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Multistable Cosine-Curved
Dome System for Elastic
Energy Dissipation

This paper presents a new energy dissipation system composed of multistable cosine-curved
domes (CCD) connected in series. The system exhibits multiple consecutive snap-through
and snap-back buckling behavior with a hysteretic response. The response of the CCDs
is within the elastic regime and hence the system’s original configuration is fully recover-
able. Numerical studies and experimental tests were conducted on the geometric properties
of the individual CCD units and their number in the system to examine the force—displace-
ment and energy dissipation characteristics. Finite element analysis (FEA) was performed
to simulate the response of the system to develop a multilinear analytical model for the hys-
teretic response that considers the nonlinear behavior of the system. The model was used to
study the energy dissipation characteristics of the system. Experimental tests on 3D printed
specimens were conducted to analyze the system and validate numerical results. Results
show that the energy dissipation mainly depends on the number and the apex height-to-
thickness ratio of the CCD units. The developed multilinear analytical model yields conser-
vative yet accurate values for the dissipated energy of the system. The proposed system
offered reliable high energy dissipation with a maximum loss factor value of 0.14 for a

monostable (self-recoverable) system and higher for a bistable system.
[DOL: 10.1115/1.4043792]

1 Introduction

Increased attention has been recently given to systems that utilize
elastic instabilities for energy dissipation and shock absorption
[1]. The reason is that the mechanical deformations of such
systems are fully reversible since the total response is within the
elastic regime of the constituent base material [2]. Usually, these
systems consist of parallel chains of multistable elements or unit
cells that are connected in series and respond to a common load
in a progressive manner. When these elements are loaded under dis-
placement control conditions, they show negative stiffness region
due to geometric nonlinearity [3]. The consecutive snap-through
buckling events of the repeating units enable attaining a hysteretic
force—deformation response. These systems can thus be used to
elastically absorb and dissipate energy. Most of these structures
rely on two basic types of multistable elements. The first type
includes inclined beams or bars [4-7], where the member is trans-
versely loaded at one end through its projection causing it to snap-
through while the other end is fixed. The second type includes
curved beams or bars [8—15] that are transversely loaded at their
apex and fixed at both ends.

A new energy dissipation system comprising multiple cosine-
curved domes (MCCD) connected in series is presented herein.
The building units of the MCCD system are dome-shaped shell ele-
ments called cosine-curved domes (CCD) studied by the authors in
an earlier work [16], see Fig. 1(a). The noted former study intro-
duced the multistable element (CCD), showed how it can attain a
controllable snap-through instability, and presented its response
characteristics, with the motivation of using it in a system for
elastic energy dissipation. A CCD can exhibit snap-through buck-
ling behavior in monostable and bistable states as shown in
Fig. 1(b). When an MCCD system (see Fig. 1(c)) is mechanically
loaded, the CCD units consecutively snap-through to a new stability
state within their elastic range. When the system is unloaded, the
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units consecutively snap-back to their original configuration,
either by a restoring external force for bistable CCDs or by self-
recoverability (preferred) for monostable CCD units. If a sufficient
number of connected units in series is used, the MCCD system
follows distinct loading and unloading paths resulting in a hysteretic
response, as shown in Fig. 1(d). The area enclosed by the loading
and unloading curves represents the elastically dissipated energy.
This energy dissipation is due to the transformation of some of
the induced mechanical energy of the applied work to elastic vibra-
tions that are damped by the base material of the repeating units and
converted to irreversible thermal energy (heat) with each snap-
through buckling event [7,9,17].

The proposed MCCD system avoids a few design disadvantages
that limit the practicality of other systems presented in the literature.
For example, when multiple units in the MCCD are stacked in par-
allel (see Sec. 2.2), no design modification is required on the system
general configuration nor to the size of the constraining edges
(rings) compared with systems comprising curved beams. The
reason is that in a loaded MCCD system with units stacked in par-
allel, each ring is resisting the same horizontal forces while the units
in the system are collectively resisting a much larger vertical force
than that can be developed by a single unit. Conversely, systems
comprising curved beams [10-12] require increasing the size of
the constraining edges and hence the horizontal tie to resist the addi-
tional forces due to (1) the increased height of the constraining edge
and (2) the additional horizontal forces due to each parallelly
stacked beam.

Evaluation of curved beams with multiple beams in parallel
showed that when the number of beams is increased, the stability
state of the whole unit may change from bistable to monostable
(for example) due to increased outward lateral deflection of the sup-
porting edges. Thus, a modification to the size of the reaction edges
must be made to preserve the required response. A similar examina-
tion on the MCCD system showed that the units are independent, in
terms of the required constraining for the individual unit, from the
overall cumulative vertical force resisted by the system. Thus, there
is no need for design adjustments.

Even though it may be argued that this issue can be avoided if a
system of curved beams system consisted of many elements in a
single layer (horizontal direction), it would still cause a similar
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Fig. 1 The MCCD system: (a) cross-section of a single CCD unit, (b) schematic force—
displacement response of a single CCD, (c) MCCD composed of multiple CCDs, and
(d) schematic hysteretic response of an MCCD system. Note that é is the local CCD displa-
cement, while A is the global system displacement.

effect to that discussed above since the horizontal forces will accu-
mulate causing the system to expand in the horizontal direction in
an effect analogous to that of Poisson’s ratio on a compressed
short strut. Thus, the MCCD system avoids this design limitation
by having a self-confining feature that makes it a suitable and prac-
tical design for civil structural applications where the high force on
such systems are expected.

Multilinear models have been presented in the literature to predict
the hysteric force—displacement (F—A) response of systems with
multiple multistable elements [10,18]. These models are more
suited for systems comprising units that exhibit a fairly linear
force—displacement (F-6) response. This is because such models
do not consider the nonlinear effects on the F—A response of the
system. For the MCCD system, these nonlinear effects on the
F-A response are relatively large and this work takes them into
account by introducing an effective stiffness concept.

In this work, the behavior of MCCD systems was studied numer-
ically and experimentally. Finite element analyses (FEA) were per-
formed for MCCD systems to study the effects of geometric
properties of the dome units (CCDs) on system behavior under dis-
placement controlled loading. A multilinear analytical model that
describes the system’s F—A response is proposed, and the energy
dissipation characteristics of the MCCD system are also studied.
Finally, experimental tests on 3D printed specimens were con-
ducted to analyze the system and validate numerical results.

2  Multiple Cosine-Curved Dome (MCCD) System

2.1 Response of a Single CCD Unit. The F-§ response of a
single CCD incorporates a negative stiffness part that originates
from the dome’s geometric shape. The cross-sectional profile of
the CCD follows the cosine function given in Eq. (1) [19]

w(x) = h/2[1- cos(2zx/1)] D

where w(x) is the vertical distance at a distance x from the circum-
ference along a horizontal line at the dome’s base passing through
the center, as shown in Fig. 2. The effective geometric parameters
on the response of a CCD are the uniform thickness, ¢, the base
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diameter or the span length, /, and the apex height, &, as shown in
Fig. 2(a). The parameter d is the diameter of the loading area,
which has a flat circular shape at the apex region of a CCD. The
study in Ref. [16] showed that d has a negligible effect on the
response of a CCD if d/l <0.1. The circumference edge of a CCD
is connected to a rigid ring that constrains edge sliding and rotations
under loading, and hence provides fixed boundary conditions for
the dome.

The shape of the CCD leads to a highly nonlinear response and a
snap-through buckling behavior under a concentrated transverse
vertical load at the apex as shown in Fig. 2(b). Beyond the buckling
point, a CCD deforms to a new configuration, yet the exerted defor-
mations on the CCD are recoverable. For a bistable CCD, an exter-
nal restoring force is required to recover the original shape, while a
monostable CCD is self-recoverable. Figure 3(a) shows the typical
F-6 responses for monostable and bistable CCDs normalized by
their respective buckling load F;, and buckling displacement Jp.
Note that 6 denotes the local CCD vertical displacement. It can
be seen in Fig. 3(a) that the bistable CCD has a negative
minimum force F, at displacement §,. In this case, some of the
induced energy is trapped in the system and hence the F— curve
here has a negative force part [4].

The response of a CCD can be divided into three regions [10]: the
initial response region (I) with an effective stiffness k;, the snap-
through buckling region (II) with the negative effective stiffness

(a); /2

b .

Fig.2 Geometric parameters of a typical CCD: (a) cross-section
at the apex and (b) idealized system
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Fig. 3 (a) Normalized F-6 response for monostable and bistable CCDs and (b) multilinear

approximation of the F-é response of a CCD

ky, and the post snap-through buckling region (III) with stiffness
ky. For given geometric and material properties, the multilinear
response of a CCD, as shown in Fig. 3(b), can be constructed
using the expressions provided in Ref. [16] for F}, &y, F,, 6,, and
k7. The maximum displacement §,, is the displacement at a force
level equal to F}, in region III, see Fig. 3(b); and it can be calculated
as 0,,=0, + (F,—F,)/ky;. Based on these values, the stiffness in
each region can be determined. Hence, the linear F—0 relations in
regions I and III are given as follows:

Fr=kié,

61 < 6p 2)

Fuyy =F, + kip(611—0,) 0 > 6n 3)

Due to the high nonlinearity of the F—§ response of the CCD
units, especially in region I, using the above relations (as will be
illustrated in Sec. 3) would underestimate and slightly overestimate
F; and Fyy, respectively, as shown in Fig. 3(b). Therefore, the
Michaelis—Menten model [20] was used to develop a nonlinear
F=6 relation for region I. This relation is in terms of A/t, J,, and
F,, and is given in Eq. (4). This model was selected because of its
simplicity to determine &, for a given force level F; and because it
closely represents the nonlinear path of the F-6 response in
region L.

_Fy A(61/6p)

"TB+51/6)

“

In Eq. (4), A and B are constants in terms of %/t and can be deter-
mined as follows:

A = 0.0368(h/1)° —0.3488(h/1)? + 0.9559(h/1) + 0.6574
and
B = 0.0368(h/t)° — 0.3488(h/1)* + 0.9559(h/1) — 0.3426

Similarly, an exponential function was used to develop a relation
for the F-6 response in region III. The expression is in terms of A/t,
Ons Oms Fy, and F), as given below [21]:

sm 1°
Fy=F,+F,C
1 n b |: 5m _ 5;1:|

where C and D are constants in terms of 4/t and can be determined
by

(&)

C =-0.0648(h/t)* + 0.9261(h/1) — 1.2407

and

D = 0.0993(h/t)* — 0.8157(h/1) + 3.2967

Journal of Applied Mechanics

2.2 Stacking Configuration of CCD Systems. To have a
better understanding on the effect of stacking multiple CCDs on
the behavior of the CCD units, a discussion is presented here to
analyze the change in F—A response for different configurations
of CCD systems. Note that A denotes the global vertical displace-
ment of the MCCD system. There are two basic configurations
for stacking CCDs in the vertical direction: parallel and series stack-
ing as shown in Fig. 4, or a combination of the two arrangements.
The parallel stacking shown in Fig. 4(a) is similar to the case of con-
nected springs in parallel, where the applied load is resisted based
on the individual stiffness of each spring but with equal displace-
ment on each one. Denoting the number of stacked CCDs in parallel
as n,, the response of n, CCDs stacked in parallel (see Fig. 5(a))
consists of one buckling event with buckling force n,F}, at displace-
ment A, =0, and minimum force n,F, at displacement A, =3,,.
Here, the force is directly scaled by the number of connected
CCDs (n,), assuming that they are identical, while the displace-
ments do not change.

The case of series stacking is similar to the case of connected
springs in series, where the load is resisted equally by all springs
but with different deformations for each. In this configuration, it
is assumed that each CCD is connected to the adjacent CCD by a
rigid strut that provides the required height to allow buckling of
the unit as shown in Fig. 4(b). The rigid rings at the base of each
CCD also provide the required height to allow unit buckling.

The response of multiple CCDs stacked in series, where n;
denotes the number of units, is shown in Fig. 5(b). The response
consists of multiple buckling events with buckling forces of F), at
displacement A, = n0,, for the first buckling event. The subsequent
minimum force F,, (and its displacement A,)) and the next buckling

(a

(b)

Fig.4 Possible configurations of CCD units in the vertical direc-
tion: (a) parallel stacking (n, =2) and (b) series stacking (ns =2)
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displacement depend on the number of CCDs in the system, which
is discussed in Sec. 3.

2.3 Finite Element Modeling. Finite element analysis (FEA)
was used to examine the F—A response of the MCCD system.
The analyses were performed using the program aBaqus [22]. The
CCD units in the system were modeled as 3D deformable revolved
shell objects with four-node shell elements (S4). The material was
assumed to have linear elastic isotropic properties. Displacement
control was used to apply a dynamic incremental deformation to
the system. Large deformations were accounted for by considering
the geometric nonlinearity in the analysis. The MCCD system was
idealized for the analysis as shown in Fig. 6. The system was ana-
lyzed with small variations in the thicknesses of the CCDs to allow
a response with consecutive snap-through buckling events.

Figure 7 shows the F-A response from FEA for two MCCD
systems, both with n;=12. A monostable system (Fig. 7(a)) had
CCD units with 2 =3 mm, /=140 mm, and = 1.2, while a bistable
system (Fig. 7(b)) had t=0.8 mm. The modulus of elasticity E was
1500 MPa, and the Poisson’s ratio v was 0.33.

The type of response (i.e., monostable or bistable) of a CCD unit
can be determined by comparing A/t with the critical height-to-
thickness ratio (h/t), calculated as proposed in Ref. [16]:

h/0),, =2.87970%2 =305 6)

Thus, the monostable system has CCD units with i/t =2.5, which
is smaller than (%4/r).,, while the bistable system has CCD units with
hit=3.75, greater than (h/r),,.

A few observations can be made from the F—A curve in Fig. 7.
The force drops after each snap-through and snap-back buckling

(b) 6 I 1 I L i 1 i L i 1 I 1
5 - B
4 - L
2‘3 1 — Loading Ir
E: - ] ----Unloading I
1 4t 4 LA T BT A
41 FE RS B I
ji T ISR AT S
it £ L e 2
0 10 20 30 40 50 60 70

A (mm)

Fig. 7 Force—deformation curves from FEA for MCCD systems: (a) monostable and (b) bistable
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increase in magnitude with every buckling event in the loading and
unloading paths. The smallest force drop occurs after the first buck-
ling events, while the largest occurs at the last event. This is also
true for the unloading path. The trace of the force—deformation
curve between the buckling events has linear and nonlinear seg-
ments during the unloading and loading paths, respectively. This
is because under loading most of the CCDs in the system are in
region I (see Fig. 3(b)), which is highly nonlinear, while during
unloading most of the CCDs in the system are in region III,
which is fairly linear. This also depends on the ratio of kj; to kj,
where a higher kj/k; ratio increases the magnitude of the force
drops in the last buckling events during loading and unloading,
and vice versa.

3 Analytical Model for MCCD System

This section presents a multilinear model that describes the hys-
teretic response of the MCCD system. It is assumed that the system
consists of similar CCDs stacked in series as shown in Fig. 6. Due to
small manufacturing imperfections, each CCD in an MCCD system
has a slightly different buckling limit (). This means that each
CCD buckles at a different time, which results in a progressive
buckling response of the system under displacement control
loading. The CCD with lowest buckling force (F},) buckles first, fol-
lowed by the one with an immediately higher F, limit and so forth
until buckling of the CCD with the highest F}, in the system is
reached. A similar process occurs during unloading, where the
unit with highest minimum force (F,) snaps back first, followed
by the one with a lower F, and so forth until snap-back of the
CCD with the lowest F,, in the system.

3.1 Loading Stages. Consider an MCCD system that consists
of ng similar CCD units connected in series, each with an F-0
response as shown in Fig. 3(b). Since the system buckles progres-
sively, at any given time, a unit is in one of the regions I, II, and
II. Thus, if n;, ny, and ny; denote the number of CCD units in
regions I, II, and IIT [10], respectively, then

ng =ny + ny + nyy @)

To explain the behavior of an MCCD, consider a system com-
posed of four CCDs (n,=4). Upon applying the force F to the
system, the four CCDs resist the same load and their response is
within region I (n;=4). After the first buckling event, three units
are still in region I while one CCD is in region II (n;,=3 and n;=
1). Since the force drops due to the buckling event, the system
relaxes and redistributes the local displacements (6) of each unit
when the buckled CCD reaches region III (n;=3, n;;=1). The
same process is repeated until all units are in region III (n;;=4).
Figure 8 shows the number of CCDs in each region at each
loading stage n for a system with n,=4. From Fig. 8, it can be

e
1
]
T

~=-
—n, F
= My

ny, Ry, OF Ny,
(=)

Fig. 8 Number of CCDs in regions |, ll, and Ill during loading
stages for a system of n;=4

Journal of Applied Mechanics

noted that n;; equals to 0 or 1, which means that only one CCD at
a time undergoes buckling.

The total number of loading stages #, is related to the number of
CCDs connected in series (ny), as given in Eq. (8) and shown in
Fig. 8. The relations between ny, ny, and n;; with n are given in
Egs. (9)—(11). Note that a cosine function is used for ny, which
yields O for odd n values and 1 for even values

n, =2ng + 1 (3
ny = |cosnx/2| )
n; =0.52n,—n-ny + 1] (10)

Y

Ny =ng—np — nyy

3.2 Model Development. To develop a multilinear F-A
response for the MCCD, the hysteretic response was divided into
its loading and unloading paths. Each path consists of two groups
of points that lie on the actual system F—A curve connected by
line segments, as shown in Fig. 9(a). The first group of points in
each path (circles) includes the points at the force level F;, with dis-
placement spacing s, for the loading path, and the points with a
force level of F, and displacement spacing s, in the unloading
path. The second group of points in each path (squares) includes
the buckling drop forces F, (from F},) at counterpart displacements
for the loading path, and the minimum drop force F,,; (from F),) at
counterpart displacements for the unloading path. Figure 9(a)
shows a schematic F—A response for the MCCD system with the
quantities used to develop the multilinear model. The figure also
shows the actual and the multilinear F—A curves during loading
and unloading.

3.2.1 Loading Path. The unknowns in the first group of points
(at F), level) are the system displacements at each of the snap-
through bucking events A,;. The displacement at the first buckling
event (Ayg), for i =0, is determined based on the well-known equiv-
alent spring concept [23] for n, springs connected in series with
similar stiffness k; and resisting the same force F),. The equivalent
stiffens of such a system is ky/n,, and hence Ay = F/(ki/n) =ng 6.

FEA results, as those in Fig. 7, show that the spacing between the
snap-through buckling events is constant. After the system experi-
ences a local CCD snap-through, it reloads (when the buckled
CCD reaches region III) and it encounters another local snap-
through event when the load reaches F},. The spacing s, is constant
and a property of the individual CCD unit F—0 responses. As shown
in Fig. 9(b), this constant spacing (s,,) is the distance between 6, and
6, and hence s, = 8,,—0,. Thus, s, represents the required displace-
ment for the MCCD system to reload and reach F,, after snap-
through buckling of a CCD unit. Thus, the points defining the
local CCD buckling events in the system loading path, i.e., the
system displacements (A;;) and the corresponding system buckling
forces (F};), can be determined as follows:

Api = ngop +1sp (12)

Fri=Fp (13)

where i is the buckling event (see Fig. 9(a)) and i=0, 1, 2,...,
(ng—1).

When the system approaches F), during loading, CCDs in regions
I and III approach &, and 6,,, respectively. When the system reaches
F}, a given CCD snaps-through and the force level drops until the
buckled CCD in region II reaches §,. Deformations for the CCDs
are then redistributed at the system displacement A,;, leading to
CCDs in regions I and III to a reduced force level F,. This
means that during the load drop, the response of one CCD unit tran-
sitions from region I to III. Otherwise, if the buckled CCD were to
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Fig.9 (a) Schematic F-A response of the MCCD
tilinear model and (b) actual and multilinear F-6

remain at 6, the value of F,; would equal F,,, which is not the case.
Consequently, the local displacements §; and &;; shown in Fig. 9(b)
for a CCD in regions I and III decrease below &, and §,,, respec-
tively. Mathematically this is expressed as

81 <8y (14)

811 =6, + 8’ < (15)
where &/ is the local displacement component in region III.

Since the system is connected in series, all CCDs are experienc-
ing the same force F4;. Thus, by determining either &; or §;;/, the
force F,y; can be calculated using Eqs. (2) or (3), respectively.
Based on the concept of connected springs in series, the contribu-
tion of CCDs in regions I and III toward the system response A,;
is given by

(ng—i—= 1o + (i + Déyr = Api (16)

A linear relation between &§; and ;7 using the stiffnesses k; and
kyy, respectively, can be established based on the concept of two
springs connected in series and resisting an equal load. This relation
is given by 0y k; =y ky; and hence

S’ = Srky ki a7

By substituting Egs. (15) and (17) into Eq. (16), the local displa-
cement for CCDs in region I during the force drop, é,4;, and hence
F4 can be calculated as follows:

Api—(i+1) 6n

Otpdi = (18)

3
(s —i—1)+(+1) —
kIII

Frai = Sppaiki 19)

Due to the nonlinear response of the CCD units during the
loading branch, the approach followed to develop Eq. (17), i.e.,
assuming that the two springs are linear, underestimates F},;;. This
can be corrected by replacing k; in Eq. (18) by the effective stiffness
for the CCD units in region I, k,;, which mainly depends on n,. The
value of k,; can be calculated at the last point in the loading curve,
namely, point f, as shown in Fig. 9(a). This point was chosen to
determine k,; because it reduces the unknowns in Eq. (16) to one.
The displacement at this point (A,) with i=ng—1 is slightly
greater than that determined by Eq. (12) since it is associated
with the last buckling event of the system. The additional distance
r (see Fig. 9(a)) and hence A, can be determined with

r=(8, — 6)/ny (20)

091002-6 / Vol. 86, SEPTEMBER 2019
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system with quantities used to develop the mul-
responses of a CCD unit

and
Apr = ngdp + (ng—D)sp + 1 21

Thus, at i=n,— 1, Eq. (16) reduces to n, 5;;;= Aprand hence oy
can be determined. The local displacement for CCDs in region III at
point f (i.e., &) and the drop force (Fq4) are determined as

Oy = Apr /s (22)

Fyar = Fy + Oy — 8wk (23)

Now the equivalent local displacement &, for CCDs in region I
for a force equal to F4 can be determined by

O = Fpar [kr

By using Eq. (17) for i=n,;— 1 and ;p4; =5y ks can be calcu-
lated as follows:

(24)

_ (App — 15 6) kt

ker = (25)

ng 5]/‘

The modified expression for &y, with k; replaced by k,; in
Eq. (18) is given in Eq. (26). The force drop for the loading path
can now be determined as given earlier in Eq. (19)

Abi - (l + 1) on

ke
(ny—i=D+G+1)
klll

Otpdi (26)

Figure 10(a) shows the F—A response of an MCCD system with
eight monostable CCDs as obtained from FEA and the analytical
model relations just presented above. Visual comparison of the
responses shows that the analytical F),;; values are almost equal
to each other and generally smaller (larger force drops) than those
from the FEA, which is a consequence of using linear equations
to determine k,; and Fjg;.

As can be seen in Fig. 9(b) for points a and b, Eq. (19) will under-
estimate Fj,; because of the nonlinearity of the CCD units’ F-§
response. Therefore, the simulated response can be improved by
using the nonlinear expression for F; in Eq. (4) to determine k,;
and F,; for the loading path, which is shown in Fig. 10(b).

3.2.2 Unloading Path. Similar to the approach followed for the
loading path, the unknowns in the first group of points (at F,, level)
are the system displacements at each snap-back event A,,;. The dis-
placement at the first snap-back event (at i =ny; — 1) is determined in
the analogous form to the way in which A, was determined for the
loading path but with point g as the origin (see Fig. 9(a)). The
displacement at point g can be determined using Eq. (12) for A,;
with i=n,. Before the first snap-back event, all CCDs are in
region III with kj;. Consequently, the equivalent system stiffness
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Fig. 10 F-A curves from FEA and analytical model using (a) linear equations and (b) nonlinear

equations to calculate ke, ke, Fpai, and Fpq;

is kyy; /n and the displacement from point g is n, (5,, — J,,), as shown
in Fig. 9(a).

The spacing s,, in the unloading path was also found to be cons-
tant and a property of the F—6 response of each CCD unit. The
spacing s,, is the distance required to reach the snap-back critical
point, which is the distance between &, and §,, or s5,=6, — 9, as
shown in Fig. 9(b). It should be noted that determining J, linearly
with stiffness k; (i.e., using Eq. (2)) results in some error that under-
estimates s,,. Thus, §, can be determined from Eq. (4) by equating F;
to F,, and solving for ;. Points ¢ and d in Fig. 9(b) show the effect of
using linear and nonlinear relations for region I to determine 9,.

The system displacements during unloading (A,,;) and the corre-
sponding snap-back forces F,,; can be determined as follows:

Ay =neé, + (l + l)sn (27)

Fni=F, (28)

A similar procedure to that was followed to determine F,; for the
loading path is followed to determine the force drops for the unload-
ing path F,4;. The contribution of CCDs in regions I and III toward
the system response A,; at each snap-back event is given by

(ns — D6 + i6r = A (29

Thus, the local displacement component (Jz;,4;) for CDDs in
region III at the force drop can be determined by Eq. (30), where
keqr 1s the effective stiffness for units in region III. Hence, the
force F,4; can be calculated using Eq. (3) or Eq. (5).

A, — 16
Surpas = ————— (30)

W Kemr .
s~ +
(ng —1) a i

The stiffness k,;; can be calculated at the last point in the un-
loading curve j, see Fig. 9(a). The displacement at point j (4,,)) is n
6,+5,. At point j, with i=0, Eq. (29) reduces to ng 6;=A,;. Thus,
the local displacement at point j (§;) for CCDs in region I is given by

€1V

51j = Anj/ ng

By using 6 in Eq. (2), or in Eq. (4) for more accurate results, F},4;
can be calculated. This is followed by calculating the local displace-
ment component at point j (6y;;) for CCDs in region III using
Eq. 3) or Eq. (5) for Fy=F,4. By using Eq. (30) with i=0 and
Ourj» kerr can be found as follows:

Anj kI
ns onr 'j

ke = (32)

Figure 10 shows the simulated unloading path using linear
(Fig. 10(a)) and nonlinear (Fig. 10(b)) equations to determine k,z;;
and F,;;, plotted along FEA results. It can be seen that using linear
relations underestimates s, and F,,;; values.

Journal of Applied Mechanics

4 Experimental Validation

The MCCD specimen shown in Fig. 11 was fabricated using a 3D
polymer-based printer (Stratasys Fortus 250 mc) with acrylonitrile
butadiene styrene (ABS) filament. The ABS material had a
Poisson’s ratio of 0.35; and the compressive modulus of elasticity
of the 3D printed CCDs, determined according to ASTM D695,
had an average value of 853 MPa.

The printed MCCD system consisted of 10 CCDs with aver-
age “as-printed” dimensions of #=0.75+0.03 mm, A=1.76+
0.03 mm, /=504 1 mm, and d=4.5 mm. The units in the system
were designed to ensure that the maximum resisted vertical force
(Fp) by a CCD unit at the critical section, which is the loading
region at the apex, to be much lower than the force that would
cause a punching shear failure. This can be typically achieved by
increasing ¢ or d (with d/l <0.1). The specimens were 3D printed
monolithically with oversized confining rings. The thickness of
the rings was 4.5 mm. Generally, for a CCD specimen, a ring thick-
ness that ranges from 4 to 8 times ¢ was found to be sufficient to
eliminate the influence of rotational stiffness and lateral expansion
on the behavior of the element. Visual examination of the edges did
not show signs of rotation along the edge during load application, or
after load removal (damage).

| direction

Stabilizing
rods

Loading
Sfixtures

MCCD
system

Loading
base

Platen

Undeformed
System

Deformed
System

Fig. 11 Test setup for an MCCD system with ten CCDs (ns=10)
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The test was performed using a universal testing machine with a
custom fixture (indenter) to apply a vertical load on the rigid ring of
the top CCD as shown in Fig. 11. Testing was conducted under dis-
placement control, applying an incremental displacement at a rate of
0.1 mm/s.

To stabilize the MCCD system against side sway that may occur
during testing, the CCD units were designed and 3D printed with
two collars on each side as shown in Fig. 11. This allowed the
CCDs to slide in the vertical direction between two rods that
were inserted into the collars. The two rods were fixed to a
loading base (see Fig. 11), and the distance between them could
be adjusted via slots in the loading base. The rods were fixed to
the base using nuts and washers on each side. During testing, the
guiding rods were coated with a lubricant to minimize friction
between them and the collars in the CCD units. This issue can be
avoided in MCCD systems that are composed of more than one
chain (i.e., one column) of CCD units.

Figure 12 shows the experimental F—A response of the MCCD
specimen compared with the simulated response using the model
presented in Sec. 3. The experimental response shows that the buck-
ling force at each buckling event gradually increased. This is
because the dimensions of the printed CCD units slightly vary
and hence F-¢ response of each CCD is different. This does not
only vary the buckling force levels but also the corresponding dis-
placements at the buckling events.

Since the F-0 response for each CCD varies, each unit has a dif-
ferent k;. Thus, the initial effective stiffness of the manufactured
MCCD system is higher than that of the simulated response based
on the average dimensions. This effect triggers the first buckling
event on the weakest CCD in the system earlier than the calculated
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6 7 rararayi
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Fig. 12 F-A curves for MCCD system from experimental tests
and the analytical model
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average buckling displacement A,y=n,5, This is because the
effective stiffness of the MCCD system is greater than the calcu-
lated average stiffness based on average dimensions (Fp/ngdp).
Therefore, during loading, the CCD in the system with the lowest
F,, reaches its buckling point (6, F},), while other CCDs in the
system are below their buckling limit. Although the buckling
limit variation among CCD units complicates calculating an accu-
rate response for the system, it is an essential feature to obtain a pro-
gressive buckling response and hence elastic energy dissipation.

In spite of the complications noted above, it can be noted in
Fig. 12 that the simulated F—A curve agrees fairly well with the
experimental response. This is largely due to the fact that the dis-
placements of the CCD units in the system are minimally affected
by dimension variations.

To study the effect of loading rate on the response of the
MCCD system, the test was repeated for loading rates of 1, 3, 9,
and 15 mm/s. The resulting F-A curves are shown in Fig. 13.
The figure shows that the loading rate had a minimal effect on the
response of the system over the examined range of 0.1-15 mm/s.
However, it can be noted that with increased loading rate, the
force drops in the loading and unloading paths decrease slightly.
The locations of snap-through and snap-back events also slightly
change due to the loading rate. Studies [13,24] on the dynamic
behavior of discrete chains with multistable elements indicate that
the loading rate (in addition to other factors) has dynamic effects
on the response of such systems. In fact, even at quasistatic
loading conditions, discrete systems exhibit high-frequency vibra-
tions upon snap-through events [24]. These damped vibrations are
the main contributors to the dissipated energy by discrete systems
even at very low loading rates.
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Fig. 13 Experimental F-A curves for an MCCD system at varying
loading rates: 1, 3, 9, and 15 mm/s

1 1.5 2 25 3 3.5
h/t

Fig. 14 (a) Normalized F-é curve for a CCD with h/t =2.75 under force and displacement control
conditions and (b) loss factor with h/t for different ng values
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5 Energy Dissipation Characteristics

The dissipated energy by the MCCD system can be quantified by
a general measure of damping called the loss factor # [25]. This
factor is defined as the ratio of the dissipated energy U, to the
total applied work to deform the system W in one loading/unload-
ing cycle as given in Eq. (33). W is the area under the F—A curve
from zero displacement to the maximum displacement at point f
in Fig. 9(a), while U, is the enclosed area by the F—A curve

n=Us/Q2xW) (33)

The main parameters of the MCCD system that affect » are h/t
and n,. The effect of A/t can be studied by knowing the maximum
value of 7. The theoretical maximum value of n for an MCCD
system with n; CCDs of a specific i/t occurs when ng; — oo. The
F-A response of such a system is similar to the F—6 response of a
single CCD under force control conditions. Figure 14(a) shows
the F-6 response of a monostable CCD with h/t=2.75 under
force and displacement control conditions, where the area enclosed
by the force control curve represents the specific maximum dissi-
pated energy. This condition was used to construct a relation
between 5 and h/t, which was found to be linear, as shown in
Fig. 14(D).

The other main parameter of the MCCD system that affects 7 is
n,. The analytical multilinear model presented in Sec. 3 was used to
calculate # by varying n, for a range of h/t values. Figure 15(a)
shows the F—A response of two MCCD systems with =2 mm,
h=5mm, [=200 mm, and n,=8 and 14. The curves show that
increasing n, highly decreases the magnitude of the force drops
from F, and F, with each snap-through and snap-back event, thus
increasing the dissipated energy.

To examine the relation between # and n, the developed model
was used to determine 5 for ny=1 to 1000 and for A/t values
ranging from 1.5 to 3 as shown in Fig. 15(b). The study in
Ref. [16] showed that a CCD requires 4/t of about 1.5 to exhibit
a snap-through instability and A/t of about 3 to change the stability
state from monostable to bistable, where self-recoverability (pre-
ferred) does not occur. From Fig. 15(b), it can be noted that for
ny<2, n=0, which means that the loading and unloading paths
coincide. For an MCCD system with 2<ng<12, 7 increases
sharply with ng over this range, indicating hysteretic responses.
For ny>12, a plateau is reached and a further increase in ny
results in very small increases (<10%) in . The same finding can
be deduced from the curves in Fig. 14(b). The ny# relation in
Fig. 15(b) shows that 90% of the maximum value of # is reached
with n,=12.

6 Conclusions

A new system able to dissipate energy through elastic instabilities
was presented. The MCCD system proposed in this paper comprises

Journal of Applied Mechanics

multiple cosine-curved domes that exhibit elastic snap-through
buckling behavior, which permits the system to display hysteretic
force—deformation response and thus capable of elastically dissipat-
ing energy. Numerical studies and experimental tests were con-
ducted to determine the most effective parameters of system
response and energy dissipation characteristics. An analytical multi-
linear model that describes the hysteretic force—displacement
response was proposed. The model takes into account the nonlinear
effects of the building units of the MCCD system and was shown to
yield accurate simulations. The following findings of the MCCD
system were drawn:

(1) The proposed MCCD system can dissipate strain energy by
the creation of a hysteretic response through the successive
elastic snap-through and snap-back responses of cosine-
curved domes connected in series. The hysteretic response
is elastic, thus featuring fully recoverable deformations,
and has low rate dependence.
The amount of dissipated energy mainly depends on the
number (rny) and the height-to-thickness ratio (h/t) of the
building units (CCDs). The relation between # and A/t is
linear while the relation between 7 and n; is nonlinear. None-
theless, the higher n, and h/t are the higher the amount of the
dissipated energy.

(3) The proposed MCCD system showed a maximum loss factor
(n) value of about 0.14 for a monostable (self-recoverable)
system and even higher for a bistable system.

(4) The loss factor reaches about 90% of its theoretical
maximum value for MCCD systems with about 12 CCDs
(n,=12). A further increase in n, yields a very small increase
in the value of 7.

(5) Although increasing ng increases the amount of dissipated
energy, it also decreases the initial stiffness of the MCCD
system. This can be compensated by increasing the number
of CCDs linked in parallel and/or using more chains of
CCDs.
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