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The study of the major transition to eusociality presents several

challenges to researchers, largely resulting from the

importance of complex behavioral phenotypes and the shift

from individual to group level selection. These challenges are

being met with corresponding technological improvements.

Advances in resource development for non-model taxa,

behavioral tracking, nucleic acid sequencing, and reverse

genetics are facilitating studies of hypotheses that were

previously intractable. These innovations are resulting in the

development of new model systems tailored to the exploration

of specific behavioral phenotypes and the querying of

underlying molecular mechanisms that drive eusocial

behaviors. Here, we present a brief overview of how

methodological innovations are advancing our understanding

of the evolution of eusociality.
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Introduction
The history of life is marked by a series of major evolu-

tionary transitions [1,2], from independent replicators to

group-dependent replicators, as exemplified by the ori-

gins of protocells, multicellular organisms, and eusocial

animal societies. These transitions are unique among

adaptations as they change the unit of selection from

the individual replicator to a group of linked replicators

[3]. Synergistic fitness effects [3] and gene regulatory

evolution [4–6] have been proposed as drivers of major

evolutionary transitions. However, substantial barriers to

testing such hypotheses include the complex nature of

relevant phenotypes and the gulf between molecular

genetic resources available for traditional model
www.sciencedirect.com 
organisms versus those most relevant to understanding

major evolutionary transitions. Fortunately, advances in

molecular technologies and development of new model

systems are facilitating exploration of the causes and

consequences of major evolutionary transitions in ways

previously considered impossible. The conceptual and

technological challenges and advances facing researchers

of eusocial insect biology have been subject to numerous

recent reviews (e.g. in Refs. [7–9]). In this article, we

complement those efforts by highlighting how particular

technological innovations have advanced, and will con-

tinue to advance, our understanding of eusocial evolu-

tionary transitions, with a particular focus on recent

studies of the order Hymenoptera.

Social phenotyping
The evolutionary transition to eusociality proceeds

through some combination of the following stages: the

genesis of societies, the evolution of conflict control

mechanisms, and the shift to dimorphic castes (Figure 1)

[3]. Social insects exhibit great diversity in the extent to

which each of these stages have proceeded, likely depen-

dent on lineage-specific ecological and evolutionary

constraints.

Some social species exist with monomorphic castes that

are subject to ongoing conflict control, as seen in many

bees [10,11], paper wasps [12,13], as well as ant taxa that

have experienced an evolutionary reversion away from

caste dimorphism [14��]. Other species exhibit polymor-

phism in social organization, with populations spanning

multiple stages of the major transition [15��,16,17]. In

contrast, some taxa exhibit elaborations of the eusocial

phenotype beyond the framework laid out above, includ-

ing origins of worker caste polymorphism [18�] and tran-

sitions to colonies comprised of multiple families (polyg-

yny) [19,20]. This taxonomic variation in traits related to

eusociality allows for fine-tuned investigation of the

mechanisms underlying the major transition itself. For

instance, ants that exhibit losses of an obligate queen

caste have been used to explore the molecular mecha-

nisms of conflict management and social cohesion [21��

,22��,23��,24��]. In contrast, eusocial organisms with

extreme caste dimorphism and worker subcastes are ideal

models for understanding the evolution and maintenance

of developmental polyphenisms [14��,18�,25�,26�,27]. In

this regard, the diversity of emerging social insect model

systems has the potential to elucidate many crucial details

in the major transition to eusociality.
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Figure 1
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Reverse genetics

Innovations advancing our understanding of the evolution and maintenance of eusociality. New model systems are being developed to explore

various aspects of the origins of eusociality, and the use of automated tracking is providing quantitative data on relevant behaviors. Low

sequencing costs are fueling the generation of increasingly expansive comparative genomic and transcriptomic studies of insect taxa displaying

different social phenotypes, and new molecular genetic protocols are making it easier to assay specific tissues and investigate gene regulatory

mechanisms. Reverse genetics techniques are becoming increasingly accessible for utilization in non-model organisms, with the potential to

provide evidence for genetic elements playing a causal role in phenotypic variation linked to eusociality.
A key element in the development of model systems for

social transitions is understanding the phenotypes such

systems exhibit. This is particularly challenging in social

insects because the phenotypes in question are often

complex behaviors that can be difficult to quantify.

Advances in automated behavioral tracking are beginning

to yield fine-scale and high throughput analyses of social

behaviors [24��,28,29�]. For example, while it would be a

titanic effort to track hundreds of colonies of varying sizes

with manual observation, automated behavioral tracking

allowed for such an experiment, providing new insight

into how colony size affects behavioral specialization

[24��]. A detailed understanding of behavioral pheno-

types, and the use of technology to enhance high through-

put phenotyping, enable more informed experimental

designs when exploring the molecular underpinnings of

division of labor [21��,22��], as well as a better framework

for developing hypotheses about the evolution of these

complex behaviors.

Sequencing
Comparative genomics offers one of the most accessible

avenues for investigating the molecular basis of complex

trait variation (Figure 1). Genomes are being sequenced

from an unprecedented number of taxa, which have in
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turn been used to identify genes that exhibit common

shifts in selective pressures [[33�],30] or expansions in

gene families [[33�],31] during parallel transitions to

eusociality. Similar approaches have been used to inves-

tigate the evolution of genes in ants [31,32] and termites

[33�] as compared to distantly related non-eusocial out-

groups. One of the common findings of these studies is

that changes in the gene content related to chemical

communication tend to co-occur with eusocial evolution-

ary transitions [31,33�].

Innovations in sequencing that reduce costs and simplify

sample preparation are increasing the accessibility of

genetic mapping and population genomic data generation

for investigating genetic contributions to caste dimor-

phism and other forms of complex trait variation. For

example, variation in colony queen number (and a variety

of accompanying traits) in the fire ant Solenopsis invicta has

long been known to be mediated by a single Mendelian

element [34], but recent implementations of genome

resequencing and genetic mapping revealed the locus

mediating colony social form is not a single gene, but

rather a large chromosomal rearrangement containing

hundreds of genes [19], an observation made in another

ant linage as well [20]. This illustrates how the genetic
www.sciencedirect.com
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architectures of complex traits associated with major

transitions or, in this case, their elaborations are being

investigated at increasingly higher resolution. Nonethe-

less, current short-read genome assemblies are highly

fragmented and annotated incompletely, which limits

studies of gene family evolution and results in incomplete

lists of candidate genes (an issue exacerbated by the use

of limited transcriptome evidence to inform gene models

[35]). Long-read sequencing technologies are now begin-

ning to fulfill the promise of better genome assemblies

[36], which will facilitate more robust investigations of

molecular contributors to phenotypic variation in non-

model systems. Such advances also promise to improve

the annotation of noncoding genetic elements and the

utility of whole genome alignments to investigate the

evolution of such elements [32,37]. We should note,

however, that none of the technologies presented thus

far will necessarily improve annotations of gene functions.

Decreasing sequencing costs have led to an increasing

prevalence of RNA-sequencing studies in non-

model systems. Many of these studies have focused on

exploring the molecular basis of the transition from non-

eusocial to eusocial lifestyles (Figure 1) [12,14��

,16,17,23��,25�,26�,38,39], with studies increasingly sam-

pling multiple taxa in search of commonalities

[23��,25�,38,39]. Such gene expression studies have

emphasized the importance of genes such as those

involved in synthesizing and degrading juvenile hormone

[25�,40,41], corazonin [23��], and insulin-like peptide

2 [14��] to caste determination and behavioral plasticity

in social insects. Recent advances in nucleic acid

sequencing serve to yield an even more nuanced perspec-

tive on gene regulation. Circularized long-read sequenc-

ing has been used to quantify alternative splicing of gene

transcripts with a high degree of accuracy, while new

library preparation and microfluidics technologies have

allowed for single-cell transcriptome sequencing [42].

These advances are crucial for understanding the down-

stream effects of gene regulation in the case of tissue-

specific and splicing-based effects, both of which have

been implicated as important factors in the evolution of

eusociality [23��,43].

In conjunction with differences in gene expression, the

evolution of gene regulatory elements is an important

facet of the transition to eusociality [32,44]. When it

comes to exploring mechanisms of gene regulation, there

are two main classes of noncoding DNA elements of

interest: proximal and distal regulatory elements [45].

Although both classes operate by binding regulatory

proteins, proximal regulatory elements are primarily com-

prised of promoters, while distal regulatory elements

often interact with target genes through DNA looping

and include enhancers, repressors, and insulators.

Because of the lack of spatial concordance with coding

sequence, distal regulatory elements have traditionally
www.sciencedirect.com 
been challenging to study. Hi-C [46] and Hi-ChIP [47]

address this particular challenge by linking interacting

genomic loci together even when they are on disparate

regions of the chromosome. Additionally, STARR-seq

[48] allows the user to quantitatively test the effect of

noncoding regulatory elements on gene expression with

high throughput, but relies on the use of cell lines. The

lack of immortalized cell lines for eusocial insects repre-

sents an impediment to fully utilizing the molecular

resources developed for model organisms and is an area

that warrants investment.

Many new technologies have focused on exploring gene

regulation by profiling the genomic landscape of tran-

scription factor binding. ChIP-seq has traditionally been

used to investigate transcription factor binding and the

localization of histones with specific post-translational

modifications by precipitating the regions of the genome

that are bound by particular proteins [49]. This technique

has been refined further in recent years, as illustrated by

Cut&Run [50], which has lower input requirements and is

easier to execute, making it more amenable to use in non-

model systems. ChIP-seq and Cut&Run can be used to

assess the binding and gene regulatory effects of a specific

transcription factor, but antibody development can be a

non-trivial hurdle to this approach. Fortunately, histone

proteins are exceptionally highly conserved and antibo-

dies developed for mammals can be used to investigate

histone modifications in insects. Profiling specific histone

modifications can aid in the annotation of DNA regulatory

elements, and comparing histone modifications among

biological contexts offers a tractable way to explore the

regulation of complex phenotypes [26�] and, conse-

quently, major transitions (Figure 1) [51–53].

Determining which particular gene regulatory events are

important to variation in a trait of interest (e.g. which

transcription factors or histone modifications are worth

querying) is often a challenging process. However, more

general techniques exist to explore the gene regulatory

landscape. ATAC-seq [54], for instance, quantifies acces-

sibility of chromatin without the use of specific antibo-

dies. Chromatin accessibility is fundamental to gene

regulation: most transcription factors cannot bind inac-

cessible regions, and active loci are typically characterized

by an open chromatin (accessible) state, which facilitates

the identification of putatively active distal regulatory

elements by ATAC-seq. Similar to Cut&Run, ATAC-seq

has low input requirements and is comparatively tractable

for use on non-model organisms [54]. Thus, ATAC-seq is

well-suited for studying the evolution of putative regula-

tory regions across taxa.

Reverse genetics
Fundamental to exploring the gene-phenotype-society

axis is the ability to perturb loci of interest through

reverse-genetic techniques that can bridge the gap
Current Opinion in Insect Science 2019, 34:27–32
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between correlation and causation (Figure 1). These tech-

niques also provide a crucial utility in elucidating the

explicit function of genes that lack or have incomplete

functional annotation. In recent years, RNA-interference

(RNAi) technologies remain one of the primary toolkits for

researchers working in non-model insect systems [23��,55],
due to the lengthy, arduous and sometimes inaccessible

process of classical reverse genetic techniques. RNAi

involves the introduction of an exogenous dsRNA, usually

via microinjection, complementary to a gene of interest,

which, when incorporated into the innate RNA interfer-

ence system present in most eukaryotic organisms, results

in partial knockdown of the target mRNA. In this way, the

expression of a single gene can be lowered in vivo. This has

been used to great effect in social insect systems; recent

examples include investigating the role of corazonin in

foraging behavior [23��] and vestigial in imaginal wing

disc-mediated worker caste differentiation [18�]. The

effects of mRNA knockdown are often transient, and the

magnitude of knockdown is often gene, tissue, and organ-

ism specific [56]. That being said, advances have been

made with regards to delivery of dsRNA, allowing for a

more sustainable knockdown [57]. Apart from RNAi, some

studies have utilized pharmaceuticals to target epigenetic

regulators [52] as well as synthetic peptides to alter organ-

ismal behavior [14��,23��].

Recently, a tool has emerged that allows for targeted

deletion of a specific locus and holds great promise for

researchers working in non-model organisms. The

CRISPR/Cas9 system, which was first discovered as a

bacterial immune system, allows for targeted editing of

genomic DNA, utilizing specific guide RNAs. Delivery of

the Cas9 nuclease in complex with a synthetic guide RNA

complementary to a target genomic sequence results in a

single or double stranded break at the targeted locus

[58,59]. Previous methods of site-directed mutagenesis

often involved laborious cloning and protein engineering

(ZNFs and TALENs) [60]. However, with the advent

and proliferation of the CRISPR/Cas9 system, the power

of genomic knockouts has become accessible to research-

ers working in non-model systems. For example, this

system has already been utilized in several hymenopteran

species [21��,22��,61], showcasing the role of chemore-

ception in social behavior in ants [21��,22��]. Further-

more, this system is subject to ongoing development, with

at least one alternative nuclease to Cas9 (Cpf1 [62])

recently being exploited to improve target specificity

and allow for repeated editing – something prevented

by the mechanisms of Cas9 cleavage – and emerging

variants of Cas9 lacking nuclease activity allow for

directed silencing or activation of target loci [63]. Devel-

opments have also been made regarding the delivery of

Cas9 to particular tissues using peptide tags [64].

Despite the promise of CRISPR/Cas9, there are still many

areas that require further development to address questions
Current Opinion in Insect Science 2019, 34:27–32 
related to the major transitions. For one, most Cas9 imple-

mentations must occur in the germline or, as is the case with

mosaic mutations, at early developmental time points.

Because of this, most knockouts are constitutive, meaning

that many genes which may be of interest but are essential

to development cannot be easily perturbed. Furthermore,

sustained lines of knockout animals must reproduce in the

lab, which limits applications in many social insect species.

Finally, the efficiency of CRISPR/Cas9 is relatively low

per-injection and embryo mortality rates are often high,

requiring that many embryos must be injected to attain

even a few knockout animals [21��,22��].

Conclusion
Investigations of proximate and ultimate features of the

major evolutionary transitions to eusociality present

unique challenges to researchers. Many of these chal-

lenges are being met with the development of new model

systems, advances in organismal tracking, nucleic acid

sequencing, and molecular genetics techniques. An

important element of such methodological advances is

not what the methods do per se but their applicability to

traditionally non-model organisms. Nevertheless, while

much has been discovered about evolution and develop-

ment in eusocial organisms, many questions remain. For

example: (1) Is there an ancestral genetic module that was

coopted by novel regulatory elements to generate fea-

tures of the eusocial phenotype, as predicted by the

genetic toolkit hypothesis [25�,39]? (2) Does an increase

in gene regulatory complexity accompany the evolution-

ary transition to eusociality [6]? (3) Among the genes

linked to caste determination in genome-wide screens,

which are causative versus correlative? (4) Are there

commonalities among the selective landscapes of organ-

isms that have undergone full or partial reversions in the

transition to eusociality? These and many other outstand-

ing questions will continue to drive innovative research

into eusocial evolutionary transitions.
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