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Guest Editorial
Open Discussion of Robot Grasping
Benchmarks, Protocols, and Metrics

AUTOMATED grasping has a long history of research that
is increasing due to interest from industry. One grand

challenge for robotics is Universal Picking: the ability to
robustly grasp a broad variety of objects in diverse environ-
ments for applications from warehouses to assembly lines to
homes. Although many researchers now openly share code
and data, it is challenging to compare and/or reproduce exper-
imental results to identify which aspects of which approaches
work best due to variations in assumptions and experimental
protocols, e.g., sensors, lighting, robot arms, grippers, and
objects.

In computer vision, the emergence of specific reproducible
benchmarks advanced the field considerably and provided
“gradients” that expose gaps in the state of the art. With
physical experiments, however, performance depends crucially
on the hardware and environment and it is not possible for
every lab to experiment with the exact same conditions. Nor
is exact uniformity desirable as methods must ultimately work
across various sensors, robot arms, grippers, object sets, and
environments.

Industrial practitioners characterize picking in terms of
the three R’s: rate, reliability, and range (class of objects).
One metric for comparison is mean picks per hour (MPPH),
which is common in the logistics industry where it is
recognized that human workers can operate in the range of
400–600 MPPH for warehousing operations [1].∗ This can be
formalized as

E[ρ] : mean picks per hour

E(ρ) = ν ∗ q (computed as mean over N grasp attempts)

where ν is the mean grasp rate, or average number of attempts
per hour, and q is the mean grasp reliability, or probability that
each grasp attempt is successful (also known as the “success
rate”). The mean grasp rate can be formalized as

ν = 1/(ts + tc + tr )

where ts , tc, and tr are the average times for sensing, compu-
tation, and robot motion, respectively, in fractions of an hour.
In some cases, sensing, computation, and motion may occur
in parallel.

Performance may vary based on the experimental condi-
tions such as the robot arm used (cobot versus industrial
arm) or application considered (e.g., picking any object versus
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picking a specific object). To aid in comparison, we recom-
mend reporting the variables above with the number of trials
and the experimental conditions below, including tolerances
and standard errors where applicable as follows.

Procedure: Results should differentiate between training
and test procedures and describe several factors. First is
the environment configuration that includes the workspace
area for objects and the set of objects that will not be
grasped such as bins, shelves, and tables. Another is the
calibration subprocedure, such as registering sensors to the
robot coordinate frame. A third important factor is the sub-
procedure for sampling initial object configurations, which
may be random (e.g., placing objects in a container, shaking,
and emptying into a workspace), or structured (e.g., packed
boxes and items on shelves). An additional consideration is
the subprocedure for evaluating success and taking auxiliary
measurements (e.g., which object was targeted), which may
involve human responses, sensor readings, or machine learn-
ing. It is also important to describe any additional training
procedures used for machine learning or to set environment
parameters (e.g., location and distance between bins, shelves,
and tables).

Object Range: Object characteristics such as shape, size,
materials (e.g., rigid versus deformable), friction, mass dis-
tribution, and reflectance properties can reflect performance.
The unique sets of objects used for training and testing
should be reported with an image displaying each object
without occlusions and either a reference CAD model for
3-D printed objects or purchase information for other objects.
We recommend using objects from published object data sets
such as YCB [2], and when objects are left out or new objects
are introduced, authors should provide an explanation for the
object choice.

Success Metrics: The success metric used to evaluate perfor-
mance should be described in detail. Example success criteria
might include whether any object is dropped into a target
bin or whether a specific object is placed in the desired
pose. To evaluate MPPH, it is also important to report the
runtime in seconds for each grasp attempt in terms of sensing,
computation, and movement.

In addition, the data on MPPH can include raw data
collected from experiments such as videos, sensor readings,
and sequences of robot arm joint angles to aid in replica-
bility. Additional metrics that are useful to report are: the
identity of targeted objects, confidence values from the grasp
planner, and precision-recall metrics based on confidence
values.
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Computer System: The type and number of computer
processors used at runtime, including both CPUs and GPUs,
should be reported. It is also helpful to report the operating
system and other specifications of the computer (e.g., network
interface card bandwidth, USB bandwidth).

Robot Arm: Include details on the kinematics, workspace,
payload, speed, accuracy/repeatability, software, price, and
whether the manipulator is mobile or fixed. The robot
arm manufacturer, model, and version should also be
reported.

Robot Grippers/Hands: Include details on the number of fin-
ger contacts, actuation method (e.g., electric and pneumatic),
control scheme (e.g., position, force, and hybrid), kinematics,
workspace, contact surfaces (e.g., area, friction, stiffness, and
materials), payload, speed, and repeatability.

Sensors: Include details on the modality (e.g., color versus
RGB-D), lenses, resolution, field of view, light sensitivity, and
noise levels. The camera manufacturer and model should be
reported along with the configuration categorized as follows:

1) Single Fixed Viewpoint: The system receives color and
depth images from one externally mounted fixed RGB-D
sensor (overhead or over-the-shoulder).

2) Multiple Fused Viewpoints: The system takes input from
several fixed RGB-D sensors and combines them into
one 3-D estimate.

3) Moving Viewpoint: The system takes input from
one or more moving sensors on board a mobile manip-
ulator or eye-in-hand sensor.

Also, some grippers have force, tactile, and haptic sensors.
The manufacturer, model, version, coordinate frame of all such
sensors relative to the robot, and their method of feedback to
the control scheme should be reported.

Controller: Include details on control methods for the robot
arm and gripper. Example controllers include cartesian posi-
tion, impedance, hybrid position/force, or custom methods.

Lighting: Due to the effect on sensing, it is useful to report
the following lighting conditions: lighting levels (lux), struc-
tured versus ambient, and indoor versus outdoor, including
combinations.

Application: Performance may be categorized based on the
target application, such as warehouse picking, pick and place,
industrial kitting, stowing, assembly, and assistive care tasks
such as instrumental activities of daily living.

Other factors may also be important. We welcome oth-
ers in the community to join the online discussion, which
began in November 2017, via e-mail or the collaborative
document http://goo.gl/6M5rfw.
We also refer the reader to other efforts on benchmarking
grasping and manipulation [2]–[4]. We thank our colleagues
who also provided input to the discussion: Sergey Levine,
Sidd Srinivasa, Howie Choset, Russ Tedrake, Vincent Van-
houcke, Raia Hadsell, Kurt Konolige, Tom Fuhlbrigge, Tye
Brady, Juan Aparicio Ojea, and Peter Puchwein.

∗ “A human is capable of performing .. at a rate of approx
400 [picks] per hour with minimal errors, while the best robot
in the first APC achieved a rate of approx 30 [picks] per hour
with [an 84% success rate].” [5]
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