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ABSTRACT  

In this paper, a novel photoacoustic (PA) sensing probe design consisting of single optical fiber is reported. The same 
optical fiber is used for light delivery, which also serves as an acoustic delay line to relay the PA signal. As the key 
feature of the design, the ultrasound transducer is made optically-transparent to allow excitation light to pass through. 
This probe design provides three major benefits, including miniaturization, co-registered optical excitation and acoustic 
detection, and clear separation of PA signal from interference signals. Testing results show that PA probe provides good 
sensitivity and high linearity.      
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1. INTRODUCTION  
For biomedical applications, photoacoustics (PA) has become a useful technique that combines both rich optical 
absorption contrast and good acoustic penetration depth beyond optical diffraction limit [1, 2]. Although better than 
conventional optical methods, the penetration depth of PA sensing and imaging in tissues is still limited by the maximal 
allowable laser fluence, the optical absorption and acoustic attenuation in tissues [3]. In recent years, new PA sensing 
probe [4-6] or guided biopsy needles [7-9] have been developed to conduct localized measurements. Different from 
conventional optical sensing probes [10] (which would consists of a single optical fiber for both light delivery and 
reception), the need for light delivery and ultrasound detection poses some challenges to the design and construction of 
PA sensing probes, especially in terms of compactness. For in-vivo applications, the sensing probe needs to be as 
compact as possible to minimize its invasiveness. 
 
To address this issue, we have demonstrated a new PA sensing probe design using two optical fibers [11]. One optical 
fiber serves as the optical waveguide for delivering excitation laser pulses onto the target. The second optical fiber 
functions as an acoustic delay line to detect and transmit the generated PA signal from the target to an outside ultrasound 
transducer, while creating a desirable amount of acoustic time delay. With the transducer located outside, the PA probe 
consists of only two optical fibers placed closely to each other to provide a small probe diameter. In addition, by adding 
an extra time delay, the PA signal will reach the transducer after all interference signals diminish and therefore can be 
easily distinguished and recorded for data processing. Still, with the use of two optical fibers, the PA sensing is not as 
compact as many optical sensing probes with only single optical fiber. In addition, the light delivery and the ultrasound 
detection areas are offset with each other, resulting in a non-ideal PA signal detection configuration. 
 
In this paper, we report a new PA sensing probe design using a single optical fiber for both light delivery and ultrasonic 
detection. This is made possible by the development and use of an optically-transparent ultrasound transducer, which 
allows the excitation light to pass through and travel along the optical fiber to reach the target. In return, the transducer 
senses the generated PA signal transmitted through the optical fiber. For demonstration, a prototype probe was designed, 
fabricated, and tested with different concentration of dye solutions.     

2. EXPERIMENTAL PROCEDURE  
2.1 Probe Design and Construction 

Fig. 1a shows the schematic design of the PA sensing probe. It consists of one single optical fiber laid out along the 
probe, which is housed inside a polyimide tubing. The polyimide tubing provides good structural protection and also 
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4. CONCLUSION 
In this paper, a new PA sensing probe based on a single optical fiber acoustic delay line and a PMN-PT transparent 
transducer has been demonstrated. By using a single optical fiber for both delivering light pulses to the target and 
receiving US signals from the target, a compact and minimally-invasive probe structure can be achieved. In addition, the 
light delivery and the ultrasound detection are automatically aligned with each other, thereby resulting in an optimal 
configuration for PA signal detection. Capitalizing upon the optical transparency of the PMN-PT substrate, the 
transducer can be placed between the optical source and the optical fiber, allowing the light delivery and transmission of 
the acoustic signals through the transducer. Other optical sensing modalities can be readily integrated into the PA probe 
without additional optical fibers. Although the initial concept has been demonstrated, several improvements will need to 
be investigated in future work. First, the optical transmission efficiency can be improved by optimizing the contacts and 
refractive index matching between the PMN-PT substrate and optical fiber. Second, an acoustic impedance matching 
layer can be added onto the probe tip to improve the efficiency of PA signal collection. Third, a bundle of smaller optical 
fibers can be used to transmit higher frequency components of the PA signal to enhance the depth resolution of PA 
detection. 
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