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Abstract—This paper proposes a dynamic game-based mainte-
nance scheduling mechanism for the asset owners of the natural
gas grid and the power grid by using a bilevel approach. In
the upper level, the asset owners of the natural gas grid and
the power grid schedule maintenance to maximize their own
revenues. This level is modeled as a dynamic game problem,
which is solved by the backward induction algorithm. In the
lower level, the independent system operator (ISO) dispatches
the system to minimize the loss of power load and natural
gas load in consideration of the system operating conditions
under maintenance plans from the asset owners in the upper
level. This is modeled as a mixed integer linear programming
problem. For the model of the natural gas grid, a piecewise
linear approximation associated with the big-M approach is used
to transform the original nonlinear model into the mixed integer
linear model. Numerical tests on a 6-bus system with a 4-node
gas grid and a modified IEEE 118-bus system with a 20-node
gas grid show the effectiveness of the proposed model.

Index Terms—bilevel approach, dynamic game, maintenance
scheduling, natural gas and electric grids

NOMENCLATURE

Indices and Sets

b, b Index of power buses.

n,n’ Index of gas nodes.

U Index of generators that will be under
maintenance during the given time win-
dow.

u/ Index of generators that will not be under
maintenance during the given time win-
dow.

w Index of gas wells.

S Index of gas storages.

l Index of lines that will be under mainte-
nance during the given time window.

U Index of lines that will not be under main-

tenance during the given time window.
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Gw,t

Gs,h Gs,tfl

Lu,t
ALy ¢
ALy

Vit Vi,t—1, ULt

Up,ty Up,t—1,Upt/

Uy’ ty U’ t—1, Uu/ t!

Vu,ts Vu,t—15 Uu,t!

Vw,ty Vw,t—15 Vw,t’

Index of pipelines that will be under
maintenance during the given time win-
dow.

Index of pipelines that will not be under
maintenance during the given time win-
dow.

Index of pipelines with compressors.
Index of the linear functions.

Index of time periods.

Set of generating units at power bus b.
Set of power buses connected to bus b.
Set of gas wells at natural gas node n.
Set of gas storages at natural gas node n.

Set of gas-fired units at natural gas node
n.

Set of gas nodes connected to natural gas
node n.

Gas flow from n to n’ at t.

Piecewise linear gas flow at ¢.

Gas production of gas well w at .

Gas inventory of gas storage s at ¢ and
t—1.

Gas consumption of gas-fired unit w at ¢.
Gas load shedding of gas node n at t.
Power load shedding of bus b at ¢.
Binary variables to indicate if transmis-
sion line [ is under maintenance at ¢,
t — 1, and ¢, respectively. ‘1’ denotes
maintenance, otherwise ‘0’

Binary variables to indicate if pipeline p
is under maintenance at ¢, t — 1, and t’.
‘1’ denotes maintenance, otherwise ‘0’.
Binary variables to indicate if generator
u’ is under maintenance at £, ¢ — 1, and
t/, respectively. ‘1’ denotes maintenance,
otherwise ‘0’.

Binary variables to indicate the states of
generator u at ¢, t — 1, and t/, respec-
tively. ‘1’ and ‘0’ denote on and off-state,
respectively. These variables are used for
unit commitment.

Binary variables to indicate the states of
gas well wat ¢, t — 1, and ¢’. 1’ and ‘0’
denote on and off-state, respectively.
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Power generation of generator u at ¢ and
t — 1, respectively.

Power generation of generator v’ at ¢ and
t — 1, respectively.

Power from bus b to bus ¥’ at t.
Pressure of gas nodes n and n’ at t.

Binary variable to indicate if generator v’
is started up at ¢.

Phase angles of buses b and b’ at .

Binary variables to indicate if the piece-
wise linear function k is selected. ‘1’
denotes ‘selected’, and ‘O’ denotes ‘non-
selected’.

Squared pressures of gas nodes n and n’.

Slopes of piecewise linear segments.
Intercepts of piecewise linear segments.
Electrical susceptance of line b-b'.

Maintenance costs for line [, pipeline p
and generator u at .

Fixed cost and linear cost of generator
at t.

Fixed cost and linear cost of generator u’
at t.

Start up cost of generator u at t.
Revenue of generator u and v’ at ¢.
Cost of gas production and storage at .

Cost of power load shedding of bus b at
t.

Cost of gas load shedding of node n at ¢.
Weymouth constant of pipeline n-n'.

Min on and off time periods of generator
U.

Min on and off time periods of gas well
w.

Periods of maintenance of line [ and
pipeline p.

Efficiency factor of gas-fired unit u.
Min/Max gas flow of linear segments for
pipeline p.

Min/Max gas flow of linear segments for
pipeline p’.

Min and max outputs of gas well w.
Min and max outputs of gas storage s.
Gas load of gas node n at ¢ (non-gas-fired
unit).

Power load of bus b at ¢.

Large numbers.

Max number of generators under mainte-
nance at ¢.

Max number of lines and pipelines under
maintenance at t.

Max and min outputs of generator wu.

Min/Max capacity of line b - b’.

Ramp-up and ramp-down limits of gener-

R, Ru Ry, R,
ator u and v/, respectively.

Rs, R, In-flow and out-flow limits of gas storage
S.

0,0 Min/max of phase angles of bus b.

5" Phase angle difference limit.

T, Tn Min/max squared pressures.

Ape Compression factor.
Notation for Backward Induction Algorithm

i € {pn,pe} Player i. pn and pe denote the owner
of the natural gas grid and the owner of
power grid, respectively.

e Decision epoch e in the game tree.

H;. Set of decision nodes of the player 7 at
the decision epoch e.

Ri e A decision node of the player i at the
decision epoch e, h; . € H; ..

Dy, . Set of decisions that can be made at the
decision node h; ..

dh; . A decision that can be made at the deci-
sion node hj e, dp,, € Dp, ..

dp, . Optimal decision at the decision node
hie.

R(dp, ) A decision node followed a decision dj, , .

v(hie) A path from the initial decision node to
hie.

C*(hie) Optimal path from h; . to the end decision
node.

F;(e) Function value of player ¢ with a path ‘e’.

SPNE Subgame perfect Nash equilibrium.

I. INTRODUCTION

UE to higher efficiency, less contamination, and lower

costs compared to conventional coal plants, more natural
gas-fired units are integrated into power systems. Based on
the data from the Energy Information Administration (EIA),
32.1% of U.S. electricity was supplied by natural gas-fired
units in the first month of 2016 [1]. More than 60% of new
generation required from 2025 to 2040 in the U.S. will be
fueled by natural gas [2]. Growing consumption of natural
gas promotes the construction of pipeline networks, which
lead to a coupled system associated with the electric grid.
Since the natural gas grid is coupled with the electric grid
via gas-fired units, it has a great influence on the electric grid
[3]. An interruption or an outage in the natural gas system
may lead to the loss of gas supply for the gas-fired units,
which can jeopardize the power system security and result
in electric load shedding. For example, in 2002, a disruption
on a single pipeline forced the loss of 2019 MW electricity
generation at the Collins generating station near Chicago, and
further led to cascading power outages in nearby areas [4], [5].
Therefore, it is necessary to ensure high reliability of the cou-
pled natural gas and electric system. Maintenance scheduling,
as an important means to enhance system reliability [6], [7],
should include the interactions between the natural gas grid
and the electric grid. Particularly, if the assets of the natural
gas grid and the electric grid belong to different owners, these
owners would like to maximize their own revenues when they
make maintenance scheduling. Therefore, it is inevitable to

0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2812702, IEEE

Transactions on Power Systems

appropriately schedule maintenance for the natural gas grid
and the electric grid.

Considering the interdependency between the natural gas
grid and the power grid [8], the issues such as expansion
planning and operation in the coupled grid have been re-
investigated [9], [10]. The steady-state models based on Wey-
mouth equations have been applied in studies on optimal unit
commitment with security constraints of the natural gas system
[11] and optimal power flow of the electric system with the
natural gas system [12]. To deal with the nonlinear models
of pipelines, a piecewise linear method by using the mixed
integer programming formulation can be employed [13]. In
addition, some relaxation-based approaches are proposed to
deal with the nonlinear Weymouth equations [14]-[16]. The
above studies mainly focus on the steady-state model. To
accurately represent the influences of the natural gas grids,
the dynamics of the gas pipeline networks are discussed in
[17].

Currently, there are some studies on maintenance scheduling
for the power system. To include the deterioration processes
of devices, Markov models are introduced [18]-[20]. In ad-
dition to Markov models, some models based on the mixed
integer linear programming (MILP) are proposed to schedule
maintenance activities on electric devices [21], [22]. With
the deregulation of the power system, centralized mainte-
nance scheduling is not suitable. Some coordination-based
and game-based mechanisms are developed [23], [24]. For
the natural gas system, condition-based approaches [25], risk-
based approaches [26], and tree-based approaches [27] are
developed to support maintenance scheduling of gas pipelines.
However, maintenance scheduling of the integrated natural
gas and power systems, especially when the natural gas grid
and the power grid are owned by different companies, has
been little investigated. In practice, the natural gas grid and
the power grid may belong to different companies [28]. The
company of the natural gas grid owns assets in the natural
gas grid, and the company of the power grid owns assets
in the power grid [29]. When scheduling maintenance, the
owners of the natural gas grid and the electric grid both
expect to maximize their revenues [30]. In addition, there are
independent system operators (ISOs) for the coupled system,
and they coordinate, control and monitor the operation of the
system [31]. For different owners of the natural gas grid and
the power grid, they have the rights to schedule maintenance
for their own assets, and ISOs are in charge of the system
operation to ensure high reliability of the systems. Since the
two grids may belong to different owners, different sequences
of determining maintenance scheduling for different owners
may happen, and the sequence of determining maintenance
scheduling can impact the revenues of the owners for the
natural gas grid and the electric grid. Therefore, we propose a
dynamic game-based maintenance scheduling mechanism for
the electric and natural gas grids by using a bilevel approach.
In the upper level, the different owners of the natural gas grid
and the power grid schedule maintenance with the objective
to maximize their own revenues. The interactions between
different owners are formulated as a dynamic game problem,
which is solved by the backward induction algorithm. In the
lower level, ISOs dispatch the natural gas grid and the power
grid to minimize the loss of power load and gas load with the
operating conditions under the maintenance schedules from the
different owners. This is formulated as a mixed integer linear
programming problem. A piecewise linear approximation with

the big-M approach is used to transform the original nonlinear
model of the natural gas grid into a mixed integer linear model.
A 6-bus system with a 4-node gas grid and a modified IEEE
118-bus system with a 20-node gas grid are used to verify the
effectiveness of the proposed model.

The main contributions are listed as follows. 1) A dynamic
game-based maintenance scheduling mechanism for different
owners of the electric grid and the natural gas grid is proposed
by using a bilevel model. The dynamic game model addresses
the sequence of scheduling maintenance for different owners
of the natural gas grid and the power grid. The bilevel model
deals with that the asset owners determine the maintenance
windows of the assets and ISOs determine the system oper-
ating conditions. 2) The subgame perfect Nash equilibrium
(SPNE) for the owners of the natural gas grid and the electric
grid is obtained by using the backward induction algorithm.
3) The influences of maintenance durations and the number
of piecewise linear functions on the SPNE are analyzed.
Suggestions on maintenance durations are provided.

The remainder of this paper is organized as follows. Section
IT shows the maintenance scheduling formulation, including
the framework of the proposed model, the upper level model
and the lower level model. Section III presents the solution,
and the case studies are demonstrated in Section IV. The work
is concluded in Section V.

II. MAINTENANCE SCHEDULING FORMULATION

This section shows the formulation of the dynamic game-
based maintenance scheduling with a bilevel approach. First,
the framework of the proposed model is presented. Second, the
upper level model, including the model for the owners of the
natural gas grid and the power grid, is introduced. Third, the
lower level model for the ISO with the operating constraints
is established.

A. Framework of the proposed model

Fig. 1 shows the framework of the proposed dynamic game-
based model, which is a bilevel model. The upper-level model
schedules maintenance with the objective to maximize the
revenues for the owners of the natural gas grid and the power
grid, and the lower-level model calculates the system operating
points for the ISO with the objective to minimize the loss of
power load and gas load. In this paper, there are the following
assumptions: 1) For the system, there is one owner of the
natural gas grid and one owner of the power grid. In addition,
there is one ISO who is responsible for dispatching the system.
2) Knowledge about one owner is available to the other owner
and the ISO.

In the upper level, possible maintenance can be listed with
the scheduling constraints and the scheduling sequence. For
possible maintenance, the lower level model is employed to
minimize the loss of load with the operating constraints of
the natural gas grid and the power grid, and it is a mixed
integer linear programming problem. Based on the operating
points, the game tree with payoffs can be established. Then, the
game tree is solved by using the backward induction algorithm,
and SPNE is obtained. SPNE corresponds to the maintenance
scheduling for the owners of the natural gas grid and the power
grid.
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Fig. 1. Framework of the proposed model

B. Upper Level Model

1) Power Grid Owner’s Model: In the upper-level model,
the owner of the power grid schedules maintenance activities
while keeping a maximum revenue. The objective can be
expressed as follows.

max . > (Cf;t . Pu,t) +3 3 (Cf’,t . Pu/’t) —
u ot u’ t

l.a 1.b
S (O vi) -8 (CM o) -
u ot l
l.c 1.d
ZZ(Cft " Uyt +C£t'Pu,t) -
o T ’ (1)
l.e
> (Cff,t Vwt +Cl e Pure + Cf/,t COwt) —
u' t
1.f
S (CFF - ML)
b t
l.g
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Ui—1 — U Uy <1 2
1<t/ —(t—-1)<TM Vit
Vu,t—1 — Vu,t + Uyt S 1 (3)
1<t —(t—1) <TM vu,t
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t
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l
Y -va) <N e 7
v, v € 40,1} VIt (8)
ALb,h V' ty ]Du,h (9)

P, 4,04 € arg {Lower Level Model}

where (l.a) and (1.b) show the revenues from power gen-
eration, (l.c) is the cost of implementing maintenance on
generators, and (1.d) is the cost of implementing maintenance
on lines. (1.e) is the operating cost of generators that will
be under maintenance during the given time window. It is
assumed that the generators to be under maintenance will
not participate in unit commitment in the lower-level model.

(1.f) is the operating cost of generators that will not be
under maintenance during the given time window, and these
generators can participate in unit commitment in the lower-
level model. (1.g) is the penalty cost due to unserved power
load. (2) is the maintenance duration constraint for the line [,
and (3) is the maintenance duration constraint for the generator
u. (4) and (5) ensure that maintenance will be implemented
during the given time window, (6) is the constraint of the
maximum allowable number of lines under maintenance in
one period, and (7) is the constraint of the maximum allowable
number of generators under maintenance in one period. (8) is
the binary constraint. (9) shows the variables optimized in the
lower-level model.

In (1)-(9), the variables vy +, v, + VI, u, t, which represent the
maintenance states, are determined in the upper-level model.
This is because the owner of the power grid only deter-
mines maintenance windows for the devices. The variables
ALy, vy 1, Puty Pur gy 00 ¢ Yu,u',b,t, which represent the
system operating conditions, are determined by the ISO in the
lower-level model.

2) Natural Gas Grid Owner’s Model: In the upper-level
model, the objective of the natural gas grid can be expressed
as follows.

max Z Z (Cw,t : Gw,t) + Z Z (Cs,t : Gs,t) -
w i s t

10.a 10.b (10)
3 Et: (CY - vpe) =2 Etj (CET - ALy y)
p n
10.c 10.d
S.t.
Upt—1 — Upit + Up, ¢/ S 1 (11)
1<t —(t—1)<TM Vp,t
> (=) =T p (12)
t
> (1 —wvp) < NSM (13)
p
vyt € {0,1} Vp, ¢ (14)

ALy, ¢, V1, Gy, Gs, € arg {Lower Level Model}
(15)

where (10.a) and (10.b) are the revenues for the owner of
the natural gas grid. (10.c) is the maintenance cost, (10.d) is
the penalty cost caused by unserved natural gas load, (11) is
the constraint of maintenance on pipelines, (12) guarantees
that maintenance will be implemented during the given time
window, (13) enforces the maximum number of pipelines that
can be maintained in one period, (14) is the binary constraint,
(15) shows the variables optimized in the lower-level model.

In (10)-(15), the variables v,; Vp,t, representing the
maintenance states, are determined by the owner of the
natural gas grid in the upper-level model. The variables
ALy +,Vyt, G, Gst Y, w, s, t, representing the operating
conditions, are determined by the ISO in the lower-level
model.

C. Lower Level Model

1) Objective function: In the lower-level model, the ISO
minimizes the loss of power load and natural gas load while
satisfying the operating constraints with the scheduled main-
tenance from the owners of the natural gas grid and the power
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Fig. 2. Piecewise linear approximation of pipeline flow.

grid. The objective of the lower-level model is expressed as
follows.

DT

2) Constraints: When minimizing the objective function,
the operating constraints of the natural gas grid and the electric
grid should be satisfied.

a) Natural gas supply constraints: In each period, the
natural gas supply constraints should be satisfied.

ALpg) + > (CE - AL,y (16)
n t

Qw sVt S Gw,t S éw *Vw,t vat (17)
—U,t—1 + Vw,t — Ut/ <0 (18)
1<t —(t—1) <TON Vuw,t
Vw,t—1 — Vw,t + Vw, t! S 1 (19)
1<t —(t—1) <T9FF v, t
G, <G54 <Gg Vst (20)
ES < Gs,t - Gs,t+1 < Rs VS,t (2])

where (17) shows the limit of gas production of each gas well,
(18) and (19) show the constraints of on-off states of the gas
wells, (20) enforces the storage levels of the gas storages, (21)
represents the in-flow and out-flow rates of the gas storages.

b) Natural gas balance at each gas node: Natural gas
balance at each gas node should be satisfied.

Z Gw,t+ Z (Gs,tfl_Gs,t)"_ Z Fn,n’,t

weQlW seQy n/eQl
— Z (Lu,t . EFU) - (Ln t — ALn,t) =0 Vn,t
ueQs
(22)
0 S ALn’t S Ln,t Vt,n (23)

where (22) enforces the natural gas balance at each node, and
(23) denotes the constraint for natural gas load shedding.

c) Natural gas flow constraints: The gas flow in a
pipeline in service can be expressed as the nonlinear Wey-
mouth equation (24).

an’t |an’t|— (P52

fLIL

Sn/,t) Yn,n',t (24)

A piecewise linear formulation by using the mixed integer
programming, as shown in Fig. 2, is employed to deal with
the Weymouth equation. Substitute PS? with 7, and the left
side of (24) can be approximately expressed as the sum of
a group of piecewise linear functions. Each linear function
is represented by a slope A, an axis intercept and a binary
variable 7.

For the pipelines that will not be under maintenance during
the given time window, the model can be expressed as follows.

X (A £t Bl )

(25)
= C’;n, (Tne — T y)  VED, (n,n)) ep
Zn;f,,t =1 Vt,p (26)

k
—k
My oo Lo S Sy Sy Ty Yk D @7)
n') €p' (28)

Fn,n/,t = Z f;f’,t \V/t,p,, (TL,
k

where the sum of a group of piecewise linear functions in
the left side of (25) approximates the term F,, v ¢ - | Fpyr,
in (24). In Fig. 2, there are six plecew1se linear functions,
ie., k={1,2,---,6}. Since the variable 7%, , € {0,1}, (26)
ensures that only one linear function will "be selected. 27
limits the variable f% + for the kth linear function. With the
constraints (25), (26§ and (27), the gas flow in the pipeline
n —n’ can be expressed as (28).

For a pipeline that will be under maintenance during
the given time window, its state (i.e., the variable v, ;) is
determined in the upper-level model. The piecewise linear
approximation model is shown as follows.

%;(A£¢ pet Bpinps) < Cn o (Mg — Tore) 29)
+(1—vpt) MP Vt,p, (n,n') €p
%;(A§¢ o+ By ) = Cn o (o — T e) 0
—(1—vp,t)-MP Vt,p, (n,n') €p
Myt 'f; < [ <y 7’; Vk,t,p (31)
Fowa=Y_fp Vip, (nn))€p (32)
k
(33)

Zﬁg,t =Upt Vi,p
k

where (29) and (30) represent the constraints of gas flow
in pipelines. By introducing the binary variable v,; and a
sufficiently large M*, (29) and (30) are redundant when the
corresponding pipelines are under maintenance at ¢. (31) and
(32) have the similar meanings of (27) and (28), respectively.
(33) relates the variable 775,15 and vy, ;. For example, when the
pipeline p at ¢ is off due to maintenance, i.e., v,; = 0, n]’)“’t
for all piecewise linear functions will be zeros. In this case,
(29)-(32) are all satisfied. When the pipeline p at ¢ is on, i.e.,
vpt = 1, the model is the same as (25) - (28). The binary
variable v, ; is determined in the upper-level model, and the
binary variable n’;’t is determined in the lower-level model.

d) Natural gas pressure constraints: The pressure of
each natural gas node should be within the limit.

Vn,t
Vpe,t, (n,n') € pe

(34)
(35)

T, S Tn,t S Tn

Tn! t S >\pc *Tnt

where (34) is the constraint for the pressure. (35) shows the
constraint of pressures between the in-coming gas node and
the out-coming gas node of a pipeline with a compressor.

e) Power flow constraints: The limits for power flow
through lines should be satisfied.

By - (b — Oy 1) = Pl VG, (b)) € (36)
\PL, | <Pry VLT, (b b) el (37)
Bbab’ : (9b t 9[)/ ) b bt + (1 — U t) M >0 (38)

Vi1, (b)) €l
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By - (b0 — O 1) = Py, — (1= wi4) - M* <0 (39)
vt, 1, (b,b') €1
\PLy | <Py vy VL (0,Y) €l (40)

where (36) shows the relation between voltage angles and
power flow through lines that will not be under maintenance
during the given time window, (37) shows the corresponding
limit of power flow. (38) and (39) represent the physical
relations between voltage angles and power flow through lines
that will be under maintenance during the given time window.
(40) is the corresponding limit of power flow.

f) Generator’s state constraint: When scheduling main-
tenance, it is necessary to include the on-off constraints of
generators.

—Vy! p—1 + Uyt — UV pr <0

1<t —(t—1) <TON v/ t “D

Uy t—1 — U/t + Uy t! < 1
1<t —(t—1) <TOFF v/ ¢ (42)
— Uy’ t—1 + Uyt — Oul it S 0 vulat (43)

where (41) denotes the minimum on-time constraint of the
generator u’, (42) is the minimum off-time constraint of the
generator u’. These constraints are used for unit commitment.
(43) is the start-up constraint of the generator w’.

g) Power balance: At each time, the power system
should satisfy power balance.

> Pui+ >, Pyy—(Lpy—ALpy) +

ueQy weQy

S PL,=0 wp

el
0< ALy < Ly, Vt,b (45)
Pui=Ly: - EF, YueQSf nt (46)

where (44) enforces power balance at each bus in each time
period. (45) is the constraint of load shedding. (46) denotes
the relation between natural gas and real power produced from
gas-fired units.

h) Phase angle constraint: The constraint for the phase
angle at each bus, and the constraint for the phase angle
difference between two buses on each line should be satisfied.

s — Oy o] <vrg -0 + (1 —viy) M? VL (bY) €1
(47)

(48)

where the constraint (47) shows the phase angle difference
limit on the line that will be maintained during the given time
window, and (48) shows the phase angle difference limit on the
line that will not be maintained during the given time window.
i) Ramp-up and ramp-down constraints: The generators
should satisfy the ramp-up and ramp-down constraints.

001 — O 4] <O W&, (b, 1) €1/

Bu * Uyt < Rl,,t < ?u * Ut Vu,t (49)

Pu,t - Pu,tfl S (2 - 'Uu,tfl - Uu,tL£u+ (50)
(1 + Vy,t—1 — Uu,t) : Ru vua 3

Pu,tfl - Pu,t S (2 - 'Uu,tfl - Uu,t) : £u+ (51)
(1 — Vu,t—1 + Uu,t) ) Eu vua t

where (49) is the capacity limits of the generator u, (50) and
(51) are ramp-up and ramp-down constraints of the generators
u. When v, ; = 1 and v, ;1 = 0, the constraints become
P,y —P,t-1 < R, and P,y — P,y < R,, and these

two constraints are the conventional ramping limits. When
Uy = 1 and v, -1 = 0, the constraints can be rewritten
as P,y <P, and —P,; < P, +2R,. Associated with (49),
we can conclude P, ; = P,. This means that the generation
of the generator u is P, after it is restarted. When v, ; = 0
and v, ;-1 = 1, we have P,;; = P, and P,; = 0. It
means the generation of the generator v will be dispatched to
P, at t —1 when the generator u should be offline at ¢. For
the generators that will not be under maintenance during the
given time window, the ramp-up and ramp-down constraints
are similar with (49)-(51).

III. SOLUTIONS

This section presents the solution procedures to obtain
maintenance plans for the owners of the natural gas grid and
the power grid. The solution procedures include 1) establishing
the game tree, 2) calculating payoffs of each path in the game
tree, and 3) obtaining SPNE by using the backward induction
algorithm.

A. Game Tree Establishment

In the upper-level model, the owners of the natural gas
grid and the power grid schedule their own maintenance.
With the constraints (2)-(8) and the constraints (11)-(14), a
game tree representing possible sequential decisions can be
established. Since the decision variables in (2)-(8) and (11)-
(14) are discrete, the established game tree is a finite game
tree.

For example, the owner of the natural gas grid can make
maintenance scheduling A and B, and the owner of the
power grid can make maintenance scheduling C' and D. When
the owner of the natural gas grid first makes maintenance
scheduling, the game tree is illustrated in Fig. 3. DNy is the
decision node for the owner of the natural gas grid. DN, and
D N3 are the decision nodes for the owner of the power grid.

Fig. 3. A simplified game tree.

B. Payoff Calculation

For each path in the game tree, i.e., the scheduled main-
tenance, the ISO dispatches the system to ensure the high
reliability and minimizes the loss of power load and natural
gas load. The variables v; 4, v, ¢, vp ¢ in each path come from
the upper-level model, i.e., the owners of the power grid and
the natural gas grid. Therefore, the lower-upper model for each
path can be expressed as

Obj. (16)
st (17) — (51)

Given vy ¢, Vy,p, Upt

(52)
Vi, p,t

where (52) is a mixed integer linear program, which is solved
with the CPLEX solver in this research. After solving (52), the
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payoffs of the owners of the natural gas grid and the power
grid for each path can be obtained by using (1) and (10). In
this case, a finite game tree with payoffs can be established.

C. Game Tree Solution

Backward induction is a deduction process operating back-
wards from the end of the game tree to determine a sequence
of optimal activities for different players at decision epochs.
The optimal decision at each decision node can be expressed
as follows.

dy ~=arg max Fi(V(hi,e),dhie,g*(N(dhie))) Vhie
ne dhi,eeDhi,e ’ ’

(53)

¢ (hie) = { i, O3, )b Vi (54)

where (53) shows the optimal decision at the decision node
hie, and (v(hie),dn, ., C*(R(dp, . ))) constructs a path from
the initial decision node to a terminal decision node. (54)
shows the optimal path from the decision node h;. to the
terminal decision node. By solving the established game tree
in sections IIILA and III.LB with (53) and (54), maintenance
plans corresponding to SPNE can be obtained.

IV. CASE STUDIES

In this section, two test systems are used to verify the
proposed model. The first system is a 6-bus power grid with a
4-node natural gas grid, and the second system is a modified
IEEE 118-bus power grid with a 20-node natural gas grid.
The cases are tested in MATLAB 2017a using the CPLEX
12.6 solver on computers with 3.1 GHz i5 processors and 8
GB RAMs.

A. 6-bus Power Grid with 4-Node Natural Gas Grid

1) Data description: The 6-bus power grid and the 4-node
natural gas grid refer to [32] and [33]. The integrated system
is shown in Fig. 4. The forecast power load curve during the
given time window is shown in Fig. 5.

Natural Gas Grid

Electric Power Grid

Fig. 4. Topology of a 6-bus electric grid with a 4-node gas grid.

During the given time window, the lines 1-4 and 3-6 in
the power grid will be under maintenance, and maintenance
activities need 22 and 24 time intervals, respectively. In each
time interval, only one line can be under maintenance. Their
maintenance costs are $500 and $600 per time interval. In
addition, maintenance on the pipeline 2-3 in the natural gas
grid should be implemented with $500 per time interval. The
maintenance activities need 31 time periods.

Forecast Load (MW)

10 20 30 40 50
Time Periods

Fig. 5. Forecast power load curve.

TABLE I
PARAMETERS FOR GENERATORS

G1 Ga G3
Lower Limits (MW) 100 80 150
Upper Limits (MW) 300 200 350
Ramping Rates (MW/h) 25 20 7.5
Fixed Cost ($) 1000 1000 1000
Linear Cost ($/MW) 20000 21000 21500
Restart Cost ($) 2000 2100 2200
Minimum Up Periods 4 3 2
Minimum Down Periods 2 3 3
TABLE II

POSSIBLE MAINTENANCE ON LINE 1-4 (L14) AND LINE 3-6 (L3g)

No Maintenance Scheduling No. Maintenance Scheduling
my 1 L14:1-22; L36:23-46 my 7 L14:25-46; L3g:1-24
my.o L14:1-22; L3g:24-47 my.s L14:26-47; L3g:1-24
my3 L14:1-22; L36:25-48 myg L14:27-48; L3g:1-24
my 4 L14:2-23; L3e:24-47 mp10  L14:26-47; L3g:2-25
mys L14:2-23; L36:25-48 my 1 L14:27-48; L3g:2-25
mye L14:3-24; L36:25-48 my 1o L14:27-48; L3e:3-26
TABLE III
POSSIBLE MAINTENANCE ON PIPELINE 2-3 (PL23)

No Maintenance Scheduling No. Maintenance Scheduling
My, 1 PLa3:1-31 mMp. 10 PL23:10-40
Myp,2 PLos:2-32 Mp,11 PlLos:11-41

myp,3 PLo3:3-33 mp,12 PLo3:12-42

Mp 4 PlLos:4-34 mp 13 PlLos:13-43
Mp,5 PL33:5-35 Myp,14 PlLo3:14-44
Myp.6 PL23:6-36 Mmp 15 PLo3:15-45
mp,7 PLy3:7-37 mp. 16 PL23:16-46
mp,8 PLo3:8-38 Mp,17 PLos:17-47

Mp.9 PL53:9-39 Mp 18 PLo3:18-48

2) Maintenance corresponding to SPNE: The possible
maintenance activities on lines in the power grid are listed
in Table II, and the possible maintenance activities on the
pipelines in the natural gas grid are listed in Table III.

Fig. 6 (a) shows the game tree when the owner of the power
grid first schedules maintenance. A blue path denotes the best
response of the owner of the natural gas grid to a maintenance
plan scheduled by the owner of the power grid. For example,
if the owner of the power grid has the maintenance plan m; 1,
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the best response of the owner of the natural gas to my; with a larger payoff of one owner may be excluded from the
optimal strategy when the other owner makes the maintenance

is my, 5. With m;; and m, 5, the payoffs of the owners of

the natural gas grid and the power grid are $1.3665 x 10® plan. For example, m; 7 and m, 17 in Fig. 6 (a) correspond

and $3.9231 x 108, respectively. If the owner of the power to SPNE when the owner of the power grid first schedules

grid has the maintenance plan m; 3, the best response of the maintenance. In Fig. 6 (b), my 12 rather than m;~ is the

owner of the natural gas grid to m; 3 is my, 13. With m; 3 and  best response to m, 17 since $4.1207 x 10® is greater than

my 13, their payoffs are $1.6762 x 108 and $3.9924 x 108, $4.1072 x 108. Based on the above analysis, we can conclude
that different sequences have great influences on the optimal

respectively. Results show that the payoffs are different with
diverse maintenance and the responses. Since the two owners strategies, i.e., SPNE, and the payoffs.

expect to maximize their own payoffs, they should take into
full account each other’s maintenance. The backward induction
method is used to obtain the optimal strategies corresponding
to SPNE for the two sides. For the scenario in Fig. 6 (a), the
optimal strategies corresponding to SPNE is m; 7 and m,, 17.
The payoffs for the owners of the power grid and the natural
gas grid are $4.1072 x 10® and $1.5226 x 108, respectively.

~
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Fig. 7 (a) and (b) show the fitting surfaces of the payoffs.
Fig. 6. (a) Game tree with payoffs when the owner of the power grid first A1 and Ao represent the payoffs corresponding to SPNE for
makes maintenance scheduling. (b) Game tree with payoffs when the owner  the power grid and the natural gas grid when the owner of the
of the natural gas grid first makes maintenance scheduling. power grid first schedules maintenance. B; and Bj represent

the payoffs corresponding to SPNE for the power grid and
the natural gas grid when the owner of the natural gas grid
first schedules maintenance. The results show that SPNE may
not have the largest payoffs. This is because one strategy with
the largest payoff for one owner may be excluded when the
other owner makes maintenance plans. Due to this reason,
SPNEs are located at different positions of the fitting surfaces
of the payoffs, e.g., at the local peaks A;/A5/By and the non-
local peak B;. To further analyze the position of SPNEs, 400

Fig. 6 (b) shows the game tree when the owner of the
natural gas grid first schedules maintenance. The red path
represents the best response of the owner of the power grid
to a maintenance plan scheduled by the owner of the natural
gas grid. For example, if the owner of the natural gas grid
has the maintenance scheduling m,, 1, the best response of the
owner of the power grid to m,, 1 is my 12. With the backward
induction method, the optimal strategies, which correspond to
SPNE, for the two sides are m, 4 and m; 12. The payoffs of scenarios with different cost data are implemented, and we
the owners of the power grid and the natural gas grid are get 800 SPNEs in consideration of different sequences of the

owners. For these SPNEs, there are 591 SPNEs locating at

$4.1051 x 10® and $1.3909 x 108, respectively.
The payoffs corresponding to SPNE in Fig. 6 (b) are both  the local peaks, i.e., about 74% of SPNEs locate at the local
smaller than those in Fig. 6 (a). This is because the strategy peaks.
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Fig. 8 shows the average load shedding of each path in the
game tree for different scenarios. The x-axis represents the
scenario, and the y-axis represents the average load shedding.
Different color bars in each scenario represent the different
paths in the game tree. Each black dash-dotted line marks the
path corresponding to SPNE in each scenario. Some scenarios
(e.g., the scenarios 2, 6 and 9) have SPNEs with the minimum
loss of load, and the others (e.g., the scenarios 1, 3,4, 5,7, 8,
and 10) have SPNEs with the non-minimum loss of load. One
critical reason for this is that the strategy with the minimum
loss of load may be excluded when the other player makes
maintenance plans.
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Fig. 8. Load shedding of each path in the game tree for different scenarios.

3) Influences of maintenance duration: Fig. 9 (a) and
(b) show the payoffs corresponding to SPNEs with different
maintenance durations. The x-axis and the y-axis represent
the maintenance durations of the line Li4 and the pipeline
PLss, respectively. The z-axis represents the payoffs. The
results show that the payoffs corresponding to SPNEs gradu-
ally increase with the shorter maintenance durations. We can
interpret this pattern qualitatively as follows.

e When the maintenance duration of the line L4 decreases,
the maintenance cost for the line can be reduced. Fur-
thermore, the loss of load could be reduced due to a
larger power transport capability, and in consequence the
generation revenue increases.

o When the maintenance duration of the pipeline PLog
decreases, the maintenance cost for the pipeline can be
reduced, and the loss of gas load could be reduced.
In addition, the generation from the gas-fired units can
increase due to the larger gas transport capacity, and in
consequence the loss of load can be reduced.

Based on the results and the analysis, it is concluded that
the owners of the natural gas grid and the power grid should
shorten the maintenance durations when they would like to
obtain SPNE with higher payoffs.

4) Influences of different piecewise linear functions: Fig.
10 shows the relative errors of the payoffs corresponding to
SPNE for the power grid (a) and the natural gas grid (b) when
using different piecewise functions. The x-axis and the y-axis
represent the number of piecewise functions and the relative
error, respectively. The different color bars represent scenarios
with different cost data. The results with fifteen piecewise
functions are used as reference values. The results are more
accurate with more piecewise functions, and nine piecewise
functions can achieve the results with high accuracy.

Furthermore, the payoffs of the owner of the natural gas
grid are more sensitive to the number of piecewise functions
compared to the payoffs of the owner of the power grid.
For example, the average relative error of the payoff is about
1.4% for the power grid, and about 28% for the natural gas
grid when using three piecewise functions. When using nine
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Fig. 9. Payoffs of the equilibrium points with different maintenance durations
for the owner of the power grid (a) and the owner of the natural gas grid (b),
respectively.

piecewise functions, the average relative error of the payoff is
about 0.25% for the power grid, and about 1% for the natural
gas grid.
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Fig. 10.  Relative errors of the payoffs corresponding to the equilibrium
points for the owner of the power grid (a) and the owner of the natural gas
erid (b), respectively.

5) Influences of maintenance on different components:
Maintenance on generators may need to be scheduled associ-
ated with maintenance on lines during the given time window.
To compare the results, the line Lss in the above case is
replaced by the generator G2 that needs maintenance, and the
other settings remain unchanged. We compare the results when
the owner of the power grid first makes maintenance schedul-
ing. Table IV shows the comparison results. The scenario S;
is the original case, and the scenario S5 is the updated case
with the generator G2 to be under maintenance.

0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2812702, IEEE

Transactions on Power Systems

TABLE IV
PAYOFFS CORRESPONDING TO EQUILIBRIUM POINTS

Payoffs ($10%)

Scenario
Power Grid Natural Gas Grid
S1 4.1072 1.5226
Sao 3.4550 1.7761

The payoft of the scenario S corresponding to the equilib-
rium point for the power grid ($3.4550 x 10) is smaller than
that of the scenario S; ($4.1072 x 10®). The main reason for
this is that the loss of load increases when the generator G
is under maintenance.

The payoff of the scenario S5 corresponding to the equilib-
rium point for the natural gas grid ($1.7761 x 108) is larger
than that of the scenario S; ($1.5226 x 10%). This is because
the gas-fired units G; and G3 need more natural gas for
electric power to reduce the loss of load when the generator G
is under maintenance, and the increased natural gas production
increases the revenues of the natural gas grid.

B. 118-bus electric grid with 20-node gas grid

1) Data description: The data for the power grid and the
natural gas grid refer to [34] and [35], respectively. Table V
shows the gas-fired units and the corresponding gas nodes in
the natural gas grid. During the given time window (48 time
intervals), three transmission lines 69-47, 69-70 and 69-75
will be maintained with 24 time intervals, and two pipelines
10-14 and 10-11 will be maintained with 23 time intervals.
The maximum numbers of lines and pipelines that can be
maintained in one period are 2 and 1, respectively.

TABLE V
NUMBER OF GAS-FIRED UNITS
Gas-fired Unit No. Power Bus Gas Node
1 10 16
2 12 15
3 54 12
4 59 18
5 87 5
6 103 19

2) Simulation Results: This section shows the maintenance
scheduling (the equilibrium) for the two owners with different
decision-making sequences. Table VI shows the maintenance
scheduling and the payoffs when the owner of the power
grid first makes the maintenance plan. Table VII shows the
maintenance scheduling and the payoffs when the owner
of natural gas grid first makes the maintenance plan. The
results show that different decision making sequences result
in different SPNEs, and therefore cause different maintenance
plans.

We shorten the maintenance durations of the line Lgg_47
and the pipeline L19_14 to 20 and 19, respectively. Table VIII
shows the payoffs corresponding to the equilibrium points.
When the owner of the power grid first makes the schedule,
the payoffs for the owners of the power grid and the natural
gas grid are $52.4254 x 108 and $6.8107 x 10%, respectively.
They are larger than the scenario in Table VI. When the owner
of the natural gas grid first makes the schedule, the payoffs
for the owners of the power grid and the natural gas grid

10
TABLE VI
PAYOFFS WITH POWER GRID’S OWNER FIRST MAKING MAINTENANCE
PLANS
Power Grid Natural Gas Grid
Payoff Maintenance Payoff Maintenance
($10%) Scheduling ($10%) Scheduling
52.1343 Leg—a7: 22 — 45 6.6483 PLig—14:2—24
Leg—70: 25 — 48 PLio—11: 26 —48
Leg—75: 1 —24
TABLE VII

PAYOFFS WITH NATURAL GAS GRID’S OWNER FIRST MAKING
MAINTENANCE PLANS

Power Grid Natural Gas Grid
Payoff Maintenance Payoff Maintenance
($108) Scheduling ($10%) Scheduling
52.1321 Leg—a7: 25 — 48 6.7062 PLig—14:2—24
Leg—70: 1 —24 PLio—11: 25 —47
Leg—75: 21 — 41

are $52.4172 x 10® and $6.8211 x 108, respectively. They are
larger than the scenario in Table VII. The results show that the
payoffs corresponding to the equilibrium point increase when
the owners shorten the maintenance durations. This conclusion
is consistent with that in Section IV.A.3.

TABLE VIII
PAYOFFS CORRESPONDING TO SPNE UNDER DIFFERENT MAINTENANCE
DURATIONS

8
Sequence of making schedules Payoffs ($10°)

Power Grid ~ Natural Gas Grid
Power grid first 52.4254 6.8107
Natural gas grid first 52.4172 6.8211

C. Discussion

In this paper, the natural gas grid and the power grid are
coupled via natural gas-fired units. In addition to the gas-fired
units, there are some other ways such as energy hubs for
receiving, sending, converting and storing different types of
energy, and these energy hubs are also critical to the natural
gas system and the power system. There are many research
studies on the steady-state models of the energy hubs [36]-
[38]. When an energy hub is included in the natural gas grid,
its steady-state model can be expressed as O = Cx 1, in which
I and O are vectors of energy at input and output ports, and C
is the coupling matrix that describes the conversion of energy
from the input to the output. The elements in C represent
the converter efficiencies and the hub internal topology [39].
This steady-state model has a similar form as the relation
between natural gas and electric power, i.e., the constraint
(46). Therefore, the the model of the energy hub can be easily
integrated in the proposed model.

Currently, we mainly consider maintenance on power lines,
gas pipelines and the generating units. We would like to
emphasize that the proposed dynamic game-based model is
suitable for other components in the system. The models for
the other components can be established by analogy with lines,
pipelines and generating units. For example, the maintenance
model for a transformer can be established by analogy with the
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maintenance model for the line, and the maintenance model for
a gas well can be established by analogy with the maintenance
model for the generating unit.

When modeling the natural gas system in this paper, a
piecewise linear approximation approach is used to transform
the nonconvex and nonlinear Weymouth gas flow equations
into a series of piecewise linear functions. Since maintenance
scheduling is a planning problem, appropriate piecewise linear
functions can satisfy the accuracy requirements. To further
improve the accuracy, some state-of-the-art methods based on
the second-order conic relaxation [14], [15] can be used to
deal with the Weymouth equations. When using the second-
order conic relaxation, we just need to replace the piecewise
linear model for Weymouth equations by the second-order
conic relaxation, and the optimization model in each game tree
becomes a mixed integer nonlinear programming (MINLP)
model.

For a large scale system, it may need a long computation
time to obtain the maintenance plans. However, maintenance
scheduling belongs to a planning topic, it does not require
online calculation. In addition, one critical point for power
systems and natural gas grids is to ensure a high reliability
level. To this end, the number of transmission lines/pipelines
that can be out of service in the same time period is limited
[40]. Meanwhile, the number of paths is also constrained by
the continuous minimum periods for maintenance activities.
Considering the above practical points, i.e., the constraints
(2)-(8), the number of paths is limited, particularly when the
number of all transmission lines/pipelines to be under mainte-
nance with a given time window is limited. Furthermore, many
simulation platforms such as Rescale [41], IBM Could [42]
and Nimbix [43] with high performance computing (HPC),
can be used to solve the proposed model efficiently.

Some techniques can be used to reduce the computation
time. First, parallel computing can be employed when con-
structing the game tree since each path in the game tree are
independent [44]. Second, some methods, e.g., the parallel
branch & bound method [45] and the modified Benders
decomposition method [46], can be used to accelerate the
convergence of the solution for each path.

V. CONCLUSION

This paper proposes a dynamic game-based maintenance
scheduling mechanism for natural gas and power grids by
using a bilevel approach. In the upper-level model, the dif-
ferent owners of the power grid and the natural gas grid
schedule maintenance with the objective to maximize their
own revenues. This is modeled as a dynamic game problem,
which is solved by the backward induction algorithm. In the
lower-level model, the operating point under the scheduled
maintenance is calculated. This is modeled as a mixed integer
linear programming problem. For the model of natural gas
grids, the piecewise linear approximation associated with the
big-M approach is used to transform the original nonlinear
model into a mixed integer linear model.

The proposed model was validated by two test systems.
The major findings are as follows. 1) The subgame perfect
Nash equilibrium for the power grid and the natural gas grid
may not have the maximum payoffs, however, it has a high
probability to locate a local peak of the payoff surface. 2)
The maintenance duration has a great impact on the payoff
corresponding to the subgame perfect Nash equilibrium. When
the owners of the power grid and the natural gas grid expect

to obtain an equilibrium point with the higher payoffs, it is
suggested that they should shorten the maintenance durations.
3) The payoff corresponding to the equilibrium for the owner
of the natural gas grid has a high sensitivity to the number of
piecewise functions compared to the payoff corresponding to
the equilibrium for the owner of the power grid.

This work can be extended to consider the integration of
renewables. Furthermore, some state-of-the-art methods based
on the second-order conic relaxation can be used to deal with
the Weymouth equations, and the optimization model in each
game tree can be established as a mixed integer nonlinear
programming (MINLP) model.
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