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Abstract 
 
Sensory neuroscience aims to build models that predict neural responses and 
perceptual behaviors, and that provide insight into the principles that give rise to 
them. For decades, artificial neural networks trained to perform perceptual tasks 
have attracted interest as potential models of neural computation. Only recently, 
however, have such systems begun to perform at human levels on some real-
world tasks. The recent engineering successes of deep learning have led to 
renewed interest in artificial neural networks as models of the brain. Here we 
review recent applications of deep learning to sensory neuroscience, discussing 
potential limitations and future directions. We highlight the potential uses of deep 
neural networks to reveal how task performance may constrain neural systems 
and behavior. In particular, we consider how task-optimized networks can 
generate hypotheses about neural representations and functional organization in 
ways that are analogous to traditional ideal observer models. 
 
 
 
Highlights 
• Deep neural networks (DNNs) now reach human-level performance on some 

perceptual tasks. 
• They show human-like error patterns and predict sensory cortical responses. 
• Like ideal observer models, DNNs reveal how tasks shape neural systems 

and behavior. 
• DNNs offer hypotheses of intermediate representations and functional 

organization. 
• DNNs remain incomplete models of neural circuitry, learning, and perceptual 

inference. 
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Introduction 
A longstanding goal of sensory neuroscience is to build models that reproduce 
behavioral and neural responses. Models have historically originated from a 
range of sources, including experimental observation [1-5], a combination of 
biological inspiration and engineering principles [6-9], and normative criteria (e.g. 
efficient coding) applied to representations of natural sensory signals [10-15].  
 
Models have also been inspired by the idea that they should be able to perform 
tasks that organisms perform. One use of tasks is to derive ideal observer 
models – models that perform a task optimally under certain assumptions [16]. 
Such models provide hypotheses for biological systems based on the notion that 
biological systems may be near-optimal for ecologically important tasks. 
Behavioral predictions from ideal observer models can also provide normative 
explanations of otherwise puzzling perceptual phenomena, for instance by 
showing how “illusions” can be viewed as optimal inferences given the statistics 
of the natural world [17]. 
 
Ideal observer models are provably optimal, but they are typically derived 
analytically and are therefore often restricted to relatively simple domains where 
the task structure can be precisely specified. An alternative approach is to learn 
solutions to tasks from data. Supervised learning approaches take a set of input-
output pairs (e.g. images and object labels or sounds and word labels) and 
modify a system’s parameters to minimize the error between the system’s output 
and the desired output. The resulting models are usually not provably optimal 
because the task is specified with training data – generalization performance 
must be estimated empirically rather than derived analytically. However, 
supervised learning allows models to be constructed for a wide range of tasks, 
including some that organisms perform in their everyday environments (for which 
the derivation of ideal observed models may be intractable). 
 
Supervised learning approaches were adopted in neurally inspired models as 
early as the 1960s [18]. They were then adapted to multi-layer networks in the 
1980s, and the resulting wave of neural network research led to optimism that 
learned representations could be used to generate hypothesis about actual 
neural computation [19-21]. However, neural network models at the time were 
limited to relatively small-scale tasks and networks. The advent of inexpensive 
GPU-based computing along with assorted technical advances [22-24] led to a 
resurgence of interest in neural networks in the engineering world in the 2010s. 
For the first time, computing systems attained human levels of performance on a 
handful of challenging classification tasks in vision and in speech recognition [25, 
26]. These successes caused many neuroscientists to reassess the relevance of 
such networks for the brain. In this paper we discuss the recent developments in 
this domain along with reasons for skepticism. 
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Deep neural networks  
Artificial neural networks consist of sets of units with connections defined by 
weights. The units and weights are loosely modeled on neurons and synaptic 
efficacies, respectively. A unit’s activation is computed by multiplying its inputs 
(the activations of other units) by the associated weights, summing the results, 
and passing the sum through a simple pointwise nonlinear function (e.g. a 
sigmoid or, more commonly in recent years, a rectifying function [22]). The input 
is usually some sort of sensory signal (e.g., an image, sound waveform, or 
spectrogram) and the output units are interpreted as probabilities of target 
classes (e.g., digits, object identities, or phonemes). Because the output 
activations are differentiable functions of the network weights, the weights can be 
adjusted via gradient descent to cause the output activations to approach target 
values [27]. Given a training set of signals and class labels, a network can thus 
be optimized to minimize classification errors. 
 
The most recent wave of neural networks add a few more ingredients to this 
broader recipe (Fig. 1). The first is that the weights for subsets of units in a 
particular layer are often constrained to implement convolution operations with a 
filter that is small relative to the input dimensionality [28]. Units in a layer 
therefore apply the same dot-product operation at different locations in a signal, 
analogous to similarly structured visual receptive fields at different retinotopic 
locations. A single layer of a deep network will often implement dozens or 
hundreds of such filters. The second ingredient is the incorporation of pooling 
operations, in which the responses of nearby units are aggregated in some way. 
Pooling operations downsample the preceding representation, and thus can be 
related to classical signal processing, but were also in part inspired by “complex” 
cells in primary visual cortex (that are thought to combine input from multiple 
“simple” cells) [8, 29]. Convolution and pooling were both introduced to artificial 
neural networks several decades ago [28], but have become widely used in the 
last decade. Recent networks have begun to incorporate additional architectural 
motifs, such as “skip” and “residual” connections that violate feedforward 
organization in various ways [30, 31].  
 
Each of the operations is defined by hyperparameters that specify the network 
architecture, including the filter size, the pooling region size, the pooling 
operation (e.g. taking the maximum value within the pooling region), and the 
order of operations. The cascade of these operations instantiate sets of 
progressively more complex features through the course of the network. If the 
network is appropriately optimized through the selection of hyperparameters and 
via gradient descent on the network weights, it may achieve good performance 
on the task on which it was trained.  
 
What might one learn about the brain from such a system? The structure of an 
artificial neural network can in some cases be mapped in a loose sense onto the 
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structure of sensory systems, which are also often conceptualized as a sequence 
of hierarchically organized distributed stages. It is thus natural to wonder whether 
an artificial network trained on an ecologically important task might exhibit 
representations like those in biological sensory systems, offering hypotheses 
about their inner workings. On the other hand, although modern-day DNNs 
produce remarkable levels of task performance, they differ in many respects from 
actual neural circuits. Moreover, the means by which they achieve good 
performance is often resistant to interpretation. Here we will review recent work 
comparing trained DNNs to brain and behavior data, and we will consider what 
we can learn from such comparisons.  
 
Behavioral and brain responses predicted by deep neural networks  
One of the main motivations for considering deep neural networks as models of 
perceptual systems is that they attain (or exceed) human-level performance on 
some object and speech recognition tasks. But for DNNs to serve as models of 
biological sensory systems, they should arguably also match detailed patterns of 
performance. There are now several demonstrations of similar performance 
characteristics for human observers and DNNs. The most comprehensive 
comparisons have occurred for visual object recognition, where DNNs trained to 
recognize objects match human error patterns across object categories [32-34] 
and viewpoint variations [35], exhibit similar sensitivity to object shape [36], and 
predict object similarity judgments [37] (Fig. 2A). Despite the similarity with 
human perception when analyzed in terms of object categories, fine-grained 
discrepancies are evident. In the one case where it has been measured, 
behavioral similarity breaks down somewhat at the image-by-image level – 
humans and deep networks make errors on different images (Fig. 2A) [34]. Some 
of these discrepancies may reflect algorithmic differences. For instance, deep 
networks may rely more on texture to classify images than humans do [38-40]. 
Nonetheless, at the level of object categories, the similarity in behavioral 
recognition is strong. Such similarities appear in the auditory domain as well, 
where speech recognition performance in different types of background noise is 
likewise highly correlated across humans and a trained DNN [41] (Fig. 2B). 
Notably, the network models in these cases are not fit to best match human 
behavior – they are optimized only to perform visual or auditory tasks. The 
similarities to human behavior arise simply as a consequence of learning to 
perform the task.  
 
What do these behavioral similarities reveal? One possibility is that they simply 
reflect the limits of optimal performance, such that any system attaining human 
levels of overall performance would exhibit performance characteristics 
resembling those of humans. It is also possible that the behavioral similarity 
depends on similarity in the internal representational transformations instantiated 
by the DNN and human sensory systems. This second possibility would imply 
that alternative systems could produce comparable overall task performance but 
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exhibit detailed performance characteristics distinct from those of humans. These 
possibilities are difficult to distinguish at present given that we lack alternative 
model classes that produce human-level performance on real-world classification 
tasks.  
 
Regardless of the interpretion, the observed behavioral similarities between DNN 
models and humans motivate comparisons of their internal processing stages. A 
natural means of comparison is to test how well the features learned by a 
network can be used to predict brain responses. Although deep learning has also 
been used to directly optimize models to predict neural responses [42-45], the 
amount of neural data needed to constrain a complex model may limit the extent 
to which models can be built entirely from the constraints of predicting neural 
responses. Here we focus instead on the use of neural predictions to evaluate 
DNN models whose structure is determined exclusively by task optimization. The 
most visible applications of deep neural networks to neuroscience have come 
from efforts along these lines to predict neural responses in the ventral visual 
stream. Prior to the advent of high-performing DNNs, models of sensory systems 
were able to account for neural responses of early stages of sensory processing 
reasonably well [2, 5], but were less successful for intermediate or higher-level 
cortical stages.  
 
Deep neural networks optimized to classify images of objects provided the first 
models that could generate good predictions of neural responses in high-level 
sensory areas. One standard approach is to model the responses of individual 
neurons, or of voxels measured with fMRI, with linear combinations of the 
features from a particular layer of a trained neural network [46, 47]. The weights 
of the linear mapping are fit to best predict responses to a subset of stimuli, and 
the quality of the fit is evaluated by comparing actual and predicted responses to 
left-out stimuli [48, 49]. When evaluated in this way, DNN models provide far 
better predictions of responses in inferotemporal cortex than any previous model 
[50-53] (Fig. 2C), as well as better predictions in early visual areas [45, 53]. 
Alternative types of brain-model comparisons, such as representational similarity 
analysis [54], also find that DNN models best replicate the representational 
structure evident in brain measurements from IT [55, 56]. This success is not 
limited to the visual system – DNNs optimized for speech and music recognition 
tasks also produce better predictions of responses in auditory cortex than 
previous models [41] (Fig. 2D). 
 
The ability of DNN features to generate good predictions of neural responses 
raises questions about the purpose of the modeling enterprise. Although DNNs 
predict neural responses, their inner workings are typically difficult to describe or 
characterize, at least at the level of individual units. However, DNNs can have 
well-defined structure at the scale of layers: in “feedforward” networks, each 
stage of processing provides the input to the next, such that successive stages 
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instantiate compositions of increasing numbers of operations. When trained, this 
hierarchical structure appears to recapitulate aspects of hierarchical structure in 
the brain. Early stages of the ventral visual stream (V1) are well predicted by 
early layers of DNNs optimized for visual object recognition [45, 52, 53], whereas 
intermediate stages (V4) are best predicted by intermediate layers, and late 
stages (IT) best predicted by late layers [50-53] (Fig. 2C and 2E). This result is 
consistent with the idea that the hierarchical stages of the ventral stream result 
from the constraints imposed by biological vision tasks. 
 
The organization of the ventral visual stream into stages was uncontroversial 
before this modeling work was done, and these results thus largely provide a 
validation of the idea that a task-optimized hierarchical model can replicate 
aspects of hierarchical organization in biological sensory systems. However, they 
raise the possibility that one use of DNN models could be to probe for 
hierarchical organization in domains where it is not yet well established. We 
recently adopted this approach in the auditory system, showing that intermediate 
layers of a DNN optimized for speech and music recognition best predicted fMRI 
voxel responses around primary auditory cortex, whereas deeper layers best 
predicted voxel responses in non-primary cortex [41] (Fig. 2F). This result was 
not merely a reflection of the scale of the features computed at different network 
stages: networks with identical architectures but random (untrained) weights did 
not produce this correspondence between cortical regions and network layers. 
The results provided evidence for a division of the auditory cortex into at least 
two stages, with one stage potentially providing input into the next.  
 
Based in part on their utility in the visual and auditory systems, deep networks 
have recently begun to be employed in analogous fashion in other domains, 
including the somatosensory system [57], as well as the grid and place cell 
systems of the medial temporal lobe [58-60]. 
 
Future directions 
Because deep learning provides a means to optimize systems for some real-
world tasks, it may hold promise for understanding the role of such tasks in 
shaping neural systems and behavior. Specifically, deep neural networks may be 
useful as stand-ins for ideal observer models in domains for which an actual ideal 
observer is either intractable to derive analytically, or unknowable (i.e., in cases 
where the task structure is not well understood in theoretical terms). Like ideal 
observers, deep networks may help reveal how task constraints shape brains 
and behavior, but could enable such insights for a larger range of tasks. 
 
In one recent example that illustrates this potential, a neural network was trained 
to perform a simple visual search task using a “retinal” receptor lattice [61]. This 
lattice could be translated across an input image, analogous to saccadic eye 
movements. Each receptor on the lattice was parameterized by its position and 
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spread, and these parameters were optimized during training along with the rest 
of the network. The result of the optimization procedure was a receptor lattice 
that qualitatively replicated the organization of the primate retina, with a high 
resolution “fovea” surrounded by a low resolution periphery (Fig. 3A). Notably, 
this result did not occur when the system was allowed to use additional actions, 
like “zooming”, that are not present in the primate visual system. These results 
are consistent with the possibility that the arrangement of receptors on the retina 
may result from an evolutionary optimization of the sampling of the visual world 
conditioned on the use of eye movements.  
 
Task-optimized neural networks have also been used to understand perceptual 
learning experiments in which participants are trained on psychophysical tasks 
(e.g. orientation discrimination) [62, 63]. Deep networks trained on the same 
tasks used in laboratory experiments have been shown to recapitulate a diverse 
set of experimental findings, including whether a training tasks yields changes at 
earlier or later stages of sensory processing and how a task’s precision alters 
generalization to new stimuli. The results suggest that the outcomes of 
perceptual learning experiments can be understood as the consequences of 
optimizing representations for tasks, even though the mechanisms that 
instantiate learning in DNNs are likely to be different than those in humans (see 
“Limitations and Caveats” section below).  
 
Deep learning has also been used to explore how visual attention mechanisms 
may affect task performance [64]. The “feature similarity gain” model of visual 
attention proposes that attention scales a neuron’s activity in proportion to its 
preference for the attended stimulus [65]. To test this theory, the proposed 
scaling was applied to unit activations from a deep neural network optimized to 
classify visual objects [64]. The authors found that the scaling led to behavioral 
performance improvements similar to those previously observed 
psychophysically under conditions of directed attention. However, this result was 
only observed at later layers of the network – applying the scaling to early and 
intermediate network layers did not produce comparable behavioral differences. 
This result illustrates how deep neural networks can provide hypotheses about 
the effect of internal representational changes on behavioral performance. 
 
Using optimized networks as stand-ins for ideal observers may also reveal 
normative constraints on the integration and segregation of function in sensory 
systems. One approach is to train a single system to perform multiple tasks, and 
to examine the amount of processing that can be shared without producing a 
detriment in task performance relative to that obtained with a single-task system. 
The resulting model offers a hypothesis for how a sensory system may be 
functionally organized, under the assumption that sensory systems evolve or 
develop to perform well subject to a resource constraint (e.g., the number of 
neurons). We recently employed this approach to examine the extent to which 
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speech and music processing might be expected to functionally segregate in the 
brain [41]. We found that a network jointly optimized for speech and music 
recognition could share roughly the first half of its processing stages across tasks 
without seeing a performance decrement (Fig. 3B). This result was consistent 
with fMRI evidence for segregated pathways for music and speech processing in 
non-primary auditory cortex [66], and suggested a computational justification for 
this organization. The methodology could be more broadly applied to address 
current controversies over domain specificity and functional segregation [67, 68]. 
 
Another potential application of deep neural networks is to suggest hypotheses 
for intermediate sensory representations. Intermediate sensory stages have long 
posed a challenge for sensory neuroscience because they are often too 
nonlinear for linear systems tools to be applicable, and yet too distant from task 
read-out for neural tuning to directly reflect behaviorally relevant variables. 
Model-driven hypotheses of intermediate stages could therefore be particularly 
useful. Individual units of deep networks are typically challenging to interpret, but 
could become more accessible with new developments in visualization [69-72], or 
from constraints on models that may aid interpretability, such as forcing units 
within a layer to be independent [73, 74].  
 
Alternatively, insight into intermediate representations might be best generated at 
the population level, by assessing the types of information that can be easily 
extracted from different stages of a network. A standard approach is to train 
linear classifiers on a layer’s activations, and then measure performance on a 
validation set. One recent application of this methodology tested whether 
invariance to object position is a prerequisite for object recognition. In DNNs 
trained to categorize visual objects, later layers provided better estimates than 
earlier layers of various “category-orthogonal” variables, such as the position of 
an object within an image or its overall scale [75] (Fig. 3C). Notably, a similar 
pattern of results was found in the primate visual system, with position and scale 
more accurately decoded from IT than V4 [75]. Decoding also reveals biologically 
relevant representational transformations in audio-trained networks. For instance, 
in a DNN trained to recognize spoken words and musical genres, the frequency 
spectrum of a sound was best estimated from the earliest layers, whereas 
spectrotemporal modulations were best estimated from intermediate layers [41], 
consistent with their hypothesized role in primary auditory cortex [9, 76] (Fig. 3D).  
 
Limitations and caveats 
The renaissance of deep neural networks in neuroscience has been 
accompanied by skepticism regarding the extent to which DNNs could be 
relevant to the brain. Most obviously, current DNNs are at best loosely analogous 
to actual neural circuits, and so at present do not provide circuit-level models of 
neural computation. These limitations alone render them inappropriate for many 
purposes. Moreover, if the details of neural circuitry place strong constraints on 
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neural representations and behavior, DNNs could be limited in their ability to 
predict even relatively coarse-scale phenomena like neural firing rates and 
behavior.  
 
Some of the discrepancies between artificial neural networks and human sensory 
systems can be addressed with modifications to standard DNN architectures. For 
instance, recent work has incorporated recurrent connections to the feedforward 
neural networks often used to model the ventral visual pathway [77]. Such 
recurrent connections may be important for predicting responses to natural 
images that are not well accounted for by feedforward models [78], including 
those with occlusion [79]. However, it is less obvious how to incorporate other 
aspects of biological neural circuits, even those as fundamental as action 
potentials and neuromodulatory effects [80-83]. 
 
As it currently stands, deep learning is also clearly not an account of biological 
learning. Most obviously, biological organisms do not require the millions of 
labeled examples needed to train contemporary deep networks. Moreover, 
whatever learning algorithms are employed by the brain may not have much 
similarity to the standard backpropagation algorithm [84, 85], which is 
conventionally considered biologically implausible for a variety of reasons (e.g., 
the need to access the weights used for feedforward computation in order to 
compute learning updates).  
 
Another challenge for the general notion that task-driven training can reveal 
neural computation is that as DNN systems have increased in size, they have 
begun to exceed human levels of performance, at least on particular computer 
vision tasks [86]. Moreover, neural predictions from these very high-performing 
networks has plateaued or even declined in accuracy, as if the networks have 
begun to diverge from biologically-relevant solutions [86]. This divergence could 
reflect differences between the specific tasks used to optimize current DNNs and 
those that may have constrained biological systems over the course of evolution 
and development. Alternatively, additional constraints could be needed to obtain 
brain-like systems under task optimization. Possibilities include a resource 
limitation (e.g. on the number of neurons or on metabolic activity) or constraints 
imposed by the historical trajectory of the brain’s evolution. 
 
Some of the differences between DNNs and human observers may be due to 
violations of traditional signal processing principles by DNNs. The sampling 
theorem dictates that if signals are not lowpass filtered before downsampling, 
they will be “aliased” – low frequencies will be corrupted by high frequencies 
present in the signal before downsampling. Because contemporary deep 
networks typically employ downsampling operations (max pooling and/or strided 
convolution) without the constraint of a preceding lowpass filter, aliasing is likely 
to occur [87, 88]. It is perhaps remarkable that aliasing apparently does not 
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prevent good classification performance, but it may impair generalization [88] and 
produce representations that diverge from those of biological systems [89].  
 
One example of such divergences can be found in demonstrations that DNNs 
can be fooled by “adversarial” stimuli [90, 91]. These stimuli are derived by using 
the gradients of the output units of a network with respect to its input to generate 
small perturbations to an input signal that cause it to be misclassified. In 
principle, such adversarial stimuli could be generated for a human perceptual 
system if one had the complete description of the system necessary to derive the 
perturbations – obviously beyond reach for the moment. But if the network were a 
correct description of a biological perceptual system, then its adversarial stimuli 
should also be perceived differently by humans. In practice, the perturbations 
generated in this way for high-performing DNNs are typically imperceptible to 
humans (though not always [92]). One potential explanation could be that the 
exact perturbations needed to produce this effect depend on minor idiosyncrasies 
of a model, such that adversarial perturbations for one system would not 
generalize to other systems. However, adversarial examples tend to have similar 
effects on networks trained from different initial conditions, and with different 
architectures, suggesting there may be a more fundamental and consistent 
difference with biological systems. Notably, adversarial images are not specific to 
DNNs – they are observed even for linear classifiers [91]. One speculative 
possibility is that they may reveal a limit of models exclusively trained on 
classification tasks [93].  
 
The most fundamental difference between current DNNs and human perceptual 
systems may lie in the relative inflexibility of artificial networks – a trained network 
is typically limited to performing the tasks on which it is trained. Representations 
learned for one task can transfer to others [75, 94, 95], but usually require 
training a new classifier with many new training examples. This rigidity seems at 
odds with the fact that humans can answer a wide range of queries when 
presented with a novel auditory or visual scene, even questions that they may not 
have ever previously been asked [96]. Observations along these lines have led 
some to suggest that humans have an internal model of the world, and infer 
generative parameters of this model when presented with a stimulus, allowing 
them to perform a wide range of tasks [97].  
 
Many of these limitations could be addressed by combining DNNs with 
generative models of how structures in the world give rise to sensory data. Such 
internal models could in principle explain the flexibility of our perceptual abilities, 
but inferring the parameters needed to explain a stimulus is often hugely 
computationally expensive. One appealing idea is to leverage DNNs to generate 
initial estimates of generative variables that can accelerate inference – given a 
generative model, a DNN can be trained to map samples (e.g. images) to their 
underlying parameters (e.g. 3D shape descriptors) [98, 99]. This approach raises 
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the question of how the generative model itself would be acquired, but in principle 
a feedforward recognition network could be jointly trained in parallel with a 
generative model [100, 101]. Such marriages are appealing directions to explore, 
both for next-generation AI systems and models of biological perception. 
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comparments may facilitate an implementation of backpropagation that may be 
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Yildirim, I., Freiwald, W., Tenenbaum, J.B. (2018) Efficient inverse graphics in 
biological face processing. bioRxiv. http://dx.doi.org/10.1101/282798. 
This paper offers a modern take on the classic “analysis-by-synthesis” approach 
to perception. It trains a neural network to efficiently invert a generative model of 
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This paper was among the first to show similarity between the representations of 
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aspects of the ventral visual hierarchy are recapitulated by deep networks: 
intermediate network layers best predict V4, while later layers best predict IT. 
 
Highly recommended: 
Azulay, A. & Weiss, Y. (2018) Why do deep convolutional networks generalize so 
poorly to small image transformations. arXiv. 
This paper demonstrates that convolutional neural networks are not translation-
invariant, contrary to conventional wisdom. The authors suggest that the 
networks’ sensitivity to small transformations is a result of strided convolution and 
pooling operations that ignore the sampling theorem. 
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Kar, K., Kubilius, J., Schmidt, K. M., Issa, E. B., & DiCarlo, J. J. (2018). Evidence 
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recognition behavior. bioRxiv, 354753. 
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later in the response time course. Their results suggest that these kinds of 
images may require recurrent processing in order to be recognized. 
 
Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-Haignere, S. & McDermott, 
J. H. (2018) A task-optimized neural network replicates human auditory behavior, 
predicts brain responses, and reveals a cortical processing hierarchy. Neuron 98, 
630-644. 
This paper demonstrates the use of deep networks in a domain outside of the 
ventral visual stream. It shows that deep networks optimized for speech and 
music recognition exhibit human-like behavior, predict auditory cortical 
responses, and provide evidence for hierarchical organization in the human 
auditory system. It also introduces the use of multi-task networks with different 
branches as a means to propose hypotheses about functional organization in 
brain systems. 
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This paper uses a task-optimized neural network as a stand-in for the visual 
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network simulated feature-based attention is applied. The paper concludes by 
proposing neural experiments motivated by their modeling results.  
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Figure 1. Schematic of a typical deep convolutional neural network. 
The stimulus (e.g., an image for a visual task or a spectrogram for auditory task) 
is passed through a cascade of simple operations, in which the output of one 
stage of operations is the input to the next. This cascade culminates in a 
discriminative classification (e.g., of the object category present in the image, or 
the spoken word present in the sound signal). Due to downsampling, units in later 
layer have access to a greater portion of the stimulus (i.e., a larger “receptive 
field”). Concurrently, the feature maps (represented in the schematic by the 
stacked panels at each stage) tend to decrease in size at deeper network stages, 
again due to the downsampling that happens over the course of the network. The 
number of feature maps per stage is typically made to increase at deeper 
network stages, yielding a greater diversity of unit response properties. Bottom: 
Insets of schematics of typical operations, including convolution with a linear filter 
(left), a pointwise nonlinearity such as rectification (center), and pooling over a 
local neighborhood (right), with their effect illustrated on an example image. 
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Figure 2. Task-optimized deep neural networks predict visual and auditory 
cortical responses and recapitulate real-world behavior. 
a. Deep networks exhibit human-like errors at the scale of visual object 

categories (left), but not at the scale of single images (right). Y-axis plots the 
consistency of the network’s performance with that of humans, quantified with 
a modified correlation coefficient (see original paper for details [34]). Dashed 
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gray indicates the noise ceiling (the test-retest consistency of the human 
data). Each bar plots the consistency for a different model. Light blue bars are 
for control models: linear classifiers operating on a pixel array or a standard 
model of visual area V1 [102]. Dark blue bars are for various artificial neural 
networks: AlexNet [25], NYU [103], VGG [104], GoogLeNet [105], Resnet [30], 
and Inception-v3 [106]. From Rajalingham et al., 2018. 

b. Speech recognition by deep networks and humans are similarly affected by 
background noise. X-axis plots human performance and y-axis plots network 
performance. Each point represents speech recognition performance in a 
particular type of background noise at a particular SNR. From Kell et al., 
2018. 

c. Deep networks predict multi-unit neuronal activity recorded from macaque 
visual areas V4 (left) and IT (right) better than comparison models. Y-axis 
plots cross-validated prediction accuracy. Gray bars plot results for control 
models: linear classifiers operating on pixel arrays, a model of visual area V1 
[102], SIFT features [107], an untrained neural network [108], HMAX [109], 
and a set of V2-like features [110]. Red bars are generated from different 
layers of a trained neural network (the HMO model from [50]). Intermediate 
network layers best predict intermediate visual area V4, while later layers best 
predict later visual area IT. From Yamins et al., 2014. 

d. Response prediction accuracy of an audio-trained DNN used to predict 
responses to natural sound. A deep network trained to recognize words and 
musical genres predicted fMRI responses in auditory cortex better than a 
baseline spectrotemporal filter model [9] (gray line). Y-axis plots prediction 
accuracy for different network layers (displayed along the x-axis). From Kell et 
al., 2018. 

e. Map of the best-predicting DNN layer across human visual cortex. Human 
fMRI responses in early and late stages of the visual cortical hierarchy are 
best predicted by early and late network layers, respectively. White outlines 
indicate functionally localized regions of interest: retinotopic visual areas (V1, 
V2, V3, V3A, V3B, V4), transverse occipital sulcus (TOS), parahippocampal 
place area (PPA), extrastriate body area (EBA), occipital face area (OFA), 
and fusiform face area (FFA). From Eickenberg et al., 2017.  

f. Map of the best-predicting DNN layer across human auditory cortex. Black 
outlines denote anatomical parcellations of primary auditory cortex. Early and 
intermediate layers best predict primary auditory cortical responses; later 
layers best predict non-primary auditory cortical responses. From Kell et al., 
2018. 
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Figure 3. Neural networks as hypothesis generators for neuroscience. 
a. A neural network optimized to identify digits in a cluttered visual scene learns 

a retinal-like lattice with fine acuity within a “fovea” and decreased acuity in 
the periphery. Left: resulting lattice; circles indicate pooling regions of 
individual receptors. Right: Resolution (top) and acuity (bottom) as a function 
of distance from center of lattice. Bottom: Receptor layout over training. From 
Cheung et al., 2016. 

b. Branched neural networks used to generate hypotheses about functional 
segregation and integration in the brain. Top: Example dual-task 
architectures, ranging from one with two totally separate pathways on the left 
to an entirely shared single pathway on the right. Middle: Performance on 
word recognition (left) and musical genre recognition (right) tasks as a 
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function of number of shared stages. Bottom: Resulting network architecture 
that shares as much processing as possible without producing a performance 
decrement. From Kell et al., 2018. 

c. Hypotheses for intermediate stages of neural computation generated from 
decoding. The decoding of a variety of category-orthogonal variables 
(horizontal position, object scale, z-axis rotation) improves as one moves 
deeper into a network trained to recognize visual object categories. From 
Hong et al., 2016. 

d. Different stimulus properties are best decoded from different layers of a 
network trained to recognize words and musical genre. Top left: Decoding of 
the spectrum peaks early. Top right: Decoding of spectrotemporal modulation 
power peaks in intermediate layers. Bottom right: Word recognition 
performance increases over the course of the network for the task-relevant 
branch, but decreases in task-irrelevant (genre) branch. Bottom left: Decoding 
of a task-irrelevant feature (speaker identity) peaks in late-to-intermediate 
layers. From Kell et al., 2018. 
 

 




