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A B S T R A C T

The multistable elastic behavior of a shallow dome with a cosine-curved profile is investigated in this work. The
dome exhibits snap-through instability and could be used as a building block for energy dissipation mechanism
in structures subjected to cyclic loading and high deformation demands. Numerical and experimental studies
were carried on the geometric and material properties of the cosine-curved domes (CCD) under concentrated
load at the apex. Finite element analyses (FEA), validated by experimental tests on 3D printed specimens, were
conducted to study the controlling geometric and material properties of the CCD. Three types of response were
recognized and discussed based on the force- and strain energy-displacement curves. Limitations on the geo-
metric parameters that govern the recoverability of the original shape and the stability state upon load removal
are also identified. In addition, empirical relations to estimate the limit-point load and displacement, and to
characterize the snap-through response were developed. Good agreement was observed using the determined
limits on the geometric parameters and the developed relations with the results from FEA and experimental tests.

1. Introduction

A new shallow dome-shaped structural element that exhibits mul-
tistable elastic behavior is presented in this paper. The element offers
reliable and reversible large elastic deformation that could be used as a
building unit for devices subjected to relatively high forces [1] for en-
ergy dissipation and repeated use. Such devices usually have a hys-
teretic response that is based on consecutive snap-through instabilities
of a sufficient number of units that are connected in series [2].

The interest in studying shallow domes originates from the fact that
they can be fabricated in curved revolved profiles (i.e., aside from
spherical shapes) that allow them to have a tunable multistable re-
sponse. These domes can snap-through to a new configuration within
their elastic range of response and snap-back with or without a re-
storing external force without damage. This deformability enables these
domes to absorb and/or trap strain energy (U) and release all or a part
of it to restore their original configuration [3].

Several multistable elements with the ability to exhibit snap-
through instability with large elastic (reversible) deformations have
been investigated and reported. Such elements can be used as the
building units in many structures utilized to elastically absorb and
dissipate energy [4–9]. Most of these structures are based on two basic

types of multistable elements: (a) inclined beams or bars [5], and (b)
curved beams or bars [10]. Although these structures show the ability
to absorb shocks and dissipate energy, they possess some design dis-
advantages when considering large-scale applications where high force
levels are expected, such as applications for seismic protection in
buildings and bridges. These disadvantages include high stress con-
centrations at the elements’ constraining edges, low relative threshold
forces, and the requirement of constraining other buckling modes to
attain a symmetric deformation response.

Many other structures have been investigated to obtain multiple
elastic instabilities for a multistable response. The simplest is an elastic
compressed column with continuous bilateral constraints [11,12]. In
such a system, compressive axial load is applied to the column causing
it to buckle multiple times in an elastic post-buckling regime before
reaching material damage. Another example are tilted beams under
vertical loading [5,6], where a constrained tilted beam snaps-through
to a new stable configuration. Single and double curved beams loaded
at their apex [10,13] are also capable of attaining snap-through in-
stability. Another example are tailored cylindrical shells under axial
compressive loading [14,15], where geometric imperfections are
seeded into specific regions to control the elastic post-buckling re-
sponse. Shallow arches and lattice domes are also capable of attaining

https://doi.org/10.1016/j.tws.2019.03.035
Received 30 November 2018; Received in revised form 6 March 2019; Accepted 14 March 2019

∗ Corresponding author.
E-mail addresses: alturki1@msu.edu (M. Alturki), burgueno@msu.edu (R. Burgueño).

Thin-Walled Structures 140 (2019) 74–84

Available online 20 March 2019
0263-8231/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638231
https://www.elsevier.com/locate/tws
https://doi.org/10.1016/j.tws.2019.03.035
https://doi.org/10.1016/j.tws.2019.03.035
mailto:alturki1@msu.edu
mailto:burgueno@msu.edu
https://doi.org/10.1016/j.tws.2019.03.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2019.03.035&domain=pdf


multistable elastic responses through snap-through instabilities or snap-
through buckling [16–19]. The common phenomenon among these
structures is that they undergo elastic post-buckling response after
reaching a critical point. However, they differ in their post-buckling
behavior and their relative deformability.

The stability, buckling capacity, post-buckling behavior, and de-
formation symmetry of spherical domes under a concentrated load at
the apex have been the subject of several studies. Mescall [20] per-
formed a numerical study by solving the nonlinear equations governing
the axisymmetric deformations of spherical shells, for unrestrained and
clamped edges, to examine the effects of geometric parameters and
boundary conditions on their response. Penning [21] conducted an
experimental investigation to study buckling deformations of clamped
spherical shells under a concentrated load. Fitch [22], and Brodland
and Cohen [23] conducted an analytical study to investigate the de-
flection, snap-through buckling, and the occurrence of asymmetric bi-
furcation points before axisymmetric snap-buckling, by examining a
single parameter (λ) that governs this phenomenon for clamped and
unrestrained shallow spherical domes. This geometry parameter de-
pends on the geometric and material properties of the domes and is
given by Eq. (1), where a and b are the spherical and base radii, re-
spectively, t is the uniform thickness, and ν is the Poisson ratio. It was
concluded that asymmetric bifurcation occurs when a spherical dome
becomes deeper and thinner (i.e., higher values of λ).

=λ ν b a t[12(1– )] /( ) .2 1/4 1/2 (1)

Brinkmeyer et al. [24] and Madhukar et al. [25] also performed
combined experimental and numerical studies using finite element
analyses (FEA) to examine the effects of geometric and material prop-
erties on the stability state of unrestrained spherical domes. Brinkmeyer
et al. [24] found that pseudo-bistability occurs for domes when
5.31≤ λ≤ 5.35. Madhukar et al. [25] proposed an expression for
pseudo-bistability that depends on the geometric parameters of a dome.

The study conducted by Mescall [20] showed that spherical domes
with unrestrained and clamped edges could display snap-through in-
stability. Unrestrained domes required λ > 3.75 to display snap-
through, while clamped domes required λ≥ 9. However, the study by
Fitch [22] showed that spherical domes with clamped edges and
λ≥ 9.2 would have a bifurcation point and asymmetric deformations at
a load below the critical load for axisymmetric snapping instability.
These two findings impose a very narrow range of λ (i.e., 9 to 9.2) for
spherical domes with clamped edges to display axisymmetric snap-
through response. Therefore, it seems that clamped spherical domes
cannot practically have reversible axisymmetric snap-through in-
stability even when the previous two limits are met. In contrast, this
investigation shows that the shallow cosine-curved domes (CCD) pro-
posed here have a wide range of geometric ratios for which symmetric
snap-through is achievable.

The interest in domes with clamped edges originates from that fact
that they can be used in many structural applications as an integrated
part of systems, compared to domes with unrestrained edges. For ex-
ample, the shock absorbers proposed in Refs. [4–7] consist of multi-
stable elements as unit cells where each unit is attached to the adjacent
units via rigid segments that provide system integrity to resist a
common load, as well as the required constraints for individual units to
respond in the desired way.

In this work, numerical and experimental studies were carried out to
study the effects of the geometric and material properties on the be-
havior of multistable CCDs under a concentrated transverse load, and to
characterize the resulting force-deformation response. This is accom-
plished by conducting a parametric study using experimentally vali-
dated FEA on the properties governing the response of the CCD. The
limit that governs the transitional state between bistable and mono-
stable states is identified, and a simple expression is proposed to fa-
cilitate the design of CCDs with a desired stability state. Empirical de-
sign expressions were developed for the controlling parameters to

construct a simplified multilinear response that could be used to cal-
culate the response for a system of multiple CCDs, which can attain
controllable energy dissipation characteristics.

2. Methods

2.1. Research aim and scope

The cross-sectional profile shape of the proposed CCD is based on
the cosine function given in Eq. (2) [26], where w(x) is the vertical
distance from the horizontal chord line to the dome's profile shape at a
distance x from the circumference as shown in Fig. 1. The dome's base
along its circumference is connected to a rigid ring that constrains ro-
tations and edge sliding of the dome under loading.

=w x h cos πx l( ) /2[1– (2 / )] (2)

This equation represents the shape of the first buckling mode of a
fixed-fixed straight beam under axial compressive loading. The benefit
of using the cosine-curved shape over a spherical one is that it enables
the dome to have a symmetric snap-through to a monostable or a bis-
table state. This profile was inspired by the shape of curved double
beams loaded laterally [10]. However, unlike the curved double beams,
a CCD doesn't require restricting other buckling modes to have a sym-
metric reversible snap-through response. They also have lower stress
concentrations at the supporting edge compared to systems composed
of curved double beams or inclined beams.

The scope of this study is thus on the response of shallow CCDs that,
upon being transversely loaded at their apex, display an elastic response
and limit-point critical instability with a snap-through geometrical
transition. When a shallow CCD is loaded beyond its limit-point it
snaps-through to a new configuration. The force-deformation response
is nonlinear before and after the limit-point snap-through instability
(initial loading path and unstable path), with a fairly linear response
upon continued loading in the new configuration (Fig. 2). While the
unstable response path (negative tangent stiffness) cannot be obtained
under force-controlled loading, it can be attained in a stable manner
under displacement-controlled loading. Snap-through instability, also
called limit-point instability or snap instability, does not involve any
bifurcation of the equilibrium path [3].

The stability of the new configuration depends on the dome's geo-
metric and material properties [3]. The response of a CCD under
loading force (F) can be classified into three categories as shown in
Fig. 2 [25]. Each type of response depends mainly on the shape of the
strain energy-displacement (U-δ) curve and is related to the force-dis-
placement curve (F-δ) [25].

Fig. 2(a) and (d) show a bistable response, where the U-δ curve has
a local maximum strain energy point, Umax, and a local minimum strain
energy point, Umin, at non-zero displacements before the energy (U)
continues to increase with increasing displacement (δ). In this response,

Fig. 1. Geometric parameters of a typical CCD: (a) a cross-section at the apex,
and (b) the idealized system.
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a CCD snaps into a new configuration and cannot restore its original
configuration upon unloading without the application of an external
restoring force (i.e., not self-recoverable). In this case, some of the in-
duced energy is trapped in the system and hence the F-δ curve has a
negative force (in opposite direction to the deformation being gener-
ated) part.

A monostable response (Fig. 2(b) and (e)) is defined when the E-δ
curve is monotonic and the F-δ curve has no negative force part. In this
type of response, a CCD snaps back to its original configuration upon
unloading, without application of an external restoring force, as long as
material damage does not occur.

In a pseudo-bistable response (Fig. 2 (c) and (f)) the E-δ curve has a
flat segment (i.e., Umax=Umin) before the energy continues to increase
with increasing δ, and the F-δ curve has a zero force value at a non-zero
displacement. This response represents a transition state between bis-
table and monostable responses where a CCD snaps and restores its
original configuration after unloading, and without the application of
an external restoring force, but with a delay depending on the viscoe-
lastic properties of the material [24].

2.2. Modeling and analysis

The CCD element studied was idealized as shown in Fig. 1(b). The
dome's horizontal orientation is along the shown x-axis and the vertical
direction is perpendicular to it. The dome is modeled with clamped
boundary conditions along its base circumference. Loading is assumed
to be applied by a vertical concentrated load (F) at the dome's apex, and
directed downwards. The applied load causes a vertical (transverse)
displacement δ. The key geometric parameters on the CCD's response
are the uniform thickness, t, the base diameter or span length, l, the
apex height, h, and the diameter of the loading area, d, as shown in
Fig. 1 (a). The CCDs examined here are considered shallow and thin
shells with a height-to-span ratio of less than 1/5 and a thickness-to-
radius of curvature ratio of less than 1/20 [1].

Nonlinear geometric finite element analyses (FEA) were used to
examine the force-deformation responses of CCDs using the program
ABAQUS [27]. The CCD was modeled as a 3D deformable revolved shell
object with linear elastic isotropic material properties and four-node
shell elements (S4) for the mesh. The mesh size was selected based on a
mesh refinement study. Displacement control was used to apply a static
incremental displacement at the dome's apex, and large deformations
were accounted for by considering geometric non-linearity in the

analyses. Eigenvalue analyses were conducted to verify predicted snap-
through instability by confirming that the bifurcation loads were higher
than the limit-point load. For cases where the analyzed CCD was deep
and thin (i.e., high h/t), the automatic stabilization option in ABAQUS's
solver was used to facilitate a converged solution.

2.3. Experimental validation

Experimental tests were conducted on 3D printed CCDs to examine
the three stability states presented in Fig. 2, and to compare the ex-
perimentally obtained F-δ response to those generated from the FEA.
The CCDs were fabricated using a 3D polymer-based printer (MakerBot
Replicator 2) with polylactic acid (PLA) filament. Due to imperfections
from the manufacturing process the “as printed” dimensions varied
slightly (about 10%) from the nominal design values. The design and
the “as-printed” dimensions for the test specimens are given in Table 1.
This is important since small changes in t or h significantly change the
dome's response and the desired stability state. Thus, the FEA simula-
tions were based on the ‘as-printed’ dimensions. The PLA material has a
reported Poisson's ratio, ν, of 0.33 and an average modulus of elasticity,
E, of 1582MPa [4].

Tests were performed using a universal testing machine with custom

Fig. 2. Typical strain energy-displacement and force-displacement responses of CCDs.

Table 1
Design and ‘as-printed’ dimensions of experimentally tested CCDs.

Specimen Design dimensions ‘As-printed’ dimensions

t (mm) h (mm) l (mm) t (mm) h (mm) l (mm)

1M 1.5 5.00 120.0 1.82 4.58 119.3
2M 1.5 5.00 120.0 1.74 4.46 119.2
3B 1.00 6.00 100.0 1.26 5.66 98.4
4B 1.00 6.00 100.0 1.17 5.67 98.7
5M 0.84 3.20 102.0 1.13 2.78 100.4
6M 1.00 3.20 102.0 1.18 2.91 101.7
8P 1.20 5.00 100.0 1.39 4.41 101.5
8P 1.20 5.00 128.8 1.45 4.29 126.9
9B 0.60 3.50 60.0 0.70 3.40 59.9
10B 0.60 3.50 60.0 0.87 2.91 59.8
11P 0.60 2.00 50.0 0.72 1.97 49.9
12B 0.60 2.60 60.0 0.74 2.62 59.9
13M 0.65 2.50 65.0 0.86 2.50 64.9
14M 0.60 1.80 50.0 0.73 1.76 50.9

Note: M: monostable, B: bistable, P: pseudo-bistable.
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fixtures (indenter) to apply a concentrated vertical load at the CCD
apex, as shown in Fig. 3. Loading was done under displacement control,
applying an incremental displacement at a constant rate of 0.1 mm/s.
For CCD specimens with bistable response (Fn < 0), the loading in-
denter was mechanically attached to the apex of the CCD and the
specimen was also clamped to the platen. Fig. 4 shows experimental F-δ
responses for CCD specimens with ‘as-printed’ dimensions as given in
Table 1.

The actual modulus of elasticity of a 3D printed part is highly sen-
sitive to the orientation of the printed layers and to the direction of
loading [28,29]. For example, the investigation conducted by Per-
kowski [30] on the mechanical properties of 3D printed PLA parts
showed that the modulus of elasticity ranged from about 550 to
3100MPa in tension and from 570 to 1650MPa in compression.
Therefore, the FEA F-δ response in Fig. 4 was scaled for E so that Fb was
equal to that of the experimentally measured data. The scaling factor
was determined by conducting a FEA for a CCD with ‘as-printed’ di-
mensions and an elastic modulus value of unity and then dividing the
value of Fc (or any other value) on the experimental F-δ curve by its
counterpart of the same displacement on the FEA curve. The scaling
factor was 851MPa, which represents the most representative value of
E for the specimen. This procedure is valid as long as most parts of the
two curves coincide; however, an exact agreement cannot be obtained
because of the presence of imperfections and the non-uniformity of the

‘as-printed’ dimensions. Moreover, this procedure is only valid for
elastic responses as discussed in Section 4.5. Fig. 4(a) shows a com-
parison between the experimental and numerical (FEA) F-δ responses
for CCD specimen 5M with ‘as-printed’ dimensions (given in Table 1).
Fig. 4(a) shows two F-δ responses from FEA based on (1) the scaling
factor and (2) an average value for E of 817MPa. This value of E was
determined from a series of tests on 3D printed ASTM D695 specimens,
for which the print layers were oriented perpendicularly to the long-
itudinal axis to closely represent the loading conditions of the tested
CCDs.

3. Parametric study

A parametric study was carried out on the geometric parameters t, l,
h, and d (see Fig. 1), and the material properties E and ν, to study their
effects on the response of CCDs. The study was conducted using FEA by
systemically varying one of the parameters, while keeping the others
unchanged. The investigated response quantities (see Fig. 2(d)) were
the critical limit load, Fc, the critical displacement, δb, the negative or
minimum force, Fn, and the non-zero displacement at the minimum
force, δn. The study also evaluated the resulting shape of the F-δ curve
since it characterizes the post-buckling behavior. Moreover, normal-
izing ratios such as δ/h and h/t were used to study the curve shapes. The
study was conducted for CCDs with 1.5≤ h/t≤ 7.5 and h/l≤ 1/16 [1].

Fig. 3. (a) Test setup for CCD under axial compression; and (b) loading stages for a monostable CCD.

Fig. 4. (a) F-δ curves for specimen 5M from experiment compared to FEA, and (b) experimental F-δ curves for specimens 11P, 12B, and 6M.
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The FEA were performed by varying l and fixing t and h and then re-
peating the same process for different values of t and h. The material
constants were kept unchanged at E=1500MPa and ν=0.33.

As discussed earlier, the F-δ curve is related to the U-δ curve (Fig. 2).
The difference between the maximum and minimum strain energies,
ΔU, (i.e., ΔU=Umax - Umin) is directly related to the value and the
mathematical sign of Fn, and hence the stability state of a CCD. When
ΔU is greater than zero Fn is negative and the response is bistable. When
ΔU equals to zero Fn also equals zero and the response is pseudo-bis-
table. Local maxima and minima do not exist when the U-δ curve is
monotonic, hence Fn is greater than zero and the response is mono-
stable. Therefore, this study focuses on the F-δ curve rather than the U-δ
curve to examine the stability states since dealing with a single quantity
(Fn) is easier than dealing with two quantities (Umax and Umin).

3.1. Effect of length (l)

The effect of varying l on the F-δ response curve is shown in
Fig. 5(a). The values of Fc and │Fn│ decrease with an increase in l,
while δC and δn, are not affected by the change in l. To further examine
the effect of varying l on the shape of the F-δ curves it is necessary to
normalize them to a factor in terms of l. A least square regression
analysis [31] was used to determine the value of a power “α” for a
factor lα to be multiplied by F for constant values of t and h. Since the
curves may have different post-buckling responses, regression analyses
were performed on the values of Fc, which resulted in α=2. It was
found that normalizing the F-δ curves by the factor l2 results in exact
agreement among them over the entire response range (pre- and post-
buckling) as shown in Fig. 5(b). This shows that l has no effect on the
type of response of the CCD. Thus, for example, if the F-δ response has a
bistable shape, then this response type will not change to a monostable
or pseudo-bistable by changing l. The reason is that since the examined
CCDs are shallow where the span-length l is much larger than the
thickness t and the apex height h, the variation in length has an insig-
nificant effect on the ratios h/l and t/l.

3.2. Effect of thickness (t)

A similar procedure was followed by analyzing CCDs with varying t
while fixing other parameters. Analysis results show that t has a
dominant effect on the shape of the F-δ response curve, as shown in
Fig. 6(a), where the values of Fc and Fn can be seen to increase with an
increase in t. In addition, by increasing t the response changed from
bistable to monostable. This means that Fn increases relative to Fc and
that the ratio h/t is decreasing.

The force values in the curves of Fig. 6(a) need to be normalized in
terms of t to compare them and assess the effect of t. A least squares

regression analysis [31] was used to determine the value of “β” for the
factor 1/t β for constant values of h. For this case the value of l has no
effect on β, and hence it was not included in the analysis. Since the
curves have different post-buckling responses, the regression analysis
was performed only on the values of Fb to find β. A constant value of
β=2.412 was found. The same value of β would be determined if the
regression analysis was performed on the F-δ curve data up to Fc.

The normalized curves are shown in Fig. 6(b). Comparing Fig. 6(a)
and (b) shows that δC and δC/h are roughly the same for all cases and
thus they are only slightly affected by the change in t or h/t. On the
other hand, δn and δn/h decrease with increasing t or decreasing h/t.
From Fig. 6(b), the normalized values of Fc are approximately the same
for varying t, while they are different for the case of Fn because of the
change in post-buckling behavior.

3.3. Effect of height (h)

Analysis results showed that CCD height (h) has a complex effect on
the shape of the F-δ curves, as shown in Fig. 7(a). This effect can be
grouped into three features: (1) Fc increases with h, similar to the effect
of t; (2) Fn decreases with h, opposite to the effect of t; and (3) h increase
shifts the F-δ curve with increased values for the critical displacements
δC and δn. It can be construed that the ratio h/t mainly controls the
shape of the F-δ curve and hence the stability state. Fig. 7(a) also shows
that δC and δn, increase with an increase in h or h/t.

The force values in Fig. 7(a) were normalized with the factor 1/hγ in
order to examine the shape of the F-δ curves. The normalized curves are
shown in Fig. 7(b). The value of “γ” was determined to be equal to
1.582 through a least squares regression analysis on the values of Fc.
The normalized curves in Fig. 7(b) show that δC/h is approximately the
same for all cases and thus they are only slightly affected by the change
in h. On the other hand, δn and δn/h increase with increasing h. The
normalized values of Fc are roughly the same with varying h while they
are different for the case of Fn because of the change in post-buckling
behavior.

3.4. Effect of loading area

Another important parameter that affects the shape and the values
of the F-δ curves is the loading area, that is, the circular region around
the apex point where the dome is loaded, see Fig. 8. Since in most
applications a theoretical point load cannot be practically applied, there
is a finite area over which the load is distributed. In this study the area
is assumed to be circular and perpendicular to the axis of rotation of a
CCD. It was found that the size of this area has a significant effect on the
shape of the F-δ curve, but a minimal effect on the stability state a CCD.
Fig. 8(a) shows the effect of increasing the diameter of the loading area

Fig. 5. Actual and normalized F-δ curves of CCDs with constant t and h, and varying l.
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(d) on the F-δ curves for monostable and bistable CCDs. It is shown that
the values of Fc increase with an increase in d; while the values of Fn
slightly increase for monostable responses and slightly decrease for
bistable responses with an increase in d. In addition, the effect of d on
the F-δ curve is more pronounced for deeper CCDs (i.e., CCDs with
higher h/t). Increasing d also shifts the F-δ curve by decreasing the
values of δC and δn.

If the loading area around the axis of rotation increases the original
CCD area, as shown in Fig. 8(c), the loading area has a negligible effect
on the response and hence the CCD should be treated as if d=0 with
original length l. In other words, the loading area has no effect on the
response as long as the loading region doesn't occupy an area of the
original CCD's shape. The total span length (base diameter) is, however,
increased by d (i.e., total span length is l + d). Nonetheless, this in-
crease in length should not be considered in the analysis of the dome.

3.5. Effect of modulus of elasticity (E)

Since the concern here is the response of the CCD within the elastic
range and for linear elastic material, the F-δ curve has a linear re-
lationship with E and hence can be normalized by 1/E. To show that,
several CCDs were analyzed for varying E, with all other parameters
fixed and the resulting F-δ responses are shown in Fig. 9(a). It can be
seen that Fc and │Fn│ increase with an increase in E. Fig. 9(a) also
shows that δC and δn are the same for all cases, and thus unaffected by
E. As expected, the F-δ curves for varying E collapse into each other
when normalized by 1/E, see Fig. 9(b). Therefore, E has no effect on the
shape of the F-δ curves and the stability state of CCD if the material is
linear elastic. The F-δ curves can thus be scaled for different E values.

3.6. Effect of Poisson's ratio (ν)

Fig. 10 shows that Fc increases and Fn decreases with an increase in
ν. It can also be observed that δC and δn do not change for all cases, and
thus they are not affected by ν. The shape of the F-δ curves is slightly
affected by ν. As ν increases the response changes from monostable to
bistable (and vice versa). Further, can be noted that Fn can become
negative with increasing ν as shown in Fig. 10.

4. Design expressions for CCDs

The F-δ response in Fig. 11(a) is the result of a dynamic FEA for 12
monostable CCDs connected in series. Loading on the system was ap-
plied by displacement-controlled incremental deformation with geo-
metric non-linearity considered in the analysis. The CCDs in the system
were linked in series by connecting them at their confining rings and at
the apex tips as shown in Fig. 11(b). The enclosed area between the
loading and unloading curves represents the dissipated energy by the
system. Studies by Benichou and Givli [32], and Restrepo et al. [33]
showed that the response of a system of multistable units (e.g.,
Fig. 11(a)) can be accurately calculated based on the simplified mul-
tilinear response of a single unit, as that shown in Fig. 12. The approach
greatly simplifies the analysis procedure and it is particularly con-
venient for design purposes. It is thus of interest to develop a simplified
multilinear F-δ response curve for the CCD units.

Previous sections presented the studies of the effects of geometric
and material properties on the F-δ response of CCDs, and a normalizing
factor was determined for each parameter. These factors are now used
to develop expressions for the key features of a CCD's F-δ response to

Fig. 6. Actual and normalized F-δ curves of CCDs with constant h and l, and varying t.

Fig. 7. Actual and normalized F-δ curves of CCDs with constant t and l, and varying h.
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facilitate the construction of a multilinear response as shown in Fig. 12.
It is recommended to use these expressions for CCDs with 1.5≤ h/
t≤ 4.5 and h/l≤ 1/20 for more accurate results. The objective is to use
this simplified response to obtain the response for a system of multiple
CCDs as shown in Fig. 11(a).

The multilinear response of a CCD (Fig. 12) is divided into three
regions [33]: the initial stable equilibrium path in region I before the
snap-through limit-point with an effective stiffness kI, the unstable
equilibrium, or snap-through, path in region II with negative stiffness
kII, and the post snap-through (or post-critical) stable path in region III
with stiffness kIII. Defining the linear segments requires estimating the
buckling load and displacement (Fb and δb), the minimum force and
displacement (Fn and δn), and the post snap-through buckling stiffness
(kIII).

In addition, it is of interest to know what type of stability would
occur, that is, whether the CCD remains buckled (bistable) or restores to
its original configuration (monostable) upon load removal. This can be
achieved by knowing the conditions at which the pseudo-bistable re-
sponse occurs. Thus, a study was also conducted to determine the
governing factors of this stability state.

4.1. Critical limit-point (snap-through) load (Fc)

The value of Fc can be estimated by multiplying the inverses of the
normalizing factors determined earlier by each other, in addition to a
calibration factor, Cc, as given by Eq. (3).

=F C t h E l/ .c c
β γ α (3)

The factor Cc is in terms of h/t and ν and can be calculated from the

FEA results by normalizing Fc by lα/tβ hγ E. Fig. 13 shows the calculated
Cc values for h/t and ν. Each solid-line curve in Fig. 13 was approxi-
mated by a second-degree polynomial in terms of h/t and ν, as given in
Eq. (4) with an absolute maximum error of about 2%.

= − + +C ν h t ν h t ν( 0.466 –0.251)( / ) (3.304 )( / ) (19.56 )c
2 0.27 0.35 (4)

The value of Cc ranges from about 15 to 19 and can be simplified to
a constant value of 17 with an 11.7% maximum absolute error.

As can be seen in Fig. 8(a), d has a significant effect on the F-δ

Fig. 8. (a) F-δ curves of CCDs with constant h and l, and varying h/t and d/l; (b) original profile shape of the CCD; and (c) modified shape of CCD with added loading
area.

Fig. 9. Actual and normalized F-δ curves of CCDs with constant t, h and l, and varying E.

Fig. 10. F-δ curves of CCD with constant t, h, and l, and varying ν
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response of CCDs, which in turn depends on h/t. To account for this
effect, Fc and Fn values from FEA for CCDs with d > 0 were normalized
by the values of Fc and Fn with d=0. A relation was then established to
determine a force modification factor, D, that is related to d/l and h/t as
given in Eq. (5). Therefore, for CCDs with d > 0 (as shown in Fig. 8(b)
only), the buckling force Fc using Eq. (3) should be multiplied by D
given in Eq. (5). This factor ranges from 1 to 1.43 and the expression is
valid for d/l≤ 0.1.

= + ≥D h t d l d l10.6( / )( / ) –0.225( / ) 1 12 (5)

4.2. Minimum load (Fn)

An expression similar to Eq. (3) was used to estimate Fn with Cc

replaced by Cn as given in Eq. (6). The factor Cn was also calculated by
normalizing Fn from the FEA results by lα/tβ hγ E. Fig. 14 shows the
calculated Cn values with h/t and ν. As can be seen, Cn changes sign
from positive to negative with increasing h/t. Thus, this quantity con-
trols the stability state at which the response of a CCD would be
monostable or bistable. Fig. 14 also shows how the FEA results (solid-
line curves) can be approximated by a second-degree polynomial in
terms of h/t and ν, as given in Eq. (7). The value of Fn should also be
modified by the force correction factor D given in Eq. (5) for CCDs with
d > 0.

=F C t h E l/n n
β γ α (6)

= + + + ≥ −C ν h t ν h t ν(0.336 0.889)( / ) –(13.06 10.82)( / ) (51.38 ) 12n
2 0.295

(7)

4.3. Critical limit-point displacement (δc)

The value of δC is related to h and is affected by h/t. Thus, it is best
expressed as a ratio of h and in terms of h/t. Fig. 15 shows the calcu-
lated δC/h against h/t from FEA results for several CCDs. The data
points show that the relation between δC/h and h/t is nonlinear and it
was approximated by a second-degree polynomial. The following ex-
pression was developed for δC/h:

= +δ h h t h t/ 0.061( / ) –0.4( / ) 1.35c
2 (8)

For h/t > 4.5, Eq. (8) should be evaluated based on h/t=4.5.
Results from FEA compared to estimated values of δC/h using Eq. (8)
have average absolute error of less than 3%.

For CCDs with d > 0 (as shown in Fig. 8(b) only), the calculated
displacement δC using Eq. (8) should be multiplied by a displacement
correction factor, Gc, that depends on d/l and h/t as given by Eq. (9).
This factor should range from 0.42 to 1.

= − + + ≤G h t d l[ 1.67( / ) 1.1]( / ) 1 1c (9)

4.4. Displacement at Fn (δn)

As for δC, δn was normalized by h and expressed in terms of h/t, and
the data can be approximated by Eq. (10), see also Fig. 15. However,
the relation of δn with respect to h/t seems simpler than that of δC/h, as
shown in Fig. 15. For h/t > 4.5, δn/h should be calculated based on h/
t=4.5. The values of δn/h using Eq. (10) have an average absolute
error of less than 2% with FEA results.

= − + +δ h h t h t/ 0.081( / ) 0.575( / ) 0.641n
2 (10)

Fig. 11. Twelve monostable CCD units connected in series (a) hysteretic response from FEA, and (b) stacking configuration and idealized system.

Fig. 12. Actual and multilinear F-δ responses of a CCD.

Fig. 13. Cc curves with h/t for different values of ν
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For CCDs with d > 0, the displacement δn using Eq. (10) should be
multiplied by a correction factor, Gn, that depends on d/l and h/t as
given by Eq. (11). This factor should range from 0.89 to 1.

= + ≤G h t d l[0.24( / )–1.43]( / ) 1 1n (11)

4.5. Post snap-through stiffness (kIII)

At least two F-δ points are required to determine the stiffness kIII.
The first point is the minimum force Fn at displacement δn. The second
point is the limit-point force Fc at displacement δm, as shown in Fig. 12.

The displacement δm at Fc level was determined from FEA for various
geometric and material properties. It was found that kIII can be ex-
pressed as a ratio of kI. This ratio (kIII/kI) is mainly affected by h/t and it
ranges from 0 at about h/t=1.45 to 2.78 for h/t≥ 4.5. As a result, Eq.
(12) can be used to estimate kIII/kI:

= ≤k k h t/ 0.9137( / )–1.108 2.78III I (12)

4.6. Limiting h/t for pseudo-bistable state

In Section 4 it was shown that only t, h, and ν affect the stability
state of a CCD, and hence the shape of the F-δ curve; while l and E only
affect the amplitude of the F-δ curve without changing its shape, and
hence the post-buckling response. Therefore, the type of response (i.e.,
shape of the F-δ curve) is governed by a relation involving t, h, and ν
based on the values of Fn. Thus, the aim here is to determine a critical
height-to-thickness ratio, (h/t)cr, at which the value of Cn equals zero.
This was achieved by examining the effect of ν on Cn (or Fn), see Fig. 14.

From Fig. 14(b) it can be seen that (h/t)cr decreases with an increase
in ν. By determining the values of h/t at which Cn=0 for several values
of ν, a relation between (h/t)cr and ν was obtained as shown in
Fig. 16(a). An expression to estimate (h/t)cr was developed in terms of ν
and is given in Eq. (13).

=h t ν( / ) 2.879/ .cr
0.052 (13)

The value of (h/t)cr can be used to design a CCD with a specific
stability state. A CCD would have a monostable response if h/t is less
than (h/t)cr and a bistable response if h/t is greater than (h/t)cr.
Fig. 16(b) shows the stability state for the experimentally tested 3D
printed specimens with ν=0.33 and (h/r)cr=3.05 as calculated by Eq.

Fig. 14. (a) Cn curves with h/t for different values of ν, and (b) zoom-in at Cn=0.

Fig. 15. Data and fit curves for δC/h and δn/h with h/t.

Fig. 16. (a) Critical height-to-thickness ratio (h/t)cr vs. ν; (b) stability state for 3D printed specimens with ν= 0.33 and (h/t)cr= 3.05.
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(13). The specimens showed a consistent behavior with the determined
limit of (h/r)cr. The CCDs below the critical line in Fig. 16(b) had
monostable behavior while CCD above the line had bistable behavior.
Pseudo-bistable CCDs had h/t close to (h/r)cr and recovered their ori-
ginal configuration after a delay, which indicates viscoelastic material
behavior. It should be noted that CCDs with h/t less than 1.5 will ex-
hibit a monotonic F-δ response and will not have snap-through buckling
behavior.

4.7. Example: approximate analysis of single and multiple CCDs

As discussed at the start of Section 4, the multilinear response of a
single CCD is useful to obtain the response of a system of multiple CCDs
connected in series. The following is an example that illustrates this
procedure and compares it to experimental results. It should be noted
that a detailed presentation and discussion on the response of multiple
CCD is beyond the scope of this work and it is the subject of on-going
studies. However, the brief overview provided herein illustrates both
the use of CCDs as well as the value of the developed design expres-
sions.

Four CCDs were designed and 3D printed with equal nominal di-
mensions of t=0.6mm, h=1.8mm, and l=50mm. Due to manu-
facturing imperfections, the ‘as printed’ dimensions are
t=0.75 ± 0.03mm, h=1.76 ± 0.02mm, and l=50 ± 1mm. The
material properties are taken as E=817MPa and ν=0.33. Fig. 17(a)
shows the experimental and the FEA F-δ response of a single CCD. The
simplified multilinear response of the CCD specimens, also shown in
Fig. 17(a), was constructed using the developed expressions in Eqs. (3)
through (12) based on the average dimensions of the printed units. The
constructed response slightly underestimates δn and Fn; however, it is in
general agreement with the test result. The fabricated specimens re-
covered their original configuration immediately upon unloading and
hence showed a monostable behavior with h/t=2.35, which is smaller
than (h/t)cr determined as follows:

= =h r ν( / ) 2.879/ 3.05cr
0.052

Four CCDs units with equal nominal dimensions as the single CCD
described above were connected in series and the system was tested
under displacement control loading as shown in Fig. 18. The resulting
F-δ response is shown in Fig. 17(b). The multilinear F-δ response shown
in Fig. 17(a) for a single CCD was used to calculate the F-δ response for
the four-unit system, as shown in Fig. 17(b). The system response was
determined using the model by Benichou and Givli [32]. While the
experimental and analytical responses are in relative agreement, the
displacement, Δc1, at the first snap-through event of the experimental
response is smaller than that of the multilinear response. This is pri-
marily attributed to dimension variations among the printed CCD units,

which leads to early snap instability of the CCD with the lowest Fc in the
system before the calculated average snap-through displacement
Δc1=4δC. In other words, the effective stiffness of the tested system is
higher than that based on the calculated average response (Fc/4δC).
Therefore, during loading, the CCD in the system with lowest Fc reaches
its limit-point instability (δC, Fc) while other CCDs in the system are
below their limit.

Although the snap-through limit variation among CCD units com-
plicates calculating an accurate response for the system, it is an es-
sential feature to obtain a response with progressive snapping in-
stabilities, and hence elastic energy dissipation. The area enclosed
between the experimental loading and unloading curves represent the
elastic strain energy dissipated by the system. This area depends on the
number of connected units and h/t.

5. Conclusions

The presented study showed that cosine-curved domes (CCDs) with
constrained edges loaded under a concentrated apex transverse load
can attain snap-through instability with symmetric deformations, even
with some imperfections. This was validated through finite element
simulations and testing of 3D printed specimens for CCDs within the
geometrical range of 1.5≤ h/t≤ 7.5 and h/l≤ 1/16. However, CCDs
with higher h/t and h/l ratios are more susceptible to bifurcation and
asymmetric deformations. In addition, CCDs within the noted geometry

Fig. 17. Experimental, FEA, and approximate multilinear F-δ responses of (a) a single CCD, and (b) system of 4 CCDs connected in series.

Fig. 18. Test setup for the four CCDs connected in series.
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range do not require the restriction of other buckling modes to have a
symmetric reversible snapping, offering a multistable element that
could be used as a building unit for devices subjected to relatively high
forces for energy dissipation and repeated use.

Three types of snap-through instability responses were recognized
for the studied CCDs: monostable, pseudo-bistable, and bistable re-
sponses. The main factor affecting the response is the height-to-thick-
ness ratio (h/t). Increase of h/t changes the response from monostable
to bistable. Increasing value of the material's Poisson's ratio (ν) de-
creases the value of the minimum force (Fn), which could change the
instability type from monostable to bistable. The study also showed that
the base diameter (l) affects the values of the force-deformation curve
but it has no effect on its shape. It was found that CCDs have a critical
height-to-thickness ratio (h/t)cr at which the response is pseudo-bistable
(Fn=0). This allows designing CCDs with a targeted snap-through in-
stability type. The ratio is independent of the geometric and material
properties except for ν. However, the effect of ν on (h/t)cr is small for
common materials. (h/t)cr may be taken as a constant value of 3.045.
Expressions to estimate key parameters in the force-deformation re-
sponse were developed to construct a multilinear force-deformation
response, and shown to facilitate the response analysis for a system of
multiple CCDs.

The multistable elastic behavior possessed by CCDs originates from
the cosine curved profile that allows them to have a tunable multistable
response. The proposed CCDs offer controllable elastic snap-through
behavior that could be used as a building block for elastic energy dis-
sipation mechanisms subjected to relatively high forces. Future studies
on the response of CCDs should include the influence of manufacturing
imperfections and loading direction.
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