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Abstract
Significant parallels exist between the phase separation
behavior of polymers in solution and the types of biomolecular
condensates, or ‘membraneless organelles,’ that are of
increasing interest in living systems. Liquid– liquid phase
separation allows for compartmentalization and the seques-
tration of materials and can be harnessed as a sensitive
strategy for responding to small changes in the environment.
Here, I review many of the parallels and synergies between
ongoing efforts to study and take advantage of phase sepa-
ration in living versus synthetic materials.
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Introduction
The scientific community has long looked to nature for
inspiration. This is particularly true in the case of self-
assembling materials, where living cells have developed
extremely complex systems that achieve exquisite levels
of control over chemical reactions, signaling, and data
transfer based purely on the complex interactions be-
tween molecules. In looking to understand and learn
from these systems, there is a natural tension between
more reductionist, physics-based approaches that look to

distill the inherent complexity of a living system down to
an elegant set of fundamentals and biochemical ap-
proaches that work to explore the network from within.
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Over the last decade, there has been an explosion of
research demonstrating the importance of self-assembling,
liquid phaseeseparated domains in both eukaryotic cells
[1e8] and bacteria [9,10]. These droplets of RNA and
protein, commonly referred to as ‘membraneless organ-
elles,’ take advantage of liquideliquid phase separation to
achieve intracellular compartmentalization while enabling
rapid exchange of their contents with the surroundings.

Tremendous work has been carried out to identify the
biological components that drive the formation of these
biomolecular condensates [11], and ongoing efforts are
exploring their functional role in the cell.

At the same time, there have been large-scale efforts in
the materials science community focused on studying
liquideliquid phase separation of polymers in water.
This work includes investigations of various aqueous
two-phase systems, such as the segregative phase sep-
aration observed for systems of poly(ethylene glycol)/

dextran [12], polymers that undergo either a lower
critical solution temperature (LCST) transition or an
upper critical solution temperature (UCST) transition
based on interactions with water [8], such as elastin-like
polypeptides (ELPs) [13,14], and complex coacervation
as a form of associative phase separation involving mul-
tiple species [15e20] or via self-coacervation of poly-
ampholytes [21e24]. Various aspects of these phase
separating systems have relevance to the formation and
properties of membraneless organelles. In particular, the
formation of these condensates is most closely associ-

ated with the types of molecular interactions implicated
in complex coacervation and LCST/UCST behavior
[5,6,8,25,26]. Here, I will discuss parallels, challenges,
and potential synergies associated with extending the
results of elegant, reductionist studies of simplified
materials systems to the levels of molecular, chemical,
and conformational diversity present in living systems.
The benefits of phase separation
In the context of a complex network of reactions,
compartmentalization allows for the segregation of
incompatible processes as well as providing a means for
imposing spatiotemporal control over the system. The
critical feature of any compartment is the defining
interface. Although cells achieve some of this organiza-
tion through the use of more traditional membrane-
bound organelles, the benefits of such a robust and
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relatively impermeable boundary can also be a weakness,
as the flow of material across a lipid bilayer can require
energy-consuming transport mechanisms and special-
ized machinery.

In contrast, liquideliquid phase separation allows for the
creation of an interface that does not inhibit the easy
transport of materials into and out of the compartment.

Diffusion occurs along the direction of a gradient in
chemical potential. Typically, this means that diffusion in
solution occurs from areas of high to low concentration.
However, at an interface between two equilibrium
phases, such as those present in a liquideliquid phase
separated system, the difference in the chemical poten-
tial is zero. Simultaneously, the materials that define the
two phases might have different affinities for the solute
molecules. As a consequence, liquideliquid phasee
separated materials can facilitate and maintain a step-
jump in the concentration of a given species without

limiting transport across the interface. This natural
partitioning of materials can then be used to locally
generate high concentrations of reactants or spatially
colocalize a cascade of reactions for efficient chemistry. A
detailed discussion of diffusive behavior across interfaces
in the context of liquideliquid phase separation in
biology is given in a recent review by Hyman et al. [3].
Life exists near tipping points
In addition to the benefits of an existing compartment,
the formation and dissolution of liquideliquid phase
separated, or otherwise reversibly aggregated, materials
can be triggered by small variations in concentration
and/or solution conditions [26]. Living systems have
harnessed this kind of tunability, using liquideliquid
Figure 1
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phase separation to respond to environmental and/or
metabolic stresses and sequester enzymes and poten-
tially RNA components related to the affected pathway
[3,25,27e29]. In one example, all six enzymes related to
purine biosynthesis in HeLa cells were shown to cluster
into punctate ‘purinosomes’ when cells were grown in
purine-depleted media but were spread diffusely
through the cytoplasm in the absence of the metabolic

stress [30e33]. It has been hypothesized that this
ability of the cell to cluster closely related metabolic
enzymes could provide an efficient means for regulating
the flux of product species in response to variations in
environmental conditions. Thus, when clustered, more
efficient biosynthesis can take place along the multi-
enzyme cascade with the low levels of material that are
present in the cell, whereas the dissolution of the
clusters slows production when levels are higher. How-
ever, the exact mechanisms whereby the cell triggers
purinosome formation remain under investigation.

In a more dynamic example, a recent work by Brang-
wynne and coworkers [34] demonstrated how weak
gradients in the concentration of a protein Mex-5 are
used to regulate position-dependent formation of P
granules to achieve asymmetric cell division (Figure 1).
Furthermore, experimental evidence indicates that this
phase separation takes advantage of many weak,
multivalent interactions to facilitate the formation of P
granules while maintaining a low overall concentration
of protein within the droplet [35]. These results are

particularly exciting because they highlight how the
cell is able to achieve dramatic structural rearrange-
ments in a near-passive way, with minimal energy and
material requirements.
Current Opinion in Colloid & Interface Science
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In contrast to the ways in which cells are able to respond
to very subtle environmental cues, the majority of syn-
thetic phase-separating systems require a more dramatic
response. This is not to say that biopolymers somehow
possess different types of interactions than those syn-
thesized in the laboratory. However, the inherent poly-
dispersity in length and/or the lack of control over the
sequential presentation of chemistry means that the

phase behavior and material properties of synthetic
polymers are the averaged result of a more diverse pop-
ulation of molecules than in many living tissues.

Interestingly, while there are an increasing number of
examples where cells use liquideliquid phase separation
in response to a specific stimulus, compartmentalization
also provides a way for the cell to passively filter
noise and avoid responding to small variations in a
particular signal [36]. Thus, compartmentalization is
key in both identifying the important stimuli and then

acting upon them. However, the ability of either living
or biomimetic synthetic systems to distinguish between
and then take advantage of varying low-level signals
represents a challenge for future experiments.
Crowding and entropy versus ‘soft
interactions’ and enthalpy
The intracellular environment, regardless of compart-
mentalization, is extremely crowded (w20e40% protein
by mass) [37e39]. Although the concentration of an in-
dividual species might not be high, the total concentra-
tion of biomacromolecules is enough to decrease entropy
because of crowding and volume exclusion. The study of
entropic effects has focused mainly on reactions, or
equilibria, where conformational changes occur, as
crowding favors smaller,more compact states [37,39e65].
For instance, crowding increases the renaturation rate of

DNA by 1e2 orders of magnitude, drives the association
of 70S ribosomes from 30S and 50S particles, favors actin
filament growth, and has been used to explain the func-
tion of molecular chaperones [40,49,64,66]. In addition,
Pielak and coworkers [67] recently performed elegant
experiments demonstrating that the shape of a protein
can determine whether a crowded environment is stabi-
lizing or destabilizing using two different dimeric variants
of the B1 domain of protein G.

While the potential importance of crowding is very

intuitive, there are also many cases where crowding has
not produced the expected result. For instance, despite
favoring the more compact, folded conformation of a
protein, high levels of crowding were insufficient to drive
folding of a variant of protein L [68]. Data from in-cell
nuclear magnetic resonance spectroscopy (NMR) ex-
periments demonstrated that enthalpic proteineprotein
interactions helped to stabilize the unfolded form of
protein L against the entropic effects of crowding. In a
landmark article, McGuffee and Elcock used Brownian
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dynamics simulations of a molecular model of the
Escherichia coli cytoplasm to demonstrate that macromo-
lecular crowding alone cannot account for the observed
diffusive behavior of proteins in vivo and the subtle
electrostatic and hydrophobic interactions between
protein molecules must be taken into account [69].

While a number of excellent studies have taken advan-

tage of in situmeasurements such as in-cell NMR to study
aspects of biomolecules in their native environment
[33,71], one of the most significant limitations associated
with efforts to study the effect of the material environ-
ment on the stability, activity, and/or structure of a given
protein or other biomolecule is the challenge of recon-
stituting the complexity of the cellular microenviron-
ment in solution. Commonly used crowding agents, such
as polyethylene glycol (PEG), dextran, and Ficoll, as well
as related aqueous two-phase system strategies [12,72],
are accessible but do not recapitulate either the chemical

composition of the cell interior or the specific in-
teractions that are at play and can potentially give
misleading results [73,74]. In a dramatic example, Pielak
and coworkers used proton-exchange NMR experiments
to quantify changes in the stability of chymotrypsin in-
hibitor 2 in the presence of crowding agents ranging from
polymers to purified proteins to reconstituted cytosol.
Stability, quantified as a relative change in the free energy
required to expose amide protons to solvent (DDGo

op),
varied dramatically over a range of þ0.5 kcal/mol
to �0.8 kcal/mol (it should be noted that the overall

stability of the protein is greater than 6.0 kcal/mol) [75],
with minimally interacting crowding agents such as Ficoll
providing stabilization, whereas the reconstituted cyto-
solic environment proved to be destabilizing (Figure 2)
[70,71,75].
Liquid– liquid phase separation:
segregation, purification, and stabilization
While the use of in-cell studies and reconstituted
cytosol have utility in the context of biophysical exper-
imentation, proteins are involved in an increasing
number of real-world applications that could benefit
from bioinspired stabilization strategies. For instance,
NMR-based studies have shown that chargeecharge
interactions between a protein and a crowding molecule
can be stabilizing if they are repulsive (i.e., effectively
increasing the excluded volume). In contrast, attractive

charge-based or hydrogen bonding interactions tend to
be destabilizing because unfolding of the protein tends
to expose more surface to interact with [71,76]. These
results raise the question of whether tailored materials
that undergo liquideliquid phase separation could be
used as a purification strategy and/or to create formu-
lations with enhanced stability and/or activity.

In terms of purification, ELPs have been used as a pu-
rification tag on recombinantly expressed proteins using
www.sciencedirect.com
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Figure 2

Current Opinion in Colloid & Interface Science

Impact of different crowding agents on the stability of chymotrypsin inhibitor 2 (CI2). The backbone of CI2 colored based on the relative change in free
energy (DDGo’

op ) in the presence of (a) 100.0 g/L and (b) 130.0 g/L dry weight reconstituted cytosol. (c) Changes in the average global stability of CI2 in
the presence of a range of different crowding materials. The colors in (a) and (b) correspond to the color scale shown in (c). Figure adapted with
permission from Ref. [70] Sarkar, Smith, and Pielak Proc. Natl. Acad. Sci. U.S.A. 2013, 110:19342–19347.
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a protocol termed the inverse transition cycle (ITC)
[13,77,78]. ELPs are artificial polypeptides, derived
from the pentapeptide repeats (VPGXG) found in

human tropoelastin, where X can be any amino acid
other than proline [13]. ELPs typically undergo a
reversible phase transition when heated above a critical
temperature (i.e., LCST behavior), which can be tuned
through judicious choice of the variable amino acid X,
the length of the peptide, and the ionic strength of the
solution. In this way, cycles of salt concentration and/or
temperature have been shown to produce equivalent
protein purity as immobilized metal ion affinity chro-
matographic methods, but in less time and with fewer
equipment requirements [78].

Dubin and coworkers have also demonstrated the utility
of direct coacervation for protein purification [79e82].
In fact, the chargeecharge interactions that drive
www.sciencedirect.com
coacervation were sufficient to enable separation of two
isoforms of b-lactoglobulin that differ only by two amino
acids [81]. A recent work carried out in our laboratory

has highlighted the potential for using polymers with
patterns of charge to enhance the uptake of specific
proteins into the coacervate phase [83]. While the use of
complex coacervation requires the addition of additional
polymers to facilitate phase separation, judicious poly-
mer selection should facilitate straightforward down-
stream purification, if needed. However, for applications
such as drug delivery, sensing, or biocatalysis, the asso-
ciating polymer could potentially be used in the sub-
sequent formulation or device fabrication.

While most of the reports on the complex coacervation
of proteins take advantage of the charge nature of the
protein itself, Kapelner and Obermeyer [84] recently
reported a strategy that takes advantage of
Current Opinion in Colloid & Interface Science 2019, 39:86–97
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recombinantly expressed short ionic peptide tags (6e18
amino acids) to facilitate the phase separation of tagged
proteins via complex coacervation. Of particular note
was the result that proteins with the same total amount
of charge distributed isotropically on the protein surface
showed lower stability against dissolution by salt than
proteins where coacervation with a strong poly-
electrolyte was driven by the presence of an ionic tag.

These results suggest a range of interesting potential
applications, from protein purification to the colocali-
zation of enzymes and more.

Complex coacervation has also been used to enhance the
stability, and potentially the activity, of an incorporated
protein. In fact, many examples have taken advantage of
block copolymer architecture to facilitate the uptake of
proteins into nanometer-scale coacervate-core micelles.
Examples include the stabilization of the fluorescent
protein mCherry [85], improvements in the activity of

encapsulated lipase [86], and stabilization of an organ-
ophosphate hydrolase for use in the enzymatic decom-
position of nerve agents [87]. The strategy associated
with incorporating organophosphate hydrolase into a
micellar coacervate structure is particularly noteworthy
because of the need to perform the reaction in the
presence of both water and an organic solvent. The
phase-separated nature of the coacervate core protected
the protein against denaturation, while simultaneously
maintaining sufficient water in the coacervate matrix to
facilitate the decontamination reaction.

Although it is easy to draw parallels between the use of
liquideliquid phase separation in the abovementioned
examples and the types of biomolecular condensates
observed in cells, one important difference is the
sequence specificity of the ‘polymers’ present in living
systems. Given the sheer diversity of folded protein
structure and surface chemistry, the idea of designing a
specific interaction can be daunting. However, in a very
exciting report, Xu and coworkers [88] demonstrated
that control over the statistical monomer distribution in
a random heteropolymers allowed for creation of a

chaperone-like polymer shell that improved protein
stability in both water and organic solvents. The sta-
tistical design of the heteropolymers was informed by
analysis of the size and spacing between clusters of
residues with the same properties (i.e., positive charge,
negative charge, hydrophobic, and neutral hydrophilic)
(Figure 3). In fact, the ability of these random hetero-
polymers to flexibly adapt to stabilize the folded state of
a protein enabled the cell-free synthesis and proper
folding of the membrane protein aquaporin at levels an
order of magnitude higher than with traditional

liposome-based technologies. The elegance of this
approach comes from the way in which it took inspira-
tion from biology, while taking advantage of the flexi-
bility and scalability of traditional polymer synthesis.
Current Opinion in Colloid & Interface Science 2019, 39:86–97
Liquid– liquid versus liquid–solid phase
separation
In addition to a wide variety of liquideliquid phase
separated materials in cells, there is also evidence that
self-assembling biomolecular condensates can form
solids [6,29,89e91]. This range of behaviors allows for
the presentation of a spectrum of properties. For
instance, one current hypothesis is that liquid-like
condensates serve to facilitate reactions by concen-
trating enzymes and substrates, whereas solid-like
granules can more significantly sequester enzymes away
from their targets [6,29] and/or potentially serve as a
filter to prevent the passage of certain molecules, as in

the case of the nuclear pore complex [92,93]. However,
some condensed liquid states have shown
metastability and will age over time to form an aggre-
gated, amyloid-like, or even crystalline state [90,94e
97]. Thus, although the formation of more solid-like
structures can drive cell function, it has been proposed
that misregulation of the pathways associated with these
materials may be relevant to neurodegenerative and
other protein aggregation-related diseases
[4,29,35,89,90,97e99].

The formation of liquid versus solid condensates is
typically linked to the strength of the interactions that
drive the phase change. For instance, in simple peptide
systems that undergo complex coacervation, such as
mixtures of poly(lysine) and poly(glutamate), electro-
static interactions alone drive liquideliquid phase sep-
aration. However, if hydrogen bonding interactions
between the peptide backbones are also allowed to
occur, the resulting increase in interaction between the
peptides leads to the exclusion of solvent and the for-
mation of solid precipitates with a b-sheet structure

[100e105]. By the same token, the synthetic polymers
poly(styrene sulfonate) and poly(-
diallyldimethylammonium chloride) form solid pre-
cipitates at low ionic strength. However, increasing the
salt concentration helps to weaken the interpolymer
interactions and allows for the formation of a liquid
coacervate phase [106,107]. In both of these systems,
the transition from liquid to solid is a gradual continuum
that can be effectively described as physical gelation
[107]. For synthetic systems, this tunability of proper-
ties has been harnessed in a range of applications to

facilitate processing of materials in the liquid state,
followed by solidification [108e113].
The challenge of understanding a diversity
of interactions among a diversity of
components
The growing number of examples where phase separa-
tion drives biological function or could inspire an anal-
ogous materials system, strongly advocates for the need
to better understand the underlying molecular in-
teractions to either elucidate phenomena or allow for
www.sciencedirect.com
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Figure 3
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Design of random heteropolymers based on protein surface pattern for protein solubilization and stabilization in organic solvents. (a) Space-filling protein
structures for horseradish peroxidase (HRP), glucose oxidase (GOx), green fluorescent protein (GFP), and a-chymotrypsin (a-CT) showing the
chemical heterogeneity of the surface. Colors indicate different chemistries: neutral hydrophilic, blue; hydrophobic, red; positively charged, green;
negatively charged, purple. (b) The histograms of the diameter and the interpatch distance for hydrophobic groups. (c) Designed random heteropolymer
with statistical distribution of monomers with varied hydrophobicity matching that of the protein. (d) The random heteropolymer can coassemble with
protein (schematically shown as a patchy particle) in organic media and adjust its local conformation to maximize protein-heteropolymer interactions
without denaturing the protein’s local structure. Figure adapted from Ref. [88] Panganiban , Qiao, Jiang, DelRe, Obadia, Nguyen, Smith, Hall, Sit, Crosby,
Dennis, Drockenmuller, de la Cruz, and Xu, Science 2018, 359:1239–1243. Reprinted with permission from AAAS.
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their tailored design. However, one of the most signifi-
cant challenges in looking to nature for inspiration is the
sheer diversity of molecular level interactions and the
number of components that are in play. The intrinsically
disordered proteins associated with phase separating
domains in cells are typically low-complexity sequences,
characterized by long stretches with a low overall di-
versity of amino acids. These proteins often involve

repetitive sequences that are enriched in polar amino
acids such as glycine (G), glutamine (Q), asparagine
(N), and serine (S); positively charged amino acids
arginine (R) and lysine (K); negatively charged aspartic
acid (D) and glutamic acid (E); or aromatic phenylala-
nine (F) and tyrosine (Y) [5,114]. Still, even in the limit
if only this subset of amino acids was present, there
exists an incredibly diverse array of interactions and
combinatorial arrangements of chemistry that can drive
the behavior of these materials.

The types of interactions that have been implicated in
the self-assembly and phase separation of membraneless
organelles in cells range from long-range electrostatic
effects to shorter-range dipolar contacts to short-range
and directional cationep and pep interactions
(Figure 4) [5,8,27,29,97,115e117]. From a modeling
perspective, shorterange interactions can often be
treated at the phenomenological level through the use
of an ‘effective c’, as is common in polymer physics
[118]. However, difficulties still exist in linking the
details of a specific chemistry to the value of c because

of the complicated interplay between molecular packing
and quantum effects. In contrast, electrostatic in-
teractions are long-range and often compete with mo-
lecular interactions at shorter-length scales [18,119].
Furthermore, intuition regarding electrostatics is typi-
cally based on theories that are not valid at relevant salt
concentrations and may not be valid for polymers. The
result is that the competition between steric, electro-
static, short-range, and entropic considerations are
challenging to describe both theoretically and concep-
tually [18].

One recent example that has achieved a level of success
in combing theory and experiment used extensive
Figure 4

Molecular interactions underlying
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mutagenesis on the Fused in Sarcoma (FUS) family of
proteins to demonstrate that phase separation for these
proteins is primarily governed by multivalent cationep
interactions, specifically between tyrosine and arginine
residues [97]. The authors then use the theory of
associative polymers to interpret their results [120,121].
This theory predicts that phase behavior is dictated
through the interaction of associative ‘stickers’ that are

separated from one another along a polymer chain by
‘spacers.’ As shown in both experiments and theory, the
number of stickers present in the system scales
inversely with the saturation concentration of phase
separation but is not impacted by the flexibility of the
spacer groups. Instead, the authors demonstrated that
switching out highly flexible glycine residues in the
spacer regions for alanine, glutamine, or serine
decreased the fluidity of the resulting condensates.
Despite the elegance of this explanation, the authors
acknowledge that they cannot rule out effects, such as

increases in hydrophobicity, also affecting the properties
of their materials.

This difficulty in describing the competition between
the various modes and length-scales of interactions is
further exacerbated by the need to validate theoretical
and computational approaches via comparison with
experimental data, which can be similarly difficult to
obtain and/or interpret because of the diversity of in-
teractions, conformational states, and species present.
Fortunately, a combination of experimental efforts using

model systems, as well as the development of new
analytical techniques, is helping to address this issue.
For instance, a combination of experimental and
computational approaches was recently used to high-
light the importance of entropic effects in driving the
complex coacervation of polypeptides with different
patterns of charge [122]. In particular, this insight into
the entropic nature of complex coacervation highlights
the importance of sequence effects, rather than overall
composition, and provides intuition regarding the design
of such systems. These results were supported by
mutagenesis studies of the nephrin intracellular domain

(NICD), which highlighted a hierarchy of interactions
that drive phase separation [117]. Complex coacervation
Current Opinion in Colloid & Interface Science
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with a positively charged partner was necessary to
weaken electrostatic repulsion, and the dense phase was
further stabilized by shorter-range interactions involving
aromatic and hydrophobic residues. Most interestingly,
the authors demonstrated that this hierarchy of in-
teractions meant that the distribution of charged amino
acids had a significant effect on phase separation, while
the sequence of more hydrophobic residues was not as

critical.

The overall architecture of the molecules can also have
important consequences on phase behavior. A series of
reports have investigated how the differences in the
flexibility and charge density of single- versus double-
stranded DNA affects its ability to undergo liquide
liquid phase separation (i.e., complex coacervation)
versus liquidesolid precipitation [123,124]. Similarly,
the secondary structure of mRNA has been shown to
dramatically affect recruitment into a phase-separated

domain [125]. Branching or a comb polymer architecture
has also been shown to have effects similar to those of
charge patterning [105].

One of the biggest challenges associated with the
characterization of both model synthetic and biological
systems is the quantity of material required. In a very
exciting development, the Brangwynne laboratory
recently reported the use of a novel method based on
fluorescence correlation spectroscopy and confocal mi-
croscopy to infer information on species concentration

(i.e., phase behavior) and the material properties (e.g.,
diffusivity and second virial coefficients) [35]. This
development has the potential to enable the collection
of phase diagram information on a much wider range of
materials than had been previously accessible.
Conclusion/outlook
There is a growing wealth of knowledge associated
with how unstructured proteins and/or polymers can
take advantage of many weak, multivalent interactions
to drive complexation, phase separation, and/or other
functional behaviors. Fundamental efforts focused on
understanding the full palette of molecular in-
teractions available are ongoing, as are biochemical
and biophysical studies focused on illuminating spe-
cific biological phenomena. In particular, the ways in
which cells take advantage of the complexity of

intracellular phase behavior to affect the flow of in-
formation and chemicals represent a tremendous op-
portunity for collaborative efforts between
fundamental and applied scientists to develop bio-
mimetic ‘smart’ materials.
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