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The study of the major transition to eusociality presents several
challenges to researchers, largely resulting from the
importance of complex behavioral phenotypes and the shift
from individual to group level selection. These challenges are
being met with corresponding technological improvements.
Advances in resource development for non-model taxa,
behavioral tracking, nucleic acid sequencing, and reverse
genetics are facilitating studies of hypotheses that were
previously intractable. These innovations are resulting in the
development of new model systems tailored to the exploration
of specific behavioral phenotypes and the querying of
underlying molecular mechanisms that drive eusocial
behaviors. Here, we present a brief overview of how
methodological innovations are advancing our understanding
of the evolution of eusociality.
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Introduction

The history of life is marked by a series of major evolu-
tionary transitions [1,2], from independent replicators to
group-dependent replicators, as exemplified by the ori-
gins of protocells, multicellular organisms, and eusocial
animal societies. These transitions are unique among
adaptations as they change the unit of selection from
the individual replicator to a group of linked replicators
[3]. Synergistic fitness effects [3] and gene regulatory
evolution [4-6] have been proposed as drivers of major
evolutionary transitions. However, substantial barriers to
testing such hypotheses include the complex nature of
relevant phenotypes and the gulf between molecular
genetic resources available for traditional model
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organisms versus those most relevant to understanding
major evolutionary transitions. Fortunately, advances in
molecular technologies and development of new model
systems are facilitating exploration of the causes and
consequences of major evolutionary transitions in ways
previously considered impossible. The conceptual and
technological challenges and advances facing researchers
of eusocial insect biology have been subject to numerous
recent reviews (e.g. in Refs. [7-9]). In this article, we
complement those efforts by highlighting how particular
technological innovations have advanced, and will con-
tinue to advance, our understanding of eusocial evolu-
tionary transitions, with a particular focus on recent
studies of the order Hymenoptera.

Social phenotyping

The evolutionary transition to eusociality proceeds
through some combination of the following stages: the
genesis of societies, the evolution of conflict control
mechanisms, and the shift to dimorphic castes (Figure 1)
[3]. Social insects exhibit great diversity in the extent to
which each of these stages have proceeded, likely depen-
dent on lineage-specific ecological and evolutionary
constraints.

Some social species exist with monomorphic castes that
are subject to ongoing conflict control, as seen in many
bees [10,11], paper wasps [12,13], as well as ant taxa that
have experienced an evolutionary reversion away from
caste dimorphism [14°°]. Other species exhibit polymor-
phism in social organization, with populations spanning
multiple stages of the major transition [15°°,16,17]. In
contrast, some taxa exhibit elaborations of the eusocial
phenotype beyond the framework laid out above, includ-
ing origins of worker caste polymorphism [18°] and tran-
sitions to colonies comprised of multiple families (polyg-
yny) [19,20]. This taxonomic variation in traits related to
eusociality allows for fine-tuned investigation of the
mechanisms underlying the major transition itself. For
instance, ants that exhibit losses of an obligate queen
caste have been used to explore the molecular mecha-
nisms of conflict management and social cohesion [21°°
,22°°,23%°,24°°]. In contrast, eusocial organisms with
extreme caste dimorphism and worker subcastes are ideal
models for understanding the evolution and maintenance
of developmental polyphenisms [14°°,18%,25°%,26°,27]. In
this regard, the diversity of emerging social insect model
systems has the potential to elucidate many crucial details
in the major transition to cusociality.
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Innovations advancing our understanding of the evolution and maintenance of eusociality. New model systems are being developed to explore
various aspects of the origins of eusociality, and the use of automated tracking is providing quantitative data on relevant behaviors. Low
sequencing costs are fueling the generation of increasingly expansive comparative genomic and transcriptomic studies of insect taxa displaying
different social phenotypes, and new molecular genetic protocols are making it easier to assay specific tissues and investigate gene regulatory
mechanisms. Reverse genetics techniques are becoming increasingly accessible for utilization in non-model organisms, with the potential to
provide evidence for genetic elements playing a causal role in phenotypic variation linked to eusociality.

A key element in the development of model systems for
social transitions is understanding the phenotypes such
systems exhibit. This is particularly challenging in social
insects because the phenotypes in question are often
complex behaviors that can be difficult to quantify.
Advances in automated behavioral tracking are beginning
to yield fine-scale and high throughput analyses of social
behaviors [24°°,28,29°]. For example, while it would be a
titanic effort to track hundreds of colonies of varying sizes
with manual observation, automated behavioral tracking
allowed for such an experiment, providing new insight
into how colony size affects behavioral specialization
[24°°]. A detailed understanding of behavioral pheno-
types, and the use of technology to enhance high through-
put phenotyping, enable more informed experimental
designs when exploring the molecular underpinnings of
division of labor [21°°,22°°], as well as a better framework
for developing hypotheses about the evolution of these
complex behaviors.

Sequencing

Comparative genomics offers one of the most accessible
avenues for investigating the molecular basis of complex
trait variation (Figure 1). Genomes are being sequenced
from an unprecedented number of taxa, which have in

turn been used to identify genes that exhibit common
shifts in selective pressures [[33°],30] or expansions in
gene families [[33°],31] during parallel transitions to
eusociality. Similar approaches have been used to inves-
tigate the evolution of genes in ants [31,32] and termites
[33°] as compared to distantly related non-eusocial out-
groups. One of the common findings of these studies is
that changes in the gene content related to chemical
communication tend to co-occur with eusocial evolution-
ary transitions [31,33°].

Innovations in sequencing that reduce costs and simplify
sample preparation are increasing the accessibility of
genetic mapping and population genomic data generation
for investigating genetic contributions to caste dimor-
phism and other forms of complex trait variation. For
example, variation in colony queen number (and a variety
of accompanying traits) in the fire ant Solenopsis invicta has
long been known to be mediated by a single Mendelian
element [34], but recent implementations of genome
resequencing and genetic mapping revealed the locus
mediating colony social form is not a single gene, but
rather a large chromosomal rearrangement containing
hundreds of genes [19], an observation made in another
ant linage as well [20]. This illustrates how the genetic
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architectures of complex traits associated with major
transitions or, in this case, their elaborations are being
investigated at increasingly higher resolution. Nonethe-
less, current short-read genome assemblies are highly
fragmented and annotated incompletely, which limits
studies of gene family evolution and results in incomplete
lists of candidate genes (an issue exacerbated by the use
of limited transcriptome evidence to inform gene models
[35]). Long-read sequencing technologies are now begin-
ning to fulfill the promise of better genome assemblies
[36], which will facilitate more robust investigations of
molecular contributors to phenotypic variation in non-
model systems. Such advances also promise to improve
the annotation of noncoding genetic elements and the
utility of whole genome alignments to investigate the
evolution of such elements [32,37]. We should note,
however, that none of the technologies presented thus
far will necessarily improve annotations of gene functions.

Decreasing sequencing costs have led to an increasing
prevalence of RNA-sequencing studies in non-
model systems. Many of these studies have focused on
exploring the molecular basis of the transition from non-
eusocial to eusocial lifestyles (Figure 1) [12,14°°
,16,17,23°°,25°,26°,38,39], with studies increasingly sam-
pling multiple taxa in search of commonalities
[23°°,25%,38,39]. Such gene expression studies have
emphasized the importance of genes such as those
involved in synthesizing and degrading juvenile hormone
[25°%,40,41], corazonin [23°°], and insulin-like peptide
2 [14°°] to caste determination and behavioral plasticity
in social insects. Recent advances in nucleic acid
sequencing serve to yield an even more nuanced perspec-
tive on gene regulation. Circularized long-read sequenc-
ing has been used to quantify alternative splicing of gene
transcripts with a high degree of accuracy, while new
library preparation and microfluidics technologies have
allowed for single-cell transcriptome sequencing [42].
These advances are crucial for understanding the down-
stream effects of gene regulation in the case of tissue-
specific and splicing-based effects, both of which have
been implicated as important factors in the evolution of
eusociality [23°°,43].

In conjunction with differences in gene expression, the
evolution of gene regulatory elements is an important
facet of the transition to cusociality [32,44]. When it
comes to exploring mechanisms of gene regulation, there
are two main classes of noncoding DNA elements of
interest: proximal and distal regulatory elements [45].
Although both classes operate by binding regulatory
proteins, proximal regulatory elements are primarily com-
prised of promoters, while distal regulatory elements
often interact with target genes through DNA looping
and include enhancers, repressors, and insulators.
Because of the lack of spatial concordance with coding
sequence, distal regulatory elements have traditionally

been challenging to study. Hi-C [46] and Hi-ChIP [47]
address this particular challenge by linking interacting
genomic loci together even when they are on disparate
regions of the chromosome. Additionally, STARR-seq
[48] allows the user to quantitatively test the effect of
noncoding regulatory elements on gene expression with
high throughput, but relies on the use of cell lines. The
lack of immortalized cell lines for eusocial insects repre-
sents an impediment to fully utilizing the molecular
resources developed for model organisms and is an area
that warrants investment.

Many new technologies have focused on exploring gene
regulation by profiling the genomic landscape of tran-
scription factor binding. ChIP-seq has traditionally been
used to investigate transcription factor binding and the
localization of histones with specific post-translational
modifications by precipitating the regions of the genome
that are bound by particular proteins [49]. This technique
has been refined further in recent years, as illustrated by
Cut&Run [50], which has lower input requirements and is
easier to execute, making it more amenable to use in non-
model systems. ChIP-seq and Cut&Run can be used to
assess the binding and gene regulatory effects of a specific
transcription factor, but antibody development can be a
non-trivial hurdle to this approach. Fortunately, histone
proteins are exceptionally highly conserved and antibo-
dies developed for mammals can be used to investigate
histone modifications in insects. Profiling specific histone
modifications can aid in the annotation of DNA regulatory
elements, and comparing histone modifications among
biological contexts offers a tractable way to explore the
regulation of complex phenotypes [26°] and, conse-
quently, major transitions (Figure 1) [51-53].

Determining which particular gene regulatory events are
important to variation in a trait of interest (e.g. which
transcription factors or histone modifications are worth
querying) is often a challenging process. However, more
general techniques exist to explore the gene regulatory
landscape. ATAC-seq [54], for instance, quantifies acces-
sibility of chromatin without the use of specific antibo-
dies. Chromatin accessibility is fundamental to gene
regulation: most transcription factors cannot bind inac-
cessible regions, and active loci are typically characterized
by an open chromatin (accessible) state, which facilitates
the identification of putatively active distal regulatory
elements by ATAC-seq. Similar to Cut&Run, ATAC-seq
has low input requirements and is comparatively tractable
for use on non-model organisms [54]. Thus, ATAC-seq is
well-suited for studying the evolution of putative regula-
tory regions across taxa.

Reverse genetics

Fundamental to exploring the gene-phenotype-society
axis is the ability to perturb loci of interest through
reverse-genetic techniques that can bridge the gap
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between correlation and causation (Figure 1). These tech-
niques also provide a crucial utility in elucidating the
explicit function of genes that lack or have incomplete
functional annotation. In recent years, RNA-interference
(RNAI) technologies remain one of the primary toolkits for
researchers working in non-model insect systems [23°°,55],
due to the lengthy, arduous and sometimes inaccessible
process of classical reverse genetic techniques. RNAi
involves the introduction of an exogenous dsRNA, usually
via microinjection, complementary to a gene of interest,
which, when incorporated into the innate RNA interfer-
ence system present in most eukaryotic organisms, results
in partial knockdown of the target mRNA. In this way, the
expression of a single gene can be lowered 72 vivo. This has
been used to great effect in social insect systems; recent
examples include investigating the role of corazonin in
foraging behavior [23°°] and vestigial in imaginal wing
disc-mediated worker caste differentiation [18°]. The
effects of mRNA knockdown are often transient, and the
magnitude of knockdown is often gene, tissue, and organ-
ism specific [56]. That being said, advances have been
made with regards to delivery of dsRNA, allowing for a
more sustainable knockdown [57]. Apart from RNAi, some
studies have utilized pharmaceuticals to target epigenetic
regulators [52] as well as synthetic peptides to alter organ-
ismal behavior [14°°,23°°].

Recently, a tool has emerged that allows for targeted
deletion of a specific locus and holds great promise for
researchers working in non-model organisms. The
CRISPR/Cas9 system, which was first discovered as a
bacterial immune system, allows for targeted editing of
genomic DNA, utilizing specific guide RNAs. Delivery of
the Cas9 nuclease in complex with a synthetic guide RNA
complementary to a target genomic sequence results in a
single or double stranded break at the targeted locus
[58,59]. Previous methods of site-directed mutagenesis
often involved laborious cloning and protein engineering
(ZNFs and TALENSs) [60]. However, with the advent
and proliferation of the CRISPR/Cas9 system, the power
of genomic knockouts has become accessible to research-
ers working in non-model systems. For example, this
system has already been utilized in several hymenopteran
species [21°°,22°°,61], showcasing the role of chemore-
ception in social behavior in ants [21°°,22°°]. Further-
more, this system is subject to ongoing development, with
at least one alternative nuclease to Cas9 (Cpfl [62])
recently being exploited to improve target specificity
and allow for repeated editing — something prevented
by the mechanisms of Cas9 cleavage — and emerging
variants of Cas9 lacking nuclease activity allow for
directed silencing or activation of target loci [63]. Devel-
opments have also been made regarding the delivery of
Cas9 to particular tissues using peptide tags [64].

Despite the promise of CRISPR/Cas9, there are still many
areas thatrequire further development to address questions

related to the major transitions. For one, most Cas9 imple-
mentations must occur in the germline or, as is the case with
mosaic mutations, at carly developmental time points.
Because of this, most knockouts are constitutive, meaning
that many genes which may be of interest but are essential
to development cannot be easily perturbed. Furthermore,
sustained lines of knockout animals must reproduce in the
lab, which limits applications in many social insect species.
Finally, the efficiency of CRISPR/Cas9 is relatively low
per-injection and embryo mortality rates are often high,
requiring that many embryos must be injected to attain
even a few knockout animals [21°°,22°°].

Conclusion

Investigations of proximate and ultimate features of the
major evolutionary transitions to ecusociality present
unique challenges to researchers. Many of these chal-
lenges are being met with the development of new model
systems, advances in organismal tracking, nucleic acid
sequencing, and molecular genetics techniques. An
important element of such methodological advances is
not what the methods do per se but their applicability to
traditionally non-model organisms. Nevertheless, while
much has been discovered about evolution and develop-
ment in eusocial organisms, many questions remain. For
example: (1) Is there an ancestral genetic module that was
coopted by novel regulatory elements to generate fea-
tures of the eusocial phenotype, as predicted by the
genetic toolkit hypothesis [25°,39]? (2) Does an increase
in gene regulatory complexity accompany the evolution-
ary transition to eusociality [6]? (3) Among the genes
linked to caste determination in genome-wide screens,
which are causative versus correlative? (4) Are there
commonalities among the selective landscapes of organ-
isms that have undergone full or partial reversions in the
transition to eusociality? These and many other outstand-
ing questions will continue to drive innovative research
into eusocial evolutionary transitions.
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