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Abstract

Sensory neuroscience aims to build models that predict neural responses and
perceptual behaviors, and that provide insight into the principles that give rise to
them. For decades, artificial neural networks trained to perform perceptual tasks
have attracted interest as potential models of neural computation. Only recently,
however, have such systems begun to perform at human levels on some real-
world tasks. The recent engineering successes of deep learning have led to
renewed interest in artificial neural networks as models of the brain. Here we
review recent applications of deep learning to sensory neuroscience, discussing
potential limitations and future directions. We highlight the potential uses of deep
neural networks to reveal how task performance may constrain neural systems
and behavior. In particular, we consider how task-optimized networks can
generate hypotheses about neural representations and functional organization in
ways that are analogous to traditional ideal observer models.

Highlights

* Deep neural networks (DNNs) now reach human-level performance on some
perceptual tasks.

* They show human-like error patterns and predict sensory cortical responses.

* Like ideal observer models, DNNs reveal how tasks shape neural systems
and behavior.

* DNNs offer hypotheses of intermediate representations and functional
organization.

* DNNs remain incomplete models of neural circuitry, learning, and perceptual
inference.



Introduction

A longstanding goal of sensory neuroscience is to build models that reproduce
behavioral and neural responses. Models have historically originated from a
range of sources, including experimental observation [1-5], a combination of
biological inspiration and engineering principles [6-9], and normative criteria (e.g.
efficient coding) applied to representations of natural sensory signals [10-15].

Models have also been inspired by the idea that they should be able to perform
tasks that organisms perform. One use of tasks is to derive ideal observer
models — models that perform a task optimally under certain assumptions [16].
Such models provide hypotheses for biological systems based on the notion that
biological systems may be near-optimal for ecologically important tasks.
Behavioral predictions from ideal observer models can also provide normative
explanations of otherwise puzzling perceptual phenomena, for instance by
showing how “illusions” can be viewed as optimal inferences given the statistics
of the natural world [17].

Ideal observer models are provably optimal, but they are typically derived
analytically and are therefore often restricted to relatively simple domains where
the task structure can be precisely specified. An alternative approach is to learn
solutions to tasks from data. Supervised learning approaches take a set of input-
output pairs (e.g. images and object labels or sounds and word labels) and
modify a system’s parameters to minimize the error between the system’s output
and the desired output. The resulting models are usually not provably optimal
because the task is specified with training data — generalization performance
must be estimated empirically rather than derived analytically. However,
supervised learning allows models to be constructed for a wide range of tasks,
including some that organisms perform in their everyday environments (for which
the derivation of ideal observed models may be intractable).

Supervised learning approaches were adopted in neurally inspired models as
early as the 1960s [18]. They were then adapted to multi-layer networks in the
1980s, and the resulting wave of neural network research led to optimism that
learned representations could be used to generate hypothesis about actual
neural computation [19-21]. However, neural network models at the time were
limited to relatively small-scale tasks and networks. The advent of inexpensive
GPU-based computing along with assorted technical advances [22-24] led to a
resurgence of interest in neural networks in the engineering world in the 2010s.
For the first time, computing systems attained human levels of performance on a
handful of challenging classification tasks in vision and in speech recognition [25,
26]. These successes caused many neuroscientists to reassess the relevance of
such networks for the brain. In this paper we discuss the recent developments in
this domain along with reasons for skepticism.



Deep neural networks

Artificial neural networks consist of sets of units with connections defined by
weights. The units and weights are loosely modeled on neurons and synaptic
efficacies, respectively. A unit’s activation is computed by multiplying its inputs
(the activations of other units) by the associated weights, summing the results,
and passing the sum through a simple pointwise nonlinear function (e.g. a
sigmoid or, more commonly in recent years, a rectifying function [22]). The input
is usually some sort of sensory signal (e.g., an image, sound waveform, or
spectrogram) and the output units are interpreted as probabilities of target
classes (e.g., digits, object identities, or phonemes). Because the output
activations are differentiable functions of the network weights, the weights can be
adjusted via gradient descent to cause the output activations to approach target
values [27]. Given a training set of signals and class labels, a network can thus
be optimized to minimize classification errors.

The most recent wave of neural networks add a few more ingredients to this
broader recipe (Fig. 1). The first is that the weights for subsets of units in a
particular layer are often constrained to implement convolution operations with a
filter that is small relative to the input dimensionality [28]. Units in a layer
therefore apply the same dot-product operation at different locations in a signal,
analogous to similarly structured visual receptive fields at different retinotopic
locations. A single layer of a deep network will often implement dozens or
hundreds of such filters. The second ingredient is the incorporation of pooling
operations, in which the responses of nearby units are aggregated in some way.
Pooling operations downsample the preceding representation, and thus can be
related to classical signal processing, but were also in part inspired by “complex”
cells in primary visual cortex (that are thought to combine input from multiple
“simple” cells) [8, 29]. Convolution and pooling were both introduced to artificial
neural networks several decades ago [28], but have become widely used in the
last decade. Recent networks have begun to incorporate additional architectural
motifs, such as “skip” and “residual” connections that violate feedforward
organization in various ways [30, 31].

Each of the operations is defined by hyperparameters that specify the network
architecture, including the filter size, the pooling region size, the pooling
operation (e.g. taking the maximum value within the pooling region), and the
order of operations. The cascade of these operations instantiate sets of
progressively more complex features through the course of the network. If the
network is appropriately optimized through the selection of hyperparameters and
via gradient descent on the network weights, it may achieve good performance
on the task on which it was trained.

What might one learn about the brain from such a system? The structure of an
artificial neural network can in some cases be mapped in a loose sense onto the



structure of sensory systems, which are also often conceptualized as a sequence
of hierarchically organized distributed stages. It is thus natural to wonder whether
an artificial network trained on an ecologically important task might exhibit
representations like those in biological sensory systems, offering hypotheses
about their inner workings. On the other hand, although modern-day DNNs
produce remarkable levels of task performance, they differ in many respects from
actual neural circuits. Moreover, the means by which they achieve good
performance is often resistant to interpretation. Here we will review recent work
comparing trained DNNs to brain and behavior data, and we will consider what
we can learn from such comparisons.

Behavioral and brain responses predicted by deep neural networks

One of the main motivations for considering deep neural networks as models of
perceptual systems is that they attain (or exceed) human-level performance on
some object and speech recognition tasks. But for DNNs to serve as models of
biological sensory systems, they should arguably also match detailed patterns of
performance. There are now several demonstrations of similar performance
characteristics for human observers and DNNs. The most comprehensive
comparisons have occurred for visual object recognition, where DNNs trained to
recognize objects match human error patterns across object categories [32-34]
and viewpoint variations [35], exhibit similar sensitivity to object shape [36], and
predict object similarity judgments [37] (Fig. 2A). Despite the similarity with
human perception when analyzed in terms of object categories, fine-grained
discrepancies are evident. In the one case where it has been measured,
behavioral similarity breaks down somewhat at the image-by-image level —
humans and deep networks make errors on different images (Fig. 2A) [34]. Some
of these discrepancies may reflect algorithmic differences. For instance, deep
networks may rely more on texture to classify images than humans do [38-40].
Nonetheless, at the level of object categories, the similarity in behavioral
recognition is strong. Such similarities appear in the auditory domain as well,
where speech recognition performance in different types of background noise is
likewise highly correlated across humans and a trained DNN [41] (Fig. 2B).
Notably, the network models in these cases are not fit to best match human
behavior — they are optimized only to perform visual or auditory tasks. The
similarities to human behavior arise simply as a consequence of learning to
perform the task.

What do these behavioral similarities reveal? One possibility is that they simply
reflect the limits of optimal performance, such that any system attaining human
levels of overall performance would exhibit performance characteristics
resembling those of humans. It is also possible that the behavioral similarity
depends on similarity in the internal representational transformations instantiated
by the DNN and human sensory systems. This second possibility would imply
that alternative systems could produce comparable overall task performance but



exhibit detailed performance characteristics distinct from those of humans. These
possibilities are difficult to distinguish at present given that we lack alternative
model classes that produce human-level performance on real-world classification
tasks.

Regardless of the interpretion, the observed behavioral similarities between DNN
models and humans motivate comparisons of their internal processing stages. A
natural means of comparison is to test how well the features learned by a
network can be used to predict brain responses. Although deep learning has also
been used to directly optimize models to predict neural responses [42-45], the
amount of neural data needed to constrain a complex model may limit the extent
to which models can be built entirely from the constraints of predicting neural
responses. Here we focus instead on the use of neural predictions to evaluate
DNN models whose structure is determined exclusively by task optimization. The
most visible applications of deep neural networks to neuroscience have come
from efforts along these lines to predict neural responses in the ventral visual
stream. Prior to the advent of high-performing DNNs, models of sensory systems
were able to account for neural responses of early stages of sensory processing
reasonably well [2, 5], but were less successful for intermediate or higher-level
cortical stages.

Deep neural networks optimized to classify images of objects provided the first
models that could generate good predictions of neural responses in high-level
sensory areas. One standard approach is to model the responses of individual
neurons, or of voxels measured with fMRI, with linear combinations of the
features from a particular layer of a trained neural network [46, 47]. The weights
of the linear mapping are fit to best predict responses to a subset of stimuli, and
the quality of the fit is evaluated by comparing actual and predicted responses to
left-out stimuli [48, 49]. When evaluated in this way, DNN models provide far
better predictions of responses in inferotemporal cortex than any previous model
[60-53] (Fig. 2C), as well as better predictions in early visual areas [45, 53].
Alternative types of brain-model comparisons, such as representational similarity
analysis [54], also find that DNN models best replicate the representational
structure evident in brain measurements from IT [55, 56]. This success is not
limited to the visual system — DNNs optimized for speech and music recognition
tasks also produce better predictions of responses in auditory cortex than
previous models [41] (Fig. 2D).

The ability of DNN features to generate good predictions of neural responses
raises questions about the purpose of the modeling enterprise. Although DNNs
predict neural responses, their inner workings are typically difficult to describe or
characterize, at least at the level of individual units. However, DNNs can have
well-defined structure at the scale of layers: in “feedforward” networks, each
stage of processing provides the input to the next, such that successive stages



instantiate compositions of increasing numbers of operations. When trained, this
hierarchical structure appears to recapitulate aspects of hierarchical structure in
the brain. Early stages of the ventral visual stream (V1) are well predicted by
early layers of DNNs optimized for visual object recognition [45, 52, 53], whereas
intermediate stages (V4) are best predicted by intermediate layers, and late
stages (IT) best predicted by late layers [50-53] (Fig. 2C and 2E). This result is
consistent with the idea that the hierarchical stages of the ventral stream result
from the constraints imposed by biological vision tasks.

The organization of the ventral visual stream into stages was uncontroversial
before this modeling work was done, and these results thus largely provide a
validation of the idea that a task-optimized hierarchical model can replicate
aspects of hierarchical organization in biological sensory systems. However, they
raise the possibility that one use of DNN models could be to probe for
hierarchical organization in domains where it is not yet well established. We
recently adopted this approach in the auditory system, showing that intermediate
layers of a DNN optimized for speech and music recognition best predicted fMRI
voxel responses around primary auditory cortex, whereas deeper layers best
predicted voxel responses in non-primary cortex [41] (Fig. 2F). This result was
not merely a reflection of the scale of the features computed at different network
stages: networks with identical architectures but random (untrained) weights did
not produce this correspondence between cortical regions and network layers.
The results provided evidence for a division of the auditory cortex into at least
two stages, with one stage potentially providing input into the next.

Based in part on their utility in the visual and auditory systems, deep networks
have recently begun to be employed in analogous fashion in other domains,
including the somatosensory system [57], as well as the grid and place cell
systems of the medial temporal lobe [58-60].

Future directions

Because deep learning provides a means to optimize systems for some real-
world tasks, it may hold promise for understanding the role of such tasks in
shaping neural systems and behavior. Specifically, deep neural networks may be
useful as stand-ins for ideal observer models in domains for which an actual ideal
observer is either intractable to derive analytically, or unknowable (i.e., in cases
where the task structure is not well understood in theoretical terms). Like ideal
observers, deep networks may help reveal how task constraints shape brains
and behavior, but could enable such insights for a larger range of tasks.

In one recent example that illustrates this potential, a neural network was trained
to perform a simple visual search task using a “retinal” receptor lattice [61]. This
lattice could be translated across an input image, analogous to saccadic eye
movements. Each receptor on the lattice was parameterized by its position and



spread, and these parameters were optimized during training along with the rest
of the network. The result of the optimization procedure was a receptor lattice
that qualitatively replicated the organization of the primate retina, with a high
resolution “fovea” surrounded by a low resolution periphery (Fig. 3A). Notably,
this result did not occur when the system was allowed to use additional actions,
like “zooming”, that are not present in the primate visual system. These results
are consistent with the possibility that the arrangement of receptors on the retina
may result from an evolutionary optimization of the sampling of the visual world
conditioned on the use of eye movements.

Task-optimized neural networks have also been used to understand perceptual
learning experiments in which participants are trained on psychophysical tasks
(e.g. orientation discrimination) [62, 63]. Deep networks trained on the same
tasks used in laboratory experiments have been shown to recapitulate a diverse
set of experimental findings, including whether a training tasks yields changes at
earlier or later stages of sensory processing and how a task’s precision alters
generalization to new stimuli. The results suggest that the outcomes of
perceptual learning experiments can be understood as the consequences of
optimizing representations for tasks, even though the mechanisms that
instantiate learning in DNNs are likely to be different than those in humans (see
“Limitations and Caveats” section below).

Deep learning has also been used to explore how visual attention mechanisms
may affect task performance [64]. The “feature similarity gain” model of visual
attention proposes that attention scales a neuron’s activity in proportion to its
preference for the attended stimulus [65]. To test this theory, the proposed
scaling was applied to unit activations from a deep neural network optimized to
classify visual objects [64]. The authors found that the scaling led to behavioral
performance improvements similar to those previously observed
psychophysically under conditions of directed attention. However, this result was
only observed at later layers of the network — applying the scaling to early and
intermediate network layers did not produce comparable behavioral differences.
This result illustrates how deep neural networks can provide hypotheses about
the effect of internal representational changes on behavioral performance.

Using optimized networks as stand-ins for ideal observers may also reveal
normative constraints on the integration and segregation of function in sensory
systems. One approach is to train a single system to perform multiple tasks, and
to examine the amount of processing that can be shared without producing a
detriment in task performance relative to that obtained with a single-task system.
The resulting model offers a hypothesis for how a sensory system may be
functionally organized, under the assumption that sensory systems evolve or
develop to perform well subject to a resource constraint (e.g., the number of
neurons). We recently employed this approach to examine the extent to which



speech and music processing might be expected to functionally segregate in the
brain [41]. We found that a network jointly optimized for speech and music
recognition could share roughly the first half of its processing stages across tasks
without seeing a performance decrement (Fig. 3B). This result was consistent
with fMRI evidence for segregated pathways for music and speech processing in
non-primary auditory cortex [66], and suggested a computational justification for
this organization. The methodology could be more broadly applied to address
current controversies over domain specificity and functional segregation [67, 68].

Another potential application of deep neural networks is to suggest hypotheses
for intermediate sensory representations. Intermediate sensory stages have long
posed a challenge for sensory neuroscience because they are often too
nonlinear for linear systems tools to be applicable, and yet too distant from task
read-out for neural tuning to directly reflect behaviorally relevant variables.
Model-driven hypotheses of intermediate stages could therefore be particularly
useful. Individual units of deep networks are typically challenging to interpret, but
could become more accessible with new developments in visualization [69-72], or
from constraints on models that may aid interpretability, such as forcing units
within a layer to be independent [73, 74].

Alternatively, insight into intermediate representations might be best generated at
the population level, by assessing the types of information that can be easily
extracted from different stages of a network. A standard approach is to train
linear classifiers on a layer’s activations, and then measure performance on a
validation set. One recent application of this methodology tested whether
invariance to object position is a prerequisite for object recognition. In DNNs
trained to categorize visual objects, later layers provided better estimates than
earlier layers of various “category-orthogonal” variables, such as the position of
an object within an image or its overall scale [75] (Fig. 3C). Notably, a similar
pattern of results was found in the primate visual system, with position and scale
more accurately decoded from IT than V4 [75]. Decoding also reveals biologically
relevant representational transformations in audio-trained networks. For instance,
in a DNN trained to recognize spoken words and musical genres, the frequency
spectrum of a sound was best estimated from the earliest layers, whereas
spectrotemporal modulations were best estimated from intermediate layers [41],
consistent with their hypothesized role in primary auditory cortex [9, 76] (Fig. 3D).

Limitations and caveats

The renaissance of deep neural networks in neuroscience has been
accompanied by skepticism regarding the extent to which DNNs could be
relevant to the brain. Most obviously, current DNNs are at best loosely analogous
to actual neural circuits, and so at present do not provide circuit-level models of
neural computation. These limitations alone render them inappropriate for many
purposes. Moreover, if the details of neural circuitry place strong constraints on



neural representations and behavior, DNNs could be limited in their ability to
predict even relatively coarse-scale phenomena like neural firing rates and
behavior.

Some of the discrepancies between artificial neural networks and human sensory
systems can be addressed with modifications to standard DNN architectures. For
instance, recent work has incorporated recurrent connections to the feedforward
neural networks often used to model the ventral visual pathway [77]. Such
recurrent connections may be important for predicting responses to natural
images that are not well accounted for by feedforward models [78], including
those with occlusion [79]. However, it is less obvious how to incorporate other
aspects of biological neural circuits, even those as fundamental as action
potentials and neuromodulatory effects [80-83].

As it currently stands, deep learning is also clearly not an account of biological
learning. Most obviously, biological organisms do not require the millions of
labeled examples needed to train contemporary deep networks. Moreover,
whatever learning algorithms are employed by the brain may not have much
similarity to the standard backpropagation algorithm [84, 85], which is
conventionally considered biologically implausible for a variety of reasons (e.g.,
the need to access the weights used for feedforward computation in order to
compute learning updates).

Another challenge for the general notion that task-driven training can reveal
neural computation is that as DNN systems have increased in size, they have
begun to exceed human levels of performance, at least on particular computer
vision tasks [86]. Moreover, neural predictions from these very high-performing
networks has plateaued or even declined in accuracy, as if the networks have
begun to diverge from biologically-relevant solutions [86]. This divergence could
reflect differences between the specific tasks used to optimize current DNNs and
those that may have constrained biological systems over the course of evolution
and development. Alternatively, additional constraints could be needed to obtain
brain-like systems under task optimization. Possibilities include a resource
limitation (e.g. on the number of neurons or on metabolic activity) or constraints
imposed by the historical trajectory of the brain’s evolution.

Some of the differences between DNNs and human observers may be due to
violations of traditional signal processing principles by DNNs. The sampling
theorem dictates that if signals are not lowpass filtered before downsampling,
they will be “aliased” — low frequencies will be corrupted by high frequencies
present in the signal before downsampling. Because contemporary deep
networks typically employ downsampling operations (max pooling and/or strided
convolution) without the constraint of a preceding lowpass filter, aliasing is likely
to occur [87, 88]. It is perhaps remarkable that aliasing apparently does not



prevent good classification performance, but it may impair generalization [88] and
produce representations that diverge from those of biological systems [89].

One example of such divergences can be found in demonstrations that DNNs
can be fooled by “adversarial” stimuli [90, 91]. These stimuli are derived by using
the gradients of the output units of a network with respect to its input to generate
small perturbations to an input signal that cause it to be misclassified. In
principle, such adversarial stimuli could be generated for a human perceptual
system if one had the complete description of the system necessary to derive the
perturbations — obviously beyond reach for the moment. But if the network were a
correct description of a biological perceptual system, then its adversarial stimuli
should also be perceived differently by humans. In practice, the perturbations
generated in this way for high-performing DNNs are typically imperceptible to
humans (though not always [92]). One potential explanation could be that the
exact perturbations needed to produce this effect depend on minor idiosyncrasies
of a model, such that adversarial perturbations for one system would not
generalize to other systems. However, adversarial examples tend to have similar
effects on networks trained from different initial conditions, and with different
architectures, suggesting there may be a more fundamental and consistent
difference with biological systems. Notably, adversarial images are not specific to
DNNs — they are observed even for linear classifiers [91]. One speculative
possibility is that they may reveal a limit of models exclusively trained on
classification tasks [93].

The most fundamental difference between current DNNs and human perceptual
systems may lie in the relative inflexibility of artificial networks — a trained network
is typically limited to performing the tasks on which it is trained. Representations
learned for one task can transfer to others [75, 94, 95], but usually require
training a new classifier with many new training examples. This rigidity seems at
odds with the fact that humans can answer a wide range of queries when
presented with a novel auditory or visual scene, even questions that they may not
have ever previously been asked [96]. Observations along these lines have led
some to suggest that humans have an internal model of the world, and infer
generative parameters of this model when presented with a stimulus, allowing
them to perform a wide range of tasks [97].

Many of these limitations could be addressed by combining DNNs with
generative models of how structures in the world give rise to sensory data. Such
internal models could in principle explain the flexibility of our perceptual abilities,
but inferring the parameters needed to explain a stimulus is often hugely
computationally expensive. One appealing idea is to leverage DNNs to generate
initial estimates of generative variables that can accelerate inference — given a
generative model, a DNN can be trained to map samples (e.g. images) to their
underlying parameters (e.g. 3D shape descriptors) [98, 99]. This approach raises
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the question of how the generative model itself would be acquired, but in principle
a feedforward recognition network could be jointly trained in parallel with a
generative model [100, 101]. Such marriages are appealing directions to explore,
both for next-generation Al systems and models of biological perception.
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Figure 1. Schematic of a typical deep convolutional neural network.

The stimulus (e.g., an image for a visual task or a spectrogram for auditory task)
is passed through a cascade of simple operations, in which the output of one
stage of operations is the input to the next. This cascade culminates in a
discriminative classification (e.g., of the object category present in the image, or
the spoken word present in the sound signal). Due to downsampling, units in later
layer have access to a greater portion of the stimulus (i.e., a larger “receptive
field”). Concurrently, the feature maps (represented in the schematic by the
stacked panels at each stage) tend to decrease in size at deeper network stages,
again due to the downsampling that happens over the course of the network. The
number of feature maps per stage is typically made to increase at deeper
network stages, yielding a greater diversity of unit response properties. Bottom:
Insets of schematics of typical operations, including convolution with a linear filter
(left), a pointwise nonlinearity such as rectification (center), and pooling over a
local neighborhood (right), with their effect illustrated on an example image.
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Figure 2. Task-optimized deep neural networks predict visual and auditory
cortical responses and recapitulate real-world behavior.
a. Deep networks exhibit human-like errors at the scale of visual object
categories (left), but not at the scale of single images (right). Y-axis plots the
consistency of the network’s performance with that of humans, quantified with
a modified correlation coefficient (see original paper for details [34]). Dashed
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gray indicates the noise ceiling (the test-retest consistency of the human
data). Each bar plots the consistency for a different model. Light blue bars are
for control models: linear classifiers operating on a pixel array or a standard
model of visual area V1 [102]. Dark blue bars are for various artificial neural
networks: AlexNet [25], NYU [103], VGG [104], GoogLeNet [105], Resnet [30],
and Inception-v3 [106]. From Rajalingham et al., 2018.

. Speech recognition by deep networks and humans are similarly affected by
background noise. X-axis plots human performance and y-axis plots network
performance. Each point represents speech recognition performance in a
particular type of background noise at a particular SNR. From Kell et al.,
2018.

. Deep networks predict multi-unit neuronal activity recorded from macaque
visual areas V4 (left) and IT (right) better than comparison models. Y-axis
plots cross-validated prediction accuracy. Gray bars plot results for control
models: linear classifiers operating on pixel arrays, a model of visual area V1
[102], SIFT features [107], an untrained neural network [108], HMAX [109],
and a set of V2-like features [110]. Red bars are generated from different
layers of a trained neural network (the HMO model from [50]). Intermediate
network layers best predict intermediate visual area V4, while later layers best
predict later visual area IT. From Yamins et al., 2014.

. Response prediction accuracy of an audio-trained DNN used to predict
responses to natural sound. A deep network trained to recognize words and
musical genres predicted fMRI responses in auditory cortex better than a
baseline spectrotemporal filter model [9] (gray line). Y-axis plots prediction
accuracy for different network layers (displayed along the x-axis). From Kell et
al., 2018.

. Map of the best-predicting DNN layer across human visual cortex. Human
fMRI responses in early and late stages of the visual cortical hierarchy are
best predicted by early and late network layers, respectively. White outlines
indicate functionally localized regions of interest: retinotopic visual areas (V1,
V2, V3, V3A, V3B, V4), transverse occipital sulcus (TOS), parahippocampal
place area (PPA), extrastriate body area (EBA), occipital face area (OFA),
and fusiform face area (FFA). From Eickenberg et al., 2017.

Map of the best-predicting DNN layer across human auditory cortex. Black
outlines denote anatomical parcellations of primary auditory cortex. Early and
intermediate layers best predict primary auditory cortical responses; later
layers best predict non-primary auditory cortical responses. From Kell et al.,
2018.
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Figure 3. Neural networks as hypothesis generators for neuroscience.

a. A neural network optimized to identify digits in a cluttered visual scene learns
a retinal-like lattice with fine acuity within a “fovea” and decreased acuity in
the periphery. Left: resulting lattice; circles indicate pooling regions of
individual receptors. Right: Resolution (top) and acuity (bottom) as a function
of distance from center of lattice. Bottom: Receptor layout over training. From
Cheung et al., 2016.

b. Branched neural networks used to generate hypotheses about functional
segregation and integration in the brain. Top: Example dual-task
architectures, ranging from one with two totally separate pathways on the left
to an entirely shared single pathway on the right. Middle: Performance on
word recognition (left) and musical genre recognition (right) tasks as a

27



function of number of shared stages. Bottom: Resulting network architecture
that shares as much processing as possible without producing a performance
decrement. From Kell et al., 2018.

Hypotheses for intermediate stages of neural computation generated from
decoding. The decoding of a variety of category-orthogonal variables
(horizontal position, object scale, z-axis rotation) improves as one moves
deeper into a network trained to recognize visual object categories. From
Hong et al., 2016.

. Different stimulus properties are best decoded from different layers of a
network trained to recognize words and musical genre. Top left: Decoding of
the spectrum peaks early. Top right: Decoding of spectrotemporal modulation
power peaks in intermediate layers. Bottom right: Word recognition
performance increases over the course of the network for the task-relevant
branch, but decreases in task-irrelevant (genre) branch. Bottom left: Decoding
of a task-irrelevant feature (speaker identity) peaks in late-to-intermediate
layers. From Kell et al., 2018.
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