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ABSTRACT

Scaling studies of rainfall are important for the conversion of observations and numerical model outputs

among all the various scales. Two common approaches for determining scaling relations are the Fourier

transform of observations and the Fourier transform of a correlation function using the Wiener–Khintchine

(WK) theorem. In bothmethods, the observationsmust be wide-sense statistically stationary (WSS) in time or

wide-sense statistically spatially homogeneous (WSSH) in space so that the correlation function and power

spectrum form a Fourier transform pair. The focus here is on developing an explicit understanding for the

requirement. Statistically heterogeneous (either in space or time) data can produce serious scaling errors. This

work shows that the effects of statistical heterogeneity appear as contributions from cross correlations among

all of the distinct contributing rainfall components using either method so that the correlation function and its

FFT do not form a transform pair. Moreover, the transform then also depends upon the time and location of

the observations so that the ‘‘observed’’ power spectrum no longer represents a ‘‘universal’’ scaling function

beyond the observations. An index of statistical heterogeneity (IXH) defined in previous work provides a way

of determining whether or not a set of rain data may be considered to be WSS or WSSH. The greater IXH

exceeds the null, the more likely the derived power spectrum should not be used for general scaling.

Numerical simulations and some observations are used to demonstrate all of these findings.

1. Introduction

Observations and numerical models produce results on

many different usually incompatible scales from fractions

of a meter up to kilometers. How can one then incorpo-

rate observations from, say, those of a single rain gauge

into forecastmodels often having resolutions on the order

of kilometers? Likewise, how can the products from

these numerical models be downscaled to fractions of

a kilometer for comparisons, say, with a network of rain

gauges? Hence, scaling is an important topic in many

rainfall studies (e.g., Berndtsson and Niemczynowicz

1988; Ochoa-Rodriguez et al. 2015; de Lima et al. 2012).

These objectives are often approached using power

spectra, which makes it possible to scale over a range of

dimensions. There are different methods for deriving

such power spectra. One is to take the direct Fourier

transform of observations and then to compute a power

spectrum by multiplying this transform by its complex

conjugate. This is the so-called direct Fourier trans-

form (DFT) method. An alternative route to the

power spectrum that may be statistically superior is to

take the Fourier transform of correlation functions

using the Wiener–Khintchine (WK) theorem (Wiener

1930; Khintchine 1934). The latter shows that the cor-

relation function can be decomposed into its spectral

components (power spectrum) using a Fourier trans-

form such that as the lags of the correlation function

decrease, the corresponding wavelengths of the Fourier

components contributing to the function increase. The

‘‘power’’ or magnitude of each component is equivalent

to the zero-mean variance contribution at each partic-

ular wavelength. Specifically, for real valued functions

and in terms of time, the autocorrelation function of a

variable Y can be expressed as

r(t)5

ð‘
2‘

Y(t)Y(t1 t) dt (1)

for delay t. What the WK theorem shows is that the

Fourier transforms

r(t)5

ð‘
2‘

jY(f )j2 exp(2pift) df (2a)
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and

S(f )5 jY(f )j2 5
ð‘
2‘

r(t) exp(22pift) dt (2b)

form a Fourier transform pair so that one can be con-

verted into the other, where S( f) is the so-called power

(variance) spectrum and i represents the imaginary

number. The same applies to spatial calculations as well.

Regardless ofmethodology, however, any valid power

spectrum can only be defined under conditions of sta-

tistical homogeneity; that is, the mean value and vari-

ance remain constant in time [wide-sense statistical

stationarity (WSS)] or constant in space [wide-sense

statistically homogeneous (WSSH)]. Under these con-

ditions, the Fourier transform of a correlation function

and the variance or power spectrum form a Fourier

transform pair whether using the DFT approach or the

WK theorem. Another version of this general approach

has been developed recently for the numerical simu-

lation of nonstationary and spatially heterogeneous

datasets (defined below) using a short-spaced Fourier

transform (SSFT) (Nerini et al. 2017). In addition, in-

sofar as one accepts the multifractal characterization of

rain and insofar as one is willing to ignore the effects of

advection on the measurements, Gires et al. (2014)

provide an example of power-spectral downscaling in

order to compare radar and rain gauge measurements

at the same spatial scale.

The importance of statistical stationarity is empha-

sized by many investigators such as Koutsoyiannis and

Montanari (2015) and Montanari and Koutsoyiannis

(2014) and others. Here we note that observations are

realizations of a statistical and physical process having

defined characteristics. While it is the process that pos-

sesses the statistical characterizations such as statistical

homogeneity in time or space, an observer usually has

access to only one realization of a statistical process vis-

à-vis a set of observations. It is, therefore, usually as-

sumed explicitly or implicitly that the data reflect the

statistical characteristics of the process itself so that

we may speak about the statistical characterization of

the data directly since that is all the information usu-

ally available. This is done here as well. Furthermore,

whether a series of observations may be considered to

be stationary or not will depend upon the length of the

observations. On one extreme some argue that because

of climate change, nothing is stationary (Milly et al.

2008). This is clearly an exaggeration when considering

only, say, a few hours of data when the rate of climate

change is negligible compared to the variability of the

rainfall itself. On the other hand there are those who

consider stationarity still to be a vital assumption for

the analyses of hydrological data (Matalas 2012). The

purpose here is to offer an approach for detecting when

nonstationarity may be a problem especially in rela-

tively short-term observations of rainfall rates.

In this paper, therefore, and in contrast to previous

work analyzing real data, the focus here is on developing

an explicit understanding of why WSS (WSSH) is re-

quired for the correct application of the WK theorem.

Specifically, we examine in detail why the thoroughly

established WSS (WSSH) requirement is necessary for

generating a valid power spectrum by examining the

Fourier transform between the correlation function and

its Fourier transform. In the DFT approach, a series of

observations is Fourier transformed to yield a vari-

ance spectrum. This spectrum can then be inverse

Fourier transformed to yield a correlation function.

To be a transform pair, however, the Fourier trans-

form of this correlation function must then again yield

the same spectrum. This will be the case if the data are

WSS (WSSH). Whether one determines the FFT

spectrum first or the correlation function first, all valid

power spectra must still satisfy this transform pair

requirement; that is, they must satisfy the WK theo-

rem. What is new here is not the well-established re-

quirement of WSS (WSSH) for valid power spectra,

but rather a more detailed and hopefully illuminating

exploration of the mathematics of why this is so. In

this work, this is achieved using numerical simulations

so that conditions can be controlled explicitly. In do-

ing so, we use the technique developed in Jameson

et al. (2018). Three applications to real data are briefly

illustrated in the appendix, but many more examples

may be found in Jameson et al. (2018).

Of course, many investigators have calculated var-

iance spectra via the WK theorem for various scales in

rain (e.g., Crane 1990; Kiely and Ivanova 1999) using

the Fourier transform of the relatively easily observed

autocorrelation function. Some investigators are well

aware of the need forWSS orWSSH (e.g., Pegram and

Clothier 2001; Sinclair and Pegram 2005; Krajewski

et al. 2003), but many others have not, so that the in-

terpretation of their findings is arguable particularly

since many of them are based upon radar observa-

tions, which have their own filtering effects (Jameson

2017). However, the WK theorem provides a conve-

nient route to the power spectrum from observations,

while, after proper filtering, the power spectra can, in

turn, yield autocorrelation functions useful for inter-

preting measurements collected over finite temporal

or spatial domains of different sizes including net-

works and by remote sensors (Jameson 2017).

As discussed above, however, the validity of the auto-

correlation function and the variance spectrum forming
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a Fourier transform pair depends upon the data being

WSS (WSSH) (Wiener et al. 1997). In rain, strict sense

stationarity (constancy of all moments of a distribu-

tion) likely never occurs (Nason 2006). Even then,

though, it is not easy to detect when the assumption of

WSS (WSSH) might be valid. Most approaches to-

ward determining stationarity (homogeneity) that are

found in the literature depend upon developing a

statistical model of the data. However, sometimes one

model works for one dataset, but not for other (Nason

2006; Serinaldi et al. 2018). Moreover, all such models

make assumptions about the statistical homogeneity

data, which may or may not be valid.

In a set of observations, there are random fluctuations

superposed on values correlated in time and/or space.

Furthermore, even though every set of observations has

one average value, it may be an average over more than

one ‘‘global’’ mean value each contributing to the ob-

servations. Here the word ‘‘global’’ is used to imply over

an entire set of observations as opposed to local appar-

ent mean values arising from correlated fluctuations

around the global mean values. As discussed in Jameson

et al. (2018), these components can be separated. Hence,

an alternative approach for determining whether or

not a set of data is likely WSS (WSSH) or not can be

defined only using the available data without assump-

tions, as recently presented by Jameson et al. (2018);

namely, does the data have more than one global mean

value? And second, does the variance of the data

change within the set of observations? First, changes in

the variance can be detected using the technique de-

scribed in Anderson and Kostinski (2010, 2011) and

described further below. Second, the appearance of

more than one global mean value can be determined

using a Bayesian inversion technique (Jameson 2015;

Jameson and Heymsfield 2013, 2014; Jameson et al.

2018; Jameson 2007). Hence, the data can be used di-

rectly to estimate whether or not a set of observations is

likely WSS (WSSH) because either there is more than

one global mean value and/or the variance of the data is

changing in time or space. Consequently, an index of

statistical heterogeneity (IXH) has been developed

(Jameson et al. 2018) for evaluating whether or not a

time series of rainfall measurements may be considered

to be temporally statistical stationary or spatially sta-

tistically homogeneous.

There is also the alternative approach of simply

determining whether or not the calculated correlation

function and the DFT-calculated variance spectrum

form a Fourier transform pair. This is not necessarily

as trivial as it sounds because of fluctuations and

noise. However, this approach as well as that using

IXH are both investigated below. The IXH approach

for identifying WSS (WSSH) at least has an accounting

for noise. Nevertheless, in both cases the source of de-

viations from WSS (WSSH) caused by the correlation

functions are the same, but they are approached from

different directions as discussed further below.

Moreover, it is not obvious when or how significant

deviations from statistical homogeneity become impor-

tant. In this work we begin to address this question in two

ways. First it is argued and shown that when the data are

statistically heterogeneous, the Fourier transform of the

autocorrelation function cannot yield a true power (vari-

ance) spectrum so that it should not be used to scale the

variability of rain except for this one specific set of ob-

servations. Second, it will be shown that this transform is

then dependent on the initial time or location thus ne-

gating any potential generality. Third, it will be shown how

the magnitudes of Fourier transforms of the autocorrela-

tion functions are altered when there are regions within

the sampling domain having different global mean values.

The subsequent section after that will consider detailed

numerical examples demonstrating these findings. Exam-

ples using real data are included in the appendix.

2. Background

a. Setting the stage

There are two important characteristics that a Fourier

transform of the autocorrelation function must possess

in order to be considered a power spectrum useful for

scaling. The first is that it 1) does not depend upon po-

sition either in time or space. This makes sense with

regard to scaling because if it were not true then it would

lack any universal applicability so that the scaling would

become different at every location and time. The second

is that 2) the transform pair between the autocorrelation

function and the power spectrum remain valid. As we

will demonstrate later, this can only be true when the

variance is constant throughout and there is only one

global mean value in the set of observations. As an aside,

it should be remembered, however, that statistical mix-

tures have just one peak in the distribution of mean

values and constant variance even though they can have

multiple components contributing randomly in a spatially

and/or temporally integrated (nonlocalized) manner to

the observations. Consequently, statistical mixtures are

WSS (WSSH). Let us now first consider item 1. In doing

so, only one simulation for each set of conditions is con-

sidered since the objective of this study is to highlight the

factors affecting the resulting spectra when conditions

are not WSS rather than to present a study of rain itself.

Real rainfall is sometime purported to follow a log-

normal distribution (Biondini 1976) based solely upon
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rainfall observations. Although Kedem and Chiu (1987)

provide a more theoretical justification, Jameson and

Kostinski (1999) argue, using the central limit theorem,

that since rainfall is additive rather thanmultiplicative [as

implied by a lognormal distribution used by Seed (2003)

for describing observations], rainfall more likely follows

a gamma distribution, which is found to work quite well

for many observations. There are, of course, many other

much more complex multifractal models of rain as well,

which may or may not be valid (e.g., Serinaldi 2010).

However, since this work is not really a study of rain, per

se, for simplicity, we just use a Gaussian distribution. We

also only focus on temporal data realizing that the results

also have an analogous meaning in space. In Fig. 1 two

joined regions of Gaussian-distributed rainfall having

well-defined means and variances are illustrated. Each

region has a different decreasing exponential correlation

length (XL) or time to decorrelation (I), different mean

value (m), and different variances (s2). The first is char-

acterized by I1 5 29, m 5 10, and s2 5 2.5, while the

second has a shorter decorrelation length, larger rainfall

rate, and larger intrinsic variance, I2 5 5, m 5 15, and

s25 6. The red box represents the sampling domain with

the leftmost edge located at a starting time of T0 5
400min as discussed further below.

Let us consider some time series of a statistically ho-

mogeneous set of measurements represented by the

function, f(t)5 d(t)1m, wherem is the mean and d is the

zero-mean random deviation around that mean. Now

suppose that the observations are drawn from a set of

N distinct homogeneous components denoting the ith

component by fi(t) each having their own mean value mi

and deviation di(t). Also suppose that this component

contributes fraction Fi to the total observations. When

a correlation is computed, the data are assumed to be

statistically homogeneous having a single global mean

value mg over the entire PDF mg 5 �Fimi where the

summation is over all the contributing components. This

mean must then be subtracted before computing the

correlation function. For an infinite real value domain,

the correlation function r can be expressed as the con-

volution, f * f. After expanding the terms and noting that

the average di5 0 we then have that the total correlation

function rT(t) would be

r
T
(t) 5

*
�
N

i51

F
i
[d

i
(t)1 c

i
]*�

N

i51

F
i
[d

i
(t1 t)1 c

i
]

+

5 �
N

i51

F2
i ri(t)1 2 �

N21

i51
�
N

j5i11

F
i
F
j
cov(d

i
, d

j
)

1 2 �
N21

i51
�
N

j5i11

F
i
F
j
c
i
c
j
1 �

N

i51

F2
i c

2
i , (3)

where , . denotes averaging and after defining ci 5
mi 2 mg; ri is the autocorrelation function for the ith

component, t is the lag time, and the subscriptT denotes

total value. The correlation function then consists of a

WSS term [the first summation on the right-hand side of

(3)], a convolution term [the second summation on the

right-hand side of (3)], and mean values terms [the last

two terms on the right-hand side of (3)].

If one were to blindly take this correlation functions

and perform a Fourier transform in accordance with the

Wiener–Khintchine theorem one would then have

S
T
(v)5 �

N

i51

F2
i Si

(v)1 2 �
N21

i51
�
N

j5i11

F
i
F
j
F[cov(d

i
, d

j
)]

1 d(v)

 
2 �
N21

i51
�
N

j5i11

F
i
c
i
F
j
c
j
1 �

N

i51

F2
i c

2
i

!
, (4)

whereF represents the Fourier transform, ST is the total

spectrum, and d(v) represents the Dirac delta function.

Since each component is WSS, the Si are the power

spectra for the distinct separate components, and cov

is the covariance function. If the time-series compo-

nents were statistically independent such that the

mean values of cov(di, dj) would be zero, the Fourier

transform F[cov(di, dj)] need not be null in general

unless the fluctuations were nearly statistically in-

dependent. If that were the case, then ST would be

FIG. 1. Simulated data for two joined Gaussian distribution of

rainfall rates having different mean values as discussed in the text.

The red box is the 1000-min sampling domain that is moved across

the entire set of data with the origin as indicated. As the sampling

domain moves in time, the correlation functions and their Fourier

transforms also change.
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ST(v)5�N

i51F
2
i Si(v)1 d(v)3DC while the inverse

Fourier transform of ST would just be rT(t)5

�N

i51F
2
i ri(t) if the spike at v 5 0 [the so-called direct

current (DC) with no frequency spike] were filtered out

first. Under these circumstances the requirements for

applying the Wiener–Khintchine theorem would be

satisfied. However, in general these conditions are un-

likely to be satisfied. Moreover, there is also another

fundamental reason why ST cannot be a power spectrum

as discussed in a moment.

Before proceeding, however, consider four cases,

three of which are to be illustrated in a later section. In

case 1, consider a WSS system of one component. In

that case, c1 and F2 both equal zero so that (3) and (4)

simplify to identities as they should. In case 2, suppose

we have a system having two distinct components

with a constant mean value for both components hav-

ing the same correlation functions (i.e., the variances

are distributed the same across frequencies) but each

component is associated with a different total variance

(i.e., d1 6¼ d2 mostly at longer lags) but with F1 5 F2 5
1/2. In that case, c1 5 c2 5 0 so that (3) becomes

rT(t)5 1/2 r(t)1 1/2cov(d1, d2) so that (4) simplifies to

ST(v)5 1/2S(v)1 1/2F[cov(d1, d2)]. Consequently, the
Fourier transform of rT(t) 6¼ S(v) and the inverse

Fourier transform of ST(v) 6¼ r(t). Hence, this case is

not WSS. In case 3, we take a two-component system

having the same mean value but different correlation

functions so that the variance (fluctuation) spectra are

different. The results will be like those for case 2.

Sometimes, however, in a set of observations, the

rainfall can still come from more than one distribution

function yet remain statistically homogeneous. While

each component makes a contribution to the resulting

distribution function p(R) at each R, the distribution of

these mean values and variance does not depend upon

origin; that is, the same distribution of mean values

and variance are applicable everywhere, just like a

well-mixed cake batter. The p(R) is then referred to as a

statistical mixture (e.g., Feller 2009, p. 55). This con-

trasts with statistical heterogeneity in which the distri-

bution of mean values and variance does depend upon

location (origin) just like a cake batter awaiting mixing.

In case 4, we consider a two-component system with

differentmean values but the same variance throughout,

that is, just one correlation function. This is often re-

ferred to as a homogeneous statistical mixture. Then the

last two terms in (3) [and, therefore, in (4)] combine

(because the covariance is unity) to be zero by the def-

inition of mg while the first two terms reduce to rT(t) 5
r(t) so that ST(v) 5 S(v). Consequently, rT(t) and

ST(v) form a Fourier transform pair; that is, the statis-

tical mixture is WSS. For other more general cases, the

relations (3) and (4) then describe what happens when

there are multiple distinct contributing components

having different mean values and correlation functions.

We will consider several examples in the next section.

However, to start with, consider a simplified system in

Fig. 1 described previously. Each component was then

each exponentially correlated using the method of Fox

et al. (1988) with decorrelation lengths of 29 and 5min,

respectively. This methodology has been used through-

out this work.

Hence, as Fig. 2 illustrates for the data in Fig. 1, the

final total spectrum ST depends upon starting time.

However, power spectra must be independent of start-

ing time if they are to represent useful and general

scaling relations as pointed out by others (Dechant and

Lutz 2015; Leibovich and Barkai 2017). Therefore, be-

cause of this time dependence, ST cannot represent a

power spectrum.

This can also be illustrated by looking (Fig. 3) at the

total variance derived by integrating ST over all the

different spectra for the different F. Obviously the total

variance also depends upon the starting time, which

is not consistent with statistical stationarity. Equiva-

lently, by replacing time with distance, the total vari-

ance would also depend upon the location so that all

these results are also inconsistent with statistical spatial

homogeneity. Furthermore, the covariance becomes a

FIG. 2. The total power spectra (ST) as functions of the starting

position of the sampling domain as it moves across the entire domain

in Fig. 1. Note that at T0 5 0min, the spectrum is only that of

component 1, S1, while atT05 1000min, ST5 S2. At the two ends, the

data are statistically homogeneous, while statistical heterogeneity pre-

vails in between those extremes. This produces power spectra, which

change with start time inconsistent with statistical homogeneity.
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significant component that will distort any inverse

Fourier transform attempting to extract a correlation

function. Thus, WSS statistical stationarity is required

if the Fourier transforms of correlation functions are to

be useful power (variance) spectra. Hence, the pres-

ence of more than one component having different

fluctuation spectra in a set of observations destroys any

possibility of ST being a power spectrum having any

generality.

It becomes essential, then, to determine whether or

not a set of observations possesses any potential gener-

ality by determining whether or not it is statistically

homogeneous in the wide sense. One such approach

developed by Jameson et al. (2018) is reviewed briefly in

the next section and illustrated using the data presented

in Fig. 1. We will then look more carefully at several

different cases as a representative initiation into the

exploration of the sensitivity of this scheme to different

mean values and to changing variances. Results from the

direct FFT approach are also discussed.

b. The definition and an application of the statistical
heterogeneity index

We begin by considering one definition of an IXH.

Many such definitions are possible, of course, but this

one is chosen because of its dependence on the num-

ber of detected contributing components and because

it depends upon changes in the variance of a vari-

able, each a requirement for statistical heterogeneity.

Specifically, we use the definition in Jameson et al.

(2018):

IXH5

(
H

RD
a

1:5
2 1

� �
RD

a

1:5
2 1

� �
1 (N

c
2 1)

2

)
. (5)

Here, H is the Heaviside unit step function, RDa is the

relative dispersion of the record-counting parameter

a used to detect changes in the variance as discussed

below, and Nc is the number of detected contributing

components in a series of observations, also explained

below, and is always $1. As discussed more completely

in Jameson et al. (2018) statistical heterogeneity is in-

creasingly likely as IXH increases beyond zero. How-

ever, statistical mixtures can also be identified when

Nc $ 1 but RDa ’ 0.

The IXH is a combination of observations of two

factors. First, it accounts for the presence of more than

one component (Nc) in the distribution of mean values

that violates one of the requirements for the observa-

tions to be WSS (WSSH). The second factor is the de-

tection of changes in the variance of the variable as

measured by record counting (a) discussed in greater

detail below. Since a is a random variable, it will exhibit

fluctuations so that a standard for statistical meaning-

fulness must be established. This is done using a relative

dispersion defined here to be RDa 5 a/sa. Conse-

quently, assuming a normal distribution (as observed in

data), about 90% of the statistical fluctuations of a will

produce a relative dispersion RDa 5 a/sa # 1.5 so that

only those values .1.5 are considered indicators of

statistical heterogeneity. Such a value indicates a sta-

tistically meaningful change in the variance in violation

of the second requirement for WSS (WSSH).

To elaborate further, a Bayesian inversionmethod has

been developed for estimating the probability distribu-

tion of the mean values, p(C), of a series of observations

(Jameson 2007; Jameson and Heymsfield 2013, 2014;

Jameson 2015). While developed in greater detail in

those references, we start with an assumed distribution

such as a Gaussian. We then assume a range of mean

values C. Each observation can then be associated with

each of these mean values at a computed probability. By

summing these probabilities over all the observations

and after normalization, we then end up with the likely

distribution of these mean values p(C). The most likely

mean values are those at the peaks in the distributions.

As discussed further in Jameson et al. (2018), these

peaks can usually be identified using first and second

FIG. 3. The total variance integrated over the spectra such as in

Fig. 2 showing that the total variance changes with starting time

and that the Fourier transform of the covariance function of the

observed correlation function contributes significantly to the total

variance. For statistically homogeneous data, there is no co-

variance function and the total variance is independent of starting

time or spatial position.
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derivatives (Arteaga-Falconi et al. 2015; Slodzinski et al.

2013) especially when considered in conjunction with

the structure of p(C) itself. These results are not sensi-

tive to correlations because p(C) does not depend upon

whether the observed values are clustered or spread out

in time or space.

With regard to the variance, a is the summation of the

record minima and maxima of the fluctuations in the

forward direction minus the record minima and maxima

of the fluctuations in the backward direction along, say, a

time series (e.g., see Fig. A2a) as discussed in detail in

Jameson et al. (2018) for both one- and two-dimensional

data. Specifically, a5 (NH 1NL)fwd2 (NH 1NL)bwd,

where NH are the number of record highs, NL are the

number record lows, and the subscripts fwd and bwd

denote the forward and backward directions, respec-

tively. If the variance of the variable is constant, a 5 0.

Assuming that the effects of correlations and trends

have been removed, deviations from the null are indic-

ative of changes in the variance throughout the domain

consistent with statistical heterogeneity.

Anderson and Kostinski (2010, 2011) showed that

a appears to be approximately normally distributed, and

that its variance depends upon the number of records.

This was expressed explicitly in Jameson et al. (2018),

where it was shown that the standard deviation safor the

distribution of a is given by

s
a
5 [4 ln(N)2 4:271]1/2, (6)

where N is the number of observations as illustrated

in Fig. 4. A minimum requirement for WSS (WSSH) is

that Nc 5 1, that is, that there is only one peak in the

distribution of mean values and that a 5 0.

Returning once again to the example in Fig. 1, we now

plot Nc, RDa, and IXH as functions of the starting time,

T0 in Fig. 5. Starting with the statistically homogeneous

conditions when T0 5 0min and ending with the statis-

tically homogeneous conditions whenT05 1000min, we

see that as soon as T0 reaches 100min, statistical het-

erogeneity is detected because Nc increases from 1 to 2

while RDa increases to values $1.5. As one might have

anticipated, the variability in IXH is due entirely to

fluctuations in RDa. Note that for the initial point in

Fig. 5, IXH 5 0.2 even though the data are WSS. Ac-

cording to Fig. 4, this should only happen 3% of the

time, but clearly it still can happen. Hence, IXH as de-

fined by (3) is not always going to be fail proof because

of statistical fluctuations. When the values of IXH are

small, one can always try using the DFT approach to

verify the finding, as discussed later.

For completeness, Fig. 6 illustrates the distributions of

the mean values deduced using the Bayesian technique

described above. The p(C)s at T0 5 100, 600, and

900min are plotted. The peaks are associated with the

most likely values as determined by two methods,

namely, where the first derivative is zero (standard

calculus) and the second where the second derivative

is a negative minimum (Arteaga-Falconi et al. 2015;

Slodzinski et al. 2013). The method of detection of

each component is also indicated. This illustrates the

importance of the second derivative detection when

the contribution from a component to the total time

series is only 10% of the time series.

While in this example the contribution ofNc to IXH is

obvious, it is the variance that produces the fluctuations.

These fluctuations depend upon the intrinsic variability

of the quantity itself and the variability arising from of

how the data are distributed in time or space. We begin

to explore these two sensitivities in the next section.

3. Other examples

As a reminder, the focus of this work is on exploring

the mathematical details of why WSS or WSSH are re-

quired for deriving true power spectra often used in

scaling studies of rain. This must be done using simula-

tions. However, while Jameson et al. (2018) provide

many examples of the application of IXH to real data,

for completeness here we also provide an example of

the analysis of real data in the appendix for interested

readers.

FIG. 4.When the number of detected components is unity (Nc5 1),

fluctuations in a can make statistically homogeneous data appear

to be statistically heterogeneous. The probabilities that the data

were really statistically heterogeneous (black line) and the prob-

abilities that the data were really statistically homogeneous (red

line) are plotted as functions of the calculated IXH. Hence, as IXH

increases, the likelihood that the data are statistically homoge-

neous decreases.

JUNE 2019 JAMESON 1069



Again, however, the purpose of this section is to il-

lustrate the effects of statistical heterogeneity, arising

for different reasons, on the power spectra as well as on

the correlation function. To simplify, we use (3) and (4)

but only for an equally divided two-component time

series. For comparison, we also compute the spectra and

correlation functions for statistical mixtures of the two

distinct components in order to highlight the departures

of the spectra and correlations from those when condi-

tions are not WSS.

In the first example, the histogram in Fig. 7a does not

show anything that suggests a deviation from statistical

homogeneity. However, we have two distinct compo-

nents, each with the same mean value so that Nc 5 1,

each with the same correlation length Xl 5 29min, but

with the first and second components having different

intrinsic variances of 2.5 and 6mm2h22, respectively, as

discussed above as case 2. As illustrated in Fig. 7b, while

each component is statistically homogeneous having

IXH 5 0, when they are joined the data are now statis-

tically heterogeneous, simply because of the change in

the variance across the time series.

Moreover, we then compute the respective power

spectra as illustrated in Fig. 7c. The ST is the Fourier

transform of the observed correlation function for the

data in Fig. 7b. This can be compared to the Fourier

transform had the data been a true WSS statistical

mixture [ i.e., ST(v)5�2

i51F
2
i Si(v)], having no cov or

constant terms in (3) and (4). Obviously, the differences

between the two spectra are significant, illustrating that

something as straightforward as a change in the intrinsic

variance as a function of time or distance can profoundly

affect the power-spectra characterization of the data.

Hence, any scaling power law deduced from ST for the

statistically heterogeneous data would be significantly

different from that deduced for WSS conditions that

would yield a valid scaling.

If we also consider the direct FFT of the data we

get the variance spectrum illustrated in green having a

power-law fit closer to that for the WSS mixture.

While it is tempting to decide that the DFT approach

is better, it turns out to be an illusion as discussed next.

The variance spectra differences, in turn, are reflected

in deviations between the autocorrelation function cal-

culated directly from the time series (observed, solid

black line partially hidden by the dashed green line)

and that estimated from the inverse Fourier trans-

form of ST (solid red line) as shown in Fig. 7d. The

observed function can also be subdivided into two

components, namely, the WSS contribution (dashed

blue line) calculated from �N

i51F
2
i ri(t) in (3) and the

covariance contribution (magenta line) as given in (3)

by rT(t)2�N

i51F
2
i ri(t). In this example, since there is no

residual difference between the component and global

mean values (Nc 5 1), it is the covariance terms in (3)

and (4) that produce the deviations in both the observed

and, therefore, inverse Fourier transform functions from

that corresponding to WSS conditions. This difference

FIG. 5. The changes in the relative dispersion of a (RDa) (black),

the number of detected components Nc (blue), and the resulting

IXH (red) plotted as functions of starting time showing that the

data are statistically heterogeneous at all starting times except at

the ends when the data are statistically homogeneous (stationary).

FIG. 6. Distributions of the mean values determined from the

Bayesian inversion showing which techniques led to the identifi-

cation of the peaks associated with distinct contributing compo-

nents using the first and second derivative approaches explained in

the text. Even when the data contained only 10% of a component,

the two peaks could be identified in this example.
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mostly appears at lags greater than 80 when short tem-

poral fluctuations play a greater role.

Interestingly the correlation function computed by

taking the inverse FFT of the directly computed FFT

of the data matches the observed correlation function

nearly exactly. However, this does not mean that the

DFT and this correlation function form a Fourier

transform pair since we already know that were we to

take the FFT of the observed correlation function we

would get ST in Fig. 7c that is not equivalent to the

green spectrum. Hence, the variance spectrum com-

puted using the DFT and the correlation function

calculated from the inverse FFT of the DFT spec-

trum do not form a Fourier transform pair. However,

these results highlight the point that regardless of

how the variance spectra are computed, the Wiener–

Khintchine theorem is, indeed, inapplicable in this

example.

In the second example (Fig. 8), we again have only

one mean value so that Nc is again unity, but this time

FIG. 7. (a) Simulation of two 10 000Gaussian-distributed rainfall rates having the joint histogram, but (b) joined to form the time series.

(c) Only the intrinsic variance for each distribution was changed leading to the differences in the spectra shown here. ST is the total

spectrum derived from the Fourier transform of the observed correlation function. The direct transform of the time series yields the green

spectrum. The physically meaningful spectrum is given by the mixture (WSS) (blue). The Fourier inversion correlation functions are

shown in (d).
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we keep the intrinsic variances the same for the two

components, which are identical except for having

widely different correlation lengths, Xl1 5 5min

and Xl2 5 100min. This means that the variances are

distributed differently over the various frequencies

leading to a potentially significant covariance effect

in (3) and (4). Again, there is little indication of de-

viations from statistical homogeneity in the histo-

gram (Fig. 8a) with the possible exception of an

enhancement in the tail of larger values. In complete

ignorance, such a tail could easily be taken to be a

statistical fluke.

Although not readily apparent in the time-series data

(Fig. 8b), the first component C1 is associated with an

IXH5 0.82 while that for the second component C2 is 0.

Yet, when they are combined, the variability in the

correlation lengths is sufficient to produce changes in the

variance in time of sufficient magnitude so that IXH

becomes 2.41, a significant value well into the domain of

statistical heterogeneity (see Fig. 4). The reason for this

is that while the total variances are the same, they are

distributed differently over the different spectral wave-

lengths. This will, then, affect the covariance terms in (3)

and (4). Hence, this heterogeneity is reflected in the

FIG. 8. As in Fig. 7, except that the intrinsic variances remain identical, but the correlation lengths differ leading to different spectra and

retrieved correlation functions as discussed further in the text. This shows the sensitivity of statistical heterogeneity to different

correlations.
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Fourier transforms in Fig. 8c. As in Fig. 7 the DFT

spectrum also differs from ST. While the noise parts of

the spectra are quite similar, at lower frequencies there

are again some significant differences between what

would have been expected had the data been statistically

homogeneous as compared to the real case of statistical

heterogeneity. These differences are also again reflected

in the observed and inverse Fourier transform corre-

lation functions as illustrated in Fig. 8d. The co-

variance term makes the greatest contribution to the

observed correlation function at shorter lags (longer

wavelengths). As IXH indicates, the data are not

suitable for the application of the Wiener–Khintchine

theorem. A blind assumption that these data were WSS

would have led to significant errors in data scaling

compared to truly WSS data. Once again as in Fig. 7d,

the correlation function derived from the inverse

Fourier transform of the DFT spectrum matches the

observed correlation function. Hence the derived cor-

relation function and the DFT spectrum do not form a

transform pair because the FFT of the derived correla-

tion function does not match the DFT spectrum.

Finally, we consider an example when the intrinsic

variances and the correlation functions are fixed for

both components, but the mean values are distinctly

different as evident in the histogram in Fig. 9a. As the

time series shows (Fig. 9b), it is only the difference in

the mean values that indicates statistical heterogeneity

leading to IXH 5 0.5. Yet this IXH is significant as

demonstrated in the power spectra (Fig. 9c) and in the

correlation functions in Fig. 9d. Here the exaggerated

differences among the correlation functions arise

because the differences between mg and each of the

component mean values, m. The difference between

the mean values in combination with the covariance

contributions clearly overwhelms the WSS contribu-

tion to the observed correlation. Of course, no one

would have assumed these to be statistically homo-

geneous data in the first place, but it does illustrate

the potential dangers inherent in more subtle situa-

tions. Moreover, using the DFT approach does not

ameliorate the problem.

4. Conclusions

Scaling studies of rainfall are important for the trans-

lation of observations and numerical model outputs

among all the various scales. For example, given an

output from a numerical forecast model on, say, 5-km

scales, it would be useful to urban flooding and farm field

erosion prevention to know what the corresponding

rainfall variability would be on kilometer or smaller

dimensions. Likewise, if a network of rain gauges

provided observations over a 1 km3 1 km domain, how

could they be incorporated onto the coarser grids of nu-

merical forecast models? Such scaling, however, implies a

degree of generality of scaling spectra. Otherwise scaling

would only apply to each different situation that then

would have to be determined each time, thus defeating

scaling as a useful tool with any generality applicable to

other observations.

There are several methods for deriving such power

spectra including the direct Fourier transform (DFT)

of observations and the application of the Wiener–

Khintchine (WK) theorem to the observed correlation

function. Regardless of how such spectra are computed,

however, all valid power spectra must satisfy the WK

theorem.When observations are wide-sense statistically

stationary (WSS) or wide-sense spatially statistically

homogeneous (WSSH), the Wiener–Khintchine theo-

rem associates an observed autocorrelation function to

a scaling variance (power) spectrum as a Fourier trans-

form pair. Because the mean value is a constant under

these circumstances, this makes it easy to scale features

among all the different observed scales using only an

observed correlation function. Thus, it is important to be

able to identify WSS conditions so that any scaling has

general applicability.

In this workwe explore the reasons whyWSS (WSSH)

is a necessary requirement using controlled simulated

data. However, in order to do this, we must also dem-

onstrate that the simulated data areWSS. There are two

approaches for doing this. The first is to use the index of

statistical heterogeneity (IXH) defined above and in

Jameson et al. (2018) for estimating when data may be

safely assumed to be WSS. This was accomplished by

estimating the number of distinct components (peaks

in the distribution) of mean values in the data and by

using record-counting techniques to detect changes in

the variance of the rain.When either of these quantities

exceeds certain limits, IXH exceeds 0; the Fourier

transform of the observed correlation function should

not then be used for general scaling studies. An alter-

native is to use an observed correlation function and

the Wiener–Khintchine theorem to test whether an

observed correlation function and its Fourier trans-

form are a Fourier transform pair by inverse trans-

forming the calculated spectrum and comparing those

results to the original observed correlation function.

What this study shows, however, is that when condi-

tions are notWSS, the Fourier transform of the observed

correlation function not only includes the power spectra

of each component, but it also includes the contributions

arising from all of cross correlations among all of the

contributing components. Moreover, the Fourier trans-

form then becomes ‘‘local’’ in that it also depends upon
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the time and location of the particular set of observations.

Consequently, there is no longer any generality useful

for scaling the rainfall structure for different rainfall

measurements.

While it is well known that rainfall data should be

WSS (WSSH) in order to use the WK theorem, specific

reasons for this are not evident in the meteorological

literature. This work fills this void by explaining in spe-

cific detail what happens when the Wiener–Khintchine

theorem is erroneously applied to simulated statistically

heterogeneous rainfall data. In particular, the results

from such transformations are compared to those for a

statistical mixture of all of the components, which

is WSS (WSSH) so that the effects of statistical het-

erogeneity become readily apparent. It is also shown

that the Fourier transform derived using an observed

correlation function cannot then be inverse Fourier

transformed to again yield the observed correlation

function. Hence, in statistically heterogeneous data,

the ‘‘spectra’’ and the calculated correlation function

do not, then, form a Fourier transform pair as required

by the Wiener–Khintchine theorem. This is not sur-

prising, of course. It is also shown that when Nc . 1,

IXH is sensitive both to the intrinsic variance of each

FIG. 9. As in the previous figures, except this time the intrinsic variances and the correlation functions are kept the same, but there are

now two different mean values as is evident in (a). The spectra show significantly different powers and the inverse Fourier-derived

correlation functions show substantial differences in part because of the significantly different mean values.
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of the components contributing to the observations

as well as to any differences in the characteristic de-

correlation lengths of the correlation functions of

each component. Even in cases when there is only one

mean value (Nc 5 1), IXH is still sensitive to the

changes in the variance in the time series. IXH,

therefore, appears to be a useful tool. While the de-

tails of the applicability, of the error rates of IXH and

of when deviations from WSS become serious im-

pediments to scaling are yet to be fully determined in

future research, the results presented here offer some

hope for sorting out useful scaling relations from

those that could be misleading.

If it can be shown that the PDF of the components

is largely dominated by a single component and that the

covariance functions are small, then the power spec-

trum can be taken to be approximately representative.

However, if there is more than one significant compo-

nent but the covariances are all small (i.e., the fluctua-

tions are statistically independent), then the calculated

power spectrum will be the weighted spectrum from

each of the components plus an enhanced dc component

at v5 0. This later effect should not affect the slopes of

the power spectra provided the dc component is ex-

cluded in which case the requirements for the WK

theorem would be met. The generality of the results,

then, will depend upon the generality of the frequency

distribution of the simultaneous occurrence of these

components in future measurements as well as nearly

statistically independent fluctuations among all the

components.

Furthermore, while it is not possible to ‘‘correct’’ for

statistical inhomogeneities because they are the re-

flection of underlying physical-statistical processes, in-

sofar as a statistically heterogeneous set of data may

FIG. A1. Observations of the 1-min rainfall rate using a Joss–

Waldvogel disdrometer at the NASA Wallops Island Rainfall

Measurement Facility on 3 Mar 2013 during the passage of con-

vective rain associated with a warm front. The red line (as de-

scribed in the text) represents the estimate of the actualmean value

that is affected by correlations in time. The differences between the

observations and the means then provides an estimate of the true

fluctuations of the rainfall rate used to calculate a as illustrated in

Fig. A2a.

FIG. A2. (a) The plot of the time series of rainfall fluctuations

about the mean used in the calculation of a that illustrates the

variability of the variance of the rainfall rate over the interval.

(b) The distribution of the mean values determined using the

Bayesian inversion of the count data as described in the text. The

three different gamma fits to the contributing components are il-

lustrated as well.
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consist of the concatenation of several WSS (WSSH)

subgroups, it may then be possible, on those occasions,

to treat each subgroup independently and then to derive

more insight into the scaling. In particular it may, at

times, be possible to segment a large set of data into

smaller apparently statistically homogeneous segments

as illustrated in Jameson et al. (2018). This, again, is the

topic for future research.

FIG. A3. (a) An example of the spatial variability of the 80-min average rainfall rate, RR,

and of the IXH over a small (100m 3 70m) network of video disdrometers [described in

Jameson et al. (2015)] for a light rainfall event generated by the passage of several different

patches of rain having different mean values. Even though the overall rainfall is light, there is

still significant IXH because of the different patches of rain. (b) An example of a 5-min

smoothed time series over the 121 cm2 surface of a 2D video disdrometer during a rain event

near Charleston, as described further in the text.
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APPENDIX

An Example of the Analysis of Rain Observations
and of Spatial Variability

The data presented in Fig. A1 are from a Joss–

Waldvogel impact disdrometer. The data [provided by

D.Wolff (2013, unpublished data)] were collected at the

National Aeronautics and Space Administration rain

facility at Wallops Island, Virginia, on 6 March 2013 as

a line of convection passed over the facility. As dis-

cussed in detail in Jameson et al. (2018), the effects of

correlation must be removed in order to calculate the

true fluctuation parameter a. This is done using a least

squares error weighted running average on the data

over a length of 2 times the observed decorrelation

length. The resulting time series of the fluctuations is

plotted in Fig. A2a as is the calculation of the relative

dispersion of a, namely RDa, that reveals statistically

significant changes in the fluctuations of the rainfall

rate across the set of observations.

Figure A2a illustrates the fluctuations used to cal-

culate a. Figure A2b shows the three components of

the distribution of likely mean values resulting from

Bayesian inversion of the count data. Gamma distri-

butions are used to fit this distribution since they work

quite well, and they are more appropriate (represen-

tative of an additive process) to rainfall data than are

lognormal distributions (representative of a multipli-

cative process). These values then combined to yield

the observed IXH given in Fig. A1.

As an example illustrating the spatial variability of

IXH, Fig. A3a is a plot of the 80-min average rainfall

rate (RR) with overlying contours (red) of IXH over a

small network of video disdrometers as described in

Jameson et al. (2015). Interestingly, even though the

average rainfall rate is light, there is significant IXH

because of the passage of several different patches of

rain having different mean values during the 80min.

Finally, an example of a time series of 5-min least

squared error weighted average rainfall rate and IXH are

plotted in Fig. A3b. IXH was evaluated by sampling the

rainfall rate every minute in each 1 cm2 of the 121 cm2

sampling area of a 2D video disdrometer (2DVD) in-

strument (e.g., see Kruger and Krajewski 2002) near

Charleston, South Carolina. The Nc and a were then

determined over the entire area every minute. Inter-

estingly, a appears to be more strongly related to

changes in the rainfall rate than to the rainfall rate

itself. This, however, is the subject of ongoing and future

research.
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