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ABSTRACT

Scaling studies of rainfall are important for the conversion of observations and numerical model outputs
among all the various scales. Two common approaches for determining scaling relations are the Fourier
transform of observations and the Fourier transform of a correlation function using the Wiener—Khintchine
(WK) theorem. In both methods, the observations must be wide-sense statistically stationary (WSS) in time or
wide-sense statistically spatially homogeneous (WSSH) in space so that the correlation function and power
spectrum form a Fourier transform pair. The focus here is on developing an explicit understanding for the
requirement. Statistically heterogeneous (either in space or time) data can produce serious scaling errors. This
work shows that the effects of statistical heterogeneity appear as contributions from cross correlations among
all of the distinct contributing rainfall components using either method so that the correlation function and its
FFT do not form a transform pair. Moreover, the transform then also depends upon the time and location of
the observations so that the “observed” power spectrum no longer represents a ‘‘universal’ scaling function
beyond the observations. An index of statistical heterogeneity (IXH) defined in previous work provides a way
of determining whether or not a set of rain data may be considered to be WSS or WSSH. The greater IXH
exceeds the null, the more likely the derived power spectrum should not be used for general scaling.
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Numerical simulations and some observations are used to demonstrate all of these findings.

1. Introduction

Observations and numerical models produce results on
many different usually incompatible scales from fractions
of a meter up to kilometers. How can one then incorpo-
rate observations from, say, those of a single rain gauge
into forecast models often having resolutions on the order
of kilometers? Likewise, how can the products from
these numerical models be downscaled to fractions of
a kilometer for comparisons, say, with a network of rain
gauges? Hence, scaling is an important topic in many
rainfall studies (e.g., Berndtsson and Niemczynowicz
1988; Ochoa-Rodriguez et al. 2015; de Lima et al. 2012).

These objectives are often approached using power
spectra, which makes it possible to scale over a range of
dimensions. There are different methods for deriving
such power spectra. One is to take the direct Fourier
transform of observations and then to compute a power
spectrum by multiplying this transform by its complex
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conjugate. This is the so-called direct Fourier trans-
form (DFT) method. An alternative route to the
power spectrum that may be statistically superior is to
take the Fourier transform of correlation functions
using the Wiener-Khintchine (WK) theorem (Wiener
1930; Khintchine 1934). The latter shows that the cor-
relation function can be decomposed into its spectral
components (power spectrum) using a Fourier trans-
form such that as the lags of the correlation function
decrease, the corresponding wavelengths of the Fourier
components contributing to the function increase. The
‘“power”’ or magnitude of each component is equivalent
to the zero-mean variance contribution at each partic-
ular wavelength. Specifically, for real valued functions
and in terms of time, the autocorrelation function of a
variable Y can be expressed as

0

p(6) = JixY(t)Y(t +7)dr (1)

for delay 7. What the WK theorem shows is that the
Fourier transforms

b= [ IYOFexpemimar

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).


mailto:arjatrjhsci@verizon.net
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

1064

and

SO =1YQ) =] pesp(-2miydr (2b)

form a Fourier transform pair so that one can be con-
verted into the other, where S(f) is the so-called power
(variance) spectrum and i represents the imaginary
number. The same applies to spatial calculations as well.

Regardless of methodology, however, any valid power
spectrum can only be defined under conditions of sta-
tistical homogeneity; that is, the mean value and vari-
ance remain constant in time [wide-sense statistical
stationarity (WSS)] or constant in space [wide-sense
statistically homogeneous (WSSH)]. Under these con-
ditions, the Fourier transform of a correlation function
and the variance or power spectrum form a Fourier
transform pair whether using the DFT approach or the
WK theorem. Another version of this general approach
has been developed recently for the numerical simu-
lation of nonstationary and spatially heterogeneous
datasets (defined below) using a short-spaced Fourier
transform (SSFT) (Nerini et al. 2017). In addition, in-
sofar as one accepts the multifractal characterization of
rain and insofar as one is willing to ignore the effects of
advection on the measurements, Gires et al. (2014)
provide an example of power-spectral downscaling in
order to compare radar and rain gauge measurements
at the same spatial scale.

The importance of statistical stationarity is empha-
sized by many investigators such as Koutsoyiannis and
Montanari (2015) and Montanari and Koutsoyiannis
(2014) and others. Here we note that observations are
realizations of a statistical and physical process having
defined characteristics. While it is the process that pos-
sesses the statistical characterizations such as statistical
homogeneity in time or space, an observer usually has
access to only one realization of a statistical process vis-
a-vis a set of observations. It is, therefore, usually as-
sumed explicitly or implicitly that the data reflect the
statistical characteristics of the process itself so that
we may speak about the statistical characterization of
the data directly since that is all the information usu-
ally available. This is done here as well. Furthermore,
whether a series of observations may be considered to
be stationary or not will depend upon the length of the
observations. On one extreme some argue that because
of climate change, nothing is stationary (Milly et al.
2008). This is clearly an exaggeration when considering
only, say, a few hours of data when the rate of climate
change is negligible compared to the variability of the
rainfall itself. On the other hand there are those who
consider stationarity still to be a vital assumption for
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the analyses of hydrological data (Matalas 2012). The
purpose here is to offer an approach for detecting when
nonstationarity may be a problem especially in rela-
tively short-term observations of rainfall rates.

In this paper, therefore, and in contrast to previous
work analyzing real data, the focus here is on developing
an explicit understanding of why WSS (WSSH) is re-
quired for the correct application of the WK theorem.
Specifically, we examine in detail why the thoroughly
established WSS (WSSH) requirement is necessary for
generating a valid power spectrum by examining the
Fourier transform between the correlation function and
its Fourier transform. In the DFT approach, a series of
observations is Fourier transformed to yield a vari-
ance spectrum. This spectrum can then be inverse
Fourier transformed to yield a correlation function.
To be a transform pair, however, the Fourier trans-
form of this correlation function must then again yield
the same spectrum. This will be the case if the data are
WSS (WSSH). Whether one determines the FFT
spectrum first or the correlation function first, all valid
power spectra must still satisfy this transform pair
requirement; that is, they must satisfy the WK theo-
rem. What is new here is not the well-established re-
quirement of WSS (WSSH) for valid power spectra,
but rather a more detailed and hopefully illuminating
exploration of the mathematics of why this is so. In
this work, this is achieved using numerical simulations
so that conditions can be controlled explicitly. In do-
ing so, we use the technique developed in Jameson
etal. (2018). Three applications to real data are briefly
illustrated in the appendix, but many more examples
may be found in Jameson et al. (2018).

Of course, many investigators have calculated var-
iance spectra via the WK theorem for various scales in
rain (e.g., Crane 1990; Kiely and Ivanova 1999) using
the Fourier transform of the relatively easily observed
autocorrelation function. Some investigators are well
aware of the need for WSS or WSSH (e.g., Pegram and
Clothier 2001; Sinclair and Pegram 2005; Krajewski
et al. 2003), but many others have not, so that the in-
terpretation of their findings is arguable particularly
since many of them are based upon radar observa-
tions, which have their own filtering effects (Jameson
2017). However, the WK theorem provides a conve-
nient route to the power spectrum from observations,
while, after proper filtering, the power spectra can, in
turn, yield autocorrelation functions useful for inter-
preting measurements collected over finite temporal
or spatial domains of different sizes including net-
works and by remote sensors (Jameson 2017).

As discussed above, however, the validity of the auto-
correlation function and the variance spectrum forming
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a Fourier transform pair depends upon the data being
WSS (WSSH) (Wiener et al. 1997). In rain, strict sense
stationarity (constancy of all moments of a distribu-
tion) likely never occurs (Nason 2006). Even then,
though, it is not easy to detect when the assumption of
WSS (WSSH) might be valid. Most approaches to-
ward determining stationarity (homogeneity) that are
found in the literature depend upon developing a
statistical model of the data. However, sometimes one
model works for one dataset, but not for other (Nason
2006; Serinaldi et al. 2018). Moreover, all such models
make assumptions about the statistical homogeneity
data, which may or may not be valid.

In a set of observations, there are random fluctuations
superposed on values correlated in time and/or space.
Furthermore, even though every set of observations has
one average value, it may be an average over more than
one ‘“global” mean value each contributing to the ob-
servations. Here the word “‘global’ is used to imply over
an entire set of observations as opposed to local appar-
ent mean values arising from correlated fluctuations
around the global mean values. As discussed in Jameson
et al. (2018), these components can be separated. Hence,
an alternative approach for determining whether or
not a set of data is likely WSS (WSSH) or not can be
defined only using the available data without assump-
tions, as recently presented by Jameson et al. (2018);
namely, does the data have more than one global mean
value? And second, does the variance of the data
change within the set of observations? First, changes in
the variance can be detected using the technique de-
scribed in Anderson and Kostinski (2010, 2011) and
described further below. Second, the appearance of
more than one global mean value can be determined
using a Bayesian inversion technique (Jameson 2015;
Jameson and Heymsfield 2013, 2014; Jameson et al.
2018; Jameson 2007). Hence, the data can be used di-
rectly to estimate whether or not a set of observations is
likely WSS (WSSH) because either there is more than
one global mean value and/or the variance of the data is
changing in time or space. Consequently, an index of
statistical heterogeneity (IXH) has been developed
(Jameson et al. 2018) for evaluating whether or not a
time series of rainfall measurements may be considered
to be temporally statistical stationary or spatially sta-
tistically homogeneous.

There is also the alternative approach of simply
determining whether or not the calculated correlation
function and the DFT-calculated variance spectrum
form a Fourier transform pair. This is not necessarily
as trivial as it sounds because of fluctuations and
noise. However, this approach as well as that using
IXH are both investigated below. The IXH approach
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for identifying WSS (WSSH) at least has an accounting
for noise. Nevertheless, in both cases the source of de-
viations from WSS (WSSH) caused by the correlation
functions are the same, but they are approached from
different directions as discussed further below.

Moreover, it is not obvious when or how significant
deviations from statistical homogeneity become impor-
tant. In this work we begin to address this question in two
ways. First it is argued and shown that when the data are
statistically heterogeneous, the Fourier transform of the
autocorrelation function cannot yield a true power (vari-
ance) spectrum so that it should not be used to scale the
variability of rain except for this one specific set of ob-
servations. Second, it will be shown that this transform is
then dependent on the initial time or location thus ne-
gating any potential generality. Third, it will be shown how
the magnitudes of Fourier transforms of the autocorrela-
tion functions are altered when there are regions within
the sampling domain having different global mean values.
The subsequent section after that will consider detailed
numerical examples demonstrating these findings. Exam-
ples using real data are included in the appendix.

2. Background
a. Setting the stage

There are two important characteristics that a Fourier
transform of the autocorrelation function must possess
in order to be considered a power spectrum useful for
scaling. The first is that it 1) does not depend upon po-
sition either in time or space. This makes sense with
regard to scaling because if it were not true then it would
lack any universal applicability so that the scaling would
become different at every location and time. The second
is that 2) the transform pair between the autocorrelation
function and the power spectrum remain valid. As we
will demonstrate later, this can only be true when the
variance is constant throughout and there is only one
global mean value in the set of observations. As an aside,
it should be remembered, however, that statistical mix-
tures have just one peak in the distribution of mean
values and constant variance even though they can have
multiple components contributing randomly in a spatially
and/or temporally integrated (nonlocalized) manner to
the observations. Consequently, statistical mixtures are
WSS (WSSH). Let us now first consider item 1. In doing
so, only one simulation for each set of conditions is con-
sidered since the objective of this study is to highlight the
factors affecting the resulting spectra when conditions
are not WSS rather than to present a study of rain itself.

Real rainfall is sometime purported to follow a log-
normal distribution (Biondini 1976) based solely upon
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rainfall observations. Although Kedem and Chiu (1987)
provide a more theoretical justification, Jameson and
Kostinski (1999) argue, using the central limit theorem,
that since rainfall is additive rather than multiplicative [as
implied by a lognormal distribution used by Seed (2003)
for describing observations], rainfall more likely follows
a gamma distribution, which is found to work quite well
for many observations. There are, of course, many other
much more complex multifractal models of rain as well,
which may or may not be valid (e.g., Serinaldi 2010).
However, since this work is not really a study of rain, per
se, for simplicity, we just use a Gaussian distribution. We
also only focus on temporal data realizing that the results
also have an analogous meaning in space. In Fig. 1 two
joined regions of Gaussian-distributed rainfall having
well-defined means and variances are illustrated. Each
region has a different decreasing exponential correlation
length (X)) or time to decorrelation (<), different mean
value (u), and different variances (¢%). The first is char-
acterized by J; = 29, u = 10, and o? = 2.5, while the
second has a shorter decorrelation length, larger rainfall
rate, and larger intrinsic variance, 3, = 5, 0 = 15, and
o = 6. The red box represents the sampling domain with
the leftmost edge located at a starting time of 7, =
400min as discussed further below.

Let us consider some time series of a statistically ho-
mogeneous set of measurements represented by the
function, f(¢) = 6(¢) + w, where u is the mean and & is the
zero-mean random deviation around that mean. Now
suppose that the observations are drawn from a set of
N distinct homogeneous components denoting the ith
component by f;(f) each having their own mean value u;
and deviation §,(¢). Also suppose that this component
contributes fraction F; to the total observations. When
a correlation is computed, the data are assumed to be
statistically homogeneous having a single global mean
value u, over the entire PDF u, = Y F;u; where the
summation is over all the contributing components. This
mean must then be subtracted before computing the
correlation function. For an infinite real value domain,
the correlation function p can be expressed as the con-
volution, f f. After expanding the terms and noting that
the average §; = 0 we then have that the total correlation
function p7(7) would be

p, (1) =<§,Fl8(t)+c]*2F 5(t+7)+c]>

= Zsz (r)+2 2 Z F,Fcov(5,,8)

i=1 j=i+1

+2§‘, ZFFcc-i-ZFZ 3)

i=1 j=i+1
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F1G. 1. Simulated data for two joined Gaussian distribution of
rainfall rates having different mean values as discussed in the text.
The red box is the 1000-min sampling domain that is moved across
the entire set of data with the origin as indicated. As the sampling
domain moves in time, the correlation functions and their Fourier
transforms also change.

where < > denotes averaging and after defining ¢; =
Wi — Mg p; is the autocorrelation function for the ith
component, 7 is the lag time, and the subscript 7" denotes
total value. The correlation function then consists of a
WSS term [the first summation on the right-hand side of
(3)], a convolution term [the second summation on the
right-hand side of (3)], and mean values terms [the last
two terms on the right-hand side of (3)].

If one were to blindly take this correlation functions
and perform a Fourier transform in accordance with the
Wiener—Khintchine theorem one would then have

ZF2 (w)+22 2 F.F

i=1 j=i+

+5(w)<22 2Fch+2F2 2) 4)

i=1 j=i+l

S, (w) = lcov(s,.5)]

where § represents the Fourier transform, S7is the total
spectrum, and 8(w) represents the Dirac delta function.
Since each component is WSS, the §; are the power
spectra for the distinct separate components, and cov
is the covariance function. If the time-series compo-
nents were statistically independent such that the
mean values of cov(§;, §;) would be zero, the Fourier
transform ¥[cov(5;, 6;)] need not be null in general
unless the fluctuations were nearly statistically in-
dependent. If that were the case, then S, would be
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Sr(w) = YN F2Si(w) +8(w) X DC while the inverse
Fourier transform of Sy would just be p,(7)=
SN F2p,(r) if the spike at @ = 0 [the so-called direct
current (DC) with no frequency spike] were filtered out
first. Under these circumstances the requirements for
applying the Wiener-Khintchine theorem would be
satisfied. However, in general these conditions are un-
likely to be satisfied. Moreover, there is also another
fundamental reason why S7cannot be a power spectrum
as discussed in a moment.

Before proceeding, however, consider four cases,
three of which are to be illustrated in a later section. In
case 1, consider a WSS system of one component. In
that case, ¢; and F, both equal zero so that (3) and (4)
simplify to identities as they should. In case 2, suppose
we have a system having two distinct components
with a constant mean value for both components hav-
ing the same correlation functions (i.e., the variances
are distributed the same across frequencies) but each
component is associated with a different total variance
(i.e., 81 # 86, mostly at longer lags) but with F; = F, =
1/2. In that case, ¢; = ¢; = 0 so that (3) becomes
pr(1) =112 p(1) + 1/2cov(8,, 6,) so that (4) simplifies to
St(w) =1/28(w) + 1/2F[cov(81, 67)]. Consequently, the
Fourier transform of pr(7) # S(w) and the inverse
Fourier transform of Sy(w) # p(7). Hence, this case is
not WSS. In case 3, we take a two-component system
having the same mean value but different correlation
functions so that the variance (fluctuation) spectra are
different. The results will be like those for case 2.

Sometimes, however, in a set of observations, the
rainfall can still come from more than one distribution
function yet remain statistically homogeneous. While
each component makes a contribution to the resulting
distribution function p(R) at each R, the distribution of
these mean values and variance does not depend upon
origin; that is, the same distribution of mean values
and variance are applicable everywhere, just like a
well-mixed cake batter. The p(R) is then referred to as a
statistical mixture (e.g., Feller 2009, p. 55). This con-
trasts with statistical heterogeneity in which the distri-
bution of mean values and variance does depend upon
location (origin) just like a cake batter awaiting mixing.

In case 4, we consider a two-component system with
different mean values but the same variance throughout,
that is, just one correlation function. This is often re-
ferred to as a homogeneous statistical mixture. Then the
last two terms in (3) [and, therefore, in (4)] combine
(because the covariance is unity) to be zero by the def-
inition of u, while the first two terms reduce to p7(7) =
p(7) so that SH{w) = S(w). Consequently, p7{(7) and
S7(w) form a Fourier transform pair; that is, the statis-
tical mixture is WSS. For other more general cases, the
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FI1G. 2. The total power spectra (S7) as functions of the starting
position of the sampling domain as it moves across the entire domain
in Fig. 1. Note that at 7, = Omin, the spectrum is only that of
component 1, Sy, while at 75 = 1000 min, S7 = S,. At the two ends, the
data are statistically homogeneous, while statistical heterogeneity pre-
vails in between those extremes. This produces power spectra, which
change with start time inconsistent with statistical homogeneity.

relations (3) and (4) then describe what happens when
there are multiple distinct contributing components
having different mean values and correlation functions.
We will consider several examples in the next section.

However, to start with, consider a simplified system in
Fig. 1 described previously. Each component was then
each exponentially correlated using the method of Fox
et al. (1988) with decorrelation lengths of 29 and 5 min,
respectively. This methodology has been used through-
out this work.

Hence, as Fig. 2 illustrates for the data in Fig. 1, the
final total spectrum S; depends upon starting time.
However, power spectra must be independent of start-
ing time if they are to represent useful and general
scaling relations as pointed out by others (Dechant and
Lutz 2015; Leibovich and Barkai 2017). Therefore, be-
cause of this time dependence, S cannot represent a
power spectrum.

This can also be illustrated by looking (Fig. 3) at the
total variance derived by integrating S, over all the
different spectra for the different F. Obviously the total
variance also depends upon the starting time, which
is not consistent with statistical stationarity. Equiva-
lently, by replacing time with distance, the total vari-
ance would also depend upon the location so that all
these results are also inconsistent with statistical spatial
homogeneity. Furthermore, the covariance becomes a
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significant component that will distort any inverse
Fourier transform attempting to extract a correlation
function. Thus, WSS statistical stationarity is required
if the Fourier transforms of correlation functions are to
be useful power (variance) spectra. Hence, the pres-
ence of more than one component having different
fluctuation spectra in a set of observations destroys any
possibility of S being a power spectrum having any
generality.

It becomes essential, then, to determine whether or
not a set of observations possesses any potential gener-
ality by determining whether or not it is statistically
homogeneous in the wide sense. One such approach
developed by Jameson et al. (2018) is reviewed briefly in
the next section and illustrated using the data presented
in Fig. 1. We will then look more carefully at several
different cases as a representative initiation into the
exploration of the sensitivity of this scheme to different
mean values and to changing variances. Results from the
direct FFT approach are also discussed.

b. The definition and an application of the statistical
heterogeneity index

We begin by considering one definition of an IXH.
Many such definitions are possible, of course, but this
one is chosen because of its dependence on the num-
ber of detected contributing components and because
it depends upon changes in the variance of a vari-
able, each a requirement for statistical heterogeneity.
Specifically, we use the definition in Jameson et al.
(2018):

RD

IXH = {H( 1-5%1) ( L. ail) HN‘D}- )

Here, H is the Heaviside unit step function, RD,, is the
relative dispersion of the record-counting parameter
a used to detect changes in the variance as discussed
below, and N, is the number of detected contributing
components in a series of observations, also explained
below, and is always =1. As discussed more completely
in Jameson et al. (2018) statistical heterogeneity is in-
creasingly likely as IXH increases beyond zero. How-
ever, statistical mixtures can also be identified when
N.=1but RD, =~ 0.

The IXH is a combination of observations of two
factors. First, it accounts for the presence of more than
one component (N,) in the distribution of mean values
that violates one of the requirements for the observa-
tions to be WSS (WSSH). The second factor is the de-
tection of changes in the variance of the variable as
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FI1G. 3. The total variance integrated over the spectra such as in
Fig. 2 showing that the total variance changes with starting time
and that the Fourier transform of the covariance function of the
observed correlation function contributes significantly to the total
variance. For statistically homogeneous data, there is no co-
variance function and the total variance is independent of starting
time or spatial position.

measured by record counting («) discussed in greater
detail below. Since « is a random variable, it will exhibit
fluctuations so that a standard for statistical meaning-
fulness must be established. This is done using a relative
dispersion defined here to be RD, = a/o,. Conse-
quently, assuming a normal distribution (as observed in
data), about 90% of the statistical fluctuations of a will
produce a relative dispersion RD,, = a/o, = 1.5 so that
only those values >1.5 are considered indicators of
statistical heterogeneity. Such a value indicates a sta-
tistically meaningful change in the variance in violation
of the second requirement for WSS (WSSH).

To elaborate further, a Bayesian inversion method has
been developed for estimating the probability distribu-
tion of the mean values, p(C), of a series of observations
(Jameson 2007; Jameson and Heymsfield 2013, 2014;
Jameson 2015). While developed in greater detail in
those references, we start with an assumed distribution
such as a Gaussian. We then assume a range of mean
values C. Each observation can then be associated with
each of these mean values at a computed probability. By
summing these probabilities over all the observations
and after normalization, we then end up with the likely
distribution of these mean values p(C). The most likely
mean values are those at the peaks in the distributions.
As discussed further in Jameson et al. (2018), these
peaks can usually be identified using first and second
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derivatives (Arteaga-Falconi et al. 2015; Slodzinski et al.
2013) especially when considered in conjunction with
the structure of p(C) itself. These results are not sensi-
tive to correlations because p(C) does not depend upon
whether the observed values are clustered or spread out
in time or space.

With regard to the variance, « is the summation of the
record minima and maxima of the fluctuations in the
forward direction minus the record minima and maxima
of the fluctuations in the backward direction along, say, a
time series (e.g., see Fig. A2a) as discussed in detail in
Jameson et al. (2018) for both one- and two-dimensional
data. Specifically, &= (Ng + Np)pya — (Vi + NL)pwas
where Ny are the number of record highs, N are the
number record lows, and the subscripts fwd and bwd
denote the forward and backward directions, respec-
tively. If the variance of the variable is constant, & = 0.
Assuming that the effects of correlations and trends
have been removed, deviations from the null are indic-
ative of changes in the variance throughout the domain
consistent with statistical heterogeneity.

Anderson and Kostinski (2010, 2011) showed that
a appears to be approximately normally distributed, and
that its variance depends upon the number of records.
This was expressed explicitly in Jameson et al. (2018),
where it was shown that the standard deviation o for the
distribution of « is given by

o, =[4In(N) —4.271]"%, (6)

where N is the number of observations as illustrated
in Fig. 4. A minimum requirement for WSS (WSSH) is
that N. = 1, that is, that there is only one peak in the
distribution of mean values and that & = 0.

Returning once again to the example in Fig. 1, we now
plot N, RD,, and IXH as functions of the starting time,
Ty in Fig. 5. Starting with the statistically homogeneous
conditions when Ty = O min and ending with the statis-
tically homogeneous conditions when 7 = 1000 min, we
see that as soon as T, reaches 100 min, statistical het-
erogeneity is detected because N, increases from 1 to 2
while RD,, increases to values =1.5. As one might have
anticipated, the variability in IXH is due entirely to
fluctuations in RD,. Note that for the initial point in
Fig. 5, IXH = 0.2 even though the data are WSS. Ac-
cording to Fig. 4, this should only happen 3% of the
time, but clearly it still can happen. Hence, IXH as de-
fined by (3) is not always going to be fail proof because
of statistical fluctuations. When the values of IXH are
small, one can always try using the DFT approach to
verify the finding, as discussed later.

For completeness, Fig. 6 illustrates the distributions of
the mean values deduced using the Bayesian technique
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FIG. 4. When the number of detected components is unity (N, = 1),
fluctuations in « can make statistically homogeneous data appear
to be statistically heterogeneous. The probabilities that the data
were really statistically heterogeneous (black line) and the prob-
abilities that the data were really statistically homogeneous (red
line) are plotted as functions of the calculated IXH. Hence, as IXH
increases, the likelihood that the data are statistically homoge-
neous decreases.

described above. The p(C)s at T, = 100, 600, and
900 min are plotted. The peaks are associated with the
most likely values as determined by two methods,
namely, where the first derivative is zero (standard
calculus) and the second where the second derivative
is a negative minimum (Arteaga-Falconi et al. 2015;
Slodzinski et al. 2013). The method of detection of
each component is also indicated. This illustrates the
importance of the second derivative detection when
the contribution from a component to the total time
series is only 10% of the time series.

While in this example the contribution of N, to IXH is
obvious, it is the variance that produces the fluctuations.
These fluctuations depend upon the intrinsic variability
of the quantity itself and the variability arising from of
how the data are distributed in time or space. We begin
to explore these two sensitivities in the next section.

3. Other examples

As a reminder, the focus of this work is on exploring
the mathematical details of why WSS or WSSH are re-
quired for deriving true power spectra often used in
scaling studies of rain. This must be done using simula-
tions. However, while Jameson et al. (2018) provide
many examples of the application of IXH to real data,
for completeness here we also provide an example of
the analysis of real data in the appendix for interested
readers.
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6 Statistically Heterogeneous

IXH

Statistically Homogeneous

0 . L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

T,, minutes

FIG. 5. The changes in the relative dispersion of @ (RD,) (black),
the number of detected components N, (blue), and the resulting
IXH (red) plotted as functions of starting time showing that the
data are statistically heterogeneous at all starting times except at
the ends when the data are statistically homogeneous (stationary).

Again, however, the purpose of this section is to il-
lustrate the effects of statistical heterogeneity, arising
for different reasons, on the power spectra as well as on
the correlation function. To simplify, we use (3) and (4)
but only for an equally divided two-component time
series. For comparison, we also compute the spectra and
correlation functions for statistical mixtures of the two
distinct components in order to highlight the departures
of the spectra and correlations from those when condi-
tions are not WSS.

In the first example, the histogram in Fig. 7a does not
show anything that suggests a deviation from statistical
homogeneity. However, we have two distinct compo-
nents, each with the same mean value so that N, = 1,
each with the same correlation length X; = 29 min, but
with the first and second components having different
intrinsic variances of 2.5 and 6 mm?>h 2, respectively, as
discussed above as case 2. As illustrated in Fig. 7b, while
each component is statistically homogeneous having
IXH = 0, when they are joined the data are now statis-
tically heterogeneous, simply because of the change in
the variance across the time series.

Moreover, we then compute the respective power
spectra as illustrated in Fig. 7c. The S7 is the Fourier
transform of the observed correlation function for the
data in Fig. 7b. This can be compared to the Fourier
transform had the data been a true WSS statistical
mixture [ ie., Sy(w) = Y, F2S;(w)], having no cov or
constant terms in (3) and (4). Obviously, the differences
between the two spectra are significant, illustrating that
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FIG. 6. Distributions of the mean values determined from the
Bayesian inversion showing which techniques led to the identifi-
cation of the peaks associated with distinct contributing compo-
nents using the first and second derivative approaches explained in
the text. Even when the data contained only 10% of a component,
the two peaks could be identified in this example.

something as straightforward as a change in the intrinsic
variance as a function of time or distance can profoundly
affect the power-spectra characterization of the data.
Hence, any scaling power law deduced from S for the
statistically heterogeneous data would be significantly
different from that deduced for WSS conditions that
would yield a valid scaling.

If we also consider the direct FFT of the data we
get the variance spectrum illustrated in green having a
power-law fit closer to that for the WSS mixture.
While it is tempting to decide that the DFT approach
is better, it turns out to be an illusion as discussed next.

The variance spectra differences, in turn, are reflected
in deviations between the autocorrelation function cal-
culated directly from the time series (observed, solid
black line partially hidden by the dashed green line)
and that estimated from the inverse Fourier trans-
form of St (solid red line) as shown in Fig. 7d. The
observed function can also be subdivided into two
components, namely, the WSS contribution (dashed
blue line) calculated from Y~ F2p,(7) in (3) and the
covariance contribution (magenta line) as given in (3)
by pr(7) — zllilF,-sz(T)- In this example, since there is no
residual difference between the component and global
mean values (N, = 1), it is the covariance terms in (3)
and (4) that produce the deviations in both the observed
and, therefore, inverse Fourier transform functions from
that corresponding to WSS conditions. This difference
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F1G. 7. (a) Simulation of two 10 000 Gaussian-distributed rainfall rates having the joint histogram, but (b) joined to form the time series.
(c) Only the intrinsic variance for each distribution was changed leading to the differences in the spectra shown here. S7 is the total
spectrum derived from the Fourier transform of the observed correlation function. The direct transform of the time series yields the green
spectrum. The physically meaningful spectrum is given by the mixture (WSS) (blue). The Fourier inversion correlation functions are

shown in (d).

mostly appears at lags greater than 80 when short tem-
poral fluctuations play a greater role.

Interestingly the correlation function computed by
taking the inverse FFT of the directly computed FFT
of the data matches the observed correlation function
nearly exactly. However, this does not mean that the
DFT and this correlation function form a Fourier
transform pair since we already know that were we to
take the FFT of the observed correlation function we
would get St in Fig. 7c that is not equivalent to the

green spectrum. Hence, the variance spectrum com-
puted using the DFT and the correlation function
calculated from the inverse FFT of the DFT spec-
trum do not form a Fourier transform pair. However,
these results highlight the point that regardless of
how the variance spectra are computed, the Wiener—
Khintchine theorem is, indeed, inapplicable in this
example.

In the second example (Fig. 8), we again have only
one mean value so that N, is again unity, but this time
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F1G. 8. Asin Fig. 7, except that the intrinsic variances remain identical, but the correlation lengths differ leading to different spectra and
retrieved correlation functions as discussed further in the text. This shows the sensitivity of statistical heterogeneity to different

correlations.

we keep the intrinsic variances the same for the two
components, which are identical except for having
widely different correlation lengths, X;; = Smin
and X;; = 100 min. This means that the variances are
distributed differently over the various frequencies
leading to a potentially significant covariance effect
in (3) and (4). Again, there is little indication of de-
viations from statistical homogeneity in the histo-
gram (Fig. 8a) with the possible exception of an
enhancement in the tail of larger values. In complete
ignorance, such a tail could easily be taken to be a
statistical fluke.

Although not readily apparent in the time-series data
(Fig. 8b), the first component C is associated with an
IXH = 0.82 while that for the second component C; is 0.
Yet, when they are combined, the variability in the
correlation lengths is sufficient to produce changes in the
variance in time of sufficient magnitude so that IXH
becomes 2.41, a significant value well into the domain of
statistical heterogeneity (see Fig. 4). The reason for this
is that while the total variances are the same, they are
distributed differently over the different spectral wave-
lengths. This will, then, affect the covariance terms in (3)
and (4). Hence, this heterogeneity is reflected in the
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Fourier transforms in Fig. 8c. As in Fig. 7 the DFT
spectrum also differs from S7. While the noise parts of
the spectra are quite similar, at lower frequencies there
are again some significant differences between what
would have been expected had the data been statistically
homogeneous as compared to the real case of statistical
heterogeneity. These differences are also again reflected
in the observed and inverse Fourier transform corre-
lation functions as illustrated in Fig. 8d. The co-
variance term makes the greatest contribution to the
observed correlation function at shorter lags (longer
wavelengths). As IXH indicates, the data are not
suitable for the application of the Wiener—Khintchine
theorem. A blind assumption that these data were WSS
would have led to significant errors in data scaling
compared to truly WSS data. Once again as in Fig. 7d,
the correlation function derived from the inverse
Fourier transform of the DFT spectrum matches the
observed correlation function. Hence the derived cor-
relation function and the DFT spectrum do not form a
transform pair because the FFT of the derived correla-
tion function does not match the DFT spectrum.

Finally, we consider an example when the intrinsic
variances and the correlation functions are fixed for
both components, but the mean values are distinctly
different as evident in the histogram in Fig. 9a. As the
time series shows (Fig. 9b), it is only the difference in
the mean values that indicates statistical heterogeneity
leading to IXH = 0.5. Yet this IXH is significant as
demonstrated in the power spectra (Fig. 9c) and in the
correlation functions in Fig. 9d. Here the exaggerated
differences among the correlation functions arise
because the differences between u, and each of the
component mean values, u. The difference between
the mean values in combination with the covariance
contributions clearly overwhelms the WSS contribu-
tion to the observed correlation. Of course, no one
would have assumed these to be statistically homo-
geneous data in the first place, but it does illustrate
the potential dangers inherent in more subtle situa-
tions. Moreover, using the DFT approach does not
ameliorate the problem.

4. Conclusions

Scaling studies of rainfall are important for the trans-
lation of observations and numerical model outputs
among all the various scales. For example, given an
output from a numerical forecast model on, say, 5-km
scales, it would be useful to urban flooding and farm field
erosion prevention to know what the corresponding
rainfall variability would be on kilometer or smaller
dimensions. Likewise, if a network of rain gauges
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provided observations over a 1 km X 1km domain, how
could they be incorporated onto the coarser grids of nu-
merical forecast models? Such scaling, however, implies a
degree of generality of scaling spectra. Otherwise scaling
would only apply to each different situation that then
would have to be determined each time, thus defeating
scaling as a useful tool with any generality applicable to
other observations.

There are several methods for deriving such power
spectra including the direct Fourier transform (DFT)
of observations and the application of the Wiener—
Khintchine (WK) theorem to the observed correlation
function. Regardless of how such spectra are computed,
however, all valid power spectra must satisfy the WK
theorem. When observations are wide-sense statistically
stationary (WSS) or wide-sense spatially statistically
homogeneous (WSSH), the Wiener-Khintchine theo-
rem associates an observed autocorrelation function to
a scaling variance (power) spectrum as a Fourier trans-
form pair. Because the mean value is a constant under
these circumstances, this makes it easy to scale features
among all the different observed scales using only an
observed correlation function. Thus, it is important to be
able to identify WSS conditions so that any scaling has
general applicability.

In this work we explore the reasons why WSS (WSSH)
is a necessary requirement using controlled simulated
data. However, in order to do this, we must also dem-
onstrate that the simulated data are WSS. There are two
approaches for doing this. The first is to use the index of
statistical heterogeneity (IXH) defined above and in
Jameson et al. (2018) for estimating when data may be
safely assumed to be WSS. This was accomplished by
estimating the number of distinct components (peaks
in the distribution) of mean values in the data and by
using record-counting techniques to detect changes in
the variance of the rain. When either of these quantities
exceeds certain limits, IXH exceeds 0; the Fourier
transform of the observed correlation function should
not then be used for general scaling studies. An alter-
native is to use an observed correlation function and
the Wiener-Khintchine theorem to test whether an
observed correlation function and its Fourier trans-
form are a Fourier transform pair by inverse trans-
forming the calculated spectrum and comparing those
results to the original observed correlation function.

What this study shows, however, is that when condi-
tions are not WSS, the Fourier transform of the observed
correlation function not only includes the power spectra
of each component, but it also includes the contributions
arising from all of cross correlations among all of the
contributing components. Moreover, the Fourier trans-
form then becomes “‘local” in that it also depends upon



1074

Frequency

Power Spectra

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.00

1013
1012
1011
1010
10°
108
107

108

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

X

87

10 20 30

40

T
374
St

Direct FFT
Sbirect > ©~

Syix (WSS) o< @ 200

1.87

105

10 F c

45678102 2 3 45673103

10°
101 2 3

, min™!

VOLUME 36
40 7 7 T
RD,, = 4/5.38 = 0.74 b
N, =2
IXH = 0.5
30
)
€
€
(14
20 ‘:5:'
4
RD,,, = 1/5.11 = 0.20, IXH = 0 X, =87
10 1 ! 1
0 1000 2000 3000 4000
Time, min
1.0 d ]
00 \ T ]
b N TR ]
S
S o6 ]
[
= 0.5 ]
I
o 04 T 1
E
g 03[ 1
02F — obseved e 3
——— Inverse Fourier Transform of Sy~ "==~._____
0.4 | ——— PureMixture (WSS) ~ TTTTeeells g
—— Covariance + Mean Values Contributions to p.
00fF - WSS (Mixture) Contributions to p,. -
T Inversion of Direct FFT
L L
0 50 100 150

Lag

FIG. 9. As in the previous figures, except this time the intrinsic variances and the correlation functions are kept the same, but there are
now two different mean values as is evident in (a). The spectra show significantly different powers and the inverse Fourier-derived
correlation functions show substantial differences in part because of the significantly different mean values.

the time and location of the particular set of observations.
Consequently, there is no longer any generality useful
for scaling the rainfall structure for different rainfall
measurements.

While it is well known that rainfall data should be
WSS (WSSH) in order to use the WK theorem, specific
reasons for this are not evident in the meteorological
literature. This work fills this void by explaining in spe-
cific detail what happens when the Wiener—Khintchine
theorem is erroneously applied to simulated statistically
heterogeneous rainfall data. In particular, the results
from such transformations are compared to those for a

statistical mixture of all of the components, which
is WSS (WSSH) so that the effects of statistical het-
erogeneity become readily apparent. It is also shown
that the Fourier transform derived using an observed
correlation function cannot then be inverse Fourier
transformed to again yield the observed correlation
function. Hence, in statistically heterogeneous data,
the “spectra’ and the calculated correlation function
do not, then, form a Fourier transform pair as required
by the Wiener—Khintchine theorem. This is not sur-
prising, of course. It is also shown that when N. > 1,
IXH is sensitive both to the intrinsic variance of each
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FIG. Al. Observations of the 1-min rainfall rate using a Joss—
Waldvogel disdrometer at the NASA Wallops Island Rainfall
Measurement Facility on 3 Mar 2013 during the passage of con-
vective rain associated with a warm front. The red line (as de-
scribed in the text) represents the estimate of the actual mean value
that is affected by correlations in time. The differences between the
observations and the means then provides an estimate of the true
fluctuations of the rainfall rate used to calculate « as illustrated in
Fig. A2a.

of the components contributing to the observations
as well as to any differences in the characteristic de-
correlation lengths of the correlation functions of
each component. Even in cases when there is only one
mean value (N, = 1), IXH is still sensitive to the
changes in the variance in the time series. IXH,
therefore, appears to be a useful tool. While the de-
tails of the applicability, of the error rates of IXH and
of when deviations from WSS become serious im-
pediments to scaling are yet to be fully determined in
future research, the results presented here offer some
hope for sorting out useful scaling relations from
those that could be misleading.

If it can be shown that the PDF of the components
is largely dominated by a single component and that the
covariance functions are small, then the power spec-
trum can be taken to be approximately representative.
However, if there is more than one significant compo-
nent but the covariances are all small (i.e., the fluctua-
tions are statistically independent), then the calculated
power spectrum will be the weighted spectrum from
each of the components plus an enhanced dc component
at w = 0. This later effect should not affect the slopes of
the power spectra provided the dc component is ex-
cluded in which case the requirements for the WK
theorem would be met. The generality of the results,
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FIG. A2. (a) The plot of the time series of rainfall fluctuations
about the mean used in the calculation of « that illustrates the
variability of the variance of the rainfall rate over the interval.
(b) The distribution of the mean values determined using the
Bayesian inversion of the count data as described in the text. The
three different gamma fits to the contributing components are il-
lustrated as well.

then, will depend upon the generality of the frequency
distribution of the simultaneous occurrence of these
components in future measurements as well as nearly
statistically independent fluctuations among all the
components.

Furthermore, while it is not possible to “correct” for
statistical inhomogeneities because they are the re-
flection of underlying physical-statistical processes, in-
sofar as a statistically heterogeneous set of data may
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F1G. A3. (a) An example of the spatial variability of the 80-min average rainfall rate, RR,
and of the IXH over a small (100m X 70 m) network of video disdrometers [described in
Jameson et al. (2015)] for a light rainfall event generated by the passage of several different
patches of rain having different mean values. Even though the overall rainfall is light, there is
still significant IXH because of the different patches of rain. (b) An example of a 5-min
smoothed time series over the 121 cm? surface of a 2D video disdrometer during a rain event
near Charleston, as described further in the text.

consist of the concatenation of several WSS (WSSH) times, be possible to segment a large set of data into
subgroups, it may then be possible, on those occasions, smaller apparently statistically homogeneous segments
to treat each subgroup independently and then to derive  as illustrated in Jameson et al. (2018). This, again, is the
more insight into the scaling. In particular it may, at topic for future research.
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APPENDIX

An Example of the Analysis of Rain Observations
and of Spatial Variability

The data presented in Fig. Al are from a Joss—
Waldvogel impact disdrometer. The data [provided by
D. Wolff (2013, unpublished data)] were collected at the
National Aeronautics and Space Administration rain
facility at Wallops Island, Virginia, on 6 March 2013 as
a line of convection passed over the facility. As dis-
cussed in detail in Jameson et al. (2018), the effects of
correlation must be removed in order to calculate the
true fluctuation parameter «. This is done using a least
squares error weighted running average on the data
over a length of 2 times the observed decorrelation
length. The resulting time series of the fluctuations is
plotted in Fig. A2a as is the calculation of the relative
dispersion of «, namely RD,, that reveals statistically
significant changes in the fluctuations of the rainfall
rate across the set of observations.

Figure A2a illustrates the fluctuations used to cal-
culate «. Figure A2b shows the three components of
the distribution of likely mean values resulting from
Bayesian inversion of the count data. Gamma distri-
butions are used to fit this distribution since they work
quite well, and they are more appropriate (represen-
tative of an additive process) to rainfall data than are
lognormal distributions (representative of a multipli-
cative process). These values then combined to yield
the observed IXH given in Fig. Al.

As an example illustrating the spatial variability of
IXH, Fig. A3a is a plot of the 80-min average rainfall
rate (RR) with overlying contours (red) of IXH over a
small network of video disdrometers as described in
Jameson et al. (2015). Interestingly, even though the
average rainfall rate is light, there is significant IXH
because of the passage of several different patches of
rain having different mean values during the 80 min.

Finally, an example of a time series of 5-min least
squared error weighted average rainfall rate and IXH are
plotted in Fig. A3b. IXH was evaluated by sampling the
rainfall rate every minute in each 1cm? of the 121 cm?
sampling area of a 2D video disdrometer (2DVD) in-
strument (e.g., see Kruger and Krajewski 2002) near
Charleston, South Carolina. The N, and « were then
determined over the entire area every minute. Inter-
estingly, a appears to be more strongly related to
changes in the rainfall rate than to the rainfall rate
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itself. This, however, is the subject of ongoing and future
research.
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