimes focus (for simplicity) on the case of statistically
independent components, i.e.,

L
p(s) = mu(s0). 3)
=1

For example, with uncoded communication signals parti-
tioned as in (2), we would use (3) with

S(st = st1) I=1,....Q
pi(sy) = ’ @
T sen 0(s1—8) 1=Q+1,.... L,

where §(-) denotes the Dirac delta, st ; the [th training symbol, A4;
is a finite-cardinality set containing the /th data symbol, and |A; |
is the cardinality of .4;. For coded communications signals, the
independent prior (3) would still be appropriate if a “turbo equal-
ization” [4] approach was used, where symbol estimation is iter-
ated with soft-input soft-input decoding. A variation of (2) that
avoids the need to know A follows from modeling {5}/, as

By white Gaussian, we mean that W has i.i.d. zero-mean circularly sym-
metric complex Gaussian entries.
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i.i.d. Gaussian. In practical communications scenarios, there ex-
ists imperfect time and frequency synchronization, which leads
to mismatch in the assumed model (3)—(4). In Section V, we
discuss synchronization mismatch and investigate its effect in
numerical experiments.

The proposed probabilistic framework is quite general. For
example, in addition to training/data structures of the form in
(2), the independent model (3) covers superimposed training
[5], bit-level training [6], constant-envelope waveforms [1], and
pulsed signals (i.e., sH = [sg 0"] with unknown sp) [1]. To
exploit sinusoidal signal models, or signals with known spectral
characteristics (see, e.g., [1]), the independent model (3) would
be discarded in favor of a more appropriate p(s). There is an
excellent description of most of these topics in [1], and we refer
readers to that source for more details.

B. Prior Work

For the case where the entire signal s € C* is known, the de-
tection problem (1) has been studied in detail. For example, in
the classical work of Kelly [7], [8], the interference-plus-noise
B®" + W was modeled as temporally white> and Gaussian
with unknown (and unstructured) spatial covariance 32 > 0, and
the generalized likelihood ratio test (GLRT) [3] was derived.
Detector performance can be improved when the interference is
known to have low rank. For example, Gerlach and Steiner [9]
assumed temporally white Gaussian interference with known
noise variance v and unknown interference rank N and derived
the GLRT. More recently, Kang, Monga, and Rangaswamy [10]
assumed temporally white Gaussian interference with unknown
v and known N and derived the GLRT. Other structures on X
were considered by Aubry et al. in [11]. In a departure from the
above methods, McWhorter [12] proposed to treat the interfer-
ence components B € CM*N and & € CF*V, as well as the
noise variance v, as deterministic unknowns. He then derived
the corresponding GLRT. Note that McWhorter’s approach im-
plicitly assumes knowledge of the interference rank N. Bandiera
etal. [13] proposed yet a different approach, based on a Bayesian
perspective.

For adaptive detection of unknown but structured signals s,
we are aware of relatively little prior work. Forsythe [1, p.110]
describes an iterative scheme for signals with deterministic
(e.g., finite-alphabet, constant envelope) structure that builds
on Kelly’s GLRT. Each iteration involves maximum-likelihood
(ML) signal estimation and least-squares beamforming, based
on the intuition that correct decisions will lead to better beam-
formers and thus better interference suppression. Error propa-
gation remains a serious issue, however, as we will demonstrate
in the sequel.

C. Contributions

We propose three GLRT-based schemes for adaptive detection
of unknown structured signals s with unknown array responses
h, additive WGN of unknown variance v, and interference B N
of possibly low rank. All of our schemes use a probabilistic
signal model s ~ p(s), under which the direct evaluation of

2By temporally white and Gaussian, we mean that the columns are i.i.d.
circularly symmetric complex Gaussian random vectors with zero mean and
a generic covariance matrix.
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the GLRT numerator becomes intractable. To circumvent this
intractability, we use expectation maximization (EM) [14]. In
particular, we derive computationally efficient EM procedures
for the independent prior (3), paying special attention to finite-
alphabet and Gaussian cases.

Our first approach treats the interference B®" as temporally
white? and Gaussian, and it makes no attempt to leverage low
interference rank, similar to Kelly’s approach [7]. A full-rank in-
terference model would be appropriate if, say, the interferers’ ar-
ray responses varied significantly over the measurement epoch.
‘We show that our first approach is a variation on Forsythe’s iter-
ative scheme [1, p.110] that uses “soft” symbol estimation and
“soft” signal subtraction, making it much more robust to error
propagation.

Our second approach is an extension of our first that aims to
exploit the possibly low-rank nature of the interference. As in
[9]-[11], the interference is modeled as temporally white Gaus-
sian but, different from [9]-[11], both the interference rank /N
and the noise variance v are unknown. More significantly, unlike
[9]-[11], the signal s is assumed to be unknown.

Our third approach also aims to exploit low-rank interference,
but it does so while modeling the interference as deterministic,
as in McWhorter [12]. Unlike [12], however, the interference
rank /N and the signal s are assumed to be unknown. Numerical
experiments are presented to demonstrate the efficacy of our
three approaches.

Notation: We use boldface lowercase (e.g., b) for vectors,
boldface uppercase (e.g., B) for matrices, [B],,, for the el-
ement in the mth row and nth column of B, ()7 for trans-
pose, (-)* for conjugate, (-)" for conjugate transpose, (-)* for
pseudo-inverse, B > 0 for positive semi-definite, and B > 0 for
positive definite. Also, we use Diag(b) for the diagonal matrix
created from vector b, diag(B) for the vector on the diagonal
of matrix B, vec(B) for the vector formed by concatenating all
columns of matrix B, 1 g for the length- K vector of ones, 0 i for
the length-K vector of zeros, and I i for the K x K identity
matrix. Furthermore, | - || denotes the Frobenius norm, || - ||
the /5 norm, ® element-wise multiplication, @ Kronecker prod-
uct, E{-} expectation, and Cov{b} £ E{bb"} — E{b} E{b"}
covariance. Finally, 6(-) denotes the Dirac delta, CN (u, C) the
circularly symmetric multivariate complex Gaussian distribu-
tion with mean g and covariance C, R the field of reals, C the
field of complex numbers, and Z . the set of positive integers.

II. BACKGROUND

We first provide some background that will be used in devel-
oping the proposed methods. In our discussions below, we will
use P 4 to denote orthogonal projection onto the column space
of a given matrix A, i.e.,

P,y2AARA) AN, (5)

and P4 £ T — P 4 to denote the orthogonal complement. Re-
call that both P 4 and P are Hermitian and idempotent.

A. Full-Rank Gaussian Interference

The classical work of Kelly [7], [8] tackled the binary hy-
pothesis test (1) by treating the interference-plus-noise N £
B®" + W as temporally white and Gaussian with unknown
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M x M spatial covariance matrix 3 > (. This reduces (1) to
Hi:Y = hs" + Nfor vec(N) ~CN (0,1, ® %) (6a)
Ho: Y = Nfor vec(N) ~CN(0,I;, @ X), (6b)

using notation described earlier. We note that the covariance
structure I';, ® X in (6) corresponds temporal whiteness across
L time samples and spatial correlation with covariance matrix
3. With known s, the GLRT [3] takes the form

maxp s> (Y [Hi:h, ) & .
maX2>op(Y|H0;E) =7

for some threshold 7. Using results from [15], it was shown in
[7] that (7) reduces to

M
[y o >
Hﬁf:l )‘1,m =

for decreasing ordered (i.e., A\ m > Ai m+1 VY, ) eigenvalues

)

Uz ®)

{)\OM}%:l £ cigenvalues (%YYH) (9a)
{Mom ;’\,f:l £ cigenvalues (%YPjYH) . (9b)

Kelly’s approach was applied to the detection/synchronization
of communications signals by Bliss and Parker in [2] after dis-
carding the measurements corresponding to the unknown data
symbols sg.

When L. < M + 1, some eigenvalues will be zero-valued and
so the test (8) is not directly applicable. One can imagine many
strategies to circumvent this problem (e.g., restricting to positive
eigenvalues, computing eigenvalues from a regularized sample
covariance of the form %YYH + ¢l for b, ¢ > 0, etc) that can
be considered as departures from Kelly’s approach. In the se-
quel, we describe approaches that use a low-rank-plus-identity
covariance 3, as would be appropriate when the interferers are
few, i.e., N < M.

B. Low-Rank Gaussian Interference

The low-rank property of the interference B®" can be ex-
ploited to improve detector performance. Some of the first
work in this direction was published by Gerlach and Steiner
in [9]. They assumed known noise variance v and tempo-
rally white Gaussian interference, so that vec(B®" + W) ~
CN(0,I; ® ¥)where X = R + vI ) with unknown low-rank
R > 0. The GLRT was then posed under the constraint that
eSS, 2{R+vI:R> 0}

maxp ses, P(Y [Hi; b, ) >
maxses, p(Y [Ho; =) <
They showed that the GLRT (10) reduces to one of the form (8),
but with thresholded eigenvalues \; ,,, = max{\; m, v}

More recently, Kang, Monga, and Rangaswamy [ 10] proposed
a variation on Gerlach and Steiner’s approach [9] where the noise
variance v is unknown but N = rank(R) is known, N < M,
and N < L. In particular, they proposed the GLRT

maxp sesy P(Y|Hi;h, 2) -
maxsesy P(Y|Ho; X) < K

(10)

an

where

Sy 2{R+vI:rank(R) = N,R>0,v >0}. (12)
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Using a classical result from [16], it can be shown that the GLRT
(11) simplifies to

H%:l Ao.m >
H'r]\‘le )‘Lm =

with { A;m }M_, a smoothed version of {A; ., }2_, from (9):

7, (13)

R & 4 om0 =1 N (14)
' v; m=N+1,..., M.
1 M
AT 2 Aime (15)

m=N-+1

C. Low-Rank Deterministic Interference

The approaches discussed above all model the interference
B®" as temporally white Gaussian. McWhorter [12] instead
proposed to treat the interference components B € C**N and
® ¢ CY*N as deterministic unknowns, yielding the GLRT

maxp, B,ev>0 (Y Hi;h, B, ®,v) & 0 (16)
maxpg & >0 p(Y|H01 B, ®, V)

< 'D

where the interference rank NV is implicitly known. It was shown
in [12] that the GLRT (16) simplifies to

~ M
Yo Zm:N+1 Ao.m >
S T M <
n Zm:N+1 )‘Lm
using the {\; ,,, } defined in (9). Comparing (17) to (13), we see
that both GLRTS involve noise variance estimates 7; computed

by averaging the smallest eigenvalues. However, (17) discards
the largest IV eigenvalues whereas (13) uses them in the test.

a7

III. GLRTS VIA WHITE GAUSSIAN INTERFERENCE

We now consider adaptive detection via the binary hypothesis
test (1) with unknown structured s € C*. As described earlier,
our approach is to model s as a random vector with prior density
p(s).

Our first approach treats the interference B® in (1) as tem-
porally white and Gaussian, as in [7], [9]-[11]. In this case, the
interference-plus-noise matrix

N2Bat+w (18)

is temporally white Gaussian with spatial covariance matrix 3 =
R + vI,;, where both R > 0and v > 0 are unknown. For now,
we will model R using a fixed and known rank N < M. The
N = M case is reminiscent of Kelly [7], and the N < M case
is reminiscent of Kang, Monga, and Rangaswamy [10]. The
estimation of N will be discussed in Section III-G.

For a fixed rank NV, the hypothesis test (1) reduces to

Hy:Y = hs™ + Nfor vec(N) ~ CN(0,I, ® 2) (19a)
Ho : Y = N for vec(N) ~ CN(0,I, ® X), (19b)

where h and 3 € Sy (defined in (12)) are unknown and s ~
p(8). When N = M, note that 3 € Sy reduces to X > 0. The
corresponding GLRT is

maxp sesy P(Y [Hi; b, X)
maxsesy P(Y [Ho; X)

= . (20)
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As a consequence of s ~ p(s), the numerator likelihood in (20)
differs from that in (11), as detailed in the sequel.

A. GLRT Denominator
For the denominator of (20), equations (19b) and (12) imply

—tr{Y"="ly
p(Y[Ho; 2) = ol WIJ‘VEL|2|L ) @b
g1 He 11y %
_ exp(—tr{z YY" "X '}) . 22)

M|z

We first find the ML estimate f]o of ¥ € Sy under Hy. When
N < M, the results in [16] (see also [10]) imply that

20 = VO./AXOVE7 KO = Diag(l)\\()?l, ey /)\\07M), (23)

where { Ao m M, follow the definition in (14) with i = 0. That
is, { Ao mM_ is a smoothed version of the eigenvalues { Ao, }
of the sample covariance matrix LYYH in decreasing order,
where the smoothing averages the M/ — N smallest eigenvalues
to form the noise variance estimate 7, asin (15). When N = M,
the results in [15] (see also [7]) imply that /)\\07,” = Ao,m Vm. In
either case, the columns of V' are the corresponding eigenvec-
tors of the sample covariance matrix %YYH. Plugging (23) into
(22), taking the log, and rearranging gives

+Inp(Y [Ho; f]o) +Mlnw

_ _tr{%YYHigl} S| 24)
M
A m N
=3 (22— (25)
m=1 >\07m
N M A
o 1 _ 0,m _ ~
=3 (~1=InXom)+ Y ( = 1n1f0> . (26)
m=1 m=N+1
Since Z%:N_H Xo,m = Vo, we have
+ Inp(Y'|Ho; )+ Mnw
N
=-N=) Indgm+(M-N)(-1-In%) (27
m=1
N
=-M-> InAgm— (M- N)nd (28)
M N
=M — Z hl >\0,m- (29)
m=1

When N < M, note that {)\0 m M _, can be computed using
only the N principal eigenvalues of + Ly yH since

N
vy = i i N (tr{%YYH} — ;Ao,m) . (B0

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 13, JULY 1, 2019

B. GLRT Numerator
For the numerator of (20), s ~ p(s) and (19a) imply

p(Y|H1;h, %) = /p(Y|s,’H1;h,E)p(s) ds (31)
exp(—tr{(Y — hs")"E"1(Y — hs™)})
:/ TSI p(s)ds
(32)

Exact maximization of p(Y'|H;; h, ) over h and ¥ € Sy ap-
pears to be intractable. We thus propose to approximate the max-
imization by applying EM [14] with hidden data s. This implies
that we iterate the following over ¢t = 0,1,2,...:

(h(t+1) §§t+1)) _

) @)
argmax E {Inp(Y,s|H1;h, %) |Y;h 2, }

heCM 2eSy
The EM algorithm is guaranteed to converge to a local maxima
or saddle point of the likelihood (31) [17]. Furthermore, at each
iteration t, the EM-approximated log-likelihood increases and
lower bounds the true log-likelihood [18].

Because s is statistically independent of h and 3, we have
Inp(Y,s|Hi;h,2) =Inp(Y|s,Hi;h,X) +1np(s), which
allows us to rewrite (33) as

E{Inp(Y|s, Hi;h,%) ]Yh 2 } (34)

(33)

argmax
hECNI,ElEsN

/ [tr{(y ~ hs"PS (Y — hs'))

= argmin
heCM 3cSy
® &
+1n |3 } s|V:h”, 27 ds. (35)
We first perform the minimization in (35) over h. Since
tr{(Y — hs""S"1(Y — hs™)}
—tr{Y"2ly} - ns-lys — sfyts-ta
+ A" | s|?, (36)
the gradient of the cost in (35) w.r.t. h equals
2/ (S thljs)? 2 1Y s|p(s|Ys B W s, 37
and this gradient is set to zero by
~e+y_ YE{s|Y:R", 5"} va®
h ~(t) &(t) E® (38)
E{lls[?[Ysh ", 2,7}
which uses the notation
30 2 By A" 2(”} (39)
(t) & S
E® £ E{|s’v:h", 8}, (40)
Setting h = h( o in (35), we obtain the cost that must be
minimized over X € Sy:
w{YHE 1Y) — R 1y5(0) _ sOHy 17D
~ H
+h(t+1) h(t+1)E(t) Fln |3k 41)
3(OHy Hs—1y-5(1)
= tr{yHe-lyy - 2 S imst @2
E®
= tr{Y Pz Y'S 1} + In|S|%, 43)
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where
NONOL
proag 58
Pg(t) = IL E(t) (44)
2B zOH 15112
_ pl s s sl
- Pg(t) + P’S\(”) ||’5\H2 E(t) (45)
1 EW —||3)?
= Pg(t) + Pg(t) E(t) (46)
~(t)
tr[Cov{s|Y;h , X
=Piy + Py (Covisl b0 I

=L . . . L .
Note that P4 is a regularized version of the projection matrix
P?w that equals P§<t> when s is completely known. In general,

=L . L. . C
however, P5 is not a projection matrix. Minimizing (43) over
3 € Sy is equivalent to maximizing

exp(ftr{YIB;t)YHE’l}) 48)
TML|S[L
As with (22), when N < M, the results in [16] imply
S _ y gDy R (49)
A(t+1) (t+1) (t+1)
Ay T =Diag(A; s M) (50)
~(t+1) A )\9;1) m = 1,...,N
Mm = (t41) (51)
% m=N+1,....M
~(t+1) a (t+1)
P e Y, (52)
m=N-+1

where {)\Y;l)}M

, are the eigenvalues of the matrix + YPA<t>
Y in decreasing order, and the columns of Vg 1 are the cor-

responding eigenvectors. When N = M, we have that /)\\1,m =
)\Lm Vm.

We have thus derived the EM procedure that iteratively lower
bounds [18] the numerator of (20) under a generic signal prior

p(s).

C. EM Update Under an Independent Prior

The EM updates of 5® and E® in (39)—(40) compute the
conditional mean (or, equivalently, the MMSE estimate [3]) of s
and || s||?, respectively, given the measurements Y in (19) under

~(t ~(t
the model h = h( ) and 3 = E§ ). For any independent prior,
asin (3), we can MMSE-estimate the symbols one at a time from
the measurement equation

v = st e, S, (53)

From y,;, we obtain a sufficient statistic [3] for the estimation of
s; by spatially whitening the measurements via

() S 1)

(0

g & (B0) Py = (8)) Fh s+ CN(O.D) (54)
and then matched filtering via
~(t)H
A0 2 RS g = O+ N 0.6), (59
where
H ~
f(t) A h(t) ( (t)) h ). (56)
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=5 +CN(O0 ( (57)

We find it more convenient to work with the normalized and
t)*
O ~( )
which is a Gaussian-noise-corrupted version of the true symbol
57, with noise precision £(*).
(t

conjugated statistic
1
" g(t) e
The computation of the MMSE estimate 5; from r, ) depends

on the prior p(s;). For the Gaussian prior p(s;) = CN (sy; pu, v1),
we have the posterior mean and variance [3]
~ U] (t)
S =+ v+ 1/5@) ( — ) (58)
1
U= 59
(¥ f(t) + 1/’[)[’ ( )
which from (40) implies
E® = Z]E{m? P Z (151> +7%) . (60)
1=1
For the discrete prior p(s;) = Zk:l wikd(s; — dyy), with al-

phabet A; = {dlk}le 1 and prior symbol probabilities w;;, > 0
(such that Zlel wi = 1VI), it is straightforward to show that
the posterior density is

Sl‘T(t) Zw(f)d Sl d]k) (61)
ONN wlkCN(de;Tlt), 1/60) ©2)
Wik = J
Sy wikCN (duei i, 1/60)
and thus the posterior mean and second moment are
K,
5 = o du (63)
k=1
E{12 YR, 5 = Z oy ldil?,  (64)
which from (40) implies
L Kl
EG =37 o ldu. (65)
=1 k=1

This EM update procedure is summarized in Algorithm 1.

D. Fast Implementation of Algorithm 1

The implementation complexity of Algorithm 1 is dominated
by the eigenvalue decomposition in line 12, which consumes
O(M?3) operations per EM iteration. We now describe how the
complexity of this step can be reduced. Recall that

1YY" = VA VY, (66)
as described after (23). Thus il in line 4 takes the form
= ~~H
3 = VoAV — £hh (67)
~~H
=Vo(Ag — hh )V (68)
using the definition
h2 \/% Vih (69)
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Algorithm 1: EM Update Under White Gaussian Interfer-
ence.

Require: Data Y € CM*L_signal prior p(s) = [[1_, pi(s1).
1: Initialize s and £ > 0 (see Section III-H)

2: repeat
3 h+ +Ys
a ~~H

4 X+ 1YY" - Lhh

5: Estimate interference rank N (see Section III-G).
6: if N = 0 then_

7 1/1 — —tr(El)

8: g = L1h

9: else if N M then
10: g E h

11: else N
12: {vy, Al} <+ principal_eigs(X1, N)
13: 0 i (tr(20) — tr{AL))
14 g« 9—1h + V(@A - AN VIR
15: end if

16: ¢«h'g

17: 7+ %YnghereTNCN(s,I/ﬁ)
18: §l<—E{Sl|’I‘l;§}\7/l=].,...,L

19: B« S B s 2|r; €}

20: until Terminated

The key idea is that the eigen-decomposition of Ay — hhH can
be computed in a fast manner due to its diagonal-plus-rank-one
structure [19].

We now provide some details. First, define R £ rank(%
YYH), where R < M. Without loss of generality, suppose that
Vo has R columns and that Ag € R % and assume that these
quantities have been computed before the start of the EM it-
erations. Then h can be computed in O(M R) operations, the

=Ay— EEH can be computed
VOQ of
331 can be computed in O(M R?) operations. Since only the N
principal eigenvectors are needed for line 12, the latter reduces
to O(M RN) operations.

eigen-decomposition QA Q"
in O(R?) operations [19], and the eigenvectors V'; =

E. Evaluation of the GLRT

We now describe what remains of the GLRT. Let us denote
the final EM-based estimates of s, b, and X under H; as s, h,
and 34, respectively. Notice that

%lnp(Y\’Hl;Ele)

1y plyHe L =

:ftr{fYPgY >N }fln\21|fMln7r (70)
M ~

M= WA, - M, (1)
m=1

following steps similar to (29). Recalling (20), the log-domain
GLRT is obtained by subtracting (29) from (71), yielding

M ~
Ao,m

> S 2y 2)

m=1 1,m
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When N < M, this test can be simplified by recalling that the
smallest M/ — N eigenvalues in { \; ,,, } equal 7; fori = 0, 1. In
this case, the log-domain GLRT reduces to

N X 7
In (M= N)ln= =y
> )iz 2

lm

(73)
m=1

Although the proposed GLRT is not CFAR [3], neither is the
simpler Kang/Monga/Rangaswamy (KMR) [10] detector that
results in the special case where s is known (i.e., p(s) is a point
mass). So, to set the threshold 7’ in practice, one could run
experiments or simulations to provide histograms of the test
statistic under Ho and H 1, and then choose the value of 7’ that
yields the desired balance between miss rate and false-alarm rate.

F. Relation to Forsythe’s Iterative Method

We now connect the above method to Forsythe’s iterative
scheme in [1, p. 110], which assumes full-rank interference
(i.e., N = M) and positive definite sample covariance, i.e.,
%YYH > 0. To make this connection, we find it convenient to

work with the spatially whitened measurements
1

A (1 H) 2
Y= (ZYY ) Y.
Writing lines 3, 4, 16, and 17 of Algorithm 1 in terms of the
= (%YYH)’%handg1 2 (%YYH)*%

(74)

whitened quantities ﬁ
3 (%YYH)’% gives

h=1ys (75)
S ~~H
3, =1YY" -~ Fhh (76)
~HA~—1~
£=h % h (77)
T (78)

From the construction of Y and the assumption %YYH >0,

we have LYYH Iy. Thus, applying the matrix inversion
lemma to (76) gives

~-1 ~ -1 ~~H
S =Iu-(£+IRI?) BA" 79
Plugging (79) into (78), we obtain
Y'n  Y"Y3E
=== -0 (80)
|2 11Xl

which can be expressed in terms of unwhitened quantities as
YL YYY)'YsE  YM(yy")lvsE

T = — (8D
[(tyyH-zys|2  s'yH(yy™)-1ys
=Y"vyy"lys——. (82)
(| Py+s]?

A
=w

Algorithm 1 prescribes the use of the “soft” symbol esti-
mate s = E{s|r;£} and the soft squared-norm estimate £ =
E{||s||?|r;&} in lines 18-19. If we replaced these soft es-
timates with “hard” estimates, i.e., the ML estimate Sy =

3We can transform from Y to Y and back without loss of generality because
the transformation is invertible.
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argming. 4z || — s||* and its squared-norm Ey = ||SuL||?,
then Algorithm 1 would become

i~ 2
w e (YY) 1y gy el (83)
SRR ELN Towe-wy
r+ YHw (84)
SyL + argmin |7 — s||?, (85)

se Al

which is precisely Forsythe’s iterative method from [1, p.110].
There, w is interpreted as a least-squares (LS) beamformer. We
have thus shown that Algorithm 1 under fixed rank N = M is
a soft version of Forsythe’s iterative method. As we will show
later, the soft nature of Algorithm 1 helps to prevent error prop-
agation.

G. Estimating the Interference Rank N

We now consider estimation of the interference rank N =
rank(R). For this, we adopt the standard information-theoretic

model-order selection approach described in, e.g., [20], [21],
which specifies
N = argmax Inp(Y|H1;Oy)— J(D(N)),  (86)

N=0,....Ninax

where J(-) is a penalty function, O is the ML parameter es-
timate under rank hypothesis N, and D (V) is the degrees-of-
freedom (DoF) in the parameters © . Common choices of J(-)
include

D Akaike’s Information Criterion (AIC)
Corrected AIC (AICc)

Bayesian Information Criterion (BIC)

J(D)={ T D1

Generalized Information Criterion (GIC)
(87)

where T is the number of real-valued measurements and G > 0
is a tunable gain. The above BIC rule is the same as that which
results from Rissanen’s Minimum Description Length (MDL)
criterion 1" (see [20]).

For Algorithm 1, we have T" = 2M L and

Oy ={h,X}forh e CMand T € Sy, (88)

with Sy defined in (12). Here, the DoF in h equals 20 and the
DoF in X equals (2M — N)N + 1, since the DoFina M x M
rank-N Hermitian matrix R is (2M — N)N and the DoF in
the noise variance v is 1. In summary, D(N) = (2M — N)N +
2M + 1. For our numerical experiments, we used GIC with G =
10.

H. EM Initialization

The EM algorithm is guaranteed to converge to alocal maxima
or saddle point of the likelihood (31) [17] under mild technical
conditions. With a multi-modal likelihood, the initialization of
(8, E) affects the quality of the final EM estimate. Below, we
propose an initialization assuming the training/data structure in
(2). Thatis, Y = [ Y; Yq | with

Y: = hsl' + Ny, vec(Ny) ~ CN(0,I @ %)
~CN(0,Ipq®X),

(89)

Yy = hsf + Ny, vec(Ny) (90)
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and s = [s}, sH]H.
random vector sq ~ [~ 1=G-+1 P1(s1) from measurements Y un-
der known st but unknown sq, h, 3, IN.

Recall that the whitened matched-filter (WMF) outputs
2y th = 5 h"Sth 4 s th 91)
forl € {Q+1,..., L} are sufficient statistics [3] for estimating
sq. Because ¥ and h are unknown in our case, we propose to

estimate them from the training data Y'; and use the results to
compute approximate-WMF outputs of the form

~—1~
~ A H
=Y Et ht.

Essentlally, we would like to estimate the

92)

A SHe-1~ 0 . ..
Eqn. 91) and 5 = 1/(h; 3; hy) give the unbiased statistic
B~ s+ CN(0,1/&) forl € {Q+1,...,L},  (93)

which can be converted to MMSE symbol estimates 5; via (58)
or (63) and then used for EM initialization. Likewise, the ini-
tialization of & can be computed from (60) or (65).

As for the choice of (Et, ht) in (92), one possibility is the
joint ML estimate of ¥ € Sy and h € CM from the training
Y':, assuming known interference rank N. The arguments in
Section III-B reveal that these joint-ML estimates equal

Y,
By U (94)
[| st
sV 2 viDiag (AL 2OV, 95)
where

~ At m=1,...,N

Ao 2 { ) (96)
v NZ — N+1)‘tm’ m=N+1,..., M,

such that { At } 2
ance matrix

_, are the eigenvalues of the sample covari-

PN éytPi yH
in decreasing order and V'; contains the eigenvectors. When the
interference rank /N is unknown, the methods in Section III-G
can be used to estimate IV from Y'y. However, the estimation of
the unbiasing gain 3 and the precision ¢ in (93) remain chal-
lenging.

Instead of rank- N covariance estimation, we propose to use
aregularized estimate of the form [22]

S~ (1 - @S +acly, a e (0,1], (98)
with f]t from (97) and ¢ £ tr(f]t) /M. Since the goal of regular-
ization is robust estimation under possibly few training samples
(@, we propose to choose o to maximize (post-unbiased) preci-
sion §A, where the precision is estimated via leave-one-out cross-
validation (LOOCV) [23] on the training data. Our LOOCV
approach is similar to the “SEO” scheme from [24] but targets
minimum-variance unbiased estimation rather than MMSE esti-
mation and, more significantly, handles non-white interference.
Details are provided below.

We first define the leave-one-out training quantities Y _; £

[yh Y- Yieas - ;yQ] and S—1 £ [517 sy SI=15 SI41,

s50]". From these, we construct the ML h-estimate and a-
regularized sample covariance

N

NN Y,ls,l

= el ©9)
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1
(a) 21— )ﬁY—ZPiLYﬂl + acl yy, (100)
which can be used to form the out-of-sample estimate
( )
A2yl (E) T (101)
It can be shown that
~ ~ S .
ho=hi— Wnl (102)
for Ay £ y; — hus). (103)

Also, using the matrix inversion lemma, it can be shown that

(A(a))—1

~ ) ~ ola)y -1
PR

Sy -1 ala)y—1
=) =(E0) 4+ TR S
1— (Et ) ’I’ll
(104)
for
s e )5 S+ acly (105)
2
gl a1 - a) ! (1 + L) . (106)
[[s]I* = |su]?
Merging (101), (102), and (104), we find that
H A(a) -1~
« Sy -1 Y n;
i =l (3T e (a§AH )<a>
1-— (Et ) nl
(@) 5H a(@) S >
X SN - — ) o7
(a0 ) -
With the eigen-decomposition f]t = VtAtV{", we have
-1
(B = V1<(1 —a)QQ 1A1+acIM) Vi (108)
£ Diag(y(*)
which can be used to compute 7" = [ .. ,?(QO‘)]T effi-
ciently via
() -~ o
y'(57) h= [YIVi(VER 0 @) a09)
~H Q) — a
A (=) = [NOVi(VIR 0 A@)] - 10)
=[((rtvye (N, vy @7(“))}1, (111)

where Nt 2y, — fALts{" is an estimate of the interference Ny,
© denotes element-wise multiplication, and © denotes element-
wise division.

For a given «, the unbiasing gain (%) (recall (93)) obeys

E {7 s} = s, L€ {1,...,Q}, (112)
and thus can be estimated as
1 Q A D
ple) = - 25@ 113)
BT/} SR
After scaling by S (@), the error precision & £l g
1
£ = (114)

&2 BOFRY — s

The value of o can be optimized by maximizing é\(‘*) over a grid
of possible values.
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IV. GLRT VIA DETERMINISTIC INTERFERENCE

We now propose a different adaptive detector for s ~ p(s) that
treats the interference B®" as a deterministic unknown, rather
than as temporally white and Gaussian, as in Section III. In
particular, it treats B € CM*N and ® ¢ CL*N as determin-
istic unknowns, as in [12], for some rank hypothesis N <
min{M, L}. The rank hypothesis N will be adapted as described
in Section IV-E. However, we first describe the approach under
a fixed choice of N. In this case, the binary hypothesis test (1)
implies the GLRT

maxp, B,&,v>0 p(Y‘Hla h’v B7 (I'a V)

(115)
maxg g0 p(Y |Ho; B, ®,v)

>
=N

A. GLRT Denominator
Starting with the denominator of (115), we have
— |lyt, — b5.@"2/v)
(mv)b ’
(116)

where y!! denotes the mth row of ¥ and b'! denotes the mth
row of B. Due to the factorization in (116), the ML estimate of
each b,,, can be individually computed as

=dty,,,

M exp(
p(Y[Ho; B, ®,v) = ||

m=1

/I;O,m £ argmin ||y,,, — <I>bm\|2 (117)

m

where (-)* denotes the pseudo-inverse, i.e., ®+ = (®1®)!
&M Plugging bo m into (116) gives

M H pL 2
~ ex P v
p(Y|Ho; Bo, ®,v) = | | p( lym P’/ )

(118)
m=1 (T”/)L
_exp (- tr{YPiI;YH}/y)
- (ﬂ-V)JV[L (119)

Next we maximize over the noise variance v > 0. The negative
log-likelihood is

—lnp(Y|Ho;§07<I',1/)

=tr{YPsY"} /v + MLInw + MLInv, (120)
and so zeroing its gradient gives the ML estimate
1
U = —tr{Y Pg Y} (121)

ML
Plugging this back into (120) gives
- h’lp(Y|H0, BO, Qv I//\O)

1
= ML(1+1Inw) + MLIn <M—tr{YP$YH}> . (122)

Finally, minimizing this negative lo l_% -likelihood over @ is
equivalent to minimizing tr{Y P3Y "} = tr{Y Y} — tr{Y
P35 Y™}, or maximizing tr{YPq,Y”} =tr{PsY"Y Ps}.
But since the trace of a matrix is the sum of its eigenvalues, the
optimal ® are those whose column space is the span of the domi-
nant eigenvectors of Y'Y . In summary, the minimized negative
log-likelihood equals

—Inp(Y |Ho; Bo, ®o, %)

= ML(1+ln7r)+MLln(

Z A0m> . (123)

m=N-+1
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where { o ,,, }M_, are the eigenvalues of %YHY in decreasing
order, as per (9).
B. GLRT Numerator

For the numerator of (115), equation (1a) implies
p(Y‘,Hl; h’a 37 (I)a V)

= /p(Y|s,H1;h,B,<IJ,V)p(s) ds (124)

—|Y — B®" — hst||2
_ [ et SR ) s
(V) ML
Exact maximization of p(Y |H1; h, B, ®,v) over
® = {h,B,®,v} (126)
appears to be intractable. As before, we propose to apply EM
with hidden data s, which implies iterating

@(Hl) = argmng {lnp(Y, s|H1;©) | Y; @(t)}. (127)

(125)

Because s is statistically independent of ®, (127) can be
rewritten as

_ Y — Bo"
®(t+1) _ argmin/ {H
e v

H
— hs"|[}

+ MLIn(rv)

X p(s|Y;(:)(t>)ds

, / |Y — B®" — hst||2,
= argmin
(C) 14

(128)

p(s]Y;0')ds

+ M L1n(7v).
Noting that
|y — B&H

(129)

— hs"[%
=|IY — B"|% + ||b]’||s?

— iy — Ba")s — s"(v" —eB™)h, (130)
we can rewrite (129) as
. 1
6" —argmin { [y - B&"|3 + || BV
12
—h(y — Ba")5) - 5Oy —aB")h
+ ML ln(mj)} (131)
where, similar to before,
30 2 E{s]y;0") (132)

B0 £ E{|s|*v; 6"}, (133)
We are now ready to minimize (131) over ® = {h, B, ®, v}.
Zeroing the gradient of the cost over h yields
(v — BoM)3
E®
Plugging this back into (131), the term relevant to the optimiza-
tion of B and ® becomes

IY - B&"|% — (¥ — B&™5"|2/B"

A = (134)

— u{(Y - B&" Py (Y — B&")M)  (135)
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with 1~3§<t) from (44). To optimize (135) over B, we expand
r{(Y — B&") Py (Y — B&™)")

= const — tr{B(I)H (t>YH}
— t{Y Py ®B"} + tr{ B&" Py ®@B"},  (136)
evaluate its gradient, which equals
Y Py ® + 2B®"Pan @, (137)
and set it to zero, yielding
B —yPiwe(@"Pyoe) ! (138)
Plugging this back into (135) gives
w{(v - BV Pro (v - BV oM
— tr{Y (I — Py ®[@" Py &~ @) Py
x (I - Pyo®[@"Pyo @ ta") Yl (139)
= t{V(I-B[F 3T )2V} (140)
— | —H
=t{YPLY }, (141)

- ~1
withY 2 Y (P50)2 and @ £ (PAu)) z . From (44), note

Pyt =T+ (V)P (a2
¢ 21— 39 )2/E®. (143)

The ® that minimize tr{?P%?H} = tr{P%?H?P%} are

those whose column space equals the span of the /N dominant
. SHe

eigenvectors of Y 'Y, and so

mmtr{YPLY } = Z Am Y Y) (144)

m=N-+1

where A, (7H7) is the mth eigenvalue of Y'Y in decreasing

order. These eigenvalues are the same as those of
YY = YP.oY" (145)

Thus, the optimization (13 1) reduces to

Y = arg min { Z )‘gt;l) + ML ID(WV)} ; (146)

m=N+1

(t+1)y n . v P, yH:
where {A;, "’ }M_, are the eigenvalues of +Y Pz Y in de-
creasing order Zeroing the derivative of (146) w.r.t. v yields

Z AL,

m=N+1

P = (147)

Plugging 9?*“ back into the cost expression yields the
iteration-(¢t+ 1) EM-maximized log-likelihood under #;:

(f+1)
Inp(Y|H;0© )

—ML(1+ln7r)+MLln(

Z /\”“)). (148)

m=N+1
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C. EM Update Under an Independent Prior

The EM updates (132)-(133) depend on the choice of p(s).
For an independent prior, as in (3), we can compute the MMSE
estimate of the /th symbol using the measurement equation

s+ B3 4 enio, 00D, (149)

y=nh
~ ~H
where ¢, denotes the /th column of & . From y;, we can ob-
tain the following sufficient statistic [3] for the estimation of s;
through matched filtering, i.e.,

~(t)H
70 2 My, (150)

T (OH 5 (1) (1)

“NZ i+h""B"g,

R t
+en(o,70R").
(151)
We find it more convenient to work with the shifted, conjugated,
and normalized statistic

= [k

1 ~(t) ~ () ~
MOWS %m (t) (t)¢z(t)) (152)
()19
IR
= s+ N (0,50 /1872, (153)
noting that
PO = L Oy CBOGOM (154
~(t) ’
[h71?
To efficiently compute (154), we first note that
v E(t)‘i>(t)H
~l~ ~H~1l~ _1~H
—Y—YP§<I>(<I> Pgtﬁ) P (155)
~l~ ~H~1l~ _1=H
*Y[IngtI)(<I> PgtI>) P ] (156)
= Y(P;)} I (P5)}8 (8 P;8) '8"(P;)})(P5) !
(157)
~Y[I1-33"®)'3"(P;): (158)
_YPL(PA) 3, (159)
where we omitted the time index for brevity and defined
3 2 (Prun)ia" (160)
v 2 y(Pyen)s, (161)
noting that (142)—(143) imply
~ 1 1
(P/s\(t)) 2 =1+ C(t) Pg(t). (162)

Suppose we take the singular value decomposition (SVD)

Y(t)

= vODHU®HR (163)
where
T
ding (D) = [/ L"), /2A0 (164)
with )\g )m defined after (146). Then, using the fact that the

column space of 3" spans the N-dimensional principal
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eigenspace of V(t)HT(t) (as discussed after (141)), we have

() ()
Y P%t) =Y (I-Pgo) (165)

—Y(Py): —VIDITM (166)
where V) ¢ CMxN | Eﬁ” € RY*N and T e cN con-
tain the /V principal components of v, Dgt) ,and U, Plug-
ging this into (159), we get

v _ BYg®H
—y - vODYTM Pl b (167)
= [¥" - vODPTM (Paen) b (168)
Applying (167) to (134) yields
~ 1 ~ (1)~
h(t) _ T (Y - B(t)(I)(t)H)g(tfl) (169)
1
_ ~(t-1) 7Bt (f)HA(f 1)
= Ta <Ys R 1)V D,'U >
(170)

and applying (168) to (154) yields

1 ~mH
PO —h(t)

~®
12

1

¥ VOB (Pl ) .

171)

We can simplify the previous expression by noting that

P§<t1)>

{?(t) V(t)D(t)U(t)H} (Pyo 71))7%

— () — (1) — 1 — =1
_ {Y(w —V(t)D(lt)U(t)H} <IL+ ¢

CED
(172)
o Ny 1— (t-1)
Y _yOphgt e S
Sl &
% {?(t)g(t—l) _ V(t)ﬁgt)ﬁ(t)Hg(t—l)}g(tfl)H (173)
- (P 1— (t—1)
_y" _yopgen Lo (174)
1512
~(t-1) Evaa i ad (t)HA(t 1) | ~(t—1)H
X [Ys G 1)V DU ]
_ g0 _pipogon | (L= B a0
1 32
(175)
—() =)=t 1~
=7 - vpPT" 4 pV5DH - (176)

Trcent %

where (172) used (162); (174) used the fact that Y3 =
¢ty 3D asimplied by (161) and (142); (175) used (170);



SCHNITER AND BYRNE: ADAPTIVE DETECTION OF STRUCTURED SIGNALS IN LOW-RANK INTERFERENCE

Algorithm 2: EM Update Under Deterministic Interference.

Require: Data Y € CM*L_signal prior p(s) = [/, pi(s1)-
1: Initialize S and E > 0 (see Section III-H)
2: repeat
% (e JI-TRP/E
4. g+ Ys/|[5)?
55 Y« Y+(C-1)gs"
6.
7
8
9

Estimate interference rank N (see Section IV-E).
{V,D,, [ } < principal_svd(Y", N)

P+ ﬁ(u?n% - u{D}})

he L <||3H29 - VD, U”g)
10: ¢« La2
1 re HhH2 (Y'h-TD,V'h)

+ 1+ s, wherer ~ CN (s, 11)
12: §l<—E{sl|rl;§}Vl:1,...,L

13: B« S B{|si2|r; €}
14: until Terminated

and (176) used (143). Plugging (176) into (171) then yields

1 ~ _ () () —
AOH _ 7 (0H (Y(t) W D(t)U(t)H)
It l

IS
n SU-DH

et (177)

Given r(*), the computation of 3') and E(®) follows the pro-
cedure discussed around (58)—(65). This EM update procedure
is summarized in Algorithm 2.

D. Evaluation of the GLRT

Denoting the final EM estimates by § and ©, the (EM ap-
proximate) GLRT statistic, in the log domain, becomes
Inp(Y [H1;©) — Inp(Y [Ho; ©)

—MLInZ,  (178)
12

1
with 19 computed from (121) and 14
Algorithm 2.

Although the proposed GLRT is not CFAR, neither is the
simpler McWhorter [12] detector that results in the special case
where s is known (i.e., p(s) is a point mass). So, to set the
detection threshold 7 (recall (115)) in practice, one could run
experiments or simulations to provide histograms of the test
statistic under H( and 71, and then choose the value of 7 that
yields the desired balance between miss rate and false-alarm rate.

computed from

E. Estimating the Interference Rank

To estimate the interference rank N = rank(R), we adopt
the same approach as described in Section III-G. But now the
DoF D(N) of the parameters @ is different. In particular,
the DoF in h equals 2M/; the DoF in B<I>H, an M x L rank-
N complex-valued matrix, equals 2(M + L — N)N; and the
DoF in the noise variance v equals 1. In summary, D(N) =
2(M + L — N)N + 2M + 1. For our numerical experiments,
we used GIC with G = 1.7.

3449

V. NUMERICAL EXPERIMENTS

We now present numerical experiments to evaluate the pro-
posed detectors. The experiments focus on the signal-detection
application in communications, as introduced in Section I-A and
described in more detail below.

A. Signal Detection in Communications

Consider the problem of detecting the presence or absence of
a communications signal from M antennas in the presence of
N interferers and white Gaussian noise. Under the narrowband
and slow-fading assumptions, the baseband received waveform
at the mth antenna and time ¢ takes the form [25]

Hi = g (6) = I CTIH0) (4 — 7, 1T)
N
+ ) b () + wm (t) (179a)
Ho : Yml(t Z D@ (£) + Wy (£) (179b)

under the signal-present (1.e., H1) and signal-absent (i.e., Hq)
hypothesis, respectively. Here, s(¢) € C is the signal waveform,
¢n(t) € Cisthenthinterference waveform, h,,, € C and by, €
C are baseband-equivalent channel gains, and w;,, (t) is the noise
waveform. Furthermore, f, is the frequency offset (in Hz), 6,
is the phase offset (in radians), and 7, is the baud-normalized
timing offset. Under the standard assumption that the transmitter
and receiver both use square-root raised-cosine pulse-shaping,
we have [25]

(t—1IT) (180)

L
=2
; cos(ant/T) sin(wt/T)

90 = 1= Gat) Ty wi/T
where s; is a symbol from alphabet A; C C, T is the baud in-
terval, and ¢(¢) € R is a raised cosine (RC) pulse with roll-off
factor a € [0, 1].

Suppose that we sample y,,,(¢) every 1" seconds, starting at
timet = 77, where 7 is abaud-normalized delay that we discuss
in the sequel. Under H, this gives a matrix Y (7 € CM*L of
space-time samples with entries

(181)

Y, = ym (7T +17) (182)
— ﬁmej(27rf(,T(T+l)+90)s* (TT +(- TU)T)
N
+ 3 by (7T +UT) + wp (7T + 1T (183)
n=1

L
= hD) Z spg((r+1—1, = U)T) | 271!
r=1
N

+ Z binn l(:;) + 'UJS:L—I), (184)
n=1
where ¢\7) £ ¢, (7T +1T), w'7) £ w,, (rT + IT), and
R & p i (2 foTT+00) (185)
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Thus with A 2 (B pITT s 205y, .. s,]T, B2
B, @7 2 [67], and W) 2 [15{7)], we can write

YO =pMG, T+ B LW,
CLXL

(186)

where Jy 1 € is diagonal with [J ]y = /27! and
G, . € CE*L s defined elementwise as

[Galy = 9((l—q—A)T). (187)
Due to the square-root raised-cosine receiver filtering, each row
of W (™) contains uncorrelated Gaussian noise samples [25] for
any 7. Thus, assuming that the noise is uncorrelated across an-
tennas, the entries of W () are i.i.d. Gaussian.

Since Gy = I due to the properties of the RC pulse [25],
and since Jy = I by inspection, the space-time matrix Y™ in
(186) matches Y in (1a) under perfect time synchronization (i.e.,
T = 1,) and perfect frequency synchronization (i.e., f, = 0).*
But, in practice, oscillator mismatch ensures f, # 0, and the
unknown nature of 7, ensures that 7 # 7,.

To alleviate the effects of time synchronization, we adopt the
approach from [2], which is to repeat the signal-detection test
at many different delay hypotheses 7. In particular, we use the
grid of delay hypotheses 7 = k/P, where P is a fixed integer
“oversampling factor” such as P = 2, and where k € Z . Thus,
at each delay hypothesis T = k/ P, we test for the presence or
absence of a signal with true delay 1, ~ k/P. At the delay
hypothesis 7 = k/P closest to 7, (i.e., 7 = k,/P with k, =
|7oP + %]), the residual timing error is

~ A ko

TOZTO—FE [—%,%). (188)

In this case, the space-time samples take the form
Hi:Y =hs"Gz J;r+ B3+ W (189a)
Ho:Y =B+ W (189b)

with 7, € [~ 55, 55 )-

B. Experimental Setup

For the numerical experiments in the sequel, we used (189)
with 7, ~ U[— 35, 55) and® f,T ~ U[-10"*,—10"*), where
Ula,b) means “uniformly distributed on the interval [a, b).” Un-
less otherwise noted, we used M = 64 array elements, L =
1024 total symbols, () = 32 training symbols, N = 5 interfer-
ers, and an oversampling factor of P = 2. (Note that Q < M
but @ > N.)

The quantities h, s, B, and ® in (189) were then constructed
as follows. The symbols in s were i.i.d. QPSK with variance 1,
the noise W was i.i.d. circular Gaussian with variance v, and the
interference @ had entries with variance o2 /N, giving a total
interference power of o2. Several types of interference ® were
considered:

1) i.i.d. circular Gaussian,

2) unsynchronized QPSK, where ® = [¢;,..., @] with

ot = eI shGs T4 and 0, ~ U0, 27), i.i.d. QPSK

Sns T ~ U[—0.5,0.5), and £, T ~ U104, —107),

4The phase offset 6, was absorbed into A , which we treat as a deterministic
unknown during detection.

5fDT = +10* could result from, e.g., oscillator error of £1 ppm, a carrier
frequency of 1 GHz, and bandwidth 1/7" = 10 MHz.
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3) sinusoidal, where ¢y, (t) = \/0?/Nel @nt+0n) with 6,, ~
Uu[0,2r) and w,, ~ U[—7 /T, 7/T'), and

4) spike-like, where ¢, (t) =+/02L/Nelg(t —7,T)
with 6, ~ U0, 27) and 5, ~ U[0, L).

For the antenna array, we assumed a uniform planar array
(UPA) with half-wavelength element spacing operating in the
narrowband regime. Then, to generate the signal’s array response
h, we assumed that the signal arrived from a random (horizon-
tal,vertical) angle pair drawn uniformly on [0, 27)2. For the nth
interferer’s array response b,,, we used the arrival angle corre-
sponding to the nth largest sidelobe in h.

The following detectors were tested. First, we considered sev-
eral existing methods that used only the training data Y'i:

1) the Kang/Monga/Rangaswamy (KMR) approach (13),
but with interference rank N estimated® as described in
Section III-G, i.e., “kmr-tr.”

2) McWhorter’s approach (17), but with interference rank NV
estimated as described in Section IV-E, i.e., “mcw-tr.”

3) Kelly’s full-rank approach (8), i.e., “kel-tr.”

We also tested the proposed EM-based methods, which use
the full data Y. In particular, we tested

1) Algorithm 1 with N estimated as in Section III-G, i.e.,
“kmr-em.”

2) Algorithm 2 with N estimated as in Section IV-E, i.e.,
“mcw-em”

3) Algorithm 1 with full rank N = M, i.e., “kel-em.”

For the EM algorithm, we used a maximum of 50 iterations but
terminated early, at iteration i > 1, if |8 — 31| /|3| <
0.01.

We also tested Forsythe’s iterative method [1, p. 110] by run-
ning Algorithm 1 with full rank NV = M and hard symbol esti-
mates in lines 18-19, as discussed in Section III-F. In addition,
we tested a low-rank version of Forsythe’s method by running
Algorithm 1 with hard estimates and N estimated as in Section
ITI-G. Finally, we tested Algorithm 2 with hard estimates and N
estimated as in Section IV-E (denoted by “hard-mcw-em”).

For all methods, detection performance was quantified us-
ing the rate of correct detection when the detector threshold
7 is set to achieve a fixed false-alarm rate. All simulation re-
sults represent the average of 10000 independent draws of
{h’ S, Ba ‘1), W7 ’7:0a fO}'

C. Performance Versus Timing Synchronization Error

Figure 1 shows detection-rate at false-alarm-rate = 1073
versus’ baud-normalized timing synchronization error 7, for
various detectors under v = o2 = () andi.i.d. Gaussian interfer-
ence. There we see that all methods degrade as 7, increases, but
that the proposed low-rank, EM-based methods kmr-em and
mcw-em outperform the others. We also see that timing offsets
|7,| < 0.25 have a negligible effect on kmr-em and mcw-em,

%We emphasize that, whereas the original KMR [10] and McWhorter [12]
detectors assume known interference rank N, we simulate enhanced versions
of these detections that estimate N. We do this to meaningfully compare to the
proposed detectors, which also estimate /N. Over our suite of experiments, we
found that kmr-tr worked well with the GIC rule from (87) under G = 1.1,
and mcw-tr worked well with the GIC rule under G = 1.25.

In this experiment, ;o was fixed, while in all other experiments ?O was
randomly drawn from the distribution U [— 5%, 55].



SCHNITER AND BYRNE: ADAPTIVE DETECTION OF STRUCTURED SIGNALS IN LOW-RANK INTERFERENCE

100 ——— ]

1073

S
®
T
L

—+— keltr
—+— kmr-tr
—+— mew-tr
—O— kel-em
—O— kmr-em
—S— mew-em
I I

detection-rate at false-alarm-rate:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
To

Fig. 1. Detection-rate at false-alarm-rate = 103 versus 7, for various detec-
tors, under v = a? =Q, M =64,Q =128, L =1024, N = 5, 1i.d. QPSK
symbols, and i.i.d. Gaussian interference. The proposed low-rank, EM-based
methods kmr-em and mcw-em are robust to timing offsets |7,| < 0.5 and per-
form better than the other methods.
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Fig. 2. Detection-rate at false-alarm-rate = 10~ versus training length Q
for various detectors, under v = Uf =Q, M =64, L =1024, N =5, i.i.d.
QPSK symbols, and i.i.d. Gaussian interference. The proposed EM-based, low-
rank detectors kmr -em and mcw-em outperform the others for Q € [16, 256]

a small effect on the low-rank detectors kmr-tr and mcw-
tr, and a larger effect on the full-rank detectors kel-em and
kel-tr.

D. Performance Versus Training Length ()

Figure 2 shows detection-rate at false-alarm-rate = 10~3 ver-
sus training length @ for various detectors under v = 02 = Q
and i.i.d. Gaussian interference. Here, v and 01-2 grow with @ to
prevent the error-rate from vanishing with ) due to spreading
gain. The kel-tr trace is clipped on the left because Kelly’s
approach is not defined when ) < M. Figure 2 shows that the
proposed EM-based, low-rank detectors kmr-em and mcw-em
outperformed the others for () € [16, 256]. For Q = 512, kmr-
em and mcw-em performed on par with kmr-tr and mcw-tr.
When Q = 1024 = L, there are no data symbols, and so kmr -
em and mcw-em are equivalent to kmr-tr and mcw-tr.
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Fig. 3. Detection-rate at false-alarm-rate = 103 versus v = a? for various
detectors, under M = 64, Q = 32, L = 1024, N = 5, i.i.d. QPSK symbols,
and i.i.d. Gaussian interference. The proposed low-rank, EM-based methods
kmr-em and mcw-em perform far better than the others.
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Fig. 4. Detection-rate at false-alarm-rate = 1073 versus v = 01.2 for various
“hard” symbol detectors, under M = 64, Q =32, L = 1024, N =5, i.i.d.
QPSK symbols, and i.i.d. Gaussian interference. Comparing to Fig. 3, these
hard detectors do not perform as well as the proposed “soft” detectors kmr-em
and mcw-em.

E. Performance Versus SINR

Figure 1 shows detection-rate at false-alarm-rate = 10~3 ver-
sus v = o2 for various detectors under i.i.d. Gaussian interfer-
ence. For this and subsequent experiments, we focus on the chal-
lenging case where the number of training symbols, () = 32, is
only half of the number of antennas, M = 64, in which case
the kel-tr method is undefined. Consequently, results for
kel-tr are not shown. In Figure 3 we see that the proposed
EM-based, full-data detectors kmr-em and mcw-em signifi-
cantly outperformed their training-based counterparts kmr-tr
and mcw-tr.

Figure 4 shows the performance of Forsythe’s full-rank itera-
tive method, its low-rank counterpart (i.e., Algorithm 1 with hard
symbol estimates), and Algorithm 2 with hard symbol estimates,
under the same data used to create Fig. 3. Comparing the two
figures, we see that the “soft” methods, kel -em, kmr-em, and
mcw-em, outperformed their hard counterparts, forsythe,
forsythe-lowrank, and hard-mcw-em. We attribute this
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Fig.5. Detection-rate at false-alarm-rate = 102 versus 02.2 for various detec-
tors,underv = Q, M = 64,Q = 32, L = 1024, N = 5,1.i.d. QPSK symbols,
and i.i.d. Gaussian interference. The proposed EM-based, low-rank methods
kmr-em and mcw-em gave zero errors over 10 000 realizations.

behavior to error propagation in the hard detector. Also, we see
that the low-rank methods outperformed the full-rank methods,
which is expected since the interference is truly of low rank.

F. Performance Versus SIR at Fixed SNR

Figure 5 shows detection-rate at false-alarm-rate = 10~2 ver-
sus interference power o7 at the fixed noise power v = . In this
experiment, the interference was i.i.d. Gaussian. The proposed
EM-based, low-rank detectors kmr-em and mcw-em gave no
errors over 10 000 trials. In fact, kmr - em and mcw-emremained
error-free for arbitrarily large o2, suggesting that they correctly
learned the interference subspace and avoided it completely. The
non-monotonic behavior of the training based schemes, kmr -
tr and mcw-tr, results from imperfect rank estimation: when
0? > v the rank was estimated as N = N, and when ol < v

the rank was estimated as N = 0, but when a? ~ v it was diffi-
cult to estimate the rank, leading to detection errors.

Figure 6 repeats the experiment, but with unsynchronized
QPSK interference, constructed as described in Section V-B.
Qualitatively, the results are similar to the case of i.i.d. Gaussian
interference.

Figure 7 repeats the experiment, but with sinusoidal inter-
ference. The results are similar, except that kel -em performs
worse when the interference is very strong.

Figure 8 repeats the experiment, but with spike-like interfer-
ence. All detectors find the spike-like interference much easier to
handle than i.i.d. Gaussian, QPSK, and sinusoidal interference.

G. Performance Versus Interference Rank N

Figure 9 shows detection-rate at false-alarm-rate = 10~2 ver-
sus the number of interferers, N, for various detectors under
v =@ and 02 = QN. Note that the per-interferer power was
fixed at Q). Note also that the proposed EM-based, low-rank de-
tectors gave no errors over 10 000 trials. For the other schemes,
the error-rate increased with NV, as expected. R

Figure 10 shows the average estimated interference rank N
versus the true rank /N under H;, using the same data used to

a}/Q

Fig.6. Detection-rate at false-alarm-rate = 10~ versus UiZ for various detec-
tors,underv = Q, M = 64,Q = 32, L = 1024, N = 5,i.i.d. QPSK symbols,
and unsynchronized QPSK interference.
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Fig.7. Detection-rate at false-alarm-rate = 102 versus af for various detec-
tors,underv = Q, M = 64,Q = 32, L = 1024, N = 5,1.i.d. QPSK symbols,
and sinusoidal interference.
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Fig.8. Detection-rate at false-alarm-rate = 102 versus 01.2 for various detec-
tors,underv = Q, M = 64,Q = 32, L = 1024, N = 5,1.i.d. QPSK symbols,
and spike-like interference.
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Fig. 13. Detection-rate at false-alarm-rate = 102 versus number of inter-
ferers N for various detectors, under v = @, al-z =QN, M =64, Q = 32,
L =1024, N = 5, i.i.d. QPSK symbols, and spike-like interference.

construct Fig. 9. There we see that all methods were successful,
on average, at correctly estimating the interference rank.

We now repeat the experiment that generated Figure 9, but
now using unsynchronized QPSK interference. Figure 11 shows
that the results are very similar. We then repeat the same exper-
iment again, but with sinusoidal interference. Figure 12 shows
that the results are again quite similar. Finally, we repeat the
experiment with spike-like interference. Figure 13 shows that
spike-like interference is much easier to handle than i.i.d. Gaus-
sian, QPSK, and sinusoidal interference.

VI. CONCLUSIONS

In this paper, we considered the problem of detecting the pres-
ence/absence of a structured (i.e., partially known) signal from
the space-time outputs of an array. This problem arises when
detecting communication signals, where often a few training
symbols are known but the data portion is unknown apart from
the symbol alphabet. In our work, the signal’s array response,
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the interference covariance, and the (white) noise variance are
all assumed to be unknown.

We first reviewed GLRT-based detection of a known signal,
highlighting previous work by Kelly [7] for full-rank interfer-
ence, and by Kang/Monga/Rangaswamy [10] and McWhorter
[12] for low-rank interference with known rank V. Next, we pro-
posed EM-based extensions of these three detectors that apply
to probabilistically structured signals, and we established that
the EM-based extension of Kelly’s detector can be interpreted
as “soft” version of Forsythe’s iterative scheme from [1, p.110].
Finally, we proposed methods to estimate the interference rank
N when unknown, and we demonstrated the performance of our
methods through numerical simulation. The simulations showed
that the error-rate of the proposed EM-based low-rank schemes
was significantly lower than that of the training-based and/or
full-rank schemes.

As future work, it would be interesting to consider the detec-
tion of multiple signals, as in [2]. It would also be good to have
a better theoretical understanding of how to do rank estimation
and threshold selection for the proposed detectors. Towards this
aim, the expected-likelihood framework [26], [27] may provide
valuable insight.
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