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1 Introduction

Generalized partition function of 2d CFTs decorated by higher qKdV charges [1–3], the

so-called Generalized Gibbs Ensemble,

Z = Tr exp

{
−
∞∑
k=1

µ2k−1Q2k−1

}
, µ1 ≡ β, Q1 ≡ H, (1.1)

has been in the focus of attention recently in the context of thermalization of large c 2d

conformal theories [4–15]. In this work we assume thermodynamic limit, when the size of

the spatial circle goes to infinity `→∞ and (1.1) describes theory on a thermal cylinder.

In a recent work [15] we observed that in the large central charge limit first two non-

trivial qKdV charges Q3, Q5 admit simple structure. Namely,

`2k−1Q2k−1 = Pk(L0) + `2k−1Q̃2k−1, (1.2)

where Pk is a polynomial of degree k, Pk(L0) = Lk0 + . . . , and the operator Q̃2k−1 accounts

for the rest. Written in the conventional basis of conformal theory (sets {mi}, m1 ≥
m2, . . . ,≥ mk, are arranged in dominance order),

|mi,∆〉 = L−m1 . . . L−mk
|∆〉, (1.3)
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Q̃2k−1 is a polynomial in ∆ and c. In what follows we assume ∆ scales linearly with c.

This scaling is associated with the saddle point contribution to (1.1) in the limit, when

` goes to infinity, see [15]. Written in the basis (1.3), leading scaling of Q̃2k−1 with c is

ck−1. At this order matrix of Q̃2k−1 is lower-triangular. At first two leading orders in 1/c

the eigenvalues of Q2k−1 are (in the following expression we suppress terms which do not

contribute in the thermodynamic limit — see section 2.1 below)

`2k−1Q2k−1|λ〉 = λ|λ〉, λ = ∆k +
k−1∑
p=0

∑
i

m2p+1
i cp∆k−1−p ξpk +O(ck−2), (1.4)

where ξpk are some numerical coefficients. Remarkably, (1.4) are linear in the occupation

numbers nr, provided the sets{mi} are rewritten in terms of free boson representation,

∑
i

mp
i =

∑
r

rpnr. (1.5)

where each set {mi} is parametrized by the set of integer nr counting the number of times

natural number r appears in the set {mi}. The linearity of λ in nr is crucial for what

follows. Technically it is due to the fact that (1.4) includes only a single sum over mi.

The form of the spectrum (1.4) was previously established only for Q3, Q5. In this

paper we verify that (1.4) applies to higher charges Q2k−1, k ≤ 7 as well. If (1.4) applies

to all charges, at first two orders in 1/c generalized partition function (1.1) reduces to that

one of non-interacting auxiliary bosons with the spectrum given in terms of µ2k−1 and ξpk.

In principle the coefficients ξpk can be deduced directly from the explicit form of Q2k−1 in

terms of Virasoro generators Ln, as was done for Q3, Q5 in [15]. Extending this strategy to

higher charges is difficult because their explicit form is not known and difficult to calculate.

A much simpler way to obtain ξpk follows from the expression for thermal average of Q2k−1

over a particular Verma module,

〈Q2k−1〉β,∆ = Tr∆(qL0Q2k−1), q = e−β/`, (1.6)

where the sum in (1.6) goes over all states of the form (1.3) with a fixed ∆. This one-

point function was calculated recently for the first seven qKdV charges Q2k−1, k ≤ 7,

in [14]. Using this result we confirm the proposed form of the eigenvalues (1.4) and obtain

corresponding coefficients ξpk. We notice these coefficients admit a simple form, which can

be easily generalized to all k,

ξpk = 24−p
(2k − 1)Γ(k + 1)Γ(1/2)

2 Γ(p+ 3/2)Γ(k − p)
. (1.7)

Assuming that (1.4) and (1.7) apply to all higher Q2k−1, generalized partition function

at first two orders in 1/c expansion reduces to that one of non-interacting auxiliary
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bosons, yielding

Z = eF , F =
π2`

6β

(
c′f0 + f1 +O(1/c′)

)
, (1.8)

f0 =
∞∑
k=1

t2k−1σ
k(2k − 1),

√
σ =

∞∑
k=1

t2k−1σ
kk,

f1 = − 12

π

∫ ∞
0

dκ log
(
1− e−2πκγ

)
,

γ =

∞∑
k=1

t2k−1σ
k−1k(2k − 1)2F1(1, 1− k, 3/2,−κ2/σ),

c′ = c− 1, t2k−1 =

(
π2c′

6β2

)k−1
µ2k−1

β
, t1 ≡ 1.

Here σ(t1, t3, . . .) is a function which satisfies
√
σ =

∑∞
k=1 t2k−1σ

kk. It can be expressed

explicitly in terms of an infinite power series in t2k−1, see (3.11). The conjectural expression

for f1 is the main result of this paper.

This paper is organized as follows: in the next section we discuss first seven qKdV

charges Q2k−1, k ≤ 7, and verify they are consistent with (1.4). We also calculate cor-

responding coefficients ξpk and conclude that (1.7) describes all of them. In section three

we assume (1.4) and (1.7) are valid beyond k ≤ 7 for all Q2k−1 and calculate generalized

partition function (1.8) assuming β 6= 0. The case of β = 0 is discussed in the appendix

A. The relation between 1/c and 1/c′ expansion is discussed in the appendix B.

2 Thermal average of Q2k−1

In this section we discuss how the form of the eigenvalues (1.4) can be verified and the

coefficients ξpk can be fixed from the explicit form of thermal one-point averages (1.6) ob-

tained in [14]. Because of the lower-triangular form of Q̃2k−1, leading terms of λ contribute

to the thermal average (1.6) as a linear combination of Eisenstein series, or functions σr,

with the coefficients polynomially dependent on c and ∆,∑
{mi}

∑
i

q∆+nmr
i = σrχ, n ≡

∑
i

mi, χ =
q∆∏

i(1− qi)
, (2.1)

where q ≡ e−β/`. Functions σk are related to Eisenstein series via

σp =

∞∑
k=0

kpqk

1− qk
, E2p = 1 +

2

ζ(1− 2p)
σ2p−1. (2.2)

In other words, to fix ξpk we need to find coefficients in front of σ2p+1c
p∆k−1−p.

2.1 Thermodynamic limit

In this paper we are concerned with the extensive part of free energy, i.e. we are taking

thermodynamic limit by taking the size of the spatial circle to infinity ` → ∞, while c is
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large, but fixed. In this limit the only relevant contributions to (1.1) are those when Q2k−1

contribute extensively, i.e. scale linearly with `. We therefore neglect all terms in (1.4)

which are suppressed in comparison with `2k. Using saddle point approximation for (1.1)

it is easy to see that in the limit ` → ∞ relevant scaling of ∆ is ∆ ∼ c `2, while the

occupation numbers nr ∼ ` for r ∼ `, see [15] for details. Thus, all terms in (1.4) indeed

scale as `2k. Scaling of the modular functions σp(q) (not to be confused with σ(t2k−1)

introduced later in (3.3)) with ` in thermodynamic limit can be obtained by replacing the

summation with integration, yielding σp ∼ `p+1.

2.2 Q1

As a warm-up we start our analysis with

`Q1 = L0 −
c

24
. (2.3)

The constant term −c/24 does not contribute in the thermodynamic limit and therefore

the structure (1.2) is manifest with Q̃1 = 0. The eigenvalues of L0 = ∆ + n, n ≡
∑

imi,

have the form (1.4) with ξ0
1 = 1. Although this is straightforward we want to derive the

same result in a slightly different way,

Tr∆(qL0L0) = ∂χ = (∆ + σ1)χ, ∂ ≡ q∂q. (2.4)

Hence ξ0
1 = 1 is simply the coefficient in front of σ1.

2.3 Q3

The explicit expression for Q3 is bulky,

`3Q3 = L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880
+ 2

∞∑
i=1

L−iLi, (2.5)

but only first and last terms contribute in the thermodynamic limit yielding (1.2) with

`3Q̃3 = 2
∑∞

i=1 L−iLi. Thermal average (1.6) can be calculated using trace cyclicity [16],

yielding [14, 15]

`3 Tr∆(qL0Q3) =

(
D2 +

c

1440
E4

)
χ, (2.6)

where here and below

Dk =

(
∂ − k − 1

6
E2

)(
∂ − k − 2

6
E2

)
. . . ∂. (2.7)

Leading term ∆2 follows from ∂2. Using (2.4), we calculate the coefficients in front of ∆

and c

`3 Tr∆(qL0Q3) = ∆2 + ∆

(
6σ1 −

1

6

)
+
c

6

(
σ3 +

1

240

)
+ ∂σ1. (2.8)
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To express E2p in terms of σ2p−1 we need the numerical values of zeta-function, which we

write down here for reader’s convenience,

ζ(−1) = − 1

12
, ζ(−3) =

1

120
, ζ(−5) = − 1

252
, ζ(−7) =

1

240
,

ζ(−9) = − 1

132
, ζ(−11) = − 691

32760
, ζ(−13) = − 1

12
. (2.9)

We are only interested in the first two terms of 1/c expansion (∆ is assumed to scale

linearly with c), hence the term ∂σ1 from (2.8) can be neglected. Next, we only consider

the terms which contribute extensively in the thermodynamic limit ` → ∞. We assume

that ∆ scales as `2 while the scaling of σr ∝ `r+1 follows from its explicit form. There is

another more intuitive way to understand that directly from (2.1). Main contribution to

the thermal average comes from the partitions {mi} which consist of approximately n1/2

terms and each term mi ∼ n1/2, while typical n =
∑

imi scales as `2. Keeping only the

terms scaling as `4 in (2.8) we obtain

`3 Tr∆(qL0Q3) = ∆2 + 6∆σ1 +
c

6
σ3 +O(1/c), (2.10)

in full consistency with (1.4). This result agrees with the calculation of [15], which utilizes

the explicit form of Q3 in terms of Virasoro algebra generators. First term L2
0 = (∆ + n)2

yields ∆2 + 2∆n, (n2 can be neglected because it contributes as c0), while the eigenvalue

of `3Q̃3 = c
6(
∑

im
3
i − n) + 4∆n completes it to (2.10), or (1.4) with ξ2

2 = 1/6 and ξ1
2 = 4.

2.4 Q5

The calculation for Q3 reveals the pattern how the terms of interest enter the full expression

for the thermal average. The leading term ∆k of the eigenvalue of Q2k−1 follows from Dkχ,

as well as ξ0
k−1∆k−1σ1. The term ξ1

k−1c∆
k−2σ3 follows from cE4D

k−2χ, and so on. In case

of Q5 we have for the thermal average [14],

`5 Tr∆(qL0Q5) =

(
D3 +

c+ 4

288
E4D −

c(c+ 14)

36288
E6

)
χ. (2.11)

This yields in the limit of interest

`5 Tr∆(qL0Q5) =

(
∆3 + 15∆2σ1 +

5

6
c∆σ3 +

1

72
c2σ5

)
χ, (2.12)

where the last term came from c2E6D
k−3χ, k = 3. This result is in full agreement with

the explicit calculation of [15].

2.5 Q7

The original expression for Tr∆(qL0Q7) calculated in [14] is quadratic in E4, but using the

identify E2
4 = E8 it can be written as follows

`7 Tr∆(qL0Q7) =

(
D4 +

(7c+ 64)

720
E4D

2 − c2 + 24c+ 74

6480
E6D +

c
(
c2 + 103c

4 + 175
)

518400
E8

)
χ.
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This immediately gives

`7 Tr∆(qL0Q7) =

(
∆4 + 28∆3σ1 +

7

3
c∆2σ3 +

7

90
c2∆σ5 +

1

1080
c3σ7

)
χ. (2.13)

Corresponding values of ξp3 are easy to obtain using numerical values (2.9).

2.6 Q9

The expression for Q9 is too bulky and here we only write relevant terms using E2
4 = E8

and E4E6 = E10,

`9 Tr∆(qL0Q9) =

(
D5 +

(
7c

720
+O(c0)

)
E4D

3 +

(
− c2

2016
+O(c1)

)
E2D

2

+

(
− c3

80640
+O(c2)

)
E8D +

(
− c4

4790016
+O(c3)

)
E10

)
χ. (2.14)

Corresponding values of ξp4 immediately follow from here.

2.7 Q11, Q13, and beyond

Calculation of the eigenvalues of Q11 and Q13 is completely analogous, but to rewrite

the leading part of Tr∆(qL0Q2k−1) as a linear combination of Dk and terms of the form

ck−1−pE2(k−p)D
p, p = 0, . . . , k − 2, we need to use the identities

E12 =
441

691
E3

4 +
250

691
E2

6 , E14 = E2
4E6. (2.15)

Resulting values of the coefficients ξpk for k = 1, . . . , 7, are summarized in the table below

ξpk =



1

6 1
6

15 5
6

1
72

28 7
3

7
90

1
1080

45 5 1
4

1
168

1
18144

66 55
6

11
18

11
504

11
27216

1
326592

91 91
6

91
72

13
216

13
7776

13
513216

1
6158592


, p = 0, . . . , k − 1, (2.16)

here p indexes rows and k indexes columns. These values can be concisely written as

ξpk = 24−p
(2k − 1)Γ(k + 1)Γ(1/2)

2 Γ(p+ 3/2)Γ(k − p)
, (2.17)

which extends this result for all k.

3 Generalized partition function

From now on we assume that (1.4) applies to all qKdV charges with the coefficients ξpk given

by (2.17). Given that all Q2k−1 mutually commute, the generalized partition function (1.1)

– 6 –
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is given by the sum over primaries ∆ and sets (Young tables) {mi}, parameterizing de-

scendants via (1.3),

Z =
∑
∆

∑
{mi}

exp

(
−
∞∑
k=1

µ2k−1

`2k−1

(
∆k +

k−1∑
p=0

∑
i

m2p+1
i cp∆k−1−p ξpk +O(ck−2)

))
. (3.1)

At large central charge sum over ∆ can be substituted by an integral∑
∆

→
∫
d∆ eπ

√
2c′∆/3, c′ ≡ c− 1, (3.2)

where the density of primaries follows from Cardy formula [17, 18]. It is convenient to

introduce σ via

∆ =
c′π2`2

6β2
σ. (3.3)

So far we were discussing 1/c expansion, but the results look more elegant if we do an

expansion in 1/c′. Since at leading order c = c′ + O(1), the structure of λ remains the

same: ∆k contributes as (c′)k while cp∆k−1−p terms contribute as (c′)k−1. Going from the

sets {mi} to free boson representation (1.5), the partition function reduces to that one of

non-interacting auxiliary bosons

Z(β, t) =

∫
dσ exp

{
c′π2`

6β

(
2
√
σ −

∞∑
k=1

t2k−1σ
k

)} ∑
n1,n2,...

e−
∑∞

r=1 nrMr+O(1/c′), (3.4)

logZ ≡ F =
π2`

6β

(
c′f0(t) + f1(t) +O(1/c′)

)
, (3.5)

t2k−1 =

(
π2c′

6β2

)k−1
µ2k−1

β
, t1 ≡ 1, (3.6)

where the spectrum of bosons is given by

Mr =

∞∑
k=1

t2k−1σ
k−1

k−1∑
p=0

ξpk

(
6

π2σ

)p(βr
`

)2p+1

(3.7)

=
βr

`

∞∑
k=1

t2k−1σ
k−1k(2k − 1) 2F1

(
1, 1− k, 3/2,− 1

σ

(
βr

2π`

)2
)
. (3.8)

In (3.4) we write the partition function as a function of β, t2k−1. For the given fixed β, t2k−1

the terms contributing as (c′)k−2 to eigenvalues of Q2k−1 contribute to free energy as 1/c′.

Our scope is to calculate free energy up to the first two orders in 1/c′ expansion, i.e. only

keep the terms which survive in the c′ →∞ limit. Hence O(1/c′) terms can be neglected.

Up to 1/c′ corrections the value of σ is determined via saddle point approximation of

Z0(β, t) = exp

{
c′π2`

6β
f0

}
=

∫
dσ exp

{
c′π2`

6β

(
2
√
σ −

∞∑
k=1

t2k−1σ
k

)}
, (3.9)
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while the remaining sum over the boson occupation numbers nr in (3.4) “takes” saddle

point value of σ as an input. The saddle point equation

√
σ =

∞∑
k=1

t2k−1σ
kk, (3.10)

can be solved in terms of an infinite series

σ = 1 +

∞∑
n=1

∞∑
k1,...,kn=2

2
(−1)n

n!

(2K − n+ 1)!

(2K − 2n+ 2)!

n∏
i=1

ki t2ki−1, K ≡
∑
i

ki, (3.11)

yielding (expansion (3.13) was found in [13]),

f0 =

∞∑
k=1

t2k−1σ
k(2k − 1), (3.12)

f0 = 1 +
∞∑
n=1

∞∑
k1,...,kn=2

2
(−1)n

n!

(2K − n)!

(2K − 2n+ 2)!

n∏
i=1

ki t2ki−1, K ≡
∑
i

ki. (3.13)

With σ being fixed, the remaining part of the partition function describes some auxiliary

non-interacting bosons

π2`

6β
f1 = log

∑
n1,n2,...

e−
∑∞

r=1 nrMr = −
∞∑
r=1

log
(
1− e−Mr

)
. (3.14)

In the thermodynamic limit ` → ∞ summation over r can be substituted by integration

(Thomas-Fermi approximation), yielding (1.8).

4 Discussion

In this paper we have conjectured leading form of the spectrum of qKdV charges in 1/c

expansion and verified it using recently obtained thermal averages for the first seven qKdV

charges [14]. Using the conjectural form of the eigenvalues we have rewritten generalized

partition function of 2d CFTs at large central charge in terms of non-interacting auxiliary

bosons. The result of our calculation is the explicit form of the extensive part of free

energy, exact up to 1/c corrections (1.8). We postpone discussing physical implications of

our fundings until future work [19].
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A Alternative representation of the partition function

The answer (1.8) was derived assuming β 6= 0 and µ1 = β enters the expression for free

energy differently from all other chemical potentials. In this section we obtain the answer

for free energy F in another “coordinate patch,” assuming some other chemical potential

µ2r−1 for a given r is non-zero, µ2r−1 6= 0, while the rest of chemical potentials, including

µ1 = β, could be zero.

Let us introduce c′r−1µ2r−1 = λ 6= 0 and the following set of independent variables

τ2k−1 =
µ2k−1

µ2r−1
c′k−r

(
π2

6λ2r2

) k−r
2r−1

, τ2r−1 ≡ 1, (A.1)

and functions fi(τ), σ(τ),

F = c′`λ

(
π2

6λ2r2

) r
2r−1

(f0 + f1/c
′ +O(1/c′2)), ∆ = c′`2

(
π2

6λ2r2

) 1
2r−1

σ. (A.2)

Using these notations the expression for f0 is as follows

f0 = 2r
√
σ −

∞∑
k=1

τ2k−1σ
k =

∑
k=1

(2k − 1)τ2k−1σ
k, (A.3)

where the last equality holds “on-shell,”

rσ1/2 =

∞∑
k=1

τ2k−1k σ
k, σ = 1− 2

r(2r − 1)

∑
k 6=r

k τ2k−1 + . . . (A.4)

Finally, the expression for f1,

f1 = −12r

π

∫ ∞
0

dκ log

(
1− exp

{
−2π

r
κγ

})
, (A.5)

γ =
∑
k=1

τ2k−1k(2k − 1)σk−1
2F1(1, 1− k, 3/2,−κ2/σ). (A.6)

B 1/c versus 1/c′ expansion

In a recent work [15] we were discussing free energy in 1/c expansion

F =
π2`

6β

(
cf̃0(t̃) + f̃1(t̃) +O(1/c)

)
, (B.1)

using variables

t̃2k−1 =

(
π2c

6β2

)k−1
µ2k−1

β
. (B.2)

In this paper we used on 1/c′ expansion

F =
π2`

6β

(
c′f0(t) + f1(t) +O(1/c′)

)
, (B.3)
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and the variables

t2k−1 =

(
π2c′

6β2

)k−1
µ2k−1

β
. (B.4)

Here we outline the relation between these two expansion schemes. Using

t2k−1 = t̃2k−1

(
1− 1

c

)k−1

(B.5)

we readily find

f̃0(t) = f0(t), (B.6)

and

f̃1(t) = −f0(t)−
∞∑
k=1

(k − 1)t2k−1
∂f0(t)

∂t2k−1
+ f1(t). (B.7)

Using the explicit form of f0, (3.12), this can be simplified as

f̃1(t) = −
√
σ(t) + f1(t). (B.8)

A comparison of f1 from (1.8) with the equations (2.43), (2.52) of [15] confirms this result.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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