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Abstract 
 
A central goal of sensory neuroscience is to construct models that can explain neural responses to 
complex, natural stimuli. As a consequence, sensory models are often tested by comparing neural 
responses to natural stimuli with model responses to those stimuli. One challenge is that distinct model 
features are often correlated across natural stimuli, and thus model features can predict neural 
responses even if they do not in fact drive them. Here we propose a simple alternative for testing a 
sensory model: we synthesize stimuli that yield the same model response as a natural stimulus, and 
test whether the natural and “model-matched” stimulus elicit the same neural response. We used this 
approach to test whether a common model of auditory cortex – in which spectrogram-like peripheral 
input is processed by linear spectrotemporal filters – can explain fMRI responses in humans to natural 
sounds. Prior studies have that shown that this model has good predictive power throughout auditory 
cortex, but this finding could reflect stimulus-driven correlations. We observed that fMRI voxel 
responses to natural and model-matched stimuli were nearly equivalent in primary auditory cortex, but 
that non-primary regions showed highly divergent responses to the two sound sets, suggesting that 
neurons in non-primary regions extract higher-order properties not made explicit by traditional models. 
This dissociation between primary and non-primary regions was not clear from model predictions due 
to the influence of stimulus-driven response correlations. Our methodology enables stronger tests of 
sensory models and could be broadly applied in other domains. 
 
Author Summary 
 
Modeling neural responses to natural stimuli is a core goal of sensory neuroscience. Here we propose 
a new approach for testing sensory models: we synthesize a “model-matched” stimulus that yields the 
same model response as a natural stimulus, and test whether it produces the same neural response. 
We used model-matching to test whether a standard model of auditory cortex can explain human 
cortical responses measured with fMRI. Model-matched stimuli produced nearly equivalent voxel 
responses in primary auditory cortex, but highly divergent responses in non-primary regions. This 
dissociation was not evident using more standard approaches for model testing, and suggests that 
non-primary regions compute higher-order stimulus properties not captured by traditional models. The 
methodology could be broadly applied in other domains.  
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Introduction 
 
One definition of understanding a neural system is to be able to build a model that can predict its 
responses. Responses to natural stimuli are of particular interest, both because natural stimuli are 
complex and varied, and thus provide a strong test of a model, and because sensory systems are 
presumably adapted to represent features present in natural stimuli1–3. The evaluation of models by 
their ability to predict responses to natural stimuli is now widespread in sensory neuroscience4–15. 
 
A challenge for this approach is that because natural stimuli are richly structured, the features of a set 
of natural stimuli in one model (or model stage) are often correlated with the features in other models 
(or model stages)16. Model features can thus in principle predict neural responses to a natural stimulus 
set even if the neural responses are in fact driven by other features not captured by the model. Related 
issues have been widely discussed in the receptive field estimation literature4,17, but have been less 
noted in cognitive neuroscience16,18.  
 
A canonical example of this phenomenon occurs in the auditory domain, where there is still 
considerable uncertainty regarding computational descriptions of cortical processing. Consider a 
common model of auditory processing, in which a sound waveform is processed by two stages of filters 
intended to mimic cochlear and cortical filtering, respectively19 (Figure 1A). The filters in the second 
model stage are tuned to temporal and spectral modulations in the spectrogram-like representation 
produced by the cochlea. Such filters and variants thereof are commonly used to account for human 
perceptual abilities20–23 and to explain neural responses throughout the auditory pathway2,7,9,11,12,24–35. 
But in natural stimuli, the responses of these second-stage filters are often correlated with other sound 
properties, such as semantic categories (Figure 1B)36, which can confound the interpretation of neural 
responses. Speech, for instance, has a distinctive temporal modulation rate that corresponds loosely to 
the rate of syllabic patterning37, music has distinctive temporal modulations reflective of its beat 
structure38, and both speech and music have characteristic spectral modulations due to harmonic 
frequency structure19. However, speech, music, and other natural sounds also have many unique 
properties that are not captured by spectrotemporal modulation alone39. Thus, if a neuron responds 
more to speech than to other sounds, modulation filters may be able to predict the neuron’s response, 
even if the response is driven by another property of speech that is not captured by such filters. This is 
what we term a “stimulus-driven response correlation”, created when different stimulus properties (e.g. 
spectrotemporal modulations and semantic categories) are correlated within a particular stimulus set, 
making their contribution to the neural response difficult to tease apart.  
 
Here we propose a complementary method for evaluating models that circumvents the challenge of 
stimulus-driven response correlations. The idea is simple: we synthesize stimuli that yield the same 
response in a model as a natural stimulus, and then test whether the “model-matched” stimulus elicits 
the same neural response as the natural stimulus. The synthesized sounds are not influenced by the 
correlations between different feature sets that may exist in natural stimuli because they are 
constrained only by the features in the model. As a result, they generally differ in other properties that 
could potentially be important to the neural response, and often sound markedly different from their 
natural counterparts. Comparing responses to natural and model-matched sounds thus provides a 
strong test of the model’s explanatory power.  
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Figure 1. Illustration of the auditory model tested in this study. (A) The model consists of two cascaded stages of filtering. In 
the first stage, a cochleagram is computed by convolving each sound with audio filters tuned to different frequencies, 
extracting the temporal envelope of the resulting filter responses, and applying a compressive nonlinearity to simulate the 
effect of cochlear amplification (for simplicity, envelope extraction and compression are not illustrated in the figure). The 
result is a spectrogram-like output that represents sound energy as a function of time and frequency. In the second stage, 
the cochleagram is convolved in time and frequency with filters that are tuned to different rates of temporal and spectral 
modulation. The output of the second stage can be conceptualized as a set of filtered cochleagrams, each highlighting 
modulations at a particular temporal rate and spectral scale. Each frequency channel of these filtered cochleagrams 
represents the time-varying output of a single model feature that is tuned to audio frequency, temporal modulation rate, and 
spectral modulation scale. (B) Cochleagrams and modulation spectra are shown for six example natural sounds. 
Modulation spectra plot the energy (variance) of the second-stage filter responses as a function of temporal modulation rate 
and spectral modulation scale, averaged across time and audio frequency. Different classes of sounds have characteristic 
modulation spectra.  
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We demonstrate the method by using it to evaluate whether a common filter bank model of the auditory 
cortex can explain human cortical responses to natural sounds measured with fMRI. Many prior fMRI 
studies of auditory cortex have identified aspects of cortical tuning that are unique to non-primary 
regions16,40,41, such as selectivity for voice42, speech43,44 and music45–47. At the same time, other 
studies have demonstrated that the standard filter bank model has good predictive accuracy 
throughout primary and non-primary regions7,12,41,45, raising the possibility that primary and non-primary 
regions encode sound using similar representations. Alternatively, such predictions could in part reflect 
stimulus-driven correlations. Here, we addressed this question by comparing cortical fMRI responses 
to natural and model-matched stimuli. 
 
The model-matched stimuli were synthesized to yield the same response as a natural sound in one of 
several models of varying complexity, ranging from a model of just the cochlea’s response to the two 
stage spectrotemporal filter-bank model shown in Figure 1A19. Our results show that tuning for 
temporal and spectral modulations explains much of the voxel response to natural sounds in human 
primary auditory cortex (PAC), but much less of the response in non-primary areas. This functional 
difference between primary and non-primary regions was much less evident using conventional model 
predictions due to the effect of stimulus-driven response correlations. Our findings provide novel 
evidence for functional differentiation between primary and non-primary auditory cortex, and suggest 
that non-primary regions build higher-order representations that cannot be explained by standard 
models. Our methodology could provide stronger tests of neural models in any system for which 
models are used to predict neural responses.  
 
 
Results 
 
Overview of model-matching method and underlying assumptions 
The goal of this paper was to test whether conventional auditory models can explain voxel responses 
in auditory cortex to natural sounds. The models we consider are described by a set of model features 
(mk(t)) each of which has a time-varying response to sound determined by the feature’s filter (Figure 
1A&2A). In general, the response of these features will differ across natural sounds, both in their 
temporal pattern and their time-averaged properties (Figure S1A). The BOLD signal reflects a time-
averaged measure of neural activity, and thus we expect that if a model provides a good description of 
the underlying neural responses, any two sounds with the same time-averaged model responses 
should yield the same fMRI response even if the temporal pattern is different. To test this prediction, 
we iteratively modified a noise stimulus, which was initially unstructured, so as to match the time-
averaged model responses (Figure S1B), similar to methods for texture synthesis39,48–50. Because the 
temporal patterns of the model responses are unconstrained, the model-matched sounds differ from 
the natural sounds they were matched to.  
 Formally, we assume that the response of a voxel to a sound can be approximated as the 
weighted sum of time-averaged neuronal firing rates. Here, we assume the voxel response to be a 
single number because the sounds we present are short relative to the time scale of the BOLD 
response. Our goal is to test whether these model feature responses approximate neuronal responses 
within a voxel, in which case we should be able to approximate the voxel’s response (vi) as a weighted 
sum of time-averaged model responses (ak) (Figure 2A): 
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Figure 2. Model-matching methodology and experimental stimuli. (A) The logic of the model-matching procedure as applied 
to fMRI. The models we consider are defined by the time-varying response of a set of model features (mk(t)) to a sound (as 
in the auditory model shown in Figure 1A). Because fMRI is thought to pool activity across neurons and time, we modeled 
fMRI voxel responses as weighted sums of time-averaged model responses (equations 1-2) (ak corresponding to the time-
averaged model responses and zk,i to the weight of model feature k in voxel i). Model-matched sounds were designed to 
produce the same time-averaged response for all of the features in the model (all ak matched), and thus to yield the same 
voxel response regardless of how these time-averaged activities are weighted (for voxels containing neurons that can be 
approximated by the model features). The temporal response pattern of the model features was otherwise unconstrained. 
As a consequence the model-matched sounds were distinct from the natural sounds they were matched to. (B) Stimuli were 
derived from a set of 36 natural sounds. The sounds were selected to produce high response variance in auditory cortical 
voxels, based on the results of a prior study45. Font color denotes membership in one of 9 semantic categories (as 
determined by human listeners45. (C) Cochleagrams are shown for four natural and model-matched sounds constrained by 
the spectrotemporal modulation model shown in Figure 1A18. 
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(1) 
 
 
(2) 
 
 
where g is an (unknown) point-wise function that maps the model responses to a neuronal firing rate 
(e.g. a rectifying nonlinearity), zk,i is the weight of model feature k in voxel i, and T is the duration of the 
response to a sound. The most common approach for testing equations 1 and 2 is to estimate the 
weights (zk,i,) that best predict a given voxel’s response to natural sounds (for a particular choice of g), 
and to assess the cross-validated prediction accuracy of the model using these weights (via explained 
variance). Here we instead test the above equations by synthesizing a ‘model-matched’ sound that 
should yield the same voxel response as a natural sound for all voxels that are accurately described by 
the model (Figure 2A). We then test the model’s validity by assessing whether the voxel responses to 
the two sounds are similar.  
 
In principle, one could synthesize a separate model-matched sound for each voxel after learning the 
weights (zk,i). However, this approach is impractical given the many thousands of voxels in auditory 
cortex. Instead, we matched the time-averaged response of all features in the model (i.e. all ak in 
equation 2 are matched; see Figure 2A), which guarantees that all voxel responses that can be 
explained by the model should be matched regardless of that voxel’s weights. We accomplished this 
objective by matching the histogram of each feature’s response (Figure S1; see Model-matching 
synthesis algorithm in the Methods)48. Histogram matching implicitly equates the time-averaged 
response of the model features for any point-wise transformation (g) since for any such transformation, 
the time-averaged response can be approximated via its histogram. It thus obviates the need to 
choose a particular nonlinearity.  
 
Whether or not a voxel responds similarly to natural and model-matched sounds depends on the 
response properties of the model features and underlying neurons. If the model features are good 
approximations to the neurons in a voxel, then the voxel response to natural and model-matched 
sounds should be similar; if not, they could differ. Here we consider model features that are tuned to 
different patterns of temporal and/or spectral modulation19 in a spectrogram-like representation of 
sound termed a cochleagram (Figure 1A), produced by passing a sound signal through filters designed 
to mimic cochlear tuning. Each model feature is associated with a time-frequency filter tuned to a 
particular temporal rate and/or scale, as well as to a particular audio frequency. The response of each 
model feature is computed by convolving the spectrotemporal filter with the cochleagram.  
 
Although the response timecourses of the models considered here are sufficient to reconstruct the 
stimulus with high accuracy, the time-averaged properties of the filters, as captured by a histogram, are 
not. As a consequence the model-matched sounds differed from the natural sounds they were 
matched to. Indeed many of the model-matched stimuli sound unnatural (see 
http://mcdermottlab.mit.edu/svnh/model-matching/Stimuli_from_Model-Matching_Experiment.html for 
examples). This observation demonstrates that the time-averaged properties of the model’s features, 
which approximately capture the modulation spectrum (Figure 2A), fail to capture many perceptually 
salient properties of natural stimuli (e.g. the presence of phonemic structure in speech or melodic 
contours in music). This additional structure is conveyed by temporal patterns in the feature responses, 
which are not made explicit by the model, but which might be extracted by additional layers of 
processing not present in modulation filter models. If the neurons in a voxel respond to such higher-
order properties (e.g. the presence of a phoneme or melodic contour), we might expect their time-
averaged response to differ between natural and model-matched sounds. Thus, by measuring the 

http://mcdermottlab.mit.edu/svnh/model-matching/Stimuli_from_Model-Matching_Experiment.html
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similarity of voxel responses to natural and model-matched sounds, we can test whether the features 
of the filter bank model are sufficient to explain their response, or whether other features are needed. 
 
Comparing fMRI responses to natural and model-matched sounds 
We measured fMRI responses to a diverse set of 36 natural sounds and their corresponding model-
matched sounds (Figure 2B). Each sound was originally 10 seconds in duration, but the sounds were 
broken up into successively presented 2-second excerpts to accommodate the fMRI scanning 
procedure (Figure S2; see Stimulus presentation and scanning procedure in the Methods). The model-
matched sounds were constrained by all of the features from the two-stage filter bank model shown in 
Figure 1A (see below for results from sounds constrained by simpler models). We first plot the 
response of two example voxels from a single subject (Figure 3A), which illustrate some of the 
dominant trends in the data. One voxel was located in the low-frequency area of the “high-low-high” 
tonotopic gradient thought to span PAC, and which is organized in a roughly V-shaped pattern51–55. 
Another voxel was located outside of tonotopically defined PAC. We note that how best to define PAC 
is a matter of activate debate54,56–59, and thus we have quantified our results using both tonotopic and 
anatomical definitions of PAC (described below). 
 
As shown in Figure 3A, the response of the primary voxel to natural and model-matched sounds was 
similar. By contrast, the non-primary voxel responded notably less to the model-matched sounds. We 
quantified the dissimilarity of responses to natural and model-matched sounds by computing the 
squared error between corresponding pairs of natural and model-matched sounds, normalized by the 
squared error that would be expected if there was no correspondence between the two sound sets 
(see Normalized squared error in the Methods). We quantified response differences using the squared 
error rather than the correlation because model-matching makes no prediction for how responses to 
natural and model-matched sounds should differ if the model is inaccurate, and in practice responses 
to model-matched sounds were often weaker in non-primary regions, a phenomena that would not 
have been captured by correlation. At the end of the results, we quantify how natural and model-
matched sounds differ.  
 
For these example voxels, the normalized squared error (NSE) was higher for the non-primary voxel 
(NSE=0.729) than the primary voxel (NSE=0.101), reflecting the fact that the non-primary voxel 
showed a more dissimilar response to natural and model-matched sounds. Moreover, most of the error 
between responses to natural and model-matched sounds in the primary voxel could be attributed to 
noise in the fMRI measurements, since a similar NSE value was observed between two different 
measurements of the voxel’s response to natural sounds (NSE=0.094) (Figure 3B). By contrast in the 
non-primary voxel, the test-retest NSE (NSE=0.082) was much lower than the NSE between 
responses to natural and model-matched sounds, indicating that the difference in response to natural 
and model-matched sounds cannot be explained by lower SNR.  
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Figure 3. Voxel responses to natural and model-matched sounds. (A) Responses to natural and model-matched sounds 
from two example voxels from a single subject. One voxel is drawn from the low-frequency region of primary auditory cortex 
(defined tonotopically) and one from outside of PAC. A tonotopic map measured in the same subject is shown for 
anatomical comparison; the map plots the pure tone frequency that produced the highest voxel response. Each dot 
represents the response to a single pair of natural and model-matched sounds. The primary voxel responded similarly to 
natural and model-matched sounds, while the non-primary voxel exhibited a weaker response to model-matched sounds. 
We quantified the dissimilarity of voxel responses to natural and model-matched sounds using a normalized squared error 
metric (NSE) (see text for details). (B) Split-half reliability of the responses to natural (circles) and model-matched sounds 
(crosses) for the two voxels shown in panel A. Both primary and non-primary voxels exhibited a reliable response (and thus 
a low NSE between the two measurements). (C) Maps plotting the NSE between each voxel’s response to natural and 
model-matched sounds, corrected for noise in fMRI measurements (see Figure S4 for uncorrected maps). Maps are shown 
both for voxel responses from eight individual subjects (who were scanned more than the other subjects) and for group 
responses averaged across 12 subjects in standardized anatomical coordinates (top). The white outline plots the 
boundaries of primary auditory cortex, defined tonotopically. Only voxels with a reliable response are included (see text for 
details). Subjects are sorted by the median test-retest reliability of their voxel responses in auditory cortex, as measured by 
the NSE. (D) A summary figure plotting the dissimilarity of voxel responses to natural and model-matched sounds as a 
function of distance to the low-frequency region of PAC (see Figure S5 for an anatomically-based analysis). This figure was 
computed from the individual subject maps shown in panel C. Voxels were binned based on their distance to PAC in 5 mm 
intervals. The bins for one example subject (S1) are plotted. Each gray line represents a single subject (for each bin the 
median NSE value across voxels is plotted), and the black line represents the average across subjects. Primary and non-
primary auditory cortex were defined as the average NSE value across the three bins closest and furthest from PAC (inset). 
In every subject and hemisphere, we observed larger NSE values in non-primary regions.  
 
We quantified these effects across voxels by plotting the NSE between responses to natural and 
model-matched sounds for each voxel (Figures 3C). Maps were computed from voxel responses in 
eight individual subjects who were scanned substantially more than the other subjects (see 
Participants in the Methods for details) and from responses that were averaged across all twelve 
subjects after aligning their brains. Data were collected using two different experiment paradigms that 
differed in the sounds that were repeated within a scanning session. The results were similar between 
the two paradigms (Figure S3), and so we describe them together (see Methods for details; subjects 
S1, S2, S3, S7, S8 were scanned in Paradigm I; subjects S4, S5, S6 were scanned in Paradigm II; 
group results are based on data from Paradigm I; S1 participated in both paradigms but only data from 
Paradigm II is shown). In Paradigm I, only responses to natural sounds were repeated, while in 
Paradigm II both natural and model-matched sounds were repeated. Only voxels with a reliable 
response are plotted (test-retest NSE < 0.4; see Evaluating the noise-corrected NSE with simulated 
data in the Methods for a justification of this criterion; reliability was calculated using natural sounds for 
Paradigm I and both natural and model-matched sounds for Paradigm II). Subjects have been ordered 
by the overall reliability of their data (median test-retest NSE across the superior temporal plane and 
gyrus, evaluated using natural sounds so that we could apply the same metric to subjects from 
Paradigms I and II). These maps have been corrected for noise in the fMRI measurements (see Noise-
correcting the normalized squared error in the Methods), but the results were similar without correction 
(Figure S4).  
 
Both group and individual subject maps revealed a substantial change across the cortex in the 
similarity of responses to natural and model-matched sounds. Voxels in PAC showed a similar 
response to natural and model-matched sounds with noise-corrected NSEs approaching 0, indicating 
nearly identical responses. Moving away from PAC, NSE values rose substantially, reaching values 
near 1 in regions far from PAC. This pattern of results suggests that the filter bank model can explain 
much of the voxel response in primary regions, but much less of the response in non-primary regions, 
plausibly because non-primary regions respond to higher-order features not made explicit by the 
model. This result is suggestive of a hierarchy of feature selectivity in auditory cortex, and 
demonstrates where in the cortex the standard filter bank model fails to explain voxel responses. 
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We quantified the gradient we observed between primary and non-primary voxels by binning the NSE 
of voxels from individual subjects based on their distance to PAC. Similar results were observed for 
tonotopic (Figure 3D) and anatomical definitions of PAC (Figure S5; PAC was defined either as the 
center of the high-low-high gradient, or as the center of anatomical region TE1.158, in posteromedial 
HG). To directly compare primary and non-primary regions we then averaged NSE values within the 
three bins nearest and furthest from PAC (Figure 3D, inset). This analysis revealed that responses to 
natural and model-matched sounds became more dissimilar in non-primary regions in both the left and 
right hemisphere of every subject tested, leading to a highly significant difference between primary and 
non-primary regions (p < 0.01 via sign test for both hemispheres and for both tonotopic and anatomical 
definitions of PAC). The gradient between primary and non-primary regions was observed in both 
scanning paradigms regardless of smoothing (Figure S3), and could not be explained by selectivity for 
intelligible speech (a similar pattern was observed when intelligible speech sounds were excluded from 
the analysis; see Figure S6). These results also could not be explained by variations in voxel reliability 
across brain regions: both because our NSE measures were noise-corrected, and because voxel 
responses were similarly reliable throughout primary and non-primary regions (Figure S4C). As a 
consequence, the increase in the NSE between natural and model-matched sounds between primary 
and non-primary regions was significantly greater than the change in voxel reliability. This was true 
using both corrected and uncorrected values for the natural vs. model-matched NSE, both tonotopic 
and anatomical definitions of PAC, and with reliability measured using just natural sounds (for 
Paradigm I) and both natural and model-matched sounds (for Paradigm II) (p < 0.01 via sign test in all 
cases; see Figure S3 for a breakdown by paradigm). Thus, our results demonstrate that the modulation 
filter bank model is worse at accounting for voxel responses in non-primary regions.  
 
Comparing responses to sounds matched on subsets of model features  
We next used a similar approach to test whether responses in PAC could be explained by simpler 
models. For example, if neurons in a voxel are tuned primarily to audio frequency, then all sounds with 
similar spectra should produce similar responses, regardless of their modulation properties. To test 
such alternative models, we synthesized three new sounds for each natural sound. Each synthetic 
sound was matched on a different subset of features from the full model (Figure 4A). One sound was 
synthesized to have the same marginal distribution of cochlear envelopes as a natural sound, and thus 
a similar audio spectrum, but its modulation properties were otherwise unconstrained. Another sound 
was constrained to have the same temporal modulation statistics within each cochlear frequency 
channel, computed using a bank of modulation filters modulated in time but not frequency. A third 
sound was synthesized to have matched spectral modulation statistics, computed from a bank of filters 
modulated in frequency but not time. All of the modulation-matched sounds also had matched cochlear 
marginal statistics, thus making it possible to test whether adding modulation structure enhanced the 
similarity of cortical responses to natural and model-matched sounds. 
 
The results of this analysis suggest that all of the model features are necessary to account for voxel 
responses to natural sounds in primary auditory cortex (Figure 4B&C; Figure S7). Responses to 
model-matched sounds constrained just by cochlear statistics differed substantially from responses to 
natural sounds even in PAC, leading to significantly larger NSE values than those observed for the full 
model (p < 0.001 in PAC via bootstrapping across subjects; see Statistics in the Methods). Thus, even 
though PAC exhibits selectivity for frequency due to tonotopy, this selectivity only accounts for a small 
fraction of its response to natural sounds. Responses to natural and model-matched sounds in PAC 
became more similar when the sounds were constrained by either temporal or spectral modulation 
properties alone (NSE temporal < NSE cochlear: p < 0.001 via bootstrapping; NSE spectral < NSE 
cochlear: p < 0.001). However, we only observed NSE values near 0 when sounds were matched in 
both their temporal and spectral modulation properties (NSE full model < NSE temporal: p < 0.001; 
NSE full model < NSE spectral: p < 0.001). These results provide further support for the idea that 
selectivity for both temporal and spectral modulation is a prominent feature of cortical tuning in 
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PAC7,30,31. In non-primary auditory cortex, we also observed more similar responses when matching 
sounds on spectrotemporal modulation compared with simpler models (NSE spectrotemporal < NSE 
cochlear: p < 0.001; NSE spectrotemporal < NSE temporal: p < 0.05; NSE spectrotemporal < NSE 
spectral: p < 0.01). However, the absolute NSE values were high for all of the models tested, indicating 
that the modulation model fails to account for a substantial fraction of non-primary responses. 

 
Figure 4. Comparison of responses to model-matched sounds constrained by different models. (A) Cochleagrams for an 
example natural sound and several corresponding model-matched sounds constrained by subsets of features from the full 
two-stage model. Cochlear-matched sounds were constrained by time-averaged statistics of the cochleagram 
representation, but not by any responses from the second stage filters. As a consequence, they had a similar spectrum and 
overall depth of modulation as the corresponding natural sound, but were otherwise unconstrained. The other three sounds 
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were additionally constrained by the response of second-stage filters, tuned either to temporal modulation, spectral 
modulation, or both temporal and spectral modulation (the full model used in Figure 3). Temporal modulation filters were 
convolved separately in time with each cochlear frequency channel. Spectral modulation filters were convolved in frequency 
with each time-slice of the cochleagram. In this example, the absence of spectral modulation filters causes the frequency 
channels to become less correlated, while the absence of temporal modulation filters results in a signal with more rapid 
temporal variations than that present in natural speech. (B) Maps of the normalized squared error between responses to 
natural and model-matched sounds, constrained by each of the four models. Format is the same as panel 3C. See Figure 
S7 for maps from individual subjects. (C) Dissimilarity between responses to natural and model-matched vs. distance to the 
low-frequency area of PAC. Format is the same as panel 3D. Results are based on data from the four subjects that 
participated in Paradigm I, because model-matched sounds constrained by subsets of features were not tested in Paradigm 
II. 
 
Predicting responses to natural sounds from model features 
Part of the motivation for using model-matched stimuli comes from the more common approach of 
predicting responses to natural stimuli from the features of a model (e.g. via linear regression). As 
discussed above, good predictive accuracy is not sufficient to guarantee that the features of a model 
drive a neural response, due to the potential for correlations between different feature sets across 
natural stimuli. Model-matching provides one way to circumvent this issue, since the synthesized 
sounds are only constrained by the statistics of the particular model being tested. Here, we test 
whether our approach yields novel insights compared with simply predicting cortical responses to 
natural sounds from model features. 
 
We attempted to predict responses to the 36 natural sounds from time-averaged statistics of the same 
model features used to generate the model-matched sounds (Figure 5A; see Figure S8 for individual-
subject prediction error maps for the full spectrotemporal model). Specifically, we used ridge 
regression to predict voxel responses from the amplitude of each model feature’s response to each 
natural sound6,7, measured as the standard deviation across time (for the cochlear model, we used the 
mean rather than the standard deviation because the features were the result of an envelope 
extraction operation, and the mean thus conveyed the amplitude of the filter’s response). Because 
histogram matching approximately matches all time-averaged statistics of a distribution, predictions 
based on a single time-averaged statistic, like the standard deviation, provide a conservative estimate 
of the predictive power of time-averaged statistics. Good predictions in voxels whose responses to 
model-matched sounds deviated from those to natural sounds would thus suggest that prediction-
based analyses overestimate of the model’s explanatory power. We quantified prediction accuracy by 
measuring the NSE between measured and predicted responses for left-out sounds that were not used 
to learn the regression weights (see Model predictions in Methods).  
 
Overall, we found that voxel responses to natural sounds were substantially more similar to the 
predicted model responses than to the measured responses to the model-matched stimuli (Figure 
5B&C), leading to smaller NSEs for model predictions compared with model-matched stimulus 
responses. This difference was particularly pronounced in non-primary regions, where we observed 
relatively good predictions from the full two-stage model despite highly divergent responses to model-
matched sounds, leading to a significant interaction between the type of model evaluation (model 
prediction vs. model matching) and region (primary vs. non-primary) (p < 0.01 via sign test for both 
tonotopic and anatomical definitions of PAC). Because the natural and model-matched sounds were 
matched in the features used for prediction, the divergent responses to the two sound sets implies that 
the features used for prediction do not in fact drive the response. Thus, good predictions for natural 
sounds in the presence of divergent model-matched responses must reflect the indirect influence of 
correlations between the features of the model and the features that actually drive the neuronal 
response. Model-matching thus reveals a novel aspect functional organization not clearly evident from 
model predictions, by demonstrating the failure of the filter bank model to account for non-primary 
responses. 
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Figure 5. Predicted responses to natural sounds via regression using the same auditory model used to constrain the 
model-matched sounds. (A) Schematic of regression procedure used to predict neural responses from model features. For 
each natural sound, we computed the response timecourse for each feature in the model, as was done for model-matching. 
We then computed a time-averaged measure of each feature’s activity (the mean across time for the cochlear features, 
because they are the result of an envelope operation, and the standard deviation for the modulation features, because they 
are raw filter outputs), and estimated the weighted combination of these time-averaged statistics that yielded the best-
predicted response (using ridge regression, cross-validated across sounds). (B) Maps showing the prediction error (using 
the same NSE metric employed in Figures 3&4) between measured and predicted responses to natural sounds for the 
corresponding models shown in Figure 4 (see Figure S8 for maps from individual subjects). (C) Prediction error vs. distance 
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to the low-frequency area of PAC (maroon lines, thin lines correspond to individual subjects, thick lines correspond to the 
group average). For comparison, the corresponding NSE values derived from the model-matching procedure are re-plotted 
from Figure 4C (black lines). The analyses are based on individual subject maps. Results for the full-model (rightmost plot) 
are based on data from the same 8 subjects shown in Figure 3C. Results for model subsets (cochlear, temporal modulation 
and spectral modulation) are based on data from 4 subjects that were scanned in Paradigm I (sounds constrained by 
subsets of model features were not tested in Paradigm II). 
 
Our prediction analyses were based on responses to a set of 36 natural sounds that was smaller than 
the sound sets that have been used elsewhere to evaluate model predictions7,45,60. Because our 
analyses were cross-validated, small sound sets should reduce prediction accuracy, and thus cannot 
explain our finding that model predictions were better than would be expected given responses to 
model-matched sounds. Nonetheless, we assessed the robustness of our findings by also predicting 
responses to a larger set of 165 natural sounds45. We observed similar results with this larger sound 
set, with relatively good prediction accuracy for the full spectrotemporal model throughout primary and 
non-primary auditory cortex (Figure S9). 
 
Another way to assess the utility of the model-matching approach is to train a model to predict natural 
sounds, and then test its predictive accuracy on model-matched sounds (and vice-versa). In practice, 
this approach yielded similar results to directly comparing responses to natural and model-matched 
sounds: good cross-predictions in primary auditory cortex, but poor cross-predictions in non-primary 
auditory cortex (Figure S10). This observation is expected given that a) the model predictions for 
natural sounds were good throughout auditory cortex and b) responses to natural and model-matched 
sounds diverged in non-primary regions, but it provides a consistency check of the two types of 
analyses.  
 
Voxel decomposition of responses to natural and model-matched sounds  
All of our analyses described thus far were performed on individual voxels, summarized with maps 
plotting the normalized squared error between each voxel’s response to natural and model-matched 
sounds. But these error maps do not reveal in what respect the responses to natural and model-
matched sounds differ, and due to the large number of voxels it is not feasible to simply plot all of their 
responses. We previously found that voxel responses to natural sounds can be approximated as a 
weighted sum of a small number of canonical response patterns (components)45 (Figure 6A). 
Specifically, six components explained over 80% of the noise-corrected response variance to a diverse 
set of 165 natural sounds across thousands of voxels. We thus used these six components to 
summarize the responses to natural and model-matched sounds described here. This analysis was 
possible because many of the subjects from this experiment also participated in our prior study. As a 
consequence, we were able to learn a set of voxel weights that reconstructed the component response 
patterns from our prior study, and then apply these same weights to the voxel responses from this 
experiment (see Voxel decomposition in the Methods).  
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Figure 6. Voxel decomposition of responses to natural and model-matched sounds. Previously we found that much of the 
voxel response variance to natural sounds can be approximated as a weighted sum of six canonical response patterns 
(“components”)45. This figure shows the response of these components to the natural and model-matched sounds from this 
experiment. (A) The group components weights from Norman-Haignere et al. (2015)45 are re-plotted to show where in the 
auditory cortex each component explains the neural response. (B) Test-retest reliability of component responses to the 
natural sounds from this study. Each data point represents responses to a single sound, with color denoting its semantic 
category. Components 5 and 6 showed selectivity for speech and music, respectively, as expected (Component 4 also 
responded most to music due to its selectivity for sounds with pitch). (C) Component responses to natural and model-
matched sounds constrained by the complete spectrotemporal model (see Figure S11 for results using subsets of model 
features). The speech and music-selective components show a weak response to model-matched sounds, even for sounds 
constrained by the full model. (D) Normalized squared error between responses to natural and model-matched sounds for 
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each component. (E) The ratio of the standard deviation of each component’s responses to model-matched and natural 
sounds (see Figure S12A for corresponding whole-brain maps). (F) Pearson correlation of responses to natural and model-
matched sounds (see Figure S12B for corresponding whole-brain maps). All of the metrics in panels D-F are noise 
corrected, although the effect of this correction is modest because the component responses are reliable (as is evident in 
panel B). Error bars correspond to one standard error computed via bootstrapping across subjects. 
 
We found that all six components exhibited reliable responses to the natural sounds from this 
experiment (Figure 6B). Two of the components (5 & 6) responded selectively to speech and music, 
respectively, replicating the selectivity we found previously (last two columns of 6B). Critically, 
responses to the model-matched sounds were much weaker in these speech and music-selective 
components, even for sounds matched on the full model (Figure 6C, bottom row, last two columns; see 
Figure S11 for sounds matched on subsets of model-features), leading to high NSE values (speech 
NSE = 0.45; music NSE = 0.55 for the full model, noise corrected) (Figure 6D). By contrast, the other 
four components, all of which overlapped PAC to varying extents, responded similarly to natural and 
model-matched sounds constrained by the full model, leading to smaller errors (NSE for Component 1: 
0.06, Component 2: 0.12, Component 3: 0.26, Component 4: 0.19) than those for the speech and 
music selective components (p < 0.001 for all direct comparisons between the speech and music 
selective components and components 1, 2, and 4; for component 3, which had the lowest test-retest 
reliability, the direct comparison with the music-selective component was significant, p < 0.01, and the 
direct comparison with the speech-selective component was nearly significant, p = 0.076; statistics 
computed via bootstrapping across subjects). These results indicate that selectivity for music and 
speech cannot be purely explained by standard acoustic features that nonetheless account for much of 
the voxel response in primary regions.  
 
Our model-matching approach posits that responses should be exactly matched if the model is 
accurate. If the model is not accurate, the approach makes no prediction about how the responses 
should differ. Nonetheless, the divergent responses to natural and model-matched sounds in 
Components 5 & 6 appeared to be largely driven by weaker responses to the model-matched sounds. 
We verified this observation by comparing the standard deviation of responses to natural and model-
matched sounds: the response variation for model-matched sounds decreased sharply in Components 
5 and 6, due to lower overall responses to the model-matched sounds (Figure 6E). In contrast, the 
noise-corrected correlation remained high (Figure 6F). A similar pattern was also evident in whole-
brain maps (Figure S12): the variation in voxel responses to model-matched sounds constrained by the 
full model dropped in non-primary regions (driven by lower responses to the “preferred” model-
matched stimuli) while the correlation remained high. For Components 5 & 6, the high correlations 
were driven by the fact that model-matched sounds from the component’s preferred category produced 
a higher response than model-matched sounds from other categories (as is evident in Figure 6D). For 
example, in Component 6, model-matched music produced a lower response than natural music, but a 
higher response than model-matched sounds from other categories (p < 0.001; via bootstrapping). The 
same pattern was evident for Component 6, which responded selectively to speech (p < 0.001). This 
finding suggests that selectivity in non-primary regions may reflect a mixture of category-specific 
modulation tuning and responses to higher-order properties specific to music and speech, consistent 
with prior studies53,61. The results suggest that the modulation-specific structure driving Components 5 
& 6 is correlated across natural sounds with the other properties of music and speech that drive their 
response. The model-matching approach allows us to see these two contributions to the response, 
revealing that there is something unique to the response of Components 5 & 6 that is distinct from the 
other components. 
 
Discussion 
We have described a novel approach for evaluating a model of neuronal responses. Given a model, 
we synthesize a stimulus that yields the same model response as a natural stimulus, and test whether 
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they produce similar neural responses. We applied this approach to test whether voxel responses in 
human auditory cortex can be explained by a commonly used auditory model based on 
spectrotemporal modulation. Our results revealed a substantial functional difference between primary 
and non-primary regions of human auditory cortex. Many voxels in PAC showed nearly equivalent 
responses to natural and model-matched sounds constrained by the full spectrotemporal model. We 
also found that these voxels responded differently when sounds were model-matched with only 
cochlear filter statistics, or with temporal or spectral modulations alone. These findings together 
suggest that spectrotemporal modulation accounts for much of the voxel response in PAC. By contrast, 
many voxels in non-primary regions responded weakly to all of the model-matched sounds, 
demonstrating that they are only weakly driven by the features captured by the model. This functional 
difference between primary and non-primary regions was not clearly evident when the model was 
evaluated by its response predictions, due to the confounding influences of stimulus-driven correlations 
across natural stimuli. Model-matching thus reveals a novel aspect of functional organization by 
showing where in the cortex a standard auditory model can explain voxel responses to natural sounds.  
 
Implications for models of auditory cortex 
The notion that auditory cortex might be organized hierarchically – i.e., into a series of stages 
supporting increasingly abstract representations – has been a popular proposal for decades40,62–64. 
Hierarchical organization has some support from anatomical studies65, and from qualitative 
observations that responses in non-primary regions are more complex than those in primary 
regions66,67 and more closely aligned with semantically meaningful sound properties16,45–47,68. However, 
there has been little evidence for how primary and non-primary regions might differ in computational 
terms41, and thus it has been unclear what mechanisms underlie the apparent differences in tuning 
between primary and non-primary regions. 
  
Most computational models of auditory processing beyond the periphery are based on tuning for 
modulation19,20. Such models have been used to explain responses throughout the auditory pathway in 
non-human animals2,11,24–29,32,33. In humans, modulation-based models have been shown to have 
relatively good predictive accuracy throughout both primary and non-primary regions7,12,45, which has 
led to the hypothesis that sounds are represented in a distributed manner69. This view contrasts with 
the notion of hierarchical organization, and in its most extreme form suggests that responses to 
seemingly complex attributes of sound in non-primary regions (e.g. speech and music-selectivity) could 
reflect the same types of mechanisms used to code sound in PAC.  
 
Our study helps to reconcile these two prior literatures. First, we show that modulation selectivity fails 
to explain much of the response in non-primary regions, and that model predictions provide overly 
optimistic estimates of the model’s efficacy. This conclusion follows from the fact that we observed 
many voxels in non-primary regions whose response to natural sounds was well predicted by the 
model and yet produced divergent responses to model-matched sounds. Since the model by definition 
predicts that natural and model-matched sounds should have equivalent responses, this finding 
demonstrates a clear model failure. Since our predictions were based on linear regression, there must 
be correlations across natural sounds between the model’s features and whatever sound properties 
actually drive the voxel, and these correlations are what allow the model to accurately predict the voxel 
responses to natural sounds. 
 
Conversely, our findings provide further evidence that modulation selectivity is a key feature of 
functional organization in human PAC7,30,31. Using both predictions and model-matching, we found that 
the modulation model explains the large majority of the voxel responses in this region. This finding was 
again not obvious from prior studies using model prediction alone, since the predictions could have 
been influenced by stimulus-driven correlations, as turned out to be the case in non-primary regions. 
By contrast, we found that frequency selectivity, which presumably reflects tonotopy, explained much 
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less response variance in PAC. This finding suggests that modulation selectivity may be a key 
organizing dimension of PAC.  
 
What features might non-primary regions of auditory cortex represent? These regions are primarily 
driven by sound, show signs of having relatively short integration windows43, and even when speech 
selective, respond largely independently of the presence of linguistic structure43,45, suggesting acoustic 
rather than linguistic or semantic representations16. Moreover, although responses to the model-
matched sounds were substantially weaker than responses to natural sounds, the model-matched 
sounds still drove responses to natural sounds above baseline and were correlated with responses to 
natural sounds. Thus, one natural hypothesis is that non-primary regions transform a lower-level 
acoustic representation like the spectrotemporal representation considered here, into an acoustic 
representation that makes behaviorally relevant variables more explicit (e.g. easier to decode). This 
hypothesis could be tested with hierarchical models that transform the output of modulation filters with 
additional stages of nonlinear and linear operations70. In principle, such models could be fit to existing 
neural data sets, and then evaluated with model-matched stimuli. But because the space of such 
models is large, some additional constraint is likely to be needed to select models for experimental 
tests. Such constraints could come from natural sounds and tasks, by optimizing for efficient encoding 
of natural sounds71,72, or for performance of ecologically relevant tasks73–78.  
 
We have recently explored this idea by training a deep neural network to recognize words and musical 
genres41 and then comparing the resulting representations to voxel responses. We found that later 
layers of the network better predicted voxels in non-primary regions of the cortex, consistent with the 
notion of hierarchical organization. These predictions could of course be influenced by stimulus-driven 
correlations, which may explain why the differences in prediction accuracy between layers were 
modest. Future work could address this question, and provide stronger tests of such models, by 
applying model-matching to the representation from different layers of a hierarchical model. 
 
Implications and limitations of model-matching  
The result of our model-matching experiment is an error metric between 0 and 1 indicating the 
dissimilarity of a neural response to natural and model-matched sounds. What does this number tell us 
about the type of models that could underlie the neural response? When the error metric is near 1, the 
models under which responses have been matched are ruled out as descriptions of the voxel 
response. Because the error metric is noise-corrected, its absolute value is meaningful, and large 
errors invalidate a model. Our specific implementation matched model responses for all point-wise 
functions of the filters in question, and thus that family of models is ruled out for voxels with large error.  
 
At the other extreme, errors near 0, like those we observed in primary auditory cortex, reveal that the 
voxel responses are consistent with the family of models whose response was matched. The matching 
procedure employed a specific filter bank, but alternative models might also be matched (for instance 
those with filters that can be approximated as linear combinations of the filters used for matching). 
Small error values thus do not exclude models other than the one we used. However, specific 
alternative models could be evaluated by measuring their response to the two sets of stimuli used in an 
experiment (natural and model-matched). Models that give distinct responses to the two stimulus sets 
could be ruled out for voxels whose responses to the two sets are similar. Conversely, one could also 
rule out models whose responses to the two sets are similar for voxels whose responses to the two 
sets are different. We used this approach to investigate different types of spectrotemporal filter banks 
(Figure S15), finding that a range of alternative filter banks had matched statistics for the natural and 
model-matched sounds tested here (see Variants of the spectrotemporal filter model in the Methods). 
This finding suggests that a wide range of spectrotemporal filter models can be ruled out as models of 
non-primary auditory cortex. Our stimuli and fMRI data are available on our lab website, so that 
alternative models can be evaluated using this approach: 
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mcdermottlab.mit.edu/ModelMatching/data-for-distribution.zip 
 
In other situations, matching with one model may entail matching with another, but not vice versa. This 
was the case for the four models we compared in Figure 4 – the full spectrotemporal model is inclusive 
of the other models. The weaker correlations observed with the other models provides evidence for the 
necessity of the spectrotemporal model features.  
 
As with any method for model evaluation, the interpretation of our results is constrained by the 
resolution of the brain measurements. Since fMRI is primarily sensitive to brain responses that are 
spatially clustered, our results bear most directly on aspects of cortical tuning that are organized at the 
scale of voxels. Our results were robust to the exact size of the voxels tested and the amount of spatial 
smoothing, suggesting that our results hold for spatial scales on the order of millimeters to centimeters. 
But even small voxels pool activity across neurons and across time, and thus it is possible that voxels 
with similar responses to natural and model-matched sounds might nonetheless contain neurons that 
show more divergent responses, or that have temporal response properties that differ from the model. 
This fact may partially explain why electrophysiological recordings in animals have found that linear 
spectrotemporal filters are insufficient to account for responses in primary auditory cortex13,79–81. Future 
work could apply model-matching to neuronal responses measured electrophysiologically to test 
models at a finer spatial and temporal scale. For example, one could synthesize model-matched 
sounds that should yield the same firing rate as a natural sound given a model of an individual 
neuron’s response. At the scale of fMRI voxels, however, linear spectrotemporal filters provide a good 
description of PAC, potentially because neurons with similar modulation selectivity are spatially 
clustered. 
 
Because the spatial pooling of fMRI can obscure neural responses that are heterogeneous across 
nearby neurons, voxel responses to natural and model-matched stimuli could in principle also be more 
dissimilar than the responses of the underlying neural populations. That is, there could be neural 
populations that respond similarly to natural and model-matched sounds but which do not contribute to 
the voxel NSE because they are not clustered at a coarse enough scale, and thus do not differentially 
drive voxel responses to different sounds within a stimulus set. A high NSE thus demonstrates a model 
failure (because it implies underlying neurons that respond differently to natural and model-matched 
sounds), but it does not preclude the possibility that the voxel also contains some neurons that are well 
described by the model features. We note that these limitations are not specific to the model-matching 
approach, and apply equally to evaluations of models by their predictions of fMRI responses – in both 
cases, finer-grained brain measurements will enable finer-grained model tests. 
 
Relation to prior work on perceptual metamers and texture synthesis 
Our approach to model matching is an extension of methods for texture synthesis originally developed 
in image processing and computer vision48,82, and later applied to sound texture39 and visual texture 
perception49,83. In texture synthesis, the goal is typically to test whether a set of statistical features 
could underlie perception, by testing whether synthetic stimuli with the same statistics are metameric, 
i.e. whether they look or sound the same as a real-world texture. The implementation of our synthesis 
procedure is inspired by classic texture synthesis methods48, but the scientific application differs 
notably in that we evaluate the model by the similarity of neural responses rather than the similarity 
that is perceived by a human observer. Indeed, many of the model-matched stimuli sounded unnatural, 
demonstrating that the modulation spectrum fails to capture higher-order properties of natural sounds 
that listeners are sensitive to (e.g. the presence of phonemic or melodic structure). This observation 
reveals the insufficiency of the modulation spectrum as a complete account of perception, but not does 
place strong constraints on whether particular neural stages are well described by the model. The fact 
that responses to natural and model-matched sounds diverged in non-primary regions of auditory 
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cortex suggests that those regions may be driven by higher-order structure not made explicit by the 
modulation model, which we could not have concluded from perceptual observations alone.  
 
The most similar previous approach involved comparing the strength of cortical responses to visual 
textures synthesized from different classes of statistics of a wavelet filter bank model84. Although we 
also compared cortical responses to sounds synthesized from different model statistics, the key 
comparison was between responses to individual natural and synthesized sounds, which is critical to 
identifying regions of the brain that are not well explained by a model.  
 
The modulation filter bank model tested here bears similarities to the texture model of McDermott & 
Simoncelli39,85. The key difference is that dependencies between cochlear frequency channels are 
captured here by spectral modulation filters rather than the correlations used in the original texture 
model. In practice, we found that sounds synthesized from the two models were perceptually similar, 
suggesting that correlations in one stage of representation (the cochlea) can be captured by marginal 
statistics of a subsequent stage of representation (modulation filters)39. 

 
Approaches for model testing 
Recent years have seen growing interest in the use of computational “encoding models” to test formal 
theories of sensory processing5–7,10–14,16,17,73,86. Because encoding models make quantitative 
predictions about the neural response, they can be used to test and compare theories of neural coding. 
The features of the model can then provide insight into the sensory features that are represented in 
different neural populations6,7,12,16.  
 
A key challenge of testing encoding models with natural stimuli is that the features of different models 
are often correlated16,18, making it difficult to tease apart the unique contribution of any particular 
model. This problem can be partially overcome by comparing the predictions of two different models, 
but is difficult to eliminate when the features of two models are strongly correlated and when responses 
can only be measured to a relatively small number of stimuli (as is common with fMRI). Another 
approach is to alter stimuli so as to decouple different features sets73. For example, adding varied 
background noise to natural sounds could help to decouple low and high-level features of sounds, 
because noise can alter a sound’s low-level features without affecting its perceived identity. However, 
such approaches are heuristic, and do not guarantee that the relevant features will be de-correlated 
unless the candidate feature sets can be measured with existing models. Model-matching is appealing 
because it provides a way to test the ability of a single model to explain neural responses by imposing 
the structure of that model alone, decoupling the model from alternative models without needing to 
specify the many possible alternatives.  
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Methods 
 
Participants 
The experiment comprised 41 scanning sessions, each approximately two hours. Fifteen subjects 
participated in the experiment (ages 19-36; 5 male; all right-handed; one subject, S1, was author 
SNH). Two different experiment paradigms were tested (hereafter referred to as Paradigm I and 
Paradigm II). We have chosen to describe these two paradigms as a part of the same experiment 
because the stimuli and analyses were very similar. In Paradigm I, eight subjects completed a single 
scanning session, three subjects completed five sessions, and one subject completed three sessions 
(this subject chose not to return for the 4th and 5th sessions). We chose this approach because it 
allowed us to compute reliable group maps by averaging across the twelve subjects, as well as reliable 
individual subject maps using a larger amount of data from the subjects with multiple scan sessions. 
Five subjects were scanned in Paradigm II. One subject completed two sessions, two subjects 
completed three sessions, and one subject completed four sessions. One subject (S1) was scanned in 
both paradigms (when possible we used data from Paradigm II for this subject, because there was a 
higher quantity of data, and the scan sessions for Paradigm II were higher resolution as noted below). 
 Because we aimed to characterize the auditory cortex of typical listeners without extensive 
musical experience, we required that subjects not have received formal musical training in the five 
years preceding their participation in the experiment. The study was approved by MIT’s Committee on 
the Use of Humans as Experimental Subjects; all subjects gave informed consent.  
 
Data acquisition parameters and preprocessing 
Data for Paradigm I were collected on a 3T Siemens Trio scanner with a 32-channel head coil (at the 
Athinoula A. Martinos Imaging Center of the McGovern Institute for Brain Research at MIT). The 
functional volumes were designed to provide good spatial resolution in auditory cortex. Each functional 
volume (i.e. a single 3D image for one participant) included 15 slices oriented parallel to the superior 
temporal plane and covering the portion of the temporal lobe superior to and including the superior 
temporal sulcus (3.4 s TR, 30 ms TE, 90 degree flip angle; 5 discarded initial acquisitions). Each slice 
was 4 mm thick and had an in-plane resolution of 2.1 x 2.1 mm (96 x 96 matrix, 0.4 mm slice gap). 
iPAT was used to minimize acquisition time (1 sec/volume). T1-weighted anatomical images were also 
collected for each subject (1 mm isotropic voxels).  
 
Data for Paradigm II were collected more recently using a 3T Prisma scanner (also at the McGovern 
Institute). We used a multiband acquisition sequence (3x acceleration) to reduce slice thickness while 
maintaining coverage (36 slices with 2mm thickness and no gap), and thus reducing voxel size (2 mm 
isotropic). iPAT was not used. Other acquisition parameters were similar (3.45 s TR, 1.05 sec 
acquisition time, 34 ms TE, 90 degree flip angle; 3 discarded initial acquisitions). 
 
Functional volumes were preprocessed using FSL software and custom MATLAB scripts. Volumes 
were motion-corrected, slice-time-corrected, skull-stripped, linearly detrended, and aligned to the 
anatomical volumes (using FLIRT87 and BBRegister88). Volume data were then resampled to the 
reconstructed cortical surface computed by FreeSurfer89, and smoothed on the surface using a 5mm 
FWHM kernel to improve SNR (results were similar without smoothing; Figure S3). Individual subject 
data were then aligned on the cortical surface to the FsAverage template brain distributed by 
Freesurfer. 
 
Stimulus presentation and scanning procedure 
Our stimulus set was derived from 36 natural sounds, each 10-seconds in duration (Figure 2B). From 
each natural sound, we synthesized four model-matched sounds, constrained by different subsets of 
features from a model of auditory cortex based on modulation filtering19. The complete stimulus set 
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thus included 5 conditions (natural sounds + 4 model-matched versions) each with 36 sounds, yielding 
a total of 180 stimuli.  
 
Scan acquisitions produce a loud noise due to rapid gradient switching. To prevent these noises from 
interfering with subjects’ ability to hear the sounds, we used a “sparse” scanning paradigm90 that 
alternated between presenting sounds and acquiring scans, similar to those used in our prior 
experiments45,91,92 (Figure S2). This was achieved by dividing each 10-second stimulus into five 2-
second segments (windowed with 25 ms linear ramps). These five segments were presented 
sequentially with a single scan acquired after each segment. The five segments for a particular sound 
were always presented together in a “block” (the order of the segments within a block was random). 
Each scan acquisition lasted 1 second in Paradigm I and 1.05 seconds in Paradigm II. There was a 
200 ms buffer of silence before and after each acquisition. The total duration of each five-segment 
block was 17 seconds in Paradigm I and 17.25 seconds in Paradigm II. We averaged the response of 
the 2nd through 5th acquisition after the onset of each stimulus block. The first acquisition was 
discarded to account for the hemodynamic delay. Results were similar when we instead averaged just 
the second and third timepoint or just the fourth and fifth timepoint after stimulus onset, indicating that 
our results were robust to the averaging window applied to the fMRI measurements (Figure S13). We 
chose to use signal averaging rather than a GLM with a standard hemodynamic response function 
(HRF), because we have found this approach is leads to slightly more reliable responses, presumably 
due to inaccuracies in the standard HRF93. 
 
In Paradigm I, each model-matched stimulus was presented once per two-hour scanning session, and 
the natural stimuli were presented twice so that we could measure the reliability of each voxel’s 
response to natural sounds and noise-correct the normalized squared error metric. Each session was 
divided into 12 “runs”, after which, subjects were given a short break (~30 seconds). Each run included 
6 natural sounds and 12 model-matched sounds (3 per condition). In Paradigm II, we presented only 
the model-matched sounds constrained by the complete model, which allowed us to present both the 
natural and model-matched sounds several times per scan session. Each run included 9 natural and 9 
model-matched sounds. The entire sound set was presented over 4 consecutive runs. Subjects 
completed 12 or 16 runs depending on the time constraints of the scan session. Thus, each subject 
heard each sound between 3 or 4 times per session. In both paradigms, there were periods during 
which no stimulus was presented and only scanner noise was heard, which provided a baseline with 
which to compare stimulus-driven responses. There were four such “silence” periods per run (each 17 
seconds in Paradigm I and 17.25 seconds in Paradigm II). The ordering of stimuli and silence periods 
was pseudorandom, and was designed such that on average each condition occurred with roughly the 
same frequency at each position in a run, and each condition was preceded equally often by every 
other condition (as in our prior work91,92).  
 
Prior to settling on the procedure for Paradigm I, we conducted a pilot experiment in which six of the 
twelve participants from Paradigm I completed a single session. These sessions featured stimuli from 
only 3 of the model-matched conditions (spectral modulation matched stimuli were omitted). These 
scan sessions were the first of this study and we limited the number of conditions to make sure the 
experiment could fit within the allotted 2-hour scanning slot. The runs for these sessions were slightly 
shorter because there were only 9 model-matched stimuli presented per run (there were only 3 periods 
of silence per run for these sessions). When analyzing the results we included the data from these 
sessions in order to use the maximum amount of data available for each condition, and thus the results 
for the spectral modulation matched condition were based on less data than the other model-matched 
conditions. But because the NSE metric was corrected for noise (see below), differences in the 
amounts of data across conditions should not bias the results.  
  
Selection of natural stimuli 



 24 

We used long sounds (10 seconds) so that we could compute time-averaged statistics for filters with 
relatively long integration periods (i.e. periods of up to 2 seconds). We selected sounds that were likely 
to produce high response variance in auditory cortical voxels, guided by the results of a prior paper 
from our lab that measured fMRI responses in auditory cortex to a large set of natural sounds45. In our 
prior study, we found that much of the response variance could be captured by a weighted sum of six 
response patterns (“components”), and we thus attempted to select sounds that had high response 
variance along these components. To accomplish this goal, we created a subset of 60 sounds with 
high component response variance by iteratively discarding sounds in a greedy manner, each time 
removing the sound that led to the largest increase in response variance averaged across the six 
components. Because we needed stimuli that were relatively long in duration, we could not directly use 
the stimuli from our prior study, which were only 2-seconds in duration. Instead, we created a new 
stimulus set with 10-second sounds, each of which had the same label (e.g. “finger tapping”) as one of 
the sounds from the 60-sound set. 
 
Model representation 
We synthesized sounds based on four different model representations. The simplest model was just 
based on the output of filters designed to mimic cochlear responses (i.e. a cochleagram). The other 
three models were based on filters tuned to modulations in this cochleagram representation. Two 
models were tuned to either temporal modulation or spectral modulation alone, and one was jointly 
tuned to both temporal and spectral modulation. 
 
The cochlear representation was computed by convolving the audio waveform of each sound with 120 
bandpass filters, spaced equally on an ERBN-scale between 20 Hz and 10 kHz, with bandwidths 
chosen to match those measured psychophysically in humans (individual filters had frequency 
responses that were a half-cycle of the cosine function in order to exactly tile the frequency spectrum; 
adjacent filters overlapped by 87.5%)39. Each channel was intended to model the response of a 
different point along the basilar membrane. The envelopes of each filter output were computed using 
the Hilbert transform, raised to the 0.3 power to mimic cochlear compression/amplification, and 
downsampled to 400 Hz after applying an anti-aliasing filter. So that we could express the spectral 
modulation filters that operate on the cochleagram (described below) in units of cycles per octave (as 
in Chi et al., 200519, we interpolated the frequency axis from an ERB-scale to a logarithmic frequency 
scale (24 cycles/octave), yielding 217 channels.  
 
The modulation-based representations were computed using a bank of multi-scale wavelet filters 
(Figure 1A). The shapes and bandwidths of the filters were the same as those described by Chi et al. 
(2005). The three sets of filters differed in whether they were tuned to modulation in time, frequency or 
both. The temporal modulation representation was computed using gammatone filters:  
 
(3) 
 
where br determines the best modulation rate of the filter (i.e. the rate with maximum gain). We used 9 
filters with octave-spaced best rates: 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 Hz. Each filter was separately 
convolved in time with each frequency channel of the cochleagram. The output of the model can thus 
be represented as a set of 9 filtered cochleagrams, each of which highlights modulations at a particular 
temporal rate.   
 
The spectral modulation representation was computed using ‘mexican hat’ filters, which are 
proportional to the second derivative of a Gaussian: 
 
(4) 
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where bs determines the best modulation scale of the filter (i.e. the scale with maximum gain). We used 
6 filters with octave-spaced scales: 0.25, 0.5, 1, 2, 4, and 8 cycles/octave. Each filter was separately 
convolved in frequency with each time “slice” of the cochleagram. The output of the model can thus be 
represented as 6 filtered cochleagrams, each of which highlights a different range of spectral 
modulations.  
 
The spectrotemporal modulation representation (often referred to as the “full model”) was computed 
primarily from 2D filters that were convolved with the cochleagram in both time and frequency. The 
filters were instantiated in the 2D Fourier domain (as described in Chi et al., 200519) by taking the 
outer-product of the frequency-domain representations of the temporal and spectral modulation filters 
described above. These filters were then ‘oriented’ so as to be sensitive to upward-right or downward-
right modulations. This was accomplished by zeroing either the first and third quadrant of the 2D 
frequency response (for upward-oriented filters), or the second and fourth quadrant (for downward-
oriented filters) (the Nyquist frequency and DC were never zeroed). There were 108 total 
spectrotemporal filters produced by crossing 9 temporal filters with 6 spectral filters (with best 
modulation frequencies as described above), and orienting each filter upwards or downwards. Thus, 
the output of this portion of the model can be represented by 108 filtered cochleagrams (modulo the 
additional filters described next).  
 
For all three modulation-based representations (temporal, spectral and spectrotemporal), we included 
the unfiltered cochleagrams in the representation so that the modulation-based representations would 
be strictly more expressive. For both the temporal and spectral representations we also included a filter 
with power at only the DC (0 Hz or 0 cycles/octaves respectively). These filters capture the mean of 
each cochlear frequency channel (for the temporal modulation representation) or the mean of each 
time slice through the cochleagram (for the spectral modulation representation), and were necessary to 
reconstruct cochleagrams from the model representation (because all of the other filters were 
bandpass, with zero power at the DC). For the spectrotemporal modulation representation, the 
temporal and spectral DC filters were also crossed with the other filters, yielding an additional 15 filters; 
these filters capture spectrally broadband temporal modulations (i.e. “vertical” modulations), or 
temporally uniform spectral modulations (i.e. “horizontal” modulations) and have only one orientation. 
We also added all of the filters from the temporal-only and spectral-only modulation models to the 
spectrotemporal modulation model so that it would be strictly more expressive than the simpler models. 
 
Finally, two filters which were modulated only in time and which had very low best-modulation rates 
(0.125 and 0.25 Hz) were added to the temporal and spectrotemporal modulation representations.  
These filters were included to replicate the homogeneity of the natural sounds in the model-matched 
sounds and to improve convergence. Without them, the synthesis process tended to “clump” sound 
energy at particular time-points. The low-rate filters ameliorated this problem by forcing the slow 
fluctuations in the model-matched sounds to be similar to those in the natural sounds they were 
matched to. 
 
Model-matching synthesis algorithm 
Our model-matching approach, like most algorithms for texture synthesis, starts with a sample of noise, 
which initially lacks structure, and alters the noise via an iterative procedure to match statistical 
constraints39,48,82, in our case provided by the histogram of each feature’s response (Figure S1). By 
initializing with noise, we aim to arrive at a sound that is minimally structured given the imposed 
constraints.  
  
The model-matching synthesis procedure was initialized with a 10-second sample of Gaussian noise 
(the same duration as the natural sounds). The algorithm involved three steps: (1) computing the 
response of each feature from a given model to a natural and noise sound (2) separately matching the 
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response histogram across time for each model feature48 (3) reconstructing a waveform from the 
modified outputs. These three steps were applied iteratively for reasons described below. For the 
cochlear representation, we matched the histogram of envelope values for each cochlear frequency 
channel. For the modulation-based representations, we matched the histogram of each frequency 
channel of each of the filtered cochleagrams (each channel of the filtered cochleagrams represents the 
output of a single model feature), as well as the histograms of the unfiltered cochleagram frequency 
channels.  
 
The goal of our histogram matching procedure was to modify the distribution of values for one time 
series so that they had the same distribution of values as that of a target time series, without imposing 
the same temporal pattern over time. For example, to modify the time series [1 2 3] to match the 
histogram of [5 1 3], we would like to alter the first time series to be [1 3 5], such that it has the same 
distribution as the target, but the same relative ordering as the original (smallest, middle, largest). 
Since the average value of a signal only depends on the distribution of magnitudes and not their 
ordering, the histogram-matched signals will have the same average value, even if they are 
transformed by a point-wise function (e.g. 12 + 32 + 52 = 52 + 12 + 32). Assuming the two time series are 
represented as vectors of equal length, as was the case for our experiments (because the synthetics 
were of equal duration), we can histogram match the signals by re-assigning the smallest value in the 
signal-to-be-matched to the smallest value in the target signal, then re-assigning the second smallest 
value in the signal-to-be-matched to the second smallest value in the target, and so on. We can 
implement this procedure with the following pseudocode: 
 
order_original = sortindex(original) 
order_target = sortindex(target) 
matched[order_original] = target[order_target] 
 
where sortindex is a function that takes a vector as input and returns a list of indices into that vector 
which have been ordered according to the magnitude of the corresponding vector elements (i.e. the 
indices that would sort the vector, as in the numpy/python function argsort). This procedure is a slightly 
simpler variant of the histogram-matching algorithm described by Heeger and Bergen (1995), and is 
applicable when matching vectors of equal length.  
 
The details of the reconstruction algorithms have been described previously19,39. We reconstruct a 
waveform from a cochleagram by summing the individual subbands, which are computed by 
multiplying the envelopes of each cochlear channel (after histogram matching) by their time-varying 
phases from the previous iteration and then refiltering with the filters used to generate the subbands 
(as is standard for subband transforms). Similarly, we reconstruct a cochleagram from the modulation 
domain by adding up the filtered cochleagrams in the 2D Fourier domain and multiplying each 
cochleagram by the complex conjugate of the filter (to undo phase shifts). We then divide by the 
summed power of the modulation filters to correct for the fact that the summed power of the filters is 
not uniform19. 
 
Because the filters whose outputs are being manipulated overlap in the frequency domain, a 
manipulation such as histogram matching typically introduces inconsistencies between filters, such that 
when the reconstructed signal is re-analyzed the histograms will generally not remain matched. As 
such, a single iteration of the matching procedure does not achieve its objective, but iterating the 
procedure (analyze, histogram-match, reconstruct) generally results in increasingly close 
matches39,48,82. We monitored convergence by measuring the difference in the desired and measured 
histograms at each iteration (see below), and used 100 iterations, which we found to produce good 
results.  
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To avoid wrap-around effects due to circular convolution, we padded the cochleagrams in time and 
frequency prior to convolution with the modulation filters. We padded the cochleagrams with a value 
equal to the global mean of the cochleagram across both time and frequency so as to minimize the 
resulting step edge. The amount of padding was chosen to be approximately equal to the duration of 
ringing in each filter: we padded the cochleagrams in frequency by twice the period of the coarsest 
spectral modulation filter (8 octaves of padding) and by three times the period of the slowest temporal 
modulation filter (24 seconds of padding). To ensure that the portion of the signal used for the stimulus 
was well matched, we applied the histogram matching procedure twice at each iteration, once to the 
entire signal including the padded duration, and once to just the non-padded portion of the signal. 
 
MATLAB code for synthesis algorithm will be made available upon publication. 
 
Assessing the success of the model-matching algorithm 
For each model feature, we computed a time-averaged measure of its response amplitude for natural 
and model-matched sounds. Figure S14 plots these amplitude statistics for example natural and 
model-matched sounds. For cochlear features, we simply averaged the cochleagram envelope 
amplitudes across time. For the modulation-tuned features, we computed the standard deviation 
across time of each feature’s response. We then correlated the filter amplitudes for corresponding 
natural and model-matched sounds across all filters in the model, as a measure of their similarity 
(Figure S14, right panel). The mean correlation across sounds was high for all of the model features 
being matched by the synthesis algorithm (r2 > 0.98), and much higher than the correlation observed 
for features not constrained by the matching algorithm.  
 
Variants of the spectrotemporal filter model 
We investigated the extent to which our results might depend on the particular choice of 
spectrotemporal filters tested (Figure S15). Specifically, we created spectrotemporal filters with 
different properties by either (1) randomizing the temporal and spectral phase to create a diverse range 
of filter shapes with roughly the same modulation spectrum (2) halving the filter bandwidths or (3) 
randomizing the filters entirely by sampling the filter weights from a Gaussian. Phase randomization 
was implemented by computing the FFT of each filter’s temporal and spectral impulse response (using 
a window size of twice the period of the filter’s center modulation rate/scale), randomizing the phase, 
transforming back to the signal domain (via the iFFT), and padding with zeros. Narrowing the filter 
bandwidths was accomplished by halving the temporal and spectral extent of the filters in the 
frequency domain as well as doubling the number of filters to ensure that all modulation rates and 
scales were represented by the model. For the random filters, we varied the size of the filters to mimic 
the fact that the model filters vary in the amount of time and frequency over which they integrate. 
 
For each filter, we measured the amplitude (standard deviation) of its response to each of the natural 
and model-matched sounds that we tested in the fMRI experiment (middle panels of Figure S15), 
which were constrained only by the original spectrotemporal filters and not the modified variants. We 
then correlated the filter’s amplitude for corresponding natural and model-matched sounds (across the 
bank of filters for each sound) to assess how well the natural and model-matched sounds were 
matched (rightmost panel of Figure S15). For the phase-randomized and half-bandwidth filters, we 
found that matching the spectrotemporal statistics of the original filters substantially improved how well 
the modified spectrotemporal filters were matched (median r2 > 0.85), suggesting that matching the 
statistics of one spectrotemporal model goes a long way toward matching the statistics of other 
modulation filter models. This result suggests that our findings will generalize to other spectrotemporal 
filters with different shapes. For random filters, we found that the filter variances were relatively well 
matched even for sounds that were not matched on the original spectrotemporal filters (median r2 = 
0.73 for cochlear matched sounds), suggesting that random filter variances may be easier to match 
than the more structured filters in the model.  



 28 

 
Envelope-based synthesis algorithm  
The stimuli used for the first six pilot scan sessions were synthesized using a slightly different algorithm 
that was based on matching the histogram of the envelopes of the modulation filter outputs rather than 
matching the histogram of the raw filter responses. In practice, we found that histogram matching the 
envelopes produced very similar results to matching the histogram of the raw outputs, and thus 
decided to use the simpler algorithm for the remaining scanning sessions. The voxel responses to 
stimuli synthesized from the two algorithms was similar, and we thus collapsed across all of the 
available data for all analyses.   
  
Normalized squared error 
We measured the similarity of fMRI responses to natural and model-matched sounds via the mean 
squared error: 
 
(5) 
 
 
where x and y represent the vector of responses to natural and model matched sounds, respectively 
(here N=36 because there were 36 natural/model-matched sounds). We normalized the mean squared 
error so that it would be invariant to the overall scale of the voxel responses and take a value of 0 if the 
response to natural and model-matched sounds was identical and 1 if there was no correspondence 
between responses to natural and model-matched sounds (i.e. if they were independent of each 
other): 
 
(6) 
 
 
We refer to this metric as the normalized squared error or NSE. The quantity in the denominator is an 
estimate of the expected value of the squared error assuming the two variables are independent: 
 
(7) 
 
 
 
 
 
Noise-correcting the normalized squared error 
Model-matching makes it possible to falsify a model by showing that neural responses to natural and 
model-matched stimuli diverge. However, fMRI responses are noisy and thus even if the true 
responses to natural and model-matched sounds are identical, the measured fMRI responses will differ 
somewhat. To account for this fact, we have noise-corrected our NSE metric to provide an estimate for 
what the true NSE would be in the absence of noise, and to ensure that differences between regions 
cannot be explained by differences in voxel reliability. By bootstrapping the noise-corrected NSE, one 
can estimate a distribution over the true NSE values between natural and model-matched sounds, 
which can be used to perform statistics (see “Statistics” below). In practice, we observed similar trends 
with and without correction because voxels responses in both primary and non-primary regions were 
similarly reliable (Figure S4).  
 
Most noise-correction methods assume that the noise-corrupted response reflects the sum of a noise-
free stimulus-driven signal plus noise that is statistically independent of the stimulus-driven signal: 
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(8) 
(9) 
  
where in the context of this experiment, x and y are the measured response of a voxel to two sets of 
sounds (i.e. natural and model-matched sounds), sx and sy are the stimulus-driven responses, and nx 
and ny are the noise that contributes to the response measurements. All noise-correction methods 
require at least two repetitions of the same stimulus so that the effects of the noise can be 
disentangled from the effects of the stimulus-driven signal. By assumption these two repetitions only 
differ in their noise: 
 
(10)    
(11)   
(12)   
(13)   
 
We would like to estimate the NSE of the stimulus-driven component of the uncorrupted responses: 
 
(14) 
 
 
 
 
 
But are restricted to measuring the NSE of the noise-corrupted response. From the equation above, it 
is evident that the NSE depends on three types of statistics: (1) the signal powers (u[sx2] and u[sy2]) (2) 
the signal cross-product (u[sxsy]) and (3) the signal means (u[sx]). The signal means are unbiased by 
the noise, since by assumption the noise is zero mean. The signal cross-product is also unbiased by 
noise: 
 
(15)  
 
 
(we have replaced means with expectations to indicate a theoretical average over infinitely many 
samples, for which the bias is exactly zero). We thus estimate the signal cross-product and means 
using the measured cross-product and means of the data without correction: 
 
(16)  
 
(17)  
 
(18)  
 
Unlike the mean and the cross-product, the signal power is biased upwards by the noise: 
 
(19)  
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The magnitude of this bias can be estimated using the residual error between two measurements of 
the same stimulus, which by definition is due exclusively to noise. The expected power of the residual 
is equal to twice the noise power: 
 
(20)  
 
 
 
 
 
 
Thus, we can estimate the signal power by subtracting off half the residual power from the average 
power of the noise-corrupted data: 
 
 
(21)  
 
(22)  
 
 
Substituting equations 16-18 and 21-22 into equation 14 yields the noise-corrected NSE. The noise-
corrected NSE, like the raw NSE, is invariant to the overall scale of the data. 
 
Noise-correction requires two independent samples of the same stimulus. In our case, each sample 
was itself an average across multiple stimulus blocks, and for each stimulus block, we averaged 
responses across the last four scan acquisitions within the block. Thus, each sample was based on 
many scan acquisitions (between 12 and 28 acquisitions for individual subject maps, corresponding to 
between 3 and 7 stimulus block repetitions; group maps were based on 104 scan acquisitions per 
measurement). In Paradigm I, each natural sound was repeated once per scan while the model-
matched sounds were only presented once. We chose this design so that we could present model-
matched sounds constrained by different subsets of model features, which would have been infeasible 
if each model-matched sound was presented twice. To noise-correct the responses, we made the 
simplifying assumption that the noise power was equal for natural and model-matched sounds, and 
estimated the noise power from responses to the natural sounds (when multiple scan sessions were 
available we first averaged responses across scan sessions). This assumption is natural given that the 
noise by definition reflects the component of the signal that is not driven by the stimulus. Nonetheless, 
we tested whether this assumption is appropriate using the data for Paradigm II, in which we repeated 
responses to both natural and model-matched sounds. In one case, we assumed that the noise power 
was the same, and calculated the noise power using only the responses to natural sounds. In the other 
case, we separately calculated the noise power for natural and model-matched sounds. The results 
were very similar using the two approaches (Figure S16), which validates the assumption that the 
noise power is similar for natural and model-matched sounds. 
 
Our noise correction procedure assumes that the noise is uncorrelated across measurements (this 
assumption was used in equation 15), which is the not the case for fMRI measurements close in time 
(i.e. <5 seconds)94. Here, each measurement corresponds to the average response of the 2nd through 
5th scan acquisition after the onset of each stimulus block. Blocks for the same stimulus were never 
repeated back to back, and even if they were, the two blocks would have been separated by 6.8 
seconds, which is longer than the typical autocorrelation of the BOLD signal94. In Paradigm II, the 
same stimuli were never repeated within a run. Thus, it is unlikely that the autocorrelation of the BOLD 
signal impacted our measures.  
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Evaluating the noise-corrected NSE with simulated data 
Noise-correction inevitably increases the variance of the statistics being corrected, and thus it is critical 
to have sufficiently reliable responses (which is why we collected a relatively large amount of data for 
this study). To assess the reliability needed to perform correction, we performed a simulation in which 
we generated a large number of noisy voxel responses. We based our simulations on Paradigm I in 
which only the natural sounds were repeated, but results were similar for simulations that mimicked 
Paradigm II where both natural and model-matched sounds were repeated. For Paradigm I, we had 
three 36-dimensional response vectors per voxel: two vectors for the 36 natural sounds, which were 
each presented twice per scan session, and one for the model-matched sounds, which were each 
presented once per scan session. We thus simulated three 36-dimensional response vectors (x1, x2, 
y1) for each voxel (x1 and x2  corresponding to the voxel’s response to natural sounds, and y1 to the 
response to model-matched sounds). Each vector was computed as the weighted combination of a 
true, noise-free signal (sx, sy) that was constant across repeated measurements plus additive noise 
that varied across measurements (nx1, nx2, ny1): 
 
(23)   
(24)   
(25)   
 
We used the weights (b) to control the SNR of the voxel with weights closer to 1 resulting in higher 
SNR. We sampled the three noise vectors from a zero-mean, unit-variance Gaussian distribution. Our 
noise-correction algorithms assume that the noise variance is the same for the natural and model 
matched sounds (var(nx) = var(ny)), which we have verified is a reasonable assumption for our data 
(Figure S16). We also assume that the noise samples are independent from each other, which we 
would expect to be the case given that our measurements were spaced far apart in time relative to the 
autocorrelation of the BOLD signal94. Our noise-correction algorithm makes no assumptions about the 
distribution of errors. Here we use a Gaussian distribution for simplicity, but results were similar using 
other noise distributions (e.g. Laplace).  
 
We sampled the true noise-free signals (sx and sy), in a way that allowed us to vary how similar they 
were. We did this in two different ways (referred to hereafter as Simulation 1 and Simulation 2). In 
Simulation 1, we computed sx and sy as the weighted sum of a shared response vector (g) and a 
distinct vector unique to x and y (ux, uy): 
 
(26)   
(27)   
 
Thus by varying c, we could vary the similarity of the voxel responses. We sampled c from a uniform 
distribution, and we sampled g, ux, and uy from a zero-mean, unit-variance Gaussian. The results were 
similar using other distributions (e.g. the Gamma distribution). Changing the means of these 
distributions also had little effect on the results.   
 
In Simulation 2, one of the signal vectors was simply a scaled version of the other, in order to mimic 
weaker responses to model-matched sounds:  
 
(28)   
(29)   
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For each type of simulation, we sampled 100,000 voxel responses. For each sample, we computed 
four statistics: 
 
(1) the NSE between the noisy signals (using just x1 and y1 for simplicity). 
 
(2) the NSE between the true signals (sx and sy), which is what we would like to infer. 
 
(3) our estimate of the true NSE, computed by applying our noise-correction algorithm to the noisy data 
(x1, x2 and y1). 
 
(4) the NSE between two independent measurements of the same stimulus (“test-retest”), which 
provides a measure of the voxel’s noise level (x1, x2). 
 
In Figure S17A&B, we plot the results from Simulation 1. First, we plot the NSE of the noise-corrupted 
data vs. the NSE of the true signals (Figure S17A, left column). Each point represents the NSE values 
for a single simulated voxel response, and the results have been binned by the test-retest NSE values 
of the noise-corrupted signals (from low to high going from top to bottom of the figure), which provides 
a measure of the noise level (lower test-retest NSEs corresponding to less noise). Unsurprisingly, as 
the noise increases, the upwards bias caused by the noise increases. Next, we plot the noise-
corrected NSE values vs. the NSE values for the true signals (Figure S17A, right column). As 
expected, noise-correction removes the bias caused by the noise, at the expense of increasing the 
variance. These effects are quantified in Figure S17B, which plots the median NSE of both the noise-
corrupted and noise-corrected values along with its standard deviation (central 68% of the sampling 
distribution). At high noise levels (test-retest NSE>0.4), noise-correction substantially increases the 
standard deviation of the samples, which makes correction untenable. But for low noise levels (test-
retest NSE <0.4), the method corrects the bias without substantially increasing the standard deviation 
of the sampling distribution. The results are similar for Simulation 2 (Figure S17C&D): at low noise-
levels (test-retest NSE < 0.4) noise correction corrects the bias introduced by noise while only 
modestly increasing the standard deviation. We limited our analyses to voxels with a test-retest NSE of 
less than 0.4, thus remaining in the regime where noise correction is well-behaved. In Paradigm I, we 
measured reliability using natural sounds, since the model-matched sounds were not repeated. For 
Paradigm II, we concatenated responses to natural and model-matched sounds and measured the 
test-retest NSE of the resulting vector. 
 
To directly test whether a test-retest NSE less than 0.4 is sufficient to ensure reliable measures, we 
measured the consistency of our noise-corrected measures across different subsets of data. Noise-
correction requires two independent splits of data, and thus to test the reliability of noise-corrected 
NSE measures one needs at least 4 repetitions of each sound set. For Paradigm II, each subject heard 
between 6 and 15 repetitions of each sound set, which made it possible to perform this analysis. We 
averaged responses within four separate splits of data, each with an equal number of repetitions (e.g. 
assuming 12 repetitions, split 1 included repetitions 1, 5, 9, split 2 included repetitions 2, 6, 10 and so 
on). We then calculated the noise-corrected NSE twice based on splits 1 and 2 and splits 3 and 4. We 
excluded voxels with a test-retest NSE above 0.4 in splits 1 and 2 (because the test-retest NSE was 
only determined using splits 1 and 2, splits 3 and 4 provide a fully independent validation of the 
corrected values). This analysis revealed that the noise-corrected measures were reliable (Figure 
S18). 
 
Noise-correcting response variation and correlation measures 
In addition to the normalized squared error, we also compared responses (in the six response 
components as well as in individual voxels) to natural and model-matched sounds by comparing their 
response variation, as measured by the standard deviation, and by correlating their responses (Figure 
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6E&F and Figure S12). We noise-corrected these measures as well. The variance of a noise-corrupted 
signal is biased upwards by the noise in the same manner as the signal power (equation 19), and thus 
can be corrected by subtracting off half of the residual power (the noise-corrected standard deviation 
can be computed by taking the square root of the noise-corrected variance). The correlation coefficient 
is given by: 
 
 
(30)  
 
 
The covariance, which is defined as the cross-product of demeaned variables, is unbiased by noise for 
the same reason that the raw signal cross-product is unbiased by noise (equation 15), and thus we 
only need to correct the signal variance by subtracting off half of the residual power. This approach is 
similar to the more standard correction procedure of dividing by the square root of the test-retest 
correlation of the measures45,95 (and in the limit of infinite data the two are equivalent). However our 
approach is applicable when the test-retest reliability can only be measured for a single variable (as 
was the case for Paradigm I). MATLAB code implementing these noise-correction procedures can be 
downloaded here: 
 
https://github.com/snormanhaignere/general-analysis-code 
see noise_corrected_similarity.m 
 
We note that the correlation between two variables becomes unstable (and in the limit undefined) as 
the variance of one variable approaches zero, which poses a problem in non-primary regions where we 
observed weak responses to the model-matched sounds. Thus, it was necessary to exclude voxels 
that did not have test-retest correlation to model-matched sounds of at least 0.4, which caused many 
non-primary voxels to be excluded in the maps of Figure S12. This is not an issue with the NSE, 
because the NSE is well-defined as long as either of the two variables being compared have non-zero 
variance. 
 
Model predictions with natural sounds 
Our model assumes that voxels are a weighted sum of time-averaged statistics of the feature 
responses (equations 1-2). To predict voxel responses, we must choose a specific set of statistics and 
voxel weights. For the cochlear model, we used the average magnitude of each filter response’s 
envelope across time as our statistic (yielding 217 features, one per cochlear channel). For the three 
modulation models (temporal, spectral and spectrotemporal), we used the standard deviation of each 
feature’s response across time as our statistic, which we found gave better predictions than the power 
(sum of squares) or variance (sum of squares after demeaning) (we suspect this is because squaring 
the filters leads to a skewed distribution of values which are harder to linearly align with the voxel 
responses). We also included the 217 cochlear features in the modulation representation to make the 
analysis parallel to the model-matching procedure (where all of the modulation-matched sounds were 
also matched in their cochlear statistics). For the temporal modulation model, there were a total of 
2170 features (9 rates x 217 audio frequencies + 217 cochlear channels). For the spectral modulation 
model there were 1736 features (7 scales x 217 frequencies + 217 cochlear channels). For the 
spectrotemporal modulation model, there were 27559 features (9 rates x 7 scales x 2 orientations x 
217 frequencies + 217 cochlear channels). We did not include the temporal-only and spectral-only 
modulation features in the spectrotemporal modulation model because we found this did not improve 
prediction accuracy. We also excluded the DC filter from the temporal modulation model because it 
has zero variance across time. 
 

https://github.com/snormanhaignere/general-analysis-code
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For all of the models tested, we learned the voxel-specific weights across features via ridge regression, 
as is standard in the evaluation of encoding models7,16. Several of the models tested had a large 
number of features, which could potentially make it difficult to map the model features to the voxel 
responses. One option would have been to choose a subset of features or reduce dimensionality with 
PCA before performing regression. However, we have found that such approaches lead to slightly 
worse predictions than using a large number of features and regularizing with ridge41. Prior to 
regression, all of the features were normalized (z-scored across sounds), and a bias/ones term was 
added to account for the mean. For models with both cochlear and modulation features, we separately 
re-scaled the two feature sets so that they would have the same norm and thus contribute similarly to 
the analysis (otherwise the modulation features would dominate because there were many more 
features in the modulation representation).  
 
We used cross-validation across sounds to avoid statistical bias in fitting the weights as well as to 
select the optimal regularization parameter. First, we split the response of each voxel to the 36 natural 
sounds into test and train data. The training data was used to fit the weights and select the 
regularization parameter (details below), and the test data was used to evaluate the predictions of the 
model. We used 4-fold cross-validation, splitting the data into four equally sized sets of 9 sounds. For 
each set, we used the remaining sounds to the fit the model (i.e. the 27 sounds from the other three 
sets), and we averaged the accuracy of the predictions across the 4 folds. We quantified the similarity 
of the measured and predicted responses using the noise-corrected NSE so that the results could be 
compared with the model-matching results (details of noise correction given below). 
 
To select the regularization parameter, we split each training set (27 sounds) again into four 
approximately equally sized sets (7, 7, 7, and 6). For each set, we used the remaining sounds to fit the 
weights for a large range of regularization parameters (2-100 to 2100 with octave steps), and the left out 
sounds to evaluate the accuracy of the model as a function of the regularization parameter. We then 
selected the regularization parameter that led to the best generalization accuracy averaged across the 
four splits (again using the noise-corrected NSE). Finally, given the selected regularization parameter, 
we fit the weights using all of the training set.  
 
We used the same procedure for the cross-prediction analyses, but instead of training and testing on 
natural sounds, we learned the voxel weights on the natural sound responses and tested them on 
model-matched sounds (and vice versa). MATLAB code implementing these regression analyses can 
be downloaded here: 
 
https://github.com/snormanhaignere/general-analysis-code, see: 
regress_predictions_from_3way_crossval.m 
regress_predictions_from_3way_crossval_noisecorr.m 
  
Noise-correcting model predictions 
In the context of model predictions, we want to estimate the ability of the model to predict voxel 
responses to left out stimuli in the absence of noise due to fMRI. Because the predictions are derived 
from noisy fMRI measurements it is necessary to correct for the reliability of both the data and 
predictions41. Each natural sound was presented twice in the experiment. For each repetition and each 
test fold, we measured the response of each voxel to the test sounds and computed a prediction from 
the model using the training sounds (as described above in Model predictions). The same training and 
test sounds were used for both repetitions. This procedure yielded two samples of the voxel response 
and two samples of the predicted response for each of the four test folds. We used these two samples 
to compute the necessary statistics for the noise-corrected NSE (equations 16-18 and 21-22). We used 
our noise-corrected squared error metric to both quantify the accuracy of the predictions and to select 
the regularization parameter. 

https://github.com/snormanhaignere/general-analysis-code
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Voxel decomposition 
Previously, we found that voxel responses to a diverse set of 165 natural sounds could be 
approximated by a weighted sum of a six canonical response patterns (components)45:  
 
(31)  
 
 
where vi and rk are 165-dimensional vectors representing the response of voxel i and component k to 
the sounds tested, and wk,i represents the weight of component k in voxel i. The component responses 
(rk) and weights (wk,i) were jointly inferred by maximizing the non-Gaussianity of the weights, similar to 
classical independent component analysis96. Figure 6A re-plots a summary map of the weights from 
our prior study (averaged across subjects and transformed to a measure of statistical significance).  
 
Six of the subjects from the present experiment also participated in our prior study, and two others 
participated in a similar experiment where we measured responses to a subset of 30 sounds from the 
original 165-sound experiment chosen to best identify the six components (by minimizing the variance 
of the component weights estimated by regression) (all eight subjects were scanned in Paradigm I). 
Four of these 8 subjects were scanned in the earlier version of the model-matching experiment without 
the spectral modulation condition, and thus the component responses to the spectral-only modulation-
matched sounds were measured in just these four subjects. For each subject, we learned a set of 
reconstruction weights (uk,i) that when applied to the voxel responses from these two prior studies 
could approximate the component response profiles: 
 
(32) 
 
We then simply multiplied the voxel responses from the current experiment by the same reconstruction 
weights to estimate the component responses to the natural and model-matched stimuli from our 
current study. The reconstruction weights were estimated using ridge regression, picking the 
regularization parameter that led to the best prediction accuracy for left-out sounds (using the same 
cross-validation procedure described in the previous section to select the weights and regularization 
parameter; we used 5-fold cross-validation here). All voxels with a temporal SNR greater than 30 were 
used (temporal SNR was defined as the mean of the voxel’s timecourse divided by its standard 
deviation; results were similar when the analysis was restricted to voxels from the superior temporal 
plane / gyrus). This analysis was performed separately for every subject, and the inferred component 
responses were then averaged across subjects (this made it possible to use bootstrapping to compute 
standard errors and significance, see Statistics below). We again quantified the similarity of responses 
to natural and model-matched sounds using the noise-corrected NSE. 
 
We note that an alternative approach would have been to use the pseudoinverse of the encoding 
weights (wk,i in equation 31) as our reconstruction weights45, rather than learning reconstruction 
weights via ridge regression. We have consistently found the pseudoinverse approach to be less 
effective than directly learning the reconstruction weights (i.e. the reconstructed profiles more closely 
match the target response profile in left-out data when the reconstruction weights are directly optimized 
for the purpose of reconstruction). The approach of learning separate weights for the purpose of 
reconstruction is standard in the sensory encoding/decoding literature97.  
 
Annular analyses 
We quantified the similarity of responses to natural and model-matched sounds (or model predictions) 
by binning voxels based on their distance to PAC, defined either tonotopically or anatomically. Voxels 
were binned in 5 mm intervals, and we computed the median NSE value across the voxels within each 
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bin. Anatomically, we defined PAC as the center of TE1.1, which is located in posteromedial Heschl’s 
Gyrus. We relied on surface-based alignment to map the TE1.1 ROI to the appropriate anatomical 
region (the presence/absence of duplications along HG is reported in Table S1; defined by inspection 
using the scheme described in Da Costa et al. (2011)52). Tonotopically, PAC was defined by hand in 
individual subjects as the center of the low-frequency reversal of the high-low-high gradient within 
Heschl’s Gyrus51–55. These maps were derived from responses to pure tones presented in six different 
frequency ranges (with center frequencies of 200, 400, 800, 1600, 3200, & 6400). We measured the 
frequency range that produced the maximum response in voxels significantly modulated by frequency 
(p < 0.05 in a 1-way ANOVA across the 6 ranges); the details of the stimuli and analyses have been 
described previously91. Group tonotopy maps were based on a cohort of 21 subjects who were run in 
this tonotopy localizer across multiple studies (6 of the subjects from this experiment were part of this 
cohort)98. The best-frequency maps from each of these 21 subjects were averaged to form group 
maps. Voxels in which fewer than three subjects had frequency-modulated voxels were excluded from 
the map.  
  
Statistics 
All of our statistical tests with the exception of the voxel decomposition analysis (Figure 6) were based 
on the annular analyses described above. We defined primary and non-primary regions using the three 
bins nearest and furthest from PAC, defined anatomically or tonotopically. In every subject and 
hemisphere we observed an increase in the NSE between primary and non-primary regions, which 
was significant using a sign test (p < 0.01). The same was true for comparing NSE values derived from 
model matching and model prediction: in all eight subjects, the increase in NSE values between 
primary and non-primary regions was greater for model-matching than for prediction. 
 
For comparing NSE values between different model-matching conditions, we were only able to 
compute individual-subject maps from the four subjects that were scanned multiple times in Paradigm 
I. All four subjects tested showed the trends evident in the group map (Figure S7), but the small 
number of subjects precluded a random effects analysis. We thus performed statistics on group-
averaged responses, bootstrapping across all 12 subjects scanned at least once in Paradigm I. 
Specifically, we sampled 12 subjects with replacement 1000 times, and averaged responses across 
the 12 sampled subjects in standardized anatomical coordinates. For each sample, we then 
recomputed the voxel-wise NSE values and binned these values based on distance to PAC. This 
procedure yielded 1000 samples of the NSE for each annular bin and condition. For each contrast (e.g. 
NSE full model < NSE cochlear matched sounds), we subtracted the average NSE across all bins 
between the two conditions being compared, and counted the fraction of times this contrast fell below 
zero (yielding the reported p-values). Results were similar when we averaged responses within just 
PAC (the first three bins) where the model performed best. 
  
An obvious downside of statistics based on group-averaged maps is that individual subjects exhibit 
idiosyncrasies in their anatomy99. Component analysis provides one way to overcome this problem by 
mapping all of the subjects to a common response space, an approach that is relatively common in 
EEG studies100 but is less frequently applied to fMRI analyses101. We performed stats on the 
component responses by estimating the response of each component in each subject, and then 
bootstrapping across the eight subjects in which we had component data. We randomly sampled 8 
subjects with replacement 1000 times, averaged the component responses for those subjects, and 
recomputed the noise-corrected NSE. We then contrasted NSE values between components or 
conditions to assess significance.  
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Figure S1. Schematic of model-matching approach. (A) All of the models considered are defined by the response 
timecourse of a set of model features, each computed by filtering a cochleagram representation of sound (illustrated in 
Figure 1A). Our model-matching algorithm collapses these timecourses across time to form a histogram, and then 
generates a sound with the same histograms as a natural sound. Here we plot example timecourses and histograms for 
three example natural sounds (left panel) and corresponding model-matched sounds (right panel). Different natural sounds 
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produce distinct response timecourses and histograms. Corresponding natural and model-matched sounds produce similar 
response histograms, but distinct response timecourses. (B) The model-matched sounds were synthesized by modifying a 
noise signal so as to match the histogram of each feature’s response to a natural sound. The algorithm was initialized with 
Gaussian noise that was initially unstructured, and thus produced feature responses with a different histogram and a 
different time-varying response pattern. The noise sound was then iteratively adjusted so as to match the histogram of each 
feature to the natural sound, while leaving the temporal pattern unconstrained. This figure plots histograms for one example 
model feature in response to a natural, noise and model-matched sound. The histogram matching algorithm is conceptually 
similar to a classic visual texture synthesis algorithm48.  
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Figure S2. Schematic of the sparse scanning paradigm used to present stimuli in the experiment. Each 10-second stimulus 
was subdivided into five 2-second segments. These five segments were presented in a random order with a 1-second scan 
acquisition interspersed between each presentation (1.05 seconds for Paradigm II). A short 200-ms buffer was present 
between stimuli and scan acquisitions. The total duration of each “block” of 5 sounds was 17 seconds (17.25 seconds for 
Paradigm II). The response to a stimulus was computed as the average response of the 2nd through 5th scan acquisition 
after block onset (the first acquisition was discarded to account for the hemodynamic lag).
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Figure S3. Results broken down by paradigm and the presence/absence of smoothing. In Paradigm I, only the natural 
sounds were repeated. In Paradigm II, both natural and model-matched sounds were repeated. A smaller voxel size was 
employed in Paradigm II (2 mm isotropic instead of 2.1 x 2.1 x 4 mm for Paradigm I). (A) Natural vs. model-matched 
dissimilarity maps computed with and without smoothing. Individual subjects are grouped by Paradigm. Subjects are sorted 
by the reliability of their response to natural sounds for Paradigm I and by the reliability of their response to both natural and 
model-matched sounds for Paradigm II (measured using the NSE). (B) Annular analyses computed from data with and 
without smoothing. Each line corresponds to an individual subject and the color indicates the paradigm (orange for 
Paradigm I and green for Paradigm II). NSE values are averaged across the left and right hemisphere since we observed 
similar trends in both hemispheres.   
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Figure S4. Noise correction and voxel reliability. (A) The uncorrected NSE between responses to natural and model-
matched sounds. (B) Corrected NSE maps (same as Figures 3C) replicated here for ease of comparison with the 
uncorrected maps. (C) Test-retest reliability of voxel responses measured with the NSE. Voxel reliability for Paradigm I 
(Group, S4, S5, S6) is based on responses to natural sounds. Voxel reliability for Paradigm II (S1, S2, S3, S7, S8) is based 
on responses to both natural and model-matched sounds (responses to natural and model-matched sounds were combined 
into a single vector, and we computed the NSE for multiple measurements of this vector). Distance-to-PAC analyses are 
shown at the bottom of each panel. Format is the same as Figure 3C&D.  
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Figure S5. Dissimilarity vs. distance from PAC using an anatomical rather than tonotopic definition of PAC. Voxels are 
binned based on their distance to center of anatomical region TE1.158, which is located in posteromedial HG. Format is the 
same as Figure 3D.  
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Figure S6. Dissimilarity maps and annular analyses omitting intelligible speech stimuli. Maps plot the normalized squared 
error (NSE) between voxel responses to natural and model-matched sounds omitting English speech and music with 
English vocals (all subjects were native English speakers). Format is the same as Figure 3C&D.  
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Figure S7. Individual subject maps of dissimilarity between responses to natural and model-matched sounds (NSE) for 
subsets of model features. Format the same as Figure 4B. Only subjects scanned in Paradigm I are shown, since Paradigm 
II did not include model-matched sounds constrained by subsets of model features.  
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Figure S8. Individual subject prediction error maps based on the full spectrotemporal modulation model (maps for subsets 
of model features are omitted due to space constraints, but, like the maps for the full model, they resembled those of the 
group). Format the same as Figure 3C.  
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Figure S9. Prediction accuracy of the full spectrotemporal model using a larger set of 165 natural sounds tested in a prior 
study. Format is the same as Figure 4B&C.   
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Figure S10. (A) Prediction error maps of a model trained on natural sounds and tested on model-matched sounds. (B) 
Prediction error maps of a model trained on model-matched sounds and tested on natural sounds. (C) For comparison, the 
error of the measured voxel response to natural and model-matched sounds is reproduced here (same as Figure 3C&D). 
Annular analyses summarizing the error as a function of distance to tonotopically-defined PAC are shown below each set of 
maps. Data are shown for subjects scanned in Paradigm II for which both natural and model-matched sounds were 
repeated, which made it possible to noise-correct the predictions.  
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Figure S11. Plots showing component responses to sounds constrained by subsets of model features, as well as the full 
model (Figure 6 only shows results from the full model). (B) Normalized squared error between natural and model-matched 
sounds. (C) Ratio of the standard deviation of responses to model-matched and natural sounds. (D) Correlation of 
responses to natural and model-matched sounds. Format is the same as Figures 6C-6F.   
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Figure S12. Examination of the nature of the divergent responses to natural and model-matched sounds. (A) Whole-brain 
maps plotting the variation in responses to natural vs. model-matched sounds, measured as the ratio of the standard 
deviation of responses to the two sound sets. Cool colors indicated less response variation for model-matched sounds. 
Distance-to-PAC summary analysis is plotted below. (B) Maps of the Pearson correlation between responses to natural and 
model-matched sounds with distance-to-PAC analysis below. All of the measures have been corrected for noise. Analysis is 
based on data from Paradigm II in which we measured responses to natural and model-matched sounds an equal number 
of times. For the response variation maps (panel A), we included all voxels with a reliable response across both natural and 
model matched sounds (NSE < 0.4). For the correlation maps (panel B), we excluded voxels that did not have a reliable 
correlation to model-matched sounds (r < 0.4), as was the case in many non-primary voxels due to weak responses. For 
such voxels, it is difficult to estimate a reliable correlation, since the correlation is undefined as the variance of one variable 
goes to zero.   
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Figure S13. Effect of the fMRI averaging window on the dissimilarity of responses to natural and model matched sounds. 
Each stimulus was 10-seconds in duration, but was split-up into five 2-second segments (see Figure S2). After each 
segment a single scan acquisition was collected. Analyses in the main text were based on the average response of the 2nd 
through 5th acquisition after the onset of each stimulus block (first acquisition was discarded to account for the 
hemodynamic delay). Here we test the sensitivity of the results to the averaging window by restricting the analysis to data 
averaged across acquisitions 2 and 3 (panel A) or 4 and 5 (panel B). Compare with Figures 3C&D.  
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Figure S14. Validation of the model-matching synthesis procedure via comparison of time-averaged statistics for natural 
and model-matched sounds. (A) Cochleagrams for a natural sound (a speech excerpt) and four corresponding model-
matched sounds. (B-E) Each model was defined by a set of feature responses. This figure plots a time-averaged measure 



 59 

of the amplitude of each feature’s response to the example natural and model-matched sounds shown in panel A. The right 
side of the panel plots the correlation of the filter amplitudes across all model filters for corresponding natural and model-
matched sounds. Each point corresponds to a single pair of natural/model-matched sounds. (B) Amplitude of each cochlear 
frequency channel envelope averaged across time. Cochlear channel power is matched in all four conditions, as 
desired/expected. (C) Temporal modulation amplitude (standard deviation of each feature across time) for example natural 
and model-matched sounds. Modulation amplitude is plotted as a function of the filter’s preferred audio frequency and 
temporal modulation rate. (D) Spectral modulation amplitude plotted as a function of the filter’s preferred audio frequency 
and spectral modulation scale. (E) Spectrotemporal modulation amplitude plotted as a function of temporal modulation rate 
and spectral modulation scale for an example audio frequency (200 Hz).   
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Figure S15. Comparison of how well the natural and synthesized (model-matched) sounds are matched when evaluated 
using spectrotemporal filters that differed from those used to generate the model-matched sounds. In each case, we plot an 
example filter from the model (left), the amplitude (standard deviation) of the filter responses as a function of the temporal 
rate and spectral scale for an example audio frequency (200 Hz) (middle), and the correlation of the amplitude across all of 
the filters for the natural and model-matched sounds (right) (format similar to Figure S14E). (A) The original 
spectrotemporal filters from Chi et al. (2005) that were used to constrain the model-matched sounds (same as Figure 
S14E). (B) Spectrotemporal filters with randomized temporal and spectral phase. (C) A model with narrower bandwidths 
and more filters to compensate. (D) A random filter basis with variable temporal and spectral extent. In all four cases, the 
measured modulation power is similar for the natural and model-matched sounds. This suggests that voxels with similar 
responses to natural and model-matched sounds are compatible with a wide range of spectrotemporal modulation filters, 
and that a wide range of such filters are ruled out as descriptions of voxels that give different responses to natural and 
model-matched sounds, like those we observed in non-primary regions.  
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Figure S16. Comparison of noise correction using noise estimates exclusively from responses to natural sounds or from 
both natural and model-matched sounds. Noise-correction required estimating the power of the noise for natural and model-
matched sounds. For Paradigm I, only responses to natural sounds were repeated in each scan. Using data from Paradigm 
II, we tested whether it is necessary to separately estimate the noise power for natural and model-matched sounds, or 
whether one can assume they are equal. (A) Noise-corrected NSE values computed by assuming the noise power for 
natural and model-matched sounds is equal, and using only responses to natural sounds to compute it. (B) Noise-corrected 
NSE values computed by separately estimating the noise power for natural and model-matched sounds (same maps as 
those in Figure 3C). Results are similar in both cases.  
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Figure S17. Results of noise-correction simulations. (A) Each dot corresponds to a single simulated voxel. The true NSE 
value is plotted against the noise-corrupted and noise-corrected NSE values. Results have been grouped by the reliability 
of the simulated voxel responses as measured by the test-retest NSE of the voxel responses (from high to low reliability 
going from top to bottom). (B) The median and standard deviation of the samples. (C&D) Same as for panels A&B, but for 
Simulation II (see Evaluating the noise-corrected NSE with simulated data in the Methods for details of the two simulations).  
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Figure S18. Test-retest reliability of the noise-corrected NSE (measured across splits of fMRI data). Each dot plots the 
noise-corrected NSE for a single voxel. The Spearman rank correlation is shown at the top of each plot for each subject. 
Results are shown for subjects scanned in Paradigm II, for which there was sufficient data to compute two separate 
estimates of the noise-corrected NSE.  
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Subject Hemisphere Duplications along HG 
S1 Left Partial Duplication 
S1 Right Single Gyrus 
S2 Left Single Gyrus 
S2 Right Single Gyrus 
S3 Left Partial Duplication 
S3 Right Single Gyrus 
S4 Left Partial Duplication 
S4 Right Single Gyrus 
S5 Left Partial Duplication 
S5 Right Partial Duplication 
S6 Left Partial Duplication 
S6 Right Complete Duplication 
S7 Left Single Gyrus 
S7 Right Complete Duplication 
S8 Left Partial Gyrus 
S8 Right Complete Duplication 
 
Table S1. The presence/absence of HG duplications for each hemisphere of each subject that was scanned multiple times 
in the experiment. Categories were determined by inspection using the scheme described in Da Costa et al. (2011)52 
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