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Abstract We consider the energy-critical wave maps equationR1+2→ S
2 in

the equivariant case, with equivariance degree k ≥ 2. It is known that initial
data of energy < 8πk and topological degree zero leads to global solutions
that scatter in both time directions. We consider the threshold case of energy
8πk. We prove that the solution is defined for all time and either scatters in
both time directions, or converges to a superposition of two harmonic maps in
one time direction and scatters in the other time direction. In the latter case, we
describe the asymptotic behavior of the scales of the two harmonic maps. The
proof combines the classical concentration-compactness techniques of Kenig–
Merle with a modulation analysis of interactions of two harmonic maps in the
absence of excess radiation.

1 Introduction

This paper concerns energy critical wave maps � : (R1+2
t,x ,m) → (M, g),

where m is the Minkowski metric and M is a Riemannian manifold with a
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1250 J. Jendrej, A. Lawrie

metric g. Wave maps arise in the physics literature as examples of nonlinear
σ -models. A particularly interesting case is when the target manifold admits
nontrivial finite energy stationary wave maps, or harmonic maps, as these
give simple examples of topological (albeit unstable) solitons.Mathematically,
wave maps simultaneously generalize the classical harmonic maps equation
to Lorenztian domains as well as the free wave equation to manifold-valued
maps.

Viewing (M, g) as an isometrically embedded sub-manifold of Euclidean
space (RN , 〈·, ·〉RN ), a wave map is defined as a formal critical point of the
Lagrangian action

L(�) = 1

2

∫
R1+2

mαβ
〈
∂α�, ∂β�

〉
RN dx dt.

The Euler–Lagrange equations are given by

�� ⊥ T�M,

which can be rewritten as

�� = S(�)(∂�, ∂�), (1.1)

where S denotes the second fundamental form of the embedding (M, g) ↪→
(RN , 〈·, ·〉). The conserved energy is given by

E(�, ∂t�)(t) = 1

2

∫
R2
|∂t�(t)|2 + |∇�(t)|2 dx = constant. (1.2)

Smooth finite energy initial data for (1.1) consist of a pair ��(0) = (�0, �1),
where

�0(x) ∈M ⊂ R
N , �1(x) ∈ T�0(x)M, ∀ x ∈ R

2.

We assume here that we can find a fixed vector �∞ ∈M so that

�0(x)→ �∞ as |x | → ∞. (1.3)

Wave maps on R
1+2
t,x are called energy critical because the conserved energy

and the equation are invariant under the same scaling: If ��(t) solves (1.1) then
so does

��λ(t, x) := (�λ(t, x), ∂t�λ(t, x)) :=
(
�(t/λ, x/λ),

1

λ
∂t�(t/λ, x/λ)

)
(1.4)

and it also holds that E( ��λ) = E( ��).
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Two-bubble dynamics for wave maps 1251

The geometry of the target manifold, and in particular the existence of non-
constant finite energy harmonic maps � : R2 →M, plays a crucial role in
determining the possible dynamics of solutions to the wave maps equation.
Here we’ll focus on a special case when the target manifold is the 2-sphere,
M = S

2 ⊂ R
3 with the round metric g. One advantage is that here the

harmonic maps are explicit: by a classical theorem of Eells and Wood [20]
they are either holomorphic or anti-holomorphic with respect to the complex
structure on S2, and by (1.3) with the removable singularity theorem [47] they
can thus be identified with the rational functions ρ : C∞ → C∞. It follows
that each harmonic mapR2→ S

2 has a topological degree given by the degree
of the corresponding rational map.

In fact, the condition (1.3) allows us to assign a topological degree to
each smooth finite energy data. Given data (�0, �1), we can identify �0
with a map �̃0 : S

2 → S
2 by assigning the point at ∞ to the vector

�∞ := lim|x |→∞�(x). Abusing notation slightly by writing �̃0 = �0, the
degree of the map �0 is defined by

deg(�0) := 1

Area(S2)

∫
S2

�∗0 (ω) = 1

4π

∫
R2

�∗0 (ω) ∈ Z

where ω is the area element of S2 ⊂ R
3. The degree deg(�0) is preserved by

the smooth wave map flow on its maximal interval of existence Imax, that is,

deg(�0) = deg(�(t)) ∀t ∈ Imax.

Importantly, any harmonic mapQk of degree k minimizes the energy amongst
all degree k wave maps, and in fact

E(Qk) = 4π |deg(Qk)| = 4π |k| .

1.1 k-equivariant wave maps

To simplify the analysis we’ll take advantage of a symmetry reduction and
study a restricted class of maps� satisfying the equivariance relation�◦ρk =
ρk◦� for all rotationsρ ∈ SO(2).We consider a subclass of suchmaps known
as k-equivariant, or k-corotational, which correspond to equivariant maps that
in local coordinates take the form

�(t, r, θ) = (ψ(t, r), kθ) ↪→ (sinψ cos kθ, sinψ sin kθ, cosψ) ∈ S
2 ⊂ R

3,

where ψ is the colatitude measured from the north pole of the sphere and
the metric on S

2 is given by ds2 = dψ2 + sin2 ψ dω2. The Euler–Lagrange

123

Author's personal copy



1252 J. Jendrej, A. Lawrie

equations (1.1) reduce to an equation for ψ and we are led to the Cauchy
problem: ⎧⎨

⎩
ψt t − ψrr − 1

r
ψr + k2

sin 2ψ

2r2
= 0,

(ψ(0), ∂tψ(0)) = (ψ0, ψ1).

(1.5)

We’ll often use the notation �ψ(t) to denote the pair

�ψ(t, r) := (ψ(t, r), ψt (t, r))

and we remark that the scaling (1.4) can be expressed as follows: If �ψ(t, r) is
a solution to (1.5) then so is

�ψλ(t, r) =
(
ψ(t/λ, r/λ),

1

λ
ψt (t/λ, r/λ)

)

for each fixed λ > 0.
The conserved energy from (1.2) takes the form

E( �ψ(t)) = 2π
1

2

∫ ∞
0

(
(∂tψ(t, r))2 + (∂rψ(t, r))2 + k2

sin2 ψ(t, r)

r2

)
r dr.

From the above it’s clear that any k-equivariant data �ψ(0, r) of finite energy
must satisfy limr→0 ψ(0, r) = mπ and limr→∞ ψ(0,∞) = nπ for some
m, n ∈ Z. Since the smooth wave map flow depends continuously on the
initial data these integers are fixed over any time interval t ∈ I on which the
solution is defined. This splits the energy space into disjoint classes according
to this topological condition and it is natural to consider the Cauchy problem
(1.5) within a fixed class

Hmπ,nπ

:= {(ψ0, ψ1) | E(ψ0, ψ1)<∞ and lim
r→0

ψ0(r)=mπ, lim
r→∞ψ0(r)=nπ}.

We can restrict to H0,nπ and we’ll denote these by Hnπ := H0,nπ . We also
defineH =⋃

n∈ZHnπ to be the full energy space.
The equivariant reduction introduces a gooddeal of rigidity into the problem,

but still allows us access to the family of harmonic maps. Indeed the degree k
harmonicmapQk corresponding to z �→ zk as a holomorphicmapC∞ → C∞,
can be expressed uniquely (up to scaling) as the |k|-equivariant map

Qk(r, θ)=(Qk(r), kθ) ↪→ (sin Qk cos kθ, sin Qk sin kθ, cos Qk)∈S2 ⊂ R
3,
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Two-bubble dynamics for wave maps 1253

where Qk is the explicit finite energy stationary solution to (1.5) given by

Qk(r) := 2 arctan rk .

Note that Qk(r) satisfies

Qk(0) = 0, lim
r→∞ Qk(r) = π.

We often write �Qk := (Qk, 0). We see that E( �Qk) = 4πk, which is minimal
amongst all k-equivariant maps in the energy class Hπ ; see Sect. 2.4 for a
direct argument.

Here we consider k-equivariant maps �ψ = (ψ0, ψ1) in the class H0, i.e.,
that satisfy

lim
r→0

ψ0(r) = 0 and lim
r→∞ψ0(r) = 0,

so thatψ0 is the polar angle of a finite energymap�0 intoS2 with deg(�0) = 0.
Before stating our mains results let us first motivate this restriction with a brief
summary of recent developments.

1.2 Threshold theorems and bubbling

The energy critical wave maps Eq. (1.1) has been extensively studied over
the past several decades; [5,6,28–34,48,49,53,54,56,57]. In recent years the
focus has centered on understanding the nonlinear dynamics of solutions with
large energy. At the end of the last decade, the following remarkable sub-
threshold conjecture was established [38,50,51,55]: Every wave map with
energy less than that of the first nontrivial harmonic map is globally regular
on R1+2 and scatters to a constant map. The role of the least energy harmonic
map in the statement of the sub-threshold conjecture is based on fundamental
work of Struwe [52], who showed that the smooth equivariant wave map
flow can only develop a singularity by concentrating energy at the tip of a
light cone by bubbling off at least one non-trivial finite energy harmonic map.
In breakthrough works, Krieger et al. [39], Rodnianski and Sterbenz [46],
Raphaël and Rodnianski [44], constructed examples solutions of such blow-
up by bubbling, with the latter twoworks yielding a stable blow-up regime; see
also the recent stability analysis of Krieger [35] for type-II blow ups solutions
to the energy critical NLW, which suggests that the solutions from [39] should
also exhibit stability properties.

The starting point for the present work is the following natural question: Can
one give a satisfactory description of the possible dynamics for arbitrary initial
data? In dispersivemodels such as (1.1) this is typically referred to as the soliton
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1254 J. Jendrej, A. Lawrie

resolution conjecture, which states roughly that any smooth solution asymptot-
ically decouples into weakly interacting (possibly concentrating) solitons plus
free radiation. The wave maps Eq. (1.1) with N = S

2 is an intriguing model
in which to study this question: all stationary solutions (the harmonic maps)
are known explicitly, the conserved topological degree of the solution intro-
duces additional rigidity, and the equivariant reduction (1.5) greatly simplifies
certain aspects of the analysis without destroying the essential mechanisms
of truly nonlinear behavior, e.g., solitons, blow-up. There has been exciting
recent progress in this direction for the general Eq. (1.1), see [12,21]. Here we
focus on the equivariant model (1.5) where more is known.

Our analysis is motivated by several results proved in the last few years;
we will in fact use some of them explicitly. First, note that, by continuity,
limr→0 ψ(t, r) and limr→∞ ψ(t, r) are independent of t . Hence scattering to
a constant map is only possible if limr→0 ψ0(r) = limr→∞ ψ0(r). We can
assume without loss of generality that both these limits equal 0, i.e. the initial
data (ψ0, ψ1) is inH0. For suchmaps, the following refined threshold theorem
was proved in [9].

Theorem 1.1 (2E( �Q) Threshold Theorem). [9, Theorem 1.1] For any smooth
initial data �ψ(0) ∈ H0 with

E( �ψ(0)) < 2E( �Qk) = 8πk,

there exists a unique global evolution �ψ ∈ C0(R;H0).Moreover, �ψ(t) scatters
to zero in both time directions, i.e., there exist solutions �ϕ±L to the linearized
Eq. (2.2) such that

�ψ(t) = �ϕ±L (t)+ oH0(1) as t →±∞.

The analogous result for the full model without symmetries was obtained
by the second author and Oh in [40], as a consequence of the bubbling analysis
in [51]. The heuristic reasoning behind the threshold 2E( �Q) is as follows. The
topological degree counts (with orientation) the number of times a map ‘wraps
around’ S2. If a harmonic map of degree k bubbles off from a wave map �ψ(t),
then, in order for �ψ(t) to satisfy deg(ψ) = 0, it must ‘unwrap’ precisely
k times away from the bubble. The minimum energy cost for wrapping and
unwrapping is 4πk, which is also the energy of Qk . The total energy cost is at
least 8πk = 2E( �Qk).

Similar intuition motivated the works [9,10], which established soliton
resolution for 1-equivariantmapswith energies that only allow for one concen-
trating bubble, namely for data inHπ with energy below 3E(Q). These works
showed that for any such solution there exists a regular map �ϕ ∈ H0 (free radi-
ation if the solution is global) and a continuous dynamical scale λ(t) ∈ [0,∞)
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Two-bubble dynamics for wave maps 1255

such that
�ψ(t) = �Qλ(t) + �ϕ(t)+ oH0(1) as t → T+. (1.6)

Cote [8] and later Jia and Kenig [25] extended the theory to handle arbitrary
energies, the latter work in all equivariance classes. It was shown that in this
case the decomposition (1.6) holdswith possiblymany concentrating harmonic
maps, but only along at least one sequence of times tn → T+. The proofs
of [8–10,25] rely heavily on concentration compactness techniques and were
all inspired by the remarkable series of papers by Duyckaerts et al. [14–17]
on the focusing quintic nonlinear wave equation in 3 space dimensions. We’ll
discuss these latter works more below; see Remark 1.13.

Theorem 1.2 (Sequential Decomposition). [8,25] Let �ψ(t) ∈ H�π be a
smooth solution to (1.5) on [0, T+). Then there exists a sequence of times
tn → T+, an integer J ∈ N, a regular map �ϕ ∈ H0, sequences of scales λn, j
and signs ι j ∈ {−1, 1} for j ∈ {1, . . . , J }, so that

�ψ(tn) =
J∑

j=1
ι j �Qλn, j + �ϕ(tn)+ oH0(1) as n→∞ (1.7)

In the case of finite time blow-up at least one scale λn,1 → 0 as n →∞ and
�ϕ(t) → �ϕ(1) is a finite energy map with E( �ϕ(1)) = E( �ψ) − JE( �Q). In the
case of a global solution, �ϕ(t) can be taken to be a solution to the linear wave
Eq. (2.2) and signs ι j are required to match up so that

lim
r→∞

�ψ(0, r) = �π = lim
r→∞

J∑
j=1

ι j �Qλn, j (r).

Remark 1.3 A decomposition into bubbles for a sequence of times for the full
non-equivariant model was obtained by Grinis [21] up to an error that vanishes
in a weaker Besov-type norm. Duyckaerts et al. [12] proved that for energies
slightly above E( �Q) a one-bubble decomposition holds for continuous time.
The same authors obtained in [13] a sequential decomposition into bubbles in
the case of the focusing energy critical power-type nonlinear wave equation
(NLW).

Theorem 1.2 raises two natural questions:

• Are there any solutions to (1.5) with J ≥ 2 in (1.7), i.e., are there any
solutions that form more than one bubble?
• And, if so, does the decomposition (1.7) hold continuously in time, i.e.,
does soliton resolution hold for (1.5)?
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1256 J. Jendrej, A. Lawrie

In view of Theorems 1.1 and 1.2 it is natural to ask both questions at the
minimal possible energy level where multiple bubble dynamics can occur,
namely for solutions �ψ(t) ∈ H0 having threshold energy, that is such that

E( �ψ) = 2E( �Q).

In [22] the first author obtained an affirmative answer to the first question,
proving the following result.

Theorem 1.4 [22, Theorem 2] Let k > 2. There exists a solution �ψ :
(−∞, T0] → H0 of (1.5) such that

lim
t→−∞

∥∥ �ψ(t)− (− �Q + �Q
γk |t |−

2
k−2

)∥∥
H0
= 0,

where γk > 0 is an explicit constant depending on k. ��
Remark 1.5 Similar solutions could be obtained for k = 2 by the samemethod.

1.3 Main result

In this paper, we address the problem of classification of solutions at threshold
energy level, in the spirit of the works of Duyckaerts and Merle [18,19]. The
major difficulty in the analysis is that in our case the threshold solutions contain
two bubbles, which leads to significantly more complicated dynamics.

Let �ψ(t) : (T−, T+)→ H0 be a solution to (1.5) with E( �ψ) = 2E( �Q). We
will say that �ψ(t) is a two-bubble in the forward time direction if there exist
ι ∈ {1,−1} and continuous functions λ(t), μ(t) > 0 such that

lim
t→T+

‖(ψ(t)− ι(Qλ(t) − Qμ(t)), ψt (t))‖H0 = 0, λ(t)� μ(t) as t → T+.

The notion of a two-bubble in the backward time direction is defined similarly.
We prove the following result.

Theorem 1.6 (Main Theorem). Fix any equivariance class k ≥ 2. Let �ψ(t) :
(T−, T+)→ H0 be a solution to (1.5) such that

E( �ψ) = 2E( �Q) = 8πk.

Then T− = −∞, T+ = +∞ and one the following alternatives holds:

• �ψ(t) scatters in both time directions,
• �ψ(t) scatters in one time direction and is a two-bubble in the other time
direction with the scales of the bubbles λ(t), μ(t) satisfying

μ(t)→ μ0 ∈ (0,+∞), λ(t)→ 0.
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Two-bubble dynamics for wave maps 1257

Remark 1.7 Asaby-product of the proof,wewill determine the rate of decayof
λ(t) in the two-bubble case. Suppose a two-bubble solution forms as t →∞:

If k ≥ 3 there exists a constant Ck > 0 such that 1
Ck

μ0t
− 2

k−2 ≤ λ(t) ≤
Ckμ0t

− 2
k−2 for t large enough, see (4.34). In the case k = 2 there exists a

constant C > 0 such that we have exp(−Ct) ≤ λ(t) ≤ exp(−t/C) for t large
enough, see (4.33).

Remark 1.8 In particular, the two-bubble solutions from Theorem 1.4 scatter
in forward time, which provides an example of an orbit connecting different
types of dynamical behavior for positive and negative times.

Remark 1.9 Non-existence of solutions which form a pure two-bubble in both
time directions is reminiscent of the work of Martel and Merle [41,42]. This
seems to be a typical feature of models which are not completely integrable.

One of the main points of our paper is an analysis of what we could call a
collision of bubbles in the simplest possible case of threshold energy.

Remark 1.10 Recall that in [18] a complete classification at the threshold
energy was obtained. It is tempting to believe that the solutions from Theo-
rem 1.4 should play a similar role as the solutionW− from [18], in which case
they would be unique non-dispersive solutions up to rescaling. This remains
an open question.

Remark 1.11 We conjecture that for k = 1 a similar result holds, but in the
two-bubble case λ(t) → 0 in finite time. The slower decay of Q would be a
source of additional technical difficulties in Section 3, but the general scheme
could be applied without major changes.

Remark 1.12 Our method establishes the exact analog of Theorem 1.6 in the
case of the equivariant Yang-Mills equation, by making the usual analogy
between equivariant Yang-Mills and k = 2-equivariant wave maps, see for
example [9, Appendix] for the analog of the Threshold Theorem 1.1 and [22]
for the analog of Theorem 1.4. There the harmonic map Q is replaced by
the first instanton, the notion of topological degree is replaced by the second
Chern number, and the threshold energy is exactly twice the energy of the first
instanton.

Remark 1.13 The full soliton resolution conjecture was established for the
radial solutions of focusing energy critical NLW by Duyckaerts, Kenig, and
Merle in the landmark work [17]. This result is the only known case of a
complete continuous-in-time classification for a model that is not completely
integrable. The proof relies on a particularly strong form of the “channels of
energy” method introduced by the same authors. However, proving channel
of energy estimates in other settings is a delicate issue, and the strong form of
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1258 J. Jendrej, A. Lawrie

these estimates used in [17] is known to fail for the linear wave equation in
even dimensions, see [11].

Aside from [17], Theorem 1.6 is the only other classification result for a
dispersive equation that holds for continuous times in the presence of more
than one non-trivial elliptic profile. Upgrading sequential decompositions such
as Theorem 1.2 or the one in [13] to hold for continuous times is regarded as
a major open problem.

1.4 Structure of the proof

Inspiredby theworkofDuyckaerts andMerle [18],wemerge the concentration-
compactness techniques with a careful analysis of the modulation equations
governing the evolution of the scales λ(t) and μ(t). As mentioned above, the
main difference with respect to [18] consists in the fact that our threshold
solutions contain two bubbles, one of which is concentrating, whereas in [18]
the modulation happens essentially around one stationary bubble. Thus our
analysis requires substantially new technique. Our proof can be summarized
as follows.
Step 1 If the solution does not scatter, then, by a special case of Theorem 1.2,
it approaches a two-bubble configuration for a sequence of times.
Step 2 We divide the time axis into regions where the solution is close to a
two-bubble configuration, which we can call the bad intervals [am, bm], and
regions where it is not, which are the good intervals [bm, am+1].
Step 3 On a bad interval [am, bm], we decompose the solution as follows:

�ψ(t) = (−Qμ(t) + Qλ(t) + g(t), ∂tψ(t)
)
.

In order to specify the values of λ(t) and μ(t), we use suitable orthogonality
conditions, see Lemma 3.1. For technical reasons, we introduce a parameter
ζ(t) such that |ζ(t) − λ(t)| � λ(t). We consider cm ∈ (am, bm) where the
quantity ζ(t)/μ(t) attains its global minimum on [am, bm] (we make sure that
the minimum is not attained at one of the endpoints).

The orthogonality conditions yield modulation equations for the evolution
of ζ(t) and μ(t). From these equations we can deduce crucial information
about the behavior of μ(t) and ζ(t) for t ≥ cm and t ≤ cm . We refer to the
beginning of Sect. 3 for a short description of the method. The main conclu-
sion can be intuitively phrased as follows:μ(t) does not change much on a bad
interval, whereas ζ(t) grows in a controlled way both for t ≥ cm and t ≤ cm .
The decisive point is that the bad interval [am, bm] can be long if ζ(cm)/μ(cm)
is small, but

∫ bm

am

( ζ(t)

μ(t)

) k
2
dt ≤ Ck, Ck depending only on k. (1.8)
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Two-bubble dynamics for wave maps 1259

Note that the only information about the solution which is used in this process
is the fact that E( �ψ(t)) = 2E( �Q), �ψ(cm) is close to a two-bubble configuration
and

d

dt

∣∣∣
t=cm

(
ζ(t)/μ(t)

) = 0.

Step 4 Using concentration-compactness arguments and Theorem 1.1 we
obtain that the solution has the compactness property on the union of the
good intervals. Now the idea is to run a convexity argument based on a mono-
tonicity formula between two times where �ψ(t) is close to a two-bubble. It
is as this stage that we reach a contradiction – if the solution has exited a
neighborhood of two-bubble configurations during the interim, the total cost
in terms of time derivative is too great to allow it to return. This is a type of
no-return result and one can draw parallels here to the ignition and ejection
lemmas from the work of Krieger et al. [36,37] concerning near ground-state
dynamics for the energy critical NLW.

There can potentially bemany good and bad intervals between the two times
where �ψ(t) is close to a two-bubble. It iswell-known that one needs to use a cut-
off in the monotonicity formula, which introduces an error in the estimates. On
the good intervals, this error is controlled thanks to the compactness property.
On the bad intervals, the bound (1.8) comes into play. More precisely, we
obtain that the error on a bad interval is absorbed by positive terms obtained
on intervals preceding and following the bad interval.
Step 5 Once the convergence to a two-bubble for continuous time is proved,
we deduce easily from the modulation equations that the solution is global and
μ(t) → μ0 ∈ (0,+∞). Scattering on at least one side follows easily from
the previous analysis. Namely, if the solution is non-scattering in both time
directions, then the time axis is divided into two bad regions near±∞ and one
good interval in between. We reach a contradiction by a similar (but simpler)
argument as in Step 4.

2 Preliminaries and technical lemmas

In this section we establish a few preliminary facts about solutions to (1.5) that
will be required in our analysis. We first aggregate here some notation.

2.1 Notation

Given a radial function f : Rd → R we’ll abuse notation and simply write
f = f (r), where r = |x |. We’ll also drop the factor 2π in our notation for the
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1260 J. Jendrej, A. Lawrie

L2 pairing of radial functions on R
2

〈 f | g〉 := 1

2π
〈 f | g〉L2(R2) =

∫ ∞
0

f (r)g(r) rdr

Recall the definition of the spaceH0:

H0 :=
{
(ψ0, ψ1) | E(ψ0, ψ1) <∞, lim

r→0
ψ0(r) = lim

r→∞ψ0(r) = 0

}

We define a norm H by

‖ψ0‖2H :=
∫ ∞
0

(
(∂rψ0(r))

2 + k2
(ψ0(r))2

r2

)
rdr

and for pairs �ψ = (ψ0, ψ1) ∈ H0 we write

‖ �ψ‖H0 := ‖(ψ0, ψ1)‖H×L2 .

The change of variables r �→ ex gives us an identification between the radial
functions H(R2) and H1(R), i.e., ψ0(r) ∈ H ⇔ ψ0(ex ) ∈ H1(R). In partic-
ular this means that

‖ψ0‖L∞ ≤ C‖ψ0‖H
Scaling invariance plays a key role in our analysis. Given a radial function
φ : R2→ R we denote the Ḣ1 and L2 re-scalings as follows

φλ(r) = φ(r/λ), φλ(r) = 1

λ
φ(r/λ)

The corresponding infinitesimal generators are given by

�φ := − ∂

∂λ

∣∣∣∣
λ=1

φλ = r∂rφ (Ḣ1
rad(R

2) scaling)

�0φ := − ∂

∂λ

∣∣∣∣
λ=1

φλ = (1+ r∂r )φ (L2
rad(R

2) scaling) (2.1)

2.2 Review of the Cauchy theory

For initial data (ϕ0, ϕ1) in the class H0 the formulation of the Cauchy prob-
lem (1.5) can be modified to take into account the strong repulsive potential
term in the nonlinearity:

k2 sin(2φ)

2r2
= k2

r2
φ + k2

2r2
(sin(2φ)− 2φ) = k2

r2
φ + O(φ3)

r2
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The presence of the potential k2

r2
indicates that the linear wave equation,

(
∂2t −�R2 + k2

r2

)
ψ = 0, (2.2)

of (1.5) has more dispersion than the 2d wave equation. In fact, it has the same
dispersion as the free wave equation in dimension d = 2k + 2 as can be seen
from the following change of variables: given a radial function φ ∈ H , define
v(r) by φ(r) = rkv(r). Then

1

rk

(
−�R2 + k2

r2

)
φ = −�R2k+2v, ‖φ‖H = ‖v‖Ḣ1(R2k+2). (2.3)

Thus one way of studying solutions �ψ(t) ∈ H0 of Cauchy problem (1.5)
is to define �v(t) = (r−kψ(t), r−kψt (t)) ∈ Ḣ1 × L2(R2k+2) and analyze the
equivalentCauchy problem for the radial nonlinearwave equation inR1+(2k+2)

t,x
satisfied by �v(t). Unfortunately, this route leads to unpleasant technicalities
when k > 2 (spatial dimension = 2k + 2 > 6) due to the high dimension and
the particular structure of the nonlinearity.

There is a simpler approach that allows us to treat the scattering theory
for the Cauchy problem (1.5) for all equivariance classes k ≥ 1 in a unified
fashion. The idea is to make use of some, but not all, of the extra dispersion in
−�R2 + k2/r2. Indeed, given a solution �ψ(t) to (1.5) we define u by ru = ψ

and obtain the following Cauchy problem for u.

utt − urr − 3

r
ur + k2 − 1

r2
u = k2

2ru − sin(2ru)

2r3
=: Z(ru)u3

�u(0) = (u0, u1). (2.4)

where the function Z defined above is a clearly smooth, bounded, even func-
tion. The linear part of (2.4) is the radialwave equation inR1+4 with a repulsive
inverse square potential, namely

vt t − vrr − 3
r vr + k2−1

r2
v = 0. (2.5)

For each k ≥ 1, define the norm Hk for radially symmetric functions v on R4

by

‖v‖2Hk(R
4)
:=

∫ ∞
0

[
(∂rv)

2 + (k2 − 1)

r2
v2

]
r3 dr

Solutions to (2.5) conserve the Hk norms. By Hardy’s inequality we have

‖v‖Hk(R
4) � ‖v‖Ḣ1(R4)
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1262 J. Jendrej, A. Lawrie

The mapping,

Hk × L2(R4) � (u0, u1) �→ (ψ0, ψ1) := (ru0, ru1) ∈ H × L2(R2)

satisfies

‖(u0, u1)‖Ḣ1×L2(R4) � ‖(u0, u1)‖Hk×L2(R4) = ‖(ψ0, ψ1)‖H×L2(R2) (2.6)

Thus we can conclude that the Cauchy problem for (2.4) with initial data
in Ḣ1 × L2(R4) is equivalent to the Cauchy problem for (1.5) for initial
data (ψ0, ψ1) ∈ H0, allowing us to give a scattering criterion for solutions
�ψ(t) ∈ H0 to (1.5).

Lemma 2.1 Let �ψ(0) = (ψ0, ψ1) ∈ H0. Then there exists a unique solution
�ψ(t) ∈ H0 to (1.5) defined on a maximal interval of existence Imax( �ψ) :=
(−T−( �ψ), T+( �ψ)) with the following properties: Define

�u(t, r) = (r−1ψ(t, r), r−1ψt (t, r)) ∈ Ḣ1 × L2(R4)

Then for any compact time interval J � Imax we have

‖u‖L3
t (J ;L6

x (R
4)) ≤ C(J ) <∞

In addition, if
‖u‖L3

t ([0,T+( �ψ));L6
x (R

4)) <∞
then T+ = ∞and �ψ(t) scatters t →∞, i.e., there exists a solution �φL(t) ∈ H0
to (2.2) so that

‖ �ψ(t)− �φL(t)‖H0 → 0 as t →∞.

Conversely, any solution �ψ(t) that scatters as t →∞ satisfies

‖ψ/r‖L3
t L6

x ([0,∞)×R4) <∞.

The proof of Lemma 2.1 is standard consequence of Strichartz estimates
for (2.5) and the equivalence of the Cauchy problems (1.5) and (2.4). In this
case, we need Strichartz estimates for the radial wave equation in R

1+4 with
a repulsive inverse square potential. For these we can cite the more general
results of Planchon et al. [43]; see also [2,3] which cover the non-radial case.

Lemma 2.2 (Strichartz estimates). [43, Corollary 3.9] Fix k ≥ 1 and let �v(t)
be a radial solution to the linear equation

vt t − vrr − 3

r
vr + k2 − 1

r2
v = F(t, r), �v(0) = (v0, v1) ∈ Ḣ1 × L2(R4)
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Then, for any time interval I ⊂ R we have

‖v‖L3
t L6

x (I×R4) + sup
t∈I
‖�v(t)‖Ḣ1×L2(R4) � ‖�v(0)‖Ḣ1×L2(R4) + ‖F‖L1

t ,L2
x (I×R4)

where the implicit constant above is independent of I .

We’ll also explicitly require the following nonlinear perturbation lemma
from [27]; see also [9, Lemma 2.18].

Lemma 2.3 (Perturbation Lemma). [27, Theorem 2.20] [9, Lemma 2.18]
There are continuous functions ε0,C0 : (0,∞) → (0,∞) such that the
following holds: Let I ⊂ R be an open interval, (possibly unbounded),
ψ, ϕ ∈ C0(I ; H) ∩ C1(I ; L2) radial functions satisfying for some A > 0

‖ �ψ‖L∞(I ;H×L2(R2)) + ‖�ϕ‖L∞(I ;H×L2(R2)) + ‖ϕ/r‖L3
t (I ;L6

x (R
4))
≤ A

‖eq(ψ/r)‖L1
t (I ;L2

x (R
4))
+ ‖eq(ϕ/r)‖L1

t (I ;L2
x (R

4))
+ ‖w0‖L3

t (I ;L6
x )
≤ ε ≤ ε0(A)

where eq(ψ/r) := (�R4 + k2−1
r2

)(ψ/r)+ (ψ/r)3Z(ψ) in the sense of distri-

butions, and �w0(t) := S(t− t0)( �ψ− �ϕ)(t0)with t0 ∈ I arbitrary, but fixed and
S denoting the linear wave evolution operator in R

1+4 (i.e., the propagator
for (2.2)). Then,

‖ �ψ − �ϕ − �w0‖L∞t (I ;H×L2(R2)) + ‖
1

r
(ψ − ϕ)‖L3

t (I ;L6
x (R

4)) ≤ C0(A)ε

In particular, ‖ψ/r‖L3
t (I ;L6

x (R
4)) <∞.

2.3 Concentration compactness

Another consequence of (2.6) and Lemma 2.2 is that we can translate the
concentration compactness theory of Bahouri and Gérard to solutions to (2.2)
and (1.5). We begin by stating the linear profile decompositions in the 4d
setting for solutions to (2.5).

Lemma 2.4 (Linear 4d profile decomposition). [1, Main Theorem] Let k ≥
1 be fixed. Consider a sequence �un = (un,0, un,1) ∈ Hk × L2(R4) which
is bounded in the sense that ‖�un‖Hk×L2(R4) � 1. Then, up to passing to a

subsequence, there exists a sequence of solutions to (2.5), �V j
L ∈ Hk× L2(R4),

sequences of times {tn, j } ⊂ R, and sequences of scales {λn, j } ⊂ (0,∞), and
�wk
n defined by
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1264 J. Jendrej, A. Lawrie

�un(r) =
k∑
j=1

(
1

λn, j
V j
L

(−tn, j
λn, j

,
r

λn, j

)
,

1

(λn, j )2
∂t V

j
L

(−tn, j
λn, j

,
r

λn, j

))

+ (wk
n,0, w

k
n,1)(r)

so that the following statements hold: Let wk
n,L(t) denote the linear evolution

of the data �wk
n, i.e., solutions to (2.5). Then, for any j ≤ k,

(λ
j
nw

k
n,L(tn, j , λn, j ·), λ2n, jwk

n(tn, j , λn, j ·)) ⇀ 0 weakly in Hk × L2(R4).

In addition, for any j �= k we have

λn, j

λn,k
+ λn,k

λn, j
+

∣∣tn, j − tn,k
∣∣

λn, j
+

∣∣tn, j − tn,k
∣∣

λn,k
→∞ as n→∞.

Moreover, the errors �wk
n vanish asymptotically in the sense that

lim sup
n→∞

∥∥∥wk
n,L

∥∥∥
L∞t L4

x∩L3
t L6

x (R×R4)
→ 0 as k →∞. (2.7)

Finally, we have almost-orthogonality of the Hk × L2 norms of the decompo-
sition:

‖�un‖2Hk×L2=
∑

1≤ j≤k
‖ �V j

L (−tn, j/λn, j )‖2Hk×L2+‖ �wk
n‖2Hk×L2+on(1) as n→∞

Remark 2.5 The difference between Lemma 2.4 and the main theorem in [1]
is that here we have phrased matters in terms of solutions to the 4d linear wave
equation with a repulsive inverse square potential (2.5) (which conserve the
Hk×L2 norm), as opposed to the freewave equation in 4d with data in Ḣ1×L2.
However, a proof identical to the one in [1] can be used to establish Lemma 2.4.
Alternatively, one can establish Lemma 2.4 by conjugating (2.5) to the free
wave equation in dimension d = 2k + 2 via the map v(r) �→ r−k+1v(r) = u.
This map induces an isometry Hk(R

4) → Ḣ1(R2k+2); see (2.3). Then the
usual Bahouri-Gérard profile decomposition in d = 2k + 2 induces a profile
decomposition in Hk . Once must check that the errors w J

n,L can be made to

vanish as in (2.7), but this follows by combining the vanishing of r−k+1w J
n,L

in appropriate dim = 2k + 2 Strichartz norms with the Strauss estimate,

sup
t∈R,r>0

∣∣∣rw J
n,L(t, r)

∣∣∣ � ‖w J
n,L‖L∞t Hk(R

4),

and interpolation.
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A direct consequence of Lemma 2.4 and (2.6) with the identifications

ψn(r) := run(r), γ J
n (r) := rw J

n ,

ϕ
j
L(−tn, j/λn, j , r/λn, j ) :=

r

λn, j
V j
L (−tn, j/λn, j , r/λn, j ),

is the following profile decomposition for bounded sequences �ψn ∈ H0.

Corollary 2.6 (Linear profile decomposition). Consider a sequence �ψn ∈ H0
that is uniformly bounded in H0. Then, up to passing to a subsequence, there
exists a sequence of solutions �ϕ j

L ∈ H0 to (2.2), sequences of times {tn, j } ⊂ R,
sequences of scales {λn, j } ⊂ (0,∞), and errors �γ J

n defined by

�ψn=
J∑

j=1
(ϕ

j
L(−tn, j/λn, j , ·/λn, j ),

1

λn, j
∂tϕ

j
L(−tn, j/λn, j , ·/λn, j ))+ (γ J

n,0, γ
J
n,1)

so that the following statements hold: Let γ J
n,L(t) ∈ H0 denote the linear

evolution, [i.e., solution to (2.2)] of the data �γ J
n ∈ H0. Then, for any j ≤ �,

(γ �
n (tn, j , λn, j ·), λn, jγ �

n (tn, j , λn, j ·)) ⇀ 0 weakly in H0.

In addition, for any j �= � we have

λn, j

λn,�
+ λn,�

λn, j
+

∣∣tn, j − tn,�
∣∣

λn, j
+

∣∣tn, j − tn,�
∣∣

λn,�
→∞ as n→∞. (2.8)

Moreover, the errors �γ J
n vanish asymptotically in the sense that

lim sup
n→∞

∥∥∥∥1r γ
J
n,L

∥∥∥∥
L∞t L4

x∩L3
t L6

x (R×R4)

→ 0 as J →∞.

Finally, we have almost-orthogonality of theH0 norms of the decomposition:

‖ �ψn‖2H0
=

∑
1≤ j≤J

‖�ϕ j
L(−tn, j/λn, j )‖2H0

+ ‖�γ J
n ‖2H0

+ on(1) as n→∞

Our applications of the concentration-compactness techniques developed
by Kenig and Merle [26,27] requires a “Pythagorean decomposition” of the
nonlinear energy proved in [9].

Lemma 2.7 [9, Lemma 2.16] Let �ψn ∈ H0 be a bounded sequence with a lin-
ear profile decomposition as in Corollary 2.6. Then the following Pythagorean
decomposition holds for the nonlinear energy of the sequence:
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1266 J. Jendrej, A. Lawrie

E( �ψn) =
J∑

j=1
E( �ϕ j

L(−tn, j/λn, j ))+ E( �γ J
n )+ on(1) as n→∞. (2.9)

We will also require the following nonlinear profile decomposition analo-
gous to [9, Proposition 2.17], or [14, Proposition 2.8]. We’ll use the following
notation: Given a linear profile decomposition as in Corollary 2.6 with pro-
files {ϕ j

L} and parameters {tn, j }, {λn, j }we denote by {ϕ j } the nonlinear profile
associated to {ϕ j

L(−t jn /λ j
n), ϕ̇

j
L(−t jn /λ j

n)}, i.e., the unique solution to (1.5) so

that for all −t jn /λ j
n ∈ Imax( �ϕ j ) we have

lim
n→∞‖�ϕ

j (−tn, j/λn, j )− �ϕ j
L(−tn, j/λn, j )‖H0 = 0.

The existence of a non-linear profile is immediate from the local well-
posedness theory for (1.5) in the case that −tn, j/λn, j → τ∞, j ∈ R. If
−tn, j/λn, j → ±∞ then the existence of the nonlinear profile follows from
the existence of wave operators for (1.5) and it follows that the maximal for-
ward/backward time of existence T±( �ϕ) = ∞. Each of these facts are now
standard consequences of the Strichartz estimates in Lemma 2.2.

Lemma 2.8 (Nonlinear Profile Decomposition). [9, Proposition 2.17] [14,
Proposition 2.8] [1] Let �ψn(0) ∈ H0 be a uniformly bounded sequence with
a profile decomposition as in Corollary 2.6. Assume that the nonlinear profile
ϕ j associated to the linear profile ϕ

j
L has maximal forward time of existence

T+( �ϕ j ). Let sn ∈ (0,∞) be any sequence such that for all j and for all n,

sn − tn, j
λn, j

< T+( �ϕ j ), lim sup
n→∞

‖ϕ j/r‖
L3
t

([
− tn, j

λn, j
,
sn−tn, j
λn, j

)
;L6

x (R
4)

) <∞.

Let �ψn(t) denote the solution of (1.5) with initial data �ψn(0). Then for n large
enough �ψn(t) exists on the interval s ∈ (0, sn) and satisfies,

lim sup
n→∞

‖ψn/r‖L3
t ([0,sn);L6

x (R
4)) <∞.

Moreover, the following non-linear profile decomposition holds for all s ∈
[0, sn),

�ψn(s, r) =
J∑

j=1

(
ϕ j

(
s − tn, j
λn, j

,
r

λn, j

)
,
1

λ
j
n

∂tϕ
j
(
s − tn, j
λn, j

,
r

λn, j

))

+ �γ J
n,L(s, r)+ �θ J

n (s, r)
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with γ J
n,L(t) as in (2.7) and

lim
J→∞ lim sup

n→∞

(
‖θ J

n /r‖L3
t ([0,sn);L6

x (R
4)) + ‖�θ J

n ‖L∞t ([0,sn);H0)

)
= 0.

The analogous statement holds for sequences sn ∈ (−∞, 0).

Our main application of these ideas can be summarized in the following
compactness lemma.

Lemma 2.9 Let �ψ(t) ∈ H0 be a solution to (1.5) defined on its forward
maximal interval of existence [0, T+( �ψ)). Suppose that E( �ψ) = 2E(Qk) and
that �ψ(t) does not scatter as t → T+( �ψ). Then the following holds: Suppose
that tn → T+ is any sequence of times such that

sup
n
‖ �ψ(tn)‖H0 ≤ C <∞ (2.10)

Then, up to passing to a subsequence of the tn, there exists scales νn > 0 and
a nonzero �ϕ ∈ H0 such that

�ψ(tn) 1
νn
→ �ϕ ∈ H0

strongly in H0 and E( �ϕ) = 2E(Qk). Moreover, the nonlinear evolution �ϕ(s)
of the data �ϕ(0) = �ϕ is non-scattering in both forwards and backwards time.

Remark 2.10 One consequence the main result, Theorem 1.6, is that the
hypothesis of Lemma 2.9 are not satisfied by any solution! However, we’ll
use Lemma 2.9 in the context of a contradiction argument in the proof of
Proposition 4.1 in Sect. 4. Since the proof of the lemma uses only standard
facts about profile decompositions, the local Cauchy theory, and the Threshold
Theorem 1.1 we include it here in Sect. 2.3.

Proof of Lemma 2.9 By (2.10) we can perform a linear profile decomposition
as in Corollary 2.6 on �ψ(tn).

First we observe that there can only be one non-zero profile �ϕ = �ϕ1 and that
the errors �γ J

n,L must vanish stronglyH0 as n→∞. Indeed, if there were two
non-trivial profiles, or if the errors did not vanish strongly in H0, then (2.9)
alongwith our hypothesis that E( �ψ) = 2E(Q) imply that every nonzero profile
must have energy < 2E( �Q). Thus each non-zero nonlinear profile scatters
in both directions by the Threshold Theorem 1.1. A now standard argument
based on the nonlinear Perturbation Lemma 2.3, and the orthogonality of the
parameters in (2.8) implies that �ψ(t) must also scatter in forward time, a
contradiction.
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1268 J. Jendrej, A. Lawrie

Thus, there exists times tn,1 and scales νn,1, and a single limiting profile
�ϕ = (ϕ0, ϕ1) so that

(ψ(tn + νntn,1, νn,1·), νn,1ψt (tn + νntn,1, νn,1·)→ �ϕ ∈ H0 as n→∞

Next we claim both− tn,1
νn1
→±∞ are impossible and we can therefore assume

without loss of generality that tn,1 = 0 for all n. To see this, first assume first
− tn,1

νn,1
→+∞. Then �ϕ scatters in forward time and we can deduce that

‖ϕ/r‖
L3
t L6

x

([
− tn,1

νn,1
,∞

)
×R4

)→ 0 as n→∞

by the definition of the nonlinear profile. But then the Nonlinear Perturba-
tion Lemma 2.3 implies that �ψ(t) must also scatter in forward time, which
contradicts our initial assumptions on �ψ(t).

Now assume that −tn,1/νn,1→−∞. Then the nonlinear profile �ϕ(s) scat-
ters in backwards time, and the Nonlinear Perturbation Lemma 2.3 implies
that

‖ψ/r‖L3
t L6

x (([0,tn])×R4) = ‖ϕ/r‖L3
t L6

x

([−tn−tn,1
νn,1

,− tn,1
νn,1

]
×R4

) + on(1)→ 0,

a contradiction. Thus we can assume that tn,1 ≡ 0 and we simply write νn,1 =
νn . At this point we’ve shown that up to passing to a subsequence in tn we
have

�ψ(tn) 1
νn
→ ϕ ∈ H0, E( �ϕ) = 2E(Q)

We can now run a nearly identical argument to show that nonlinear evolution
�ϕ(s) ∈ H0 can not scatter in either time direction. To see this, first suppose
that �ϕ scatters in forward time. Then, the Nonlinear Perturbation Lemma 2.3
implies that �ψ(t) must also scatter as t → ∞. If �ϕ(s) were to scatter as
s →−∞, then,

‖ψ/r‖L3
t L6

x ([0,tn]×R4) = ‖�ϕ/r‖L3
t L6

x ([(−tn)/νn,1,0])×R4) + on(1) ≤ C <∞.

Letting limit n→∞, we see that ‖ψ/r‖L3
t L6

x ([0,T+( �ψ))×R4) ≤ C , which again

means that �ψ(t) scatters in forward time, a contradiction. Hence �ϕ(s) does not
scatter in either direction. ��
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2.4 The harmonic maps Q = Qk

We record a few properties about the unique (up to scaling) k-equivariant
harmonic map Q = Qk(r) = 2 arctan rk and some consequences of the fact
that each Qk minimizes the energy functional amongst all k-equivariant maps.

First observe that Q satisfies

r∂r Q(r) = k sin Q(r), Q(0) = 0, Q(∞) = π.

Recall thatHπ the set of all finite energy k-equivariant maps, with φ0(0) = 0
and φ0(∞) = π ,

Hπ := {(φ0, φ1) | E( �φ) <∞, φ0(0) = 0, lim
r→∞ϕ0(r) = π}

The fact that Q minimizes the energy in Hπ can be easily seen from the
following Bogomol’nyi factorization of the energy:

E(ϕ0, ϕ1) = π‖ϕ1‖2L2 + π

∫ ∞
0

(
∂rϕ0 − k

sin(ϕ0)

r

)2

r dr

+ 2πk
∫ ∞
0

sin(ϕ0)∂rϕ0 dr

= π‖ϕ1‖2L2 + π

∫ ∞
0

(
∂rϕ0 − k

sin(ϕ0)

r

)2

r dr

+ 2πk
∫ ϕ0(∞)

ϕ0(0)
sin(ρ) dρ

= π‖ϕ1‖2L2 + π

∫ ∞
0

(
∂rϕ0 − k

sin(ϕ0)

r

)2

r dr + 4πk (2.11)

Hence,

E(ϕ0, ϕ1) ≥ π‖ϕ1‖2L2 + 4πk = π‖ϕ1‖2L2 + E(Qk, 0)

where the inequality in the last line above is in fact strict if ϕ0 �= Qk .
We define a functional on maps � : R2 → S

2 of finite energy. Let ωS2

denote the volume form on S
2. Given � ⊂ R

2 set

G(�,�) :=
∫
�(�)

ωS2 =
∫
�

�∗(ωS2)
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1270 J. Jendrej, A. Lawrie

where�∗(ωS2) denotes the pull-back. Given k-equivariant�with polar angle
φ, this reduces to

G(φ0(r)) := 2π
∫ φ0(r)

φ0(0)
k |sin ρ| dρ

Observe that for any (φ, 0) with E( �φ) <∞ and for any R ∈ [0,∞) we have

|G(φ0(R))| =
∣∣∣∣∣2π

∫ φ0(R)

φ0(0)
k |sin ρ| dρ

∣∣∣∣∣ =
∣∣∣∣2π

∫ R

0
|k sin(φ0(r))| ∂rφ0(r) dr

∣∣∣∣
≤ E R

0 (φ0, 0)

where for any 0 ≤ a < b we define the localized energy Ea
b by

Eb
a (φ0, φ1) := 2π

∫ b

a

1

2

(
φ2
1 + (∂rφ0)

2 + k2
sin2 φ0
r2

)
r dr.

The same argument shows that

|G(φ0(R))| ≤ E∞R (φ0, 0)

On the other hand, since Q satisfies r∂r Q(r) = k sin(Q), for any 0 ≤ a ≤
b <∞ we see that

G(Q(b))− G(Q(a)) = 2π
∫ b

a
|sin(Q(r))| Qr (r) dr = Eb

a (Q, 0) (2.12)

Letting a→ 0 and b→∞ we recover the fact that E(Q, 0) = G(π) = 4πk.
We recall the following variational characterization of Q in Hπ from [7],

which amounts to the coercivity of the energy functional near Q.

Lemma 2.11 [7, Proposition 2.3]There exists a function c : [0,∞)→ [0,∞)

such that c(α)→ 0 as α→ 0 and such that the following holds: Let (φ0, 0) ∈
Hπ . Suppose

α := E(φ0, 0)− E(Q, 0) ≥ 0

Then for λ > 0 defined so that Eλ
0 (φ0, 0) = E1

0 (Q) = E(Q)/2, we have

‖φ0 − Qλ‖H ≤ c(α)

Moreover, α = 0 if and only if φ0(r) = Q(r/λ) for some λ > 0.
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2.5 Threshold solutions near a 2-bubble configuration

The goal of this section is to relate the proximity of amapφ ∈ H0 to a 2-bubble
configuration to the size of theH0-norm of �φ. With this in mind we make the
following definition.

Definition 2.12 (Proximity to a 2-bubble). Given a map �φ = (φ0, φ1) ∈ H0
we define its proximity d( �φ) to a pure 2-bubble by

d( �φ) := inf
λ,μ>0,ι∈{+1,−1}

(
‖(φ0 − ι(Qλ − Qμ), φ1)‖2H0

+ (λ/μ)k
)

(2.13)

The proof of Theorem 1.6 will require a few technical lemmas concerning
d. We’ll state the lemmas first and postpone the proofs until the end of this
section.

Lemma 2.13 Suppose that �φ = (φ0, φ1) ∈ H0 is k-equivariant and satisfies,

E( �φ) = 2E( �Qk).

Then for each β > 0 there exists a there exists a constant C(β) > 0 such that

d( �φ) ≥ β �⇒ ‖(φ0, φ1)‖H0 ≤ C(β) (2.14)

Conversely, for each A > 0 we can find α = α(A) such that

d( �φ) ≤ α(A) �⇒ ‖(φ0, φ1)‖H0 ≥ A (2.15)

Note that d is small when �φ is close to either a bubble/anti-bubble (ι = +
in the definition of d) or anti-bubble/bubble configuration (ι = −). The next
lemma makes precise the intuitive notion that a map �φ cannot be simultane-
ously close to both configurations. With this in mind we define

d±( �φ) := inf
λ,μ>0

(
‖(φ0 ∓ (Qλ − Qμ), φ1)‖2H0

+ (λ/μ)k
)

(2.16)

Lemma 2.14 There exists α0 > 0 with the following property: Let �φ ∈ H0.
Then,

d±( �φ) ≤ α0 �⇒ d∓( �φ) ≥ α0.

We begin by proving Lemma 2.13.
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Proof of Lemma 2.13 It suffices to consider �φ of the form �φ = (φ, 0). First
we prove (2.14). To see this we’ll first show that for each β > 0 there exists a
constant δ = δ(β) so that for any �φ ∈ H0 with E( �φ) = 2E(Q) we have

d( �φ) ≥ β �⇒ ‖φ‖L∞ ≤ π − δ(β), (2.17)

Suppose (2.17) fails. Then we can find β > 0, a sequence �φn = (φn, 0) ∈ H0
with E( �φn) = 2E(Q), and numbers rn > 0 so that

d(φn, 0) ≥ β and |φn(rn)− π | = on(1) as n→∞ (2.18)

Define scales λn and μn by

Eλn
0 ( �φn) = E(Q)/2, E∞μn

( �φn) = E(Q)/2 (2.19)

Then, by (2.12) we see that for n large enough λn < rn and μn > rn . Now
define φn,1 and φn,2 as follows

φn,1(r) =

⎧⎪⎨
⎪⎩
φn(r) if 0 ≤ r ≤ rn
π + π−φ(rn)

rn
(r − 2rn) if r ∈ [rn, 2rn]

π if r ≥ 2rn

φn,2(r) =
{
π + φn(rn)−π

rn
r if r ≤ rn

φn(r) if r ≥ rn

And define ηn(r) by

ηn(r) := φn(r)− φn,1(r)− φn,2(r)+ π

We claim that

E(φn,1, 0) = E(Q, 0)+ on(1) as n→∞ (2.20)

E(φn,2, 0) = E(Q, 0)+ on(1) as n→∞
‖ηn‖H → 0 as t →∞ (2.21)

First we prove (2.20) (2.21). Since φn(rn)→ π we have

Ern0 (φn,1, 0) = Ern0 (φn, 0) ≥ G(φn(rn))→ G(π) = E(Q, 0) as n→∞
E∞rn (φn, 0) = E∞rn (φn, 0) ≥ G(φn,2(rn))→ G(π) = E(Q, 0) as n→∞

From the above and the fact that E( �φ) = 2E(Q) we see that in fact
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Ern0 (φn,1, 0) = E(Q, 0)+ on(1) as t →∞
E∞rn (φn,2, 0) = E(Q, 0)+ on(1) as t →∞ (2.22)

Direct computations using the definitions of φn,1, φn,2 then show that

E∞rn (φn,1, 0) � (π − φn(rn))
2→ 0 as n→∞

Ern0 (φn,2, 0) � (π − φn(rn))
2→ 0 as n→∞ (2.23)

Combining (2.22) and (2.23) gives (2.20) and (2.21). By construction

ηn(r) = π − φn,2(r) if r ≤ rn, ηn(r) = π − φn,1(r) if r ≥ rn

A direct computation using the above and the definitions of φn,1, φn,2 on the
relevant intervals then yields

‖ηn‖2H � (π − φn(rn))
2→ 0 as n→∞

By (2.20), and (2.21), and λn, μn defined in (2.19) we use Lemma 2.11 to find
ηn,1, ηn,2 ∈ H so that

φn,1(r) = Qλn + ηn,1(r), φn,2(r) = π − Qμn − ηn,2(r)

‖ηn, j‖H → 0 as n→∞

for j = 1, 2. Thus,

‖φn − Qλn + Qμn‖H = ‖ηn + ηn,1 − ηn,2‖H → 0 as n→∞ (2.24)

Moreover, we must have λn/μn → 0 as n → ∞. To see this, simply note
that if λn/μn � 1 then Qλn − Qμn stays bounded away from π . But this
contradicts (2.24) and the assumption that φn(rn)→ π as n→∞. Hence,

‖φn − Qλn + Qμn‖2H +
(
λn

μn

)k

→ 0

and thus d(φn, 0) → 0, which contradicts (2.18). To finish the proof, note
that (2.17) implies the estimate

φ2(r) ≤ C(β) sin2 φ(r)

which means we can control the H norm of φ by a constant (which depends
only on β) times E(φ) = 2E(Q).
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Lastly, we prove (2.15). Suppose that d( �φ) ≤ α. Then we can find, say,
λ0, μ0 such that

α ≤ ‖(φ0 − Qλ0 + Qμ0, φ1)‖H0 + (λ0/μ0)
k ≤ 2α

A direct computation then shows,

‖φ0‖H ≥ ‖Qλ0 − Qμ0‖H − ‖φ0 − Qλ0 + Qμ0‖H
� |log(λ0/μ0)| − 2α→∞ as α→ 0

which completes the proof. ��
We next prove Lemma 2.14.

Proof of Lemma 2.14 If the conclusion fails we could find a sequenceφn ∈ H ,
and two sequences of scales λ+n , μ+n , λ−n , μ−n so that

‖φn − Qλ+n + Qμ+n ‖H +
λ+n
μ+n
→ 0 as n→∞

‖φn + Qλ−n − Qμ−n ‖H +
λ−n
μ−n
→ 0 as n→∞

It follows that

0 = ‖(φn − Qλ+n + Qμ+n )− (φn + Qλ−n − Qμ−n )+ (Qλ+n − Qμ+n
+ Qλ−n − Qμ−n )‖H
≥ ‖Qλ+n − Qμ+n + Qλ−n − Qμ−n ‖H − on(1) as n→∞ (2.25)

Passing to subsequences if necessary, relabeling±, or rescaling,we can assume
that λ+n ≤ λ−n for all n and that one of the following three possibilities holds

λ−n
μ+n
→ 0, or

λ−n
μ+n
→∞, or

λ−n
μ+n
→ 1 > 0, as n→∞

Assume we are in the first situation. Then, we can choose n large enough so
that

Qλ+n (r)+ Qλ−n (r) ≥ π ∀r ∈ [λ−n , 2λ−n ]
Qμ+n (r)+ Qμ−n (r) ≤

π

2
∀r ∈ [λ−n , 2λ−n ]
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and thus

‖Qλ+n − Qμ+n + Qλ−n − Qμ−n ‖2H ≥
π2

4

∫ 2λ−n

λ−n

dr

r
≥ π2

4
log 2

for all n large enough, which is impossible by (2.25). Now suppose we are in

the second case λ−n
μ+n
→∞. This means that

λ+n � μ+n � λ−n � μ−n

and so for large enough n we have

(Qλ+n − Qμ+n + Qλ−n − Qμ−n )(r) ≥
π

4
, ∀r ∈ [λ+n , 2λ+n ]

which similarly leads (2.25) into a contradiction. Finally, if λ−n
μ+n
→ 1 we have

‖Qλ+n − Qμ+n + Qλ−n − Qμ−n ‖H ≥ ‖Qλ+n − Qμ−n ‖H − on(1)

Then setting ϕn := Qλ+n − Qμ−n we see that d((ϕn, 0)) → 0 and hence
the right-hand-side above is bounded below by a fixed constant by (2.15) in
Lemma 2.13. This again leads to a contradiction in (2.25), which completes
the proof. ��

2.6 Virial identity

In this section we record a nonlinear estimate related to a virial-type identity
that will be used in the proof of Theorem 1.6.

We beginwith a virial-type identity for solutions to (1.5). Inwhat followswe
fix a smooth radial cut-off function χ ∈ C∞rad(R2), so that, writing χ = χ(r)
we have

χ(r) = 1 if r ≤ 1 and χ(r) = 0 if r ≥ 3 and
∣∣χ ′(r)∣∣ ≤ 1 ∀r ≥ 0

For each R > 0 we then define

χR(r) := χ(r/R)

Lemma 2.15 Let �ψ(t) be a solution to (1.5) on a time interval I . Then for any
time t ∈ I and R > 0 fixed we have

d

dt
〈ψt | χR r∂rψ〉L2 (t) = −

∫ ∞
0

ψ2
t (t, r) r dr +�R( �ψ(t))
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where

�R( �ψ(t)) :=
∫ ∞
0

ψ2
t (t)(1− χR) r dr

− 1

2

∫ ∞
0

(
ψ2
t (t)+ ψ2

r (t)− k2
sin2 ψ(t)

r2

) r

R
χ ′(r/R) r dr

(2.26)

satisfies

∣∣∣�R( �ψ(t))
∣∣∣ �

∫ ∞
R

ψ2
t (t, r) rdr dt +

∫ ∞
R

∣∣∣∣ψ2
r − k2

sin2 ψ

r2

∣∣∣∣ rdrdt
� E∞R ( �ψ(t))

Proof By direct calculation, using (1.5) we have

d

dt
〈ψt | χR r∂rψ〉L2 (t)

= −
∫ ∞
0

ψ2
t (t) r dr +

∫ ∞
0

ψ2
t (t)(1− χR) r dr

− 1

2

∫ ∞
0

(
ψ2
t (t)+ ψ2

r (t)− k2
sin2 ψ(t)

r2

) r

R
χ ′(r/R) r dr

��
We show below how the quantities appearing on the right hand side of the

virial identity can be estimated in terms of d( �ψ) in the vicinity of a two-bubble.

Lemma 2.16 There exists a number C0 > 0 depending only on k such that
for all �φ = (φ0, φ1) ∈ H0 with E( �φ) = 2E(Q) and all R > 0 there holds

| 〈φ1, χRr∂rφ0〉 | ≤ C0R
√
d( �φ), (2.27)

�R( �φ) ≤ C0

√
d( �φ). (2.28)

Proof By Cauchy–Schwarz, we get

| 〈φ1, χRr∂rφ0〉 | � R‖φ1‖L2‖∂rφ0‖L2 . (2.29)

We have ‖∂r (Qλ−Qμ)‖L2 � 1 for allλ andμ, hence by the triangle inequality

‖∂rφ0‖L2 � 1+
√
d( �φ). If d( �φ) ≤ 1, then we obtain ‖∂rφ0‖L2 � 1. If d( �φ) ≥

1, then Lemma 2.13 gives ‖ �φ‖H0 � 1, in particular again ‖∂rφ0‖L2 � 1. Thus
(2.29) yields (2.27).
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To prove (2.28), we write

∣∣�R( �φ)
∣∣ �

∫ +∞
0

φ2
1rdr +

∣∣∣(∂rφ0)2 − k2
sin2 φ0
r2

∣∣∣rdr.

Again, the conclusion is clear if d( �φ) ≥ 1, we can assume d( �φ) ≤ 1. Find
λ,μ > 0 such that, say,

(
λ

μ

)k

≤ 2d( �φ) and ‖(φ0 − Qλ + Qμ), φ1‖2H0
≤ 2d( �φ)

By the above it suffices to show that for g := φ0 − Qλ + Qμ we have

∫ +∞
0

∣∣∣(∂rφ0)2 − k2
sin2 φ0
r2

∣∣∣rdr �
((

λ

μ

)k/2

+ ‖g‖H
)

Using trigonometric identities we expand

sin2(Qλ − Qμ + g) = sin2 Qλ + sin2 Qμ − 1

2
sin 2Qλ sin 2Qμ

− 2 sin2 Qλ sin
2 Qμ + 1

2
sin 2g sin 2(Qλ − Qμ)

+ sin2 g cos 2(Qλ − Qμ)

Then, since �Qλ := r∂r Qλ = k sin Qλ we have
∫ ∞
0

∣∣∣(r∂rφ0)2 − k2 sin2 φ0
∣∣∣dr
r

�
∫ ∞
0

∣∣�Qλ�Qμ

∣∣+ |�Qλr∂r g|

+ ∣∣�Qμr∂r g
∣∣ dr
r

+
∫ ∞
0
|g�Qλ| +

∣∣g�Qμr
∣∣

+ |r∂r g|2 + |g|2 dr

r

To estimate the first term above we see that setting σ = λ/μ we have

∫ ∞
0

∣∣�Qλ�Qμ

∣∣ dr
r

�
∫ ∞
0

(r/λ)k(r/μ)k

(1+ (r/λ)2k)(1+ (r/μ)2k)

dr

r

= σ k
∫ ∞
0

r2k−1
(σ 2k + r2k)(1+ r2k)

dr � σ k |log σ | �
(

λ

μ

) k
2

The remaining terms can be controlled by ‖g‖H by Cauchy–Schwarz. ��
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3 The modulation method: analysis of 2-bubble collisions

In this section we give a careful analysis of the modulation equations that
govern the evolution of 2-bubble configurations. The intuition is that the less
concentrated bubble does not change its scale and influences the dynamics of
the more concentrated bubble. We will quantify this influence.

3.1 Modulation equations

We consider solutions �ψ(t) to (1.5) that are close to a 2-bubble configuration
on a time interval J in the sense that d( �ψ(t)), defined in (2.13), is small for
all t ∈ J . Recall that d( �ψ(t)) is the smaller of the numbers d+( �ψ(t)) and
d−( �ψ(t)) defined in (2.16).

Linearizing (1.5) about Qλ leads to the Schrödinger operator

Lλ := −∂2r −
1

r
∂r + k2

cos 2Qλ

r2

WewriteL := L1. Recall from (2.1) that� = r∂r is the infinitesimal generator
of dilations in Ḣ1(R2). One can check that�Q is a zero energy eigenfunction
for L, i.e.,

L�Q = 0, and �Q ∈ L2
rad(R

2).

When k = 1, L�Q = 0 still holds but in this case �Q /∈ L2 due to slow
decay as r →∞ and is 0 is referred to as a threshold resonance.

In fact,�Q spans the kernel ofL. This can be seen using the following well
known factorization of L,

L = A∗A where A∗ = ∂r + 1+ k cos(Q)

r
, A = −∂r + k cos(Q)

r
(3.1)

together with the observation that A(�Q) = 0; we note that (3.1) is a conse-
quence of the Bogomol’nyi factorization (2.11); see [44,46] for more.

The fact that Lλ�Qλ = 0 will play an important role in the modulation
estimates.

We fix a radial function Z ∈ C∞0 (R2) so that

∫ ∞
0

Z(r) ·�Q(r) r dr > 0,

∣∣∣∣Z(r)

rk

∣∣∣∣ � 1 ∀ r ≤ 1. (3.2)

Lemma 3.1 (Modulation Lemma). There exist η0 > 0 and C > 0 with the
following property: Let J ⊂ R be a time interval, �ψ(t) a solution to (1.5)
defined on J , and assume that
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d+( �ψ(t)) ≤ η0 ∀t ∈ J.

Then, there exist unique C1(J ) functions λ(t), μ(t) so that, defining g(t) ∈ H
by

g(t) := ψ(t)− Qλ(t) + Qμ(t), (3.3)

we have, for each t ∈ J ,

〈
Zλ(t) | g(t)

〉
= 0, (3.4)〈

Zμ(t) | g(t)
〉
= 0, (3.5)

d+( �ψ(t)) ≤ ‖(g(t), ψt (t))‖2H0
+ (

λ(t)/μ(t)
)k ≤ Cd+( �ψ(t)). (3.6)

Moreover,

‖(g(t), ψt (t))‖H0 ≤ C

(
λ(t)

μ(t)

) k
2

, (3.7)

and hence

d+( �ψ(t)) �
(
λ(t)

μ(t)

)k

. (3.8)

Remark 3.2 The following version of the implicit function theorem will be
used in the proof.

Let X, Y, Z be Banach spaces. Let (x0, y0) ∈ X × Y , let δ1, δ2 > 0 and
consider a mapping G : B(x0, δ1) × B(y0, δ2) → Z that is continuous in x
and C1 in y. Suppose that G(x0, y0) = 0 and (DyG)(x0, y0) has bounded
inverse L0. Moreover, suppose that

‖L0 − DyG(x, y)‖L(Y,Z) ≤ 1

3‖L−10 ‖L(Z ,Y )

‖G(x, y0)‖Z ≤ δ2

3‖L−10 ‖L(Z ,Y )

(3.9)

for all ‖x − x0‖X ≤ δ1 and ‖y − y0‖Y ≤ δ2. Then, there exists a continuous
function ς : B(x0, δ1)→ B(y0, δ2) such that for all x ∈ B(x0, δ1), y = ς(x)
is the unique solution of G(x, ς(x)) = 0 in B(y0, δ2).

The above is proved in the same fashion as the usual implicit function
theorem, see, e.g., [4, Section 2.2]. The key point is that the bounds (3.9) give
uniform control on the size of the open set on which the Banach contraction
mapping theorem can be applied.
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Proof The proof follows by standard techniques that we outline below; we
refer the reader to [23, Lemma 3.3] for a detailed proof of a similar statement.

We begin by showing that for each t ∈ J there exist unique λ(t), μ(t), and
g(t) that satisfy (3.3), (3.6) and the orthogonality conditions (3.4) (3.5) using
an argument based on the implicit function theorem stated in Remark 3.2. That
λ(t) andμ(t) are actuallyC1(J ) is then proved via a standard ODE argument,
which we postpone until Remark 3.13 in Sect. 3.2.

To establish the former statement let �φ ∈ H0 be such that d+( �φ) ≤ η0. This
means we can find λ0, μ0 > 0 such that for g0 ∈ H defined by

g0 := φ0 − (Qλ0 − Qμ0) (3.10)

we have

‖(g0, φ1)‖2H×L2 +
(
λ0

μ0

)k

≤ 2η0

Define the mapping F : H × (0,∞)× (0,∞)→ H by

F(g, λ, μ) := g − (Qλ − Qμ)+ (Qλ0 − Qμ0)

Note that F(0, λ0, μ0) = 0 and moreover that

‖F(g, μ, λ)‖H � ‖g‖H + |(λ/λ0)− 1| 12 + |(μ/μ0)− 1| 12

Next define a mapping G : H × (0,∞)× (0,∞)→ R
2 by

G(g, λ, μ) :=
(〈 1

λ
Zλ | F(g, λ, μ)

〉
,
〈
1
μ
Zμ | F(g, λ, μ)

〉)

For g ∈ H we have

1

λ

〈Zλ | g
〉 ≤ ‖rλ−1Zλ‖L2‖r−1g‖L2 � ‖g‖H ,

1

μ

〈
Zμ | g

〉
� ‖g‖H

which ensures that the mapping G is well-defined and continuous. Taking the
λ,μ derivatives of G, we have

d

dλ

〈
1

λ
Zλ | F(g, λ, μ)

〉
= 1

λ

〈Zλ | �Qλ

〉− 1

λ2

〈
(�0 + 1)Zλ | F(g, λ, μ)

〉

=: 1
λ
A11(g, λ, μ)

d

dμ

〈
1

λ
Zλ | F(g, λ, μ)

〉
= −1

λ

〈
Zλ | �Qμ

〉
=: 1

λ
A12(g, λ, μ) (3.11)
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and

d

dλ

〈
1

μ
Zμ | F(g, λ, μ)

〉
= 1

μ

〈
Zμ | �Qλ

〉
=: 1

μ
A21(g, λ, μ)

d

dμ

〈
1

μ
Zμ | F(g, λ, μ)

〉
= − 1

μ

〈
Zμ | �Qμ

〉
− 1

μ2

〈
(�0 + 1)Zμ | F(g, λ, μ)

〉

=: 1
μ
A22(g, λ, μ) (3.12)

For convenience in applying the implicit function theoremwechangevariables,
setting � := log λ and m := logμ. In the new variables we write

G̃(g, �,m) = G(g, λ, μ), F̃(g, �,m) = F(g, λ, μ)

We now check that the conditions (3.9) are satisfied for x0 = 0 ∈ H , y0 =
(�0,m0) ∈ R

2 and G̃ : BH (0, 2η0) × BR2((�0,m0),C0η) → R
2, for δ1 =

2η0 > 0 small enough and C0 a uniform constant. Since ∂� = λ∂λ and ∂m =
μ∂μ we deduce using (3.11), (3.12) that

D�,mG̃(g, �,m) =
(
A11(g, λ, μ) A12(g, λ, μ)

A21(g, λ, μ) A22(g, λ, μ)

)

Restricting to (g, λ, μ) = (0, λ0, μ0), this yields

L0 := D�,mG̃�(g=0,�=�0,m=m0)=
⎛
⎝

〈
Zλ0 | �Qλ0

〉
−

〈
Zλ0 | �Qμ0

〉
〈
Zμ0 | �Qλ0

〉
−

〈
Zμ0 | �Qμ0

〉
⎞
⎠

=:
(
A11 A12
A21 A22

)

The diagonal terms in the matrix L0 above are size O(1) by (3.2). We can
estimate the off-diagonal terms as follows:

Claim 3.3 For λ� μ we have
∣∣∣
〈
Zλ | �Qμ

〉∣∣∣ � (λ/μ)k+1,
∣∣∣
〈
Zμ | �Qλ

〉∣∣∣ � (λ/μ)k−1 (3.13)

To prove the Claim, without loss of generality we can assume μ = 1 and
λ� 1. Let B > 0 be such that suppZ ⊂ {r ≤ B}. Then, using (3.2) we have

∣∣〈Zλ | �Q
〉∣∣ � 1

λ

∫ ∞
0

Z(r/λ)�Q(r) r dr

� 1

λ

∫ λ

0
(r/λ)k

rk+1

1+ r2k
dr + 1

λ

∫ Bλ

λ

rk+1

1+ r2k
dr � λk+1
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Similarly,

∣∣〈Z | �Qλ

〉∣∣ � 1

λ

∫ ∞
0

�Q(r/λ)Z(r) dr

� λk−1
∫ λ

0

rk

λ2k + r2k
rk+1 dr + λk−1

∫ B

λ

Z(r)

rk
r2k+1

λ2k + r2k
dr

� λ−k−1
∫ λ

0
r2k+1 dr + λk−1 � λk+1 + λk−1 � λk−1

which proves Claim 3.3.
This proves that the off diagonal terms in L0 are of size O((λ0/μ0)

k−1).
Hence for k ≥ 2 the matrix L0 is invertible as long as (λ0/μ0)

k−1 is small
enough.

The second condition in (3.9) is clear since F(g, λ0, μ0) = g and hence

|G(g, λ0, μ0)| =
∣∣∣
(
1
λ

〈Zλ | g
〉
, 1

μ

〈
Zμ | g

〉)∣∣∣ � ‖g‖H

The first condition in (3.9) follows from a direct computation checking that
for 1 ≤ j, k ≤ 2,

∣∣Ai j (g, λ, μ)− Ai j
∣∣ � (|λ/λ0 − 1| 12 + |μ/μ0 − 1| 12 + ‖g‖H )� 1

as long as η0 > 0 is chosen small enough. Here let us just remark that the
factors involving λ/λ0 and μ/μ0 on the right-hand-side above appear from
the estimates

‖�Qσ −�Qσ 0
‖L2 + ‖Zσ − Zσ 0

‖L2 � |σ/σ0 − 1| 12

An application of Remark 3.2 yields the following: There exists η0 > 0 small
enough and a continuous mapping ς : BH (0, 2η0) → BR2((�0,m0),C0η0)

so that for all (g, �,m) ∈ BH (0, η0)× BR2((�0,m0),C0η0) we have

G(g, λ, μ) ≡ 0⇐⇒ (�,m) = ς(g), λ = e�, μ = em

Finally,we observe that ifwe let g0 be as in (3.10), and define (λ, μ) = (e�, em)
and g ∈ H by

(�,m) := ς(g0), g := F(g0, λ, μ)

we see that φ0 = Qλ − Qμ + g and moreover that

〈Zλ | g
〉 = 0 and

〈
Zμ | g

〉
= 0.
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Lastly, since |�− �0| ≤ C0η0 and |m − m0| ≤ C0η0, we have

|λ/λ0 − 1| + |μ/μ0 − 1| � η0 � 1, ‖g‖H � √η0 � 1.

In particular, we have

(λ/μ)k � (λ0/μ0)
k ≤ d+( �φ). (3.14)

Now we establish the estimate (3.7). This follows by expanding the non-
linear energy. We’ll make use of trigonometric identities here for simplicity
but note that the following computation relies only on the fact that the
nonlinearity in (1.5) is smooth, that Q is a solution, and the orthogonality
conditions (3.4) (3.5).

2

π
E(Q) = 1

π
E( �φ) = 2

π
E(Q)+

∫ ∞
0

g2r r dr +
∫ ∞
0

ψ2
t r dr

− 2
∫ ∞
0

∂r Qλ∂r Qμ r dr + 2
∫ ∞
0

∂r Qλgr r dr − 2
∫ ∞
0

∂r Qμgr r dr

+ k2
∫ ∞
0

sin2(Qλ − Qμ + g)

r2
r dr − k2

∫ ∞
0

(sin2 Qλ + sin2 Qμ)

r2
r dr

(3.15)

We expand the nonlinear terms on the last line using trigonometric identities

sin2(Qλ − Qμ + g) = sin2(Qλ − Qμ)+ 1

2
sin 2g sin 2(Qλ − Qμ)

+ sin2 g cos 2(Qλ − Qμ)

= sin2 Qλ + sin2 Qμ − 1

2
sin 2Qλ sin 2Qμ

− 2 sin2 Qλ sin
2 Qμ + g sin 2(Qλ − Qμ)

+ g2 cos 2(Qλ − Qμ)+ O(|g|3)
which further reduces to

= sin2 Qλ + sin2 Qμ + g2 cos 2(Qλ − Qμ)− 2 sin2 Qλ sin
2 Qμ

+ g sin 2Qλ − g sin 2Qμ − sin 2QλQμ + 1

2
sin 2Qλ

[
2Qμ − sin 2Qμ]

− g(2 sin 2Qλ sin
2 Qμ − 2 sin 2Qμ sin2 Qλ)+ O(|g|3) (3.16)

Next we observe that the first three terms in the second line of (3.16) will give
exact cancelations with the terms in the second line of (3.15). Indeed, using
the identity
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1

r
∂r (r∂r Qλ) = k2

sin 2Qλ

2r2

we integrate by parts to obtain

k2
∫ ∞
0

sin 2Qλ

r2
Qμ r dr = 2

∫ ∞
0

1

r
∂r (r∂r Qλ)Qμ r dr = −2

∫ ∞
0

∂r Qλ∂r Qμ r dr

k2
∫ ∞
0

sin 2Qλ

r2
g r dr = 2

∫ ∞
0

1

r
∂r (r∂r Qλ)g r dr = −2

∫ ∞
0

∂r Qλgr r dr

k2
∫ ∞
0

sin 2Qμ

r2
g r dr = 2

∫ ∞
0

1

r
∂r (r∂r Qμ)g r dr = −2

∫ ∞
0

∂r Qμgr r dr

We can use the same identity to integrate by parts the terms arising from the
rest of (3.16).

− 2k2
∫ ∞
0

sin 2Qλ

r2
sin2 Qμg r dr = −4

∫ ∞
0

1

r
∂r (r∂r Qλ) sin

2 Qμg r dr

= 4
∫ ∞
0

∂r Qλ∂r Qμ sin 2Qμg r dr + 4
∫ ∞
0

∂r Qλ sin
2 Qμgr r dr

and the same for the symmetric term in λ,μ. Finally, we have

k2
∫ ∞
0

sin 2Qλ

2r2
[
2Qμ − sin 2Qμ

]
r dr =

∫ ∞
0

1

r
∂r (r∂r Qλ)

[
2Qμ − sin 2Qμ

]
r dr

= −
∫ ∞
0

∂r Qλ∂r
[
2Qμ − sin 2Qμ] r dr = −4

∫ ∞
0

∂r Qλ∂r Qμ sin2 Qμ r dr

Therefore, using the above, (3.16), the identity �Q = k sin Q, and the fact
that E( �ψ) = 2E(Q), we can deduce from (3.15) that

∫ ∞
0

ψ2
t r dr +

∫ ∞
0

g2r r dr + k2
∫ ∞
0

cos 2(Qλ − Qμ)

r2
g2 r dr

= 4

k2

∫ ∞
0

�Qλ(�Qμ)
3 dr

r
− 2

k2

∫ ∞
0

(�Qλ)
2(�Qμ)

2 dr

r

− 4
∫ ∞
0

�Qλ�Qμ sin 2Qμg
dr

r
− 4

k2

∫ ∞
0

�Qλ(�Qμ)
2(rgr )

dr

r

+ 4
∫ ∞
0

�Qλ�Qμ sin 2Qλg
dr

r
+ 4

k2

∫ ∞
0

�Qμ(�Qλ)
2(rgr )

dr

r

+ O

(∫ ∞
0
|g|3 dr

r

)
(3.17)

Next, we estimate each of the terms on the right-hand-side of (3.17). Denote
σ := λ/μ. We claim that first term on the right-hand-side of (3.17) gives the
leading order, i.e., we claim that
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4

k2

∫ ∞
0

�Qλ(�Qμ)
3 dr

r
= 16kσ k(1+ O(σ 2k)) (3.18)

We compute, using the identity k sin Qλ = �Qλ, and setting σ = λ/μ,

4

k2

∫ ∞
0

�Qλ(�Qμ)
3 dr

r
= 4

k2

∫ ∞
0

�Qσ (�Q)3
dr

r

= 64k2σ k
∫ ∞
0

r4k−1

(σ 2k + r2k)(1+ r2k)3
dr (3.19)

First we estimate the contribution of the integral on the interval [0, σ ]. Since
we can assume that σ � 1, we have

∫ σ

0

r4k−1

(σ 2k + r2k)(1+ r2k)3
dr � σ−2k

∫ σ

0
r4k−1 dr � σ 2k

Next, we estimate the integral on [σ,∞]. For σ < r we have

1

σ 2k + r2k
= 1

r2k
+

(
1

σ 2k + r2k
− 1

r2k

)

= 1

r2k
+ 1

r2k

(
1

1+ (σ/r)2k
− 1

)

= 1

r2k
+ 1

r2k

(
−(σ/r)2k + O((σ/r)4k)

)

Hence,

∫ ∞
σ

r4k−1

(σ 2k + r2k)(1+ r2k)3
dr =

∫ ∞
0

r2k−1

(1+ r2k)3
dr

−
∫ σ

0

r2k−1

(1+ r2k)3
dr + O(σ 2k)

=
∫ ∞
0

r2k−1

(1+ r2k)3
dr + O(σ 2k)

= 1

4k
+ O(σ 2k)

where the integral on the second to last line can be computed explicitly by
contour integration. Inserting the above into the last line of (3.19) yields (3.18).

Next we observe that all of the remaining terms on the right-hand-side
of (3.17) are o(σ k). Indeed, a similar computation to the one performed above
yields,
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∫ ∞
0

(�Qλ)
2(�Qμ)

2 dr

r
� σ 2k |log σ |

Moreover since ‖g‖L∞ � ‖g‖H we have

∫ ∞
0
|g|3 dr

r
� ‖g‖3H � √η0‖g‖2H

And the remaining terms in (3.17) can be controlled by a combination of these
last two estimates together with Cauchy–Schwarz. Therefore as long as η0 is
small enough and since σ = λ/μ � η0 we have

∫ ∞
0

ψ2
t r dr +

∫ ∞
0

g2r r dr + k2
∫ ∞
0

cos 2(Qλ − Qμ)

r2
g2rdr

= 16kσ k − O(σ
3k
2 |log σ |)

To complete the proof of (3.7) we claim the following coercivity statement:
there exists a uniform constant c > 0 so that

∫ ∞
0

g2r r dr + k2
∫ ∞
0

cos 2(Qλ − Qμ)

r2
g2rdr ≥ c‖g‖2H

for all g ∈ H such that (3.4) (3.5) hold and such that ‖g‖H is small enough.
This is a standard consequence of the orthogonality conditions (3.4), (3.5) and
the smallness of λ/μ, ‖g‖H and we refer the reader to [22, Lemma 5.4] for a
detailed proof.

The left inequality in (3.6) is trivial and the right inequality follows from
(3.7) and (3.14). ��

3.2 Dynamical control of the modulation parameters

In this section we obtain precise control of the evolution of the modulation
parameters λ(t), μ(t) on any time interval J onwhichd+( �ψ(t)) is small.We’ll
show that any solution �ψ(t) that lies within a small enough ε-neighborhood
of a 2-bubble at some time t0, must be ejected from this ε-neighborhood in at
least one time direction.

This ejection happens by a defocalisation of the more concentrated bubble
Qλ until its scale becomes comparable with the less concentrated bubble Qμ

(which does not change in the process). The influence of the bubble Qμ on
the evolution of Qλ is reflected in the time derivative of the function b(t)
defined in (3.32) below. Indeed, the main term of b′(t) is given precisely by
the interaction between the two bubbles, see (3.39). The main term of b(t) is
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related to λ′(t). Hence b′(t) is related to λ′′(t) so that the interaction influences
the acceleration, as it should be expected.

In this subsection we define a truncated virial functional and state some
estimates related to it. The same functional was used crucially in the two-
bubble construction by the first author in [22]. For the proofs of the following
statements we refer the reader to [22, Lemma 4.6] and [22, Lemma 5.5].

Lemma 3.4 [22, Lemma 4.6]For each c, R > 0 there exists a function q(r) =
qc,R(r) ∈ C3,1((0,+∞)) with the following properties:

(P1) q(r) = 1
2r

2 for r ≤ R,
(P2) there exists R̃ = R̃(R, c) > R such that q(r) ≡ const for r ≥ R̃,
(P3) |q ′(r)| � r and |q ′′(r)| � 1 for all r > 0, with constants independent

of c, R,
(P4) q ′′(r) ≥ −c and 1

r q
′(r) ≥ −c, for all r > 0,

(P5)
(

d2

dr2
+ 1

r
d
dr

)2
q(r) ≤ c · r−2, for all r > 0,

(P6)
∣∣r(q ′(r)r

)′∣∣ ≤ c, for all r > 0.

For each λ > 0 we define the operators A(λ) and A0(λ) as follows:

[A(λ)g](r) := q ′
( r
λ

)
· ∂r g(r), (3.20)

[A0(λ)g](r) :=
(

1

2λ
q ′′

( r
λ

)
+ 1

2r
q ′

( r
λ

))
g(r)+ q ′

( r
λ

)
· ∂r g(r). (3.21)

Note the similarity betweenA and 1
λ
� and betweenA0 and 1

λ
�0. For technical

reasons we introduce the space

X :=
{
g ∈ H | g

r
, ∂r g ∈ H

}

Let f (ρ) := k2
2 sin 2ρ denote the nonlinearity in (1.5).

Lemma 3.5 [22, Lemma 5.5] Let c0 > 0 be arbitrary. There exists c > 0
small enough and R, R̃ > 0 large enough in Lemma 3.4 so that the operators
A(λ) and A0(λ) defined in (3.20) and (3.21) have the following properties:

• the families {A(λ) : λ > 0}, {A0(λ) : λ > 0}, {λ∂λA(λ) : λ > 0} and
{λ∂λA0(λ) : λ > 0} are bounded inL (H ; L2), with the bound depending
only on the choice of the function q(r),
• For all λ > 0 and g1, g2 ∈ X there holds
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∣∣∣
〈
A(λ)g1 | 1

r2
(
f (g1 + g2)− f (g1)− f ′(g1)g2

)〉

+
〈
A(λ)g2 | 1

r2
(
f (g1 + g2)− f (g1)− k2g2

)〉 ∣∣∣ ≤ c0
λ
‖g2‖2H ,

(3.22)

• For all g ∈ X we have

〈
A0(λ)g|

(
∂2r +

1

r
∂r − k2

r2
)
g

〉

≤ c0
λ
‖g‖2H −

1

λ

∫ Rλ

0

(
(∂r g)

2 + k2

r2
g2

)
rdr, (3.23)

• Moreover, for λ,μ > 0 with λ/μ� 1,

‖�0�Qλ −A0(λ)�Qλ‖L2 ≤ c0, (3.24)

‖�Qλ −A(λ)Qλ‖L∞ ≤ c0
λ
, (3.25)

‖A(λ)Qμ‖L∞ + ‖A0(λ)Qμ‖L∞ � 1

λ
(λ/μ)k, (3.26)

and, for any g ∈ H,

∣∣∣∣
∫ +∞
0

1

2

(
q ′′

( r
λ

)+ λ

r
q ′
( r
λ

)) 1

r2
(
f (−Qμ + Qλ + g)

− f (−Qμ + Qλ)− k2g
)
g rdr

−
∫ +∞
0

1

r2
(
f ′(Qλ)− k2

)
g2 rdr

∣∣∣∣ ≤ c0(‖g‖2H + (λ/μ)k). (3.27)

Remark 3.6 The conditions g, g1, g2 ∈ X is required only to ensure that the
left-hand-side of (3.22) and (3.23) are well defined, but do not appear on the
right-hand-side of the estimates. Note also that in (3.22), (3.23) and (3.27) we
have extracted the linear part of f . Lastly, the estimate (3.26) is not stated
in [22] but follows immediately from P2, P3 in Lemma 3.4 and the explicit
formula for Q.

We are now ready to state the main modulation estimates. Proofs are given
in Sect. 3.3. Our first estimate is a consequence of the orthogonality condi-
tions (3.4) and (3.5).
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Proposition 3.7 (Modulation Control Part 1). Let η0 > 0 be as in Lemma 3.1,
let J ⊂ R be a time interval, and let �ψ(t) be a solution to (1.5) on J such that

d( �ψ(t)) ≤ η0 ∀t ∈ J.

Let λ(t), μ(t) be given by Lemma 3.1. Then the following estimates hold for
t ∈ J :

∣∣λ′(t)∣∣ � λ(t)
k
2 /μ(t)

k
2 , (3.28)∣∣μ′(t)∣∣ � λ(t)

k
2 /μ(t)

k
2 , (3.29)

The control we obtain on λ(t), μ(t) above is not sufficient for our purposes.
In particular, we’d like to show that the ratio λ(t)/μ(t) grows in a controlled
fashion away from any small enough local minimum value. For this purpose
we introduce a virial-type correction b(t) to λ′(t). The idea of modifying a
modulation parameter by a virial term was used in [24] and, in a different
context of minimal mass blow-up for non-homogeneous L2-critical NLS, in
an earlier work of Raphaël and Szeftel [45].

Given scaling parameters λ(t), μ(t) we write

g(t) := ψ(t)− Qλ(t) + Qμ(t)

ġ(t) := ψt (t)

so that the vector �g := (g, ġ) satisfies the system of equations

∂t g = ġ + λ′�Qλ − μ′�Qμ (3.30)

∂t ġ = ∂2r g +
1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

)
(3.31)

We then define the auxiliary function b(t) by

b(t) := −
〈
�Qλ(t) | ġ(t)

〉
− 〈ġ(t) | A0(λ(t))g(t)〉 (3.32)

We’ll show below that we can think of b(t) as a subtle monotonic correction
to the derivative λ′(t).

Before stating the estimates satisfied by b(t) we record the following num-
bers, which can be computed using contour integration:

‖�Q‖22 =
2π iRes[(�Q(z))2z; ωk]

1− ω4
k

, ωk := exp(2π i/4k)
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which means that

‖�Q‖22 =
2π

sin(π/k)
=: κ = κ(k) > 0

We will also use fact that
∫ ∞
0

(�Q(r))3 rk−1dr = 2k2 (3.33)

Lastly, themodulation parameterλ(t) itself is an imprecise proxy for the true
dynamics because it was defined with respect to a somewhat arbitrary function
Z as in (3.2). To account for this imprecision we introduce a correction to λ(t)
as follows. Fix a radial cutoff χ ∈ C∞0 (R2) such that χ(r) = 1 if r ≤ 1,
supp(χ) ∈ B(0, 2). Define

ζ(t) := λ(t)− 1

κ
〈χμ(t)�Qλ(t) | g(t)〉 (3.34)

Note that ζ(t) is C1 (because ∂t g(t) is continuous in L2 with respect to t).

Proposition 3.8 (Modulation Control Part 2). Fix k ≥ 2. Assume the same

hypothesis as in Proposition 3.7. Let 0 < δ < 1− 2−
1

k−1 be arbitrary and let
η0 be as in Lemma 3.1. Let b(t) be as in (3.32) and let ζ(t) be as in (3.34).
Then, there exists η1 = η1(δ) < η0 such that if d+( �ψ(t)) ≤ η1 for all t ∈ J
we have

|ζ(t)/λ(t)− 1| ≤ δ, (3.35)∣∣ζ ′(t)− b(t)
∣∣ ≤ δλ(t)

k
2 /μ(t)

k
2 ≤ 2δζ(t)

k
2 /μ(t)

k
2 , (3.36)

|b(t)| ≤ 4
√
κk(λ(t)/μ(t))

k
2 + δλ

k
2 (t)/μ(t)

k
2 ≤ 10

√
κkζ(t)

k
2 /μ(t)

k
2 ,

(3.37)

In addition, b(t) is locally Lipschitz and the derivative b′(t) satisfies

|b′(t)| ≤ C0λ(t)
k−1/μ(t)k ≤ 2C0ζ(t)

k−1/μ(t)k (3.38)

b′(t) ≥ 8k2λk−1(t)/μk(t)− δλk−1(t)/μ(t)k ≥ 2k2ζ(t)k−1/μ(t)k (3.39)

where C0 > 0 depends only on k.

Remark 3.9 If k ≥ 3, then we can take Z = �Q in Lemma 3.1 and use no
cut-off function in the definition of ζ . Then ζ(t) ≡ λ(t). This fails for k = 2,
which was pointed out to us by one of the referees.

We’ll deduce the following consequence of Propositions 3.7 and 3.8.
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Proposition 3.10 Let C > 0. For any ε0 > 0 small enough, and for all
ε > 0 sufficiently small relative to ε0 the following conclusions hold true. Let�ψ(t) : [T0, T+) → H0 be a solution of (1.5). Assume that t0 ∈ [T0, T+) is
such that d( �ψ(t0)) ≤ ε and d

dt (ζ(t)/μ(t))|t=t0 ≥ 0. Then there exist t1 and t2,
T0 ≤ t0 ≤ t1 ≤ t2 < T+, such that

d( �ψ(t)) ≥ 2ε, for t ∈ [t1, t2], (3.40)

d( �ψ(t)) ≤ 1

4
ε0, for t ∈ [t0, t1], (3.41)

d( �ψ(t2)) ≥ 2ε0, (3.42)∫ t2

t1
‖∂tψ(t)‖2L2dt ≥ C

∫ t1

t0

√
d( �ψ(t))dt (3.43)

Analogous statements hold with times t2 ≤ t1 ≤ t0 if
d
dt (ζ(t)/μ(t))|t=t0 ≤ 0.

Remark 3.11 We will take ε < η0, so that d( �ψ(t0)) ≤ ε implies that the
modulation parameters λ(t), μ(t) and also ζ(t) are well-defined C1 functions
in a neighborhood of t = t0.

Remark 3.12 Wewill actually deduce (3.43) from the following stronger state-
ment. There exist ε0,Ck depending only on k such that for any ε > 0 small
enough, Proposition 3.10 holds and additionally

∫ t1

t0

√
d( �ψ(t)) dt ≤ Ckε

1
k ,

∫ t2

t1
‖∂tψ(t)‖2L2 dt ≥ 1

Ck
. (3.44)

3.3 Proofs of the modulation estimates

We first assume the conclusions of Propositions 3.7 and 3.8 and prove Propo-
sition 3.10. We record here a few useful formulae:

�Q := r∂r Q = k sin Q = 2krk

1+ r2k
(3.45)

�2Q = k2

2
sin 2Q = 2k2rk

(
1− r2k

(1+ r2k)2

)
(3.46)

�3Q = 2k3rk
(
1+ r2k − 5r4k − r6k

(1+ r2k)4

)

�0�Q = (r∂r + 1)(r∂r Q) = 2�Q + r2∂2r Q (3.47)
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1292 J. Jendrej, A. Lawrie

Proof of Proposition 3.10 From (3.7) and (3.35) it follows that there exists
ε1 > 0 such that if ζ(t)/μ(t) ≤ ε1, the modulation estimates hold in a neigh-
borhood of time t . If needed, we will assume that ε1 is sufficiently small, but
depending only on k. Let t2 be the first time t2 ≥ t0 such that ζ(t2)/μ(t2) = ε1
(if there is no such time, we set t2 = T+). By the estimate (3.8) in Lemma 3.1
along with (3.35), which accounts for the difference between λ(t) and ζ(t),
there exists ε0 sufficiently small such that ζ(t2)/μ(t2) = ε1 implies (3.42).
The number ε > 0 will be chosen later in the proof and should be thought of

as being much smaller than (ε1)
k
2 , whereas we can think of ε0 as comparable

to (ε1)
k
2 .

Without loss of generality we can assume that μ(t0) = 1. Let t3 ≤ t2 be the
last time such that μ(t) ∈ [1

2 , 2
]
for all t ∈ [t0, t3]. If there is no such final

time we set t3 = t2. (Later we will see that we can always take t3 = t2 as long
as ε1 > 0 is small enough.)

For t ∈ [t0, t3], from (3.39) we obtain

b′(t) ≥ k2

2k−1
ζ(t)k−1. (3.48)

We also obtain from (3.36)

ζ ′(t) ≥ 1

κ
b(t)−

√
k

2k−1κ
ζ(t)

k
2 .

Let κ1 :=
√

kκ
2k−1 and consider ξ(t) := b(t)+ κ1ζ(t)

k
2 . Using the two inequal-

ities above we obtain

ξ ′(t) ≥ k2

2k−1
ζ(t)k−1 + κ1

k

2
ζ(t)

k
2−1

(
1

κ
b(t)−

√
k

2k−1κ
ζ(t)

k
2

)

= κ1k

2κ
ζ(t)

k
2−1b(t)+

(
k2

2k−1
− kκ1

2

√
k

2k−1κ

)
ζ(t)k−1

= k

√
k

κ2k+1
ζ(t)

k
2−1b(t)+ k2

2k
ζ(t)k−1

= k

√
k

κ2k+1
ζ(t)

k
2−1ξ(t).

(3.49)

It is easy to compute that (3.37) yields |b(t)| ≤ κ12k+4ζ(t)
k
2 , so we have

ξ(t) ≤ κ12
k+5ζ(t)

k
2 (3.50)
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and (3.49) leads to
ξ ′(t) ≥ κ2ξ(t)

2k−2
k , (3.51)

for some constant κ2 > 0 depending only on k.

Let ξ1(t) := b(t)+ κ1
2 ζ(t)

k
2 = 1

2b(t)+ 1
2ξ(t). Since b

′(t) ≥ 0, we have

ξ ′1(t) ≥
1

2
ξ ′(t) ≥ k

2

√
k

κ2k+1
ζ(t)

k
2−1ξ(t) ≥ k

2

√
k

κ2k+1
ζ(t)

k
2−1ξ1(t). (3.52)

Sinceμ(t0) = 1, we have 0 ≤ d
dt (λ(t)/μ(t))|t=t0 = ζ ′(t0)−ζ(t0)μ′(t0), so

(3.29) and (3.35) imply that κζ ′(t0) ≥ −κ1
4 ζ(t0)

k
2 as long as ε is taken small

enough. Now (3.36) gives b(t0) ≥ −κ1
3 ζ(t0)

k
2 , so ξ1(t0) > 0 and (3.52) yields

ξ1(t) > 0 for all t ∈ [t0, t3]. Thus

ξ(t) ≥ κ1

2
ζ(t)

k
2 , for t ∈ [t0, t3]. (3.53)

In particular, (3.51) implies that ξ(t) is strictly increasing on [t0, t3] and by
(3.50) we see that ζ(t) and thus λ(t) is far from 0 on [t0, t3].

Bounds (3.50) and (3.35) imply that there exists a constant κ3 depending
only on k such that ξ(t) ≥ κ3

√
ε forces d( �ψ(t)) ≥ 2ε. Let t1 ∈ [t0, t3] be the

last time such that ξ(t1) = κ3
√
ε (set t1 = t3 if no such time exists). Then by

(3.53) and (3.35) we have

1

2
λ(t)

k
2 ≤ ζ(t)

k
2 ≤ 2κ3

κ1

√
ε for t ∈ [t0, t1],

which yields (3.41) if ε is small enough.
Case k = 2. In this case (3.51) reads

ξ ′(t) ≥ κ2ξ(t). (3.54)

Integrating between t and t3 we get ξ(t) ≤ eκ2(t−t3)ξ(t3). Thus (3.53) and
(3.50) yield

ζ(t) ≤ κ4e
κ2(t−t3)ζ(t3) ≤ 2κ4e

κ2(t−t3)ε1,
with a universal constant κ4 > 0. Thus integrating (3.29) and using μ(t0) = 1
we get μ(t3) ∈ [2/3, 3/2] if ε1 is small enough, which implies that t3 = t2.
Also, suppose that there is no t2 ≥ t0 such that ζ(t2)/μ(t2) = ε1. Then, since
ζ(t) (and hence λ(t)) is far from 0, by known arguments, see for instance [22,
CorollaryA.4], the solution is global and (3.51) implies that ξ(t) is unbounded.
Thus λ(t) is also unbounded, which is a contradiction.We infer that there must
be t2 < T+ such that ζ(t2)/μ(t2) = ε1, which implies (3.42) by choosing ε0

comparable to (ε1)
k
2 .
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We have |ζ ′(t)| � |ζ(t)|, see (3.36) and (3.37), hence there exists a constant
κ5 such that ζ(t) ≥ 1

4ε1 for t ∈ [t2 − κ5, t2]. Thus (3.48) yields

b(t)− b(t0) ≥ κ6(t − (t2 − κ5))ε1, for t ∈ [t2 − κ5, t2].

Thus, if ε is small enough, we get b(t) ≥ κ7ε1 for t ∈ [t2− 1
2κ5, t2]. Note that

κ7 is independent of ε1. From the definition of b(t) and the Cauchy–Schwarz
inequality we can deduce, if ε1 is small enough, that ‖ġ(t)‖L2 ≥ κ8ε1 for
t ∈ [t2 − 1

2κ5, t2], which leads to
∫ t2

t2− 1
2 κ5

‖ġ(t)‖2L2dt ≥ κ9ε
2
1 . (3.55)

Integrating (3.54) between t and t1 and using (3.53), (3.50) and the definition
of t1 we obtain

1

2
λ(t) ≤ ζ(t) ≤ κ10e

κ2(t−t1)√ε, for t ∈ [t0, t1].

Thus ∫ t1

t0

√
d( �ψ(t))dt ≤ κ11

√
ε.

Comparing this boundwith (3.55) and choosing ε small enough, we get (3.43).
Case k ≥ 3. Most of the argument can be repeated without major changes.

We can rewrite (3.51) as

(
ξ(t)

2−k
k
)′ ≤ −(k − 2)κ2

k
.

Integrating and using (3.53), (3.50) we obtain

ζ(t)
k
2 ≤ κ4

(
ζ(t3)

2−k
2 + (t3 − t)

) k
2−k , (3.56)

with κ4 only depending on k. Thus

1

2

∫ t3

t0
λ(t)

k
2 dt ≤

∫ t3

t0
ζ(t)

k
2 dt ≤ κ4

∫ +∞
ζ(t3)

2−k
2

τ
k

2−k dτ

≤ k − 2

2
κ4λ(t3) ≤ (k − 2)κ4ε1.

As in the case k = 2, we can deduce that t3 = t2 and that ζ(t2)/μ(t2) = ε1,
which implies (3.42).
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The proof of (3.55) applies without significant changes and yields

∫ t2

t2− 1
2 κ5

‖ġ(t)‖2L2dt ≥ κ9ε
2k−2
1 . (3.57)

The proof of (3.56) yields

1

2
λ(t)

k
2 ≤ ζ(t)

k
2 ≤ κ10

(
ε

2−k
2k + (t1 − t)

) k
2−k , for t ∈ [t0, t1].

After integrating, this implies

∫ t1

t0

√
d( �ψ(t))dt ≤ κ11ε

1
k ,

With κ11 depending only on k. Comparing this boundwith (3.57) and choosing
ε small enough, we get (3.43). ��
Proof of Proposition 3.7 Let t0 ∈ J be any point in J . By rescaling �ψ(t) �→
�ψ(t)μ(t0)−1 we can assume without loss of generality that μ(t0) = 1. We can
also assume that

1

2
≤ μ(t) ≤ 2

for all t ∈ J (we work in a small neighborhood of t0).
We begin by differentiating the orthogonality conditions (3.4) and (3.5) to

derive a linear system for (λ′, μ′).
Differentiating (3.4) yields

0 = d

dt

〈Zλ | g
〉 = −λ′

〈
1

λ
[�0Z]λ | g

〉
+ 〈Zλ | ∂t g

〉

Plugging in (3.30) above and rearranging we have

− 〈Zλ | ġ
〉 = λ′

(〈Zλ | �Qλ

〉−
〈
1

λ
[�0Z]λ | g

〉)
− μ′

〈
Zλ | �Qμ

〉

Differentiating (3.5) yields

0 = d
dt

〈
Zμ | g

〉
= −μ′

〈
1
μ
[�0Z]μ | g

〉
+

〈
Zμ | ∂t g

〉

Plugging in (3.30) above and rearranging we have

−
〈
Zμ | ġ

〉
= λ′

〈
Zμ | �Qλ

〉
+ μ′

(
−

〈
Zμ | �Qμ

〉
−

〈
1

μ
[�0Z]μ | g

〉)
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We then arrive at the following linear system for (λ′, μ′),

(
M11 M12
M21 M22

)(
λ′
μ′

)
=

(− 〈Zλ | ġ
〉

−
〈
Zμ | ġ

〉
)

where

M11 :=
〈Zλ | �Qλ

〉−
〈
1

λ
[�0Z]λ | g

〉

M12 := −
〈
Zλ | �Qμ

〉

M21 :=
〈
Zμ | �Qλ

〉

M22 := −
〈
Zμ | �Qμ

〉
−

〈
1

μ
[�0Z]μ | g

〉
(3.58)

We first claim that M = (Mi j ) is diagonally dominant with coefficients of
size � 1 on the diagonal. This will allow us to invert M and estimate λ′, μ′.
Indeed, in Claim 3.3 we showed that the off-diagonal terms M12 and M21
satisfy |M12| � λk+1 and |M21| � λk−1. To estimate the diagonal terms
define β := 〈Z | �Q〉 and note that β > 0 is a fixed positive number by (3.2).
Then

|M11 − β| + |M22 + β| � λ
k
2

To see this, note that by the definitions of M11,M22 and the fact that Z ∈ C∞0
we have

|M11 − β| + |M22 + β| ≤
∣∣∣
〈 r
λ
[�0Z]λ | r−1g

〉∣∣∣+
∣∣∣∣
〈
r

μ
[�0Z]μ | r−1g

〉∣∣∣∣
� ‖g‖H � λ

k
2

where the last inequality above follows from (3.7).
We solve for (λ′, μ′), by inverting M ,

(
λ′
μ′

)
= 1

det M

⎛
⎝−M22

〈Zλ | ġ
〉+ M12

〈
Zμ | ġ

〉

M21
〈Zλ | ġ

〉− M11

〈
Zμ | ġ

〉
⎞
⎠

Now note that by (3.7) we have

∣∣〈Zλ | ġ
〉∣∣+

∣∣∣
〈
Zμ | ġ

〉∣∣∣ � ‖ġ‖L2 � λ
k
2 (3.59)
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Our estimates for the coefficients of M imply that

det M = M11M22 + O(λ2k),
1

det M
= 1

M11M22
+ O(λ2k)

Using the above we now write λ′ and μ′ as follows,

λ′ =
(

1

M11M22
+ O(λ2k)

)(
−M22

〈Zλ | ġ
〉+ M12

〈
Zμ | ġ

〉)

and thus using (3.13) and (3.59) we conclude that

∣∣λ′∣∣ � λ
k
2

Similarly, for μ′ we have

μ′ =
(

1

M11M22
+ O(λ2k)

)(
M21

〈Zλ | ġ
〉− M11

〈
Zμ | ġ

〉)

and hence, ∣∣μ′∣∣ � λ
k
2

which proves (3.29) and completes the proof of Proposition 3.7. ��
Remark 3.13 We remark here that λ(t), μ(t) obtained in the proof of
Lemma 3.1 can be easily seen to be C1 functions. Recall the ODE

(
M11 M12
M21 M22

)(
λ′
μ′

)
=

(− 〈Zλ | ψt (t)
〉

−
〈
Zμ | ψt (t)

〉
)
, (3.60)

obtained by formally differentiating the orthogonality conditions (3.4)
and (3.5); the coefficients Mi j are given explicitly in (3.58). For any t0 ∈ J the
smallness of λ(t0)/μ(t0) guarantees the existence of a unique C1 solution
(̃λ(t), μ̃(t)) with initial data (̃λ, μ̃)(t0) = (λ(t0), μ(t0)) in a neighbor-
hood of t0. Because of how the system (3.60) was derived, λ̃(t), μ̃(t) and
g(t) := ψ(t)− (Qλ̃(t)+ Qμ̃(t)) satisfy (3.4) (3.5) and (3.6) in a small enough
neighborhood of t0. Since the λ(t), μ(t) obtained by the implicit value theo-
rem are unique with these properties we have λ(t) = λ̃(t) and μ(t) = μ̃(t)
proving that λ(t), μ(t) are indeed C1.

Proof of Proposition 3.8 As in the proof of Proposition 3.7 we can assume
that 1

2 ≤ μ(t) ≤ 2 below.
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We first prove (3.35). From (3.7) we have ‖g‖L∞ � λ
k
2 , so it suffices to

check that
‖χμ�Qλ‖L1(rdr) � λ1−

k
2 as λ→ 0 (3.61)

which follows from

‖χμ�Qλ‖L1(rdr) ≤ λ

∫ 4/λ

0
�Q(r)rdr � λ

∫ 4/λ

0
(1+ r)−k+1dr � λ |log(4/λ)|

Now we prove (3.36). From (3.30) we have

d

dt

〈
χμ�Qλ | g

〉 = 〈
χμ�Qλ | ġ

〉+ λ′
〈
χμ�Qλ | �Qλ

〉− μ′
〈
χμ�Qλ | �Qμ

〉

−λ′
λ

〈
χμ�0�Qλ, g

〉− μ′
〈
�χμ�Qλ | g

〉
, (3.62)

Most terms on the right hand side are negligible (that is, � λ
k
2 ). Since

λ� 1, we have

‖(1− χμ)�Qλ‖2L2 �
∫ ∞
1/2

(�Qλ)
2 rdr =

∫ ∞
1
2λ
−1
(�Q)2 r dr

�
∫ ∞

1
2λ
−1

r−2k+1 dr � λ2k−2. (3.63)

Together with (3.7) this yields

∣∣〈(1− χμ)�Qλ | ġ
〉∣∣ � λk−1λ

k
2 � λ

k
2 ,

so in the first term we can erase χμ. Similarly, from (3.63) and (3.28) we have∣∣λ′ 〈(1− χμ)�Qλ | �Qλ

〉∣∣ � λ
k
2 , so χμ can be erased also in the second

term.
Regarding the third term, since we are assuming 1

2 ≤ μ ≤ 2, we have

∣∣∣
〈
χμ�Qλ | �Qμ

〉∣∣∣ �
∫ 4

0

1

λ

r

λ
Qr (r/λ)

1

μ

r

μ
Qr (r/μ) rdr

� 1

λ

∫ 4

0

(r/λ)k

1+ (r/λ)2k
rk+1

1+ r2k
dr

� λk−1
∫ λ

0

r2k+1

λ2k + r2k
1

1+ r2k
dr

+ λk−1
∫ 4

λ

r2k+1

λ2k + r2k
1

1+ r2k
dr
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To estimate the first integral on the right above on the interval [0, λ] we note
that since λ� 1 we have

λk−1
∫ λ

0

r2k+1

λ2k + r2k
1

1+ r2k
dr � λk−1λ−2k

∫ λ

0
r2k+1 dr � λk+1

On the interval [λ, 4] we write
1

λ2k + r2k
= 1

r2k
+

(
1

λ2k + r2k
− 1

r2k

)

= 1

r2k
+ 1

r2k

(
1

1+ (λ/r)2k
− 1

)

= 1

r2k
+ 1

r2k

(
−λ2kr−2k + O(λ4kr−4k)

)

This yields,

λk−1
∫ 4

λ

r2k+1

λ2k + r2k
1

1+ r2k
dr = λk−1

∫ ∞
0

r

1+ r2k
dr

− λk−1
∫ λ

0

r

1+ r2k
dr + O(λk+1)

= Cλk−1 + O(λk+1)

This and (3.29) imply that the third term of the right hand side in (3.62) is
negligible.

As for the fourth term, we have

∣∣∣λ
′

λ

〈
χμ�0�Qλ, g

〉 ∣∣∣ � |λ′|‖g‖L∞‖χμ/λ�0�Q‖L1 � λk‖χ2/λ�0�Q‖L1,

which is� λ
k
2 , see the proof of (3.61). The fifth term is even smaller (we gain

an additional factor λ).
Summarizing, from the definition of ζ(t) and (3.64), we obtain

|κζ ′ − 〈
�Qλ | ġ

〉 | � λ
k
2 . (3.64)

Recall that
b(t) := − 〈

�Qλ | ġ
〉− 〈ġ | A0(λ)g〉

By (3.7) and the fact that A0 : H → L2 is bounded independently of λ—see
Lemma 3.5—we have

〈ġ | A0(λ)g〉 � ‖ġ‖L2‖A0(λ)g‖L2 � ‖(g, ġ)‖2H0
� λk � λ

k
2 .
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Together with (3.64) this means that

∣∣κζ ′ − b
∣∣� λ

k
2 ,

which is (3.36).
Arguing as above we have

|b(t)| ≤ ‖�Qλ‖2‖ψt‖2 − O(λk) = √κ‖ψt‖2 − O(λk)

From the expansion of the nonlinear energy in the proof of (3.7) and our
assumption that μ(t) � 1 we see that

‖ψt (t)‖22 ≤ 16k(λ/μ)k + o(λk)

Plugging this in above yields (3.37).
Finally, we begin the delicate proof of (3.39); we note that (3.38) will also

be a consequence of this analysis. It is sufficient to prove the result for smooth
solutions. Indeed, we can then use a standard approximation procedure. We
approximate a solution �ψ : J → H0 by a sequence of smooth solutions �ψn .
Then bn(t) converges to b(t) uniformly for t ∈ J , and we can pass to a limit in
(3.38) and (3.39). Differentiating b(t) and recalling the formulae (3.30), (3.31)
we have

b′(t) = λ′
λ

〈[�0�Q]λ | ġ
〉− 〈

�Qλ | ∂t ġ
〉− 〈∂t ġ | A0(λ)g〉

− λ′
λ
〈ġ | (λ∂λA0(λ))g〉 − 〈ġ | A0(λ)∂t g〉

= λ′
λ

〈[�0�Q]λ | ġ
〉

−
〈
�Qλ | ∂2r g +

1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

)〉

−
〈
∂2r g +

1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

) | A0(λ)g

〉

− λ′
λ
〈ġ | (λ∂λA0(λ))g〉 − 〈ġ | A0(λ)ġ〉 − λ′

〈
ġ | A0(λ)�Qλ

〉

+ μ′
〈
ġ | A0(λ)�Qμ

〉

(3.65)

Let us first identify terms above that we’ve already established to be� λk−1
and discard them. First note that since (λ∂λA0(λ)) : H → L2 is bounded, and
since we’ve already shown

∣∣λ′∣∣ � λ
k
2 we have

λ′

λ
〈ġ | (λ∂λA0(λ))g〉 � ‖(g, ġ)‖2H0

� λk � λk−1
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Then we note that
〈ġ | A0(λ)ġ〉 = 0,

which can be shown directly by integration by parts. Next, using the fact that
μ � 1, along with the boundedness of A0(λ) : H → L2 we have

μ′
〈
ġ | A0(λ)�Qμ

〉
= μ′

μ

〈
ġ | A0(λ)�Qμ

〉

�
∣∣μ′∣∣ ‖ġ‖L2‖�Qμ‖H �

∣∣μ′∣∣ ‖ġ‖L2 � λk � λk−1

Next, the combination of the first and sixth terms on the right-hand-side
of (3.65) can be estimated using (3.24),

∣∣∣λ
′
λ

〈[�0�Q]λ | ġ
〉− λ′

〈
ġ | A0(λ)�Qλ

〉 ∣∣∣ =
∣∣∣∣λ
′
λ

〈[�0�Q]λ −A0(λ)�Qλ | ġ
〉∣∣∣∣

� λ
k
2−1‖[�0�Q]λ −A0(λ)�Qλ‖L2‖ġ‖L2

� c0λ
k
2−1λ k

2 � λk−1

where in the last line above we rely on our ability to take c0 as small as we
like in the estimate (3.24) from Lemma 3.5.

Thus we’ve show that up to terms of order� λk−1, which can be absorbed
into the error, we have

b′(t) � −
〈
�Qλ | ∂2r g +

1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

)〉

−
〈
∂2r g +

1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

) | A0(λ)g

〉

(3.66)

Next, rescaling the equation L�Q = 0, we see that

Lλ�Qλ :=
(
−∂rr − 1

r
∂r + f ′(Qλ)

r2

)
�Qλ = 0

And since Lλ is symmetric we have

〈
�Qλ | ∂2r g +

1

r
∂r g

〉
=

〈
�Qλ | f ′(Qλ)

r2
g

〉

We thus rewrite (3.66) as

b′(t) �
〈
�Qλ | 1

r2

(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)− f ′(Qλ)g

)〉

−
〈
∂2r g +

1

r
∂r g − 1

r2

(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

)
| A0(λ)g

〉
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where the symbol� above means “up to terms of order� λk−1”. Adding and
subtracting we have

b′(t) �
〈
�Qλ | 1

r2

(
f (Qλ − Qμ)− f (Qλ)+ f (Qμ)

)〉

+
〈
�Qλ | 1

r2

(
f ′(Qλ − Qμ)− f ′(Qλ)

)
g

〉
(3.67)

+
〈
�Qλ | 1

r2

(
f (Qλ − Qμ + g)− f (Qλ − Qμ)− f ′(Qλ − Qμ)g

)〉

(3.68)

−
〈
∂2r g +

1

r
∂r g − 1

r2

(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

)
| A0(λ)g

〉

(3.69)

Let’s begin by estimating the first term on the right-hand-side above, which
we’ll show contributes the leading order:

Claim 3.14

〈
�Qλ | 1

r2

(
f (Qλ − Qμ)− f (Qλ)+ f (Qμ)

)〉
� 8k2

λk−1

μk

where again � means “up to terms of order� λk−1.”

Proof Let’s prove the claim. Recall that the nonlinearity f (ρ) is given by

f (ρ) := k2

2
sin(2ρ), f ′(ρ) = k2 cos(2ρ)

Using trigonometric identities we can write

f (Qλ − Qμ)− f (Qλ)+ f (Qμ) = k2

2
(sin 2Qλ(cos 2Qμ − 1)+ sin 2Qμ(1− cos 2Qλ))

= − k2 sin 2Qλ sin
2 Qμ + k2 sin 2Qμ sin2 Qλ

= − sin 2Qλ(�Qμ)
2 + sin 2Qμ(�Qλ)

2. (3.70)

We show that the leading order contribution comes from the second termabove.
Indeed, writing σ = λ/μ and changing variables we have
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〈
�Qλ | 1

r2
(�Qλ)

2 sin 2Qμ

〉
= 1

λ

∫ ∞
0

(�Qσ (r))
3 sin 2Q(r)

dr

r

= 1

λ

∫ √σ

0
(�Qσ (r))

3 sin 2Q(r)
dr

r
+ 1

λ

∫ ∞
√
σ

(�Qσ (r))
3 sin 2Q(r)

dr

r

(3.71)

Since σ = λ/μ� 1, on the interval [0,√σ ] we write

sin 2Q = 2

k2
2k2rk

1− r2k

(1+ r2k)2
= 4rk + O(r3k) (3.72)

Changing variables again we have

1

λ

∫ √σ

0
(�Qσ )

34rk
dr

r
= 4

σ k

λ

∫ 1√
σ

0
(�Q)3(r)rk−1 dr

= 4
σ k

λ

∫ ∞
0

(�Q)3(r)rk−1 dr

−4 σ k

λ

∫ ∞
1√
σ

(�Q)3(r)rk−1 dr

= 8k2
λk−1

μk
+ O(λ−1σ 2k)

wherewe used (3.33) in the last line above.Moreover, using (3.72) we estimate

1

λ

∫ √σ

0
(�Qσ )

3(sin 2Q − 4rk)
dr

r
� 1

λ

∫ √σ

0
(�Qσ )

3r3k−1 dr

= σ 3k

λ

∫ 1√
σ

0
(�Q)3r3k−1 dr � σ 3k |log σ |

λ

Finally, we estimate the second term on the last line (3.71) by

∣∣∣∣1λ
∫ ∞
√
σ

(�Qσ (r))
3 sin 2Q(r)

dr

r

∣∣∣∣ � 1

λ

∫ ∞
√
σ

(�Qσ (r))
3 dr

r

= 1

λ

∫
1√
σ

(�Q(r))3
dr

r

� 1

λ

∫ ∞
1√
σ

r−3k−1 dr � σ
3
2 k

λ
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Next we estimate the contribution of the first term in (3.70). Recalling that
sin 2Qλ = 2

k2
�2Qλ = 2

k2
r∂r (�Qλ) we integrate by parts to obtain

−
〈
�Qλ | 1

r2
sin 2Qλ(�Qμ)

2
〉
= 2

k2λ

〈
(�Qλ)

2 | 1
r2

�Qμ�
2Qμ

〉

= 2

k2λ

〈
(�Qσ )

2 | 1
r2

�Q�2Q

〉

where σ = λ/μ as before. We first estimate the last line above on the interval
[0, σ ] and [σ, 1] using (3.45) (3.46) to obtain the bound

∣∣�Q(r)�2Q(r)
∣∣ � r2k

which gives

2

λk2

∫ σ

0
(�Qσ )

2�Q�2Q
dr

r
� 1

λ

∫ σ

0
�Q2

σ r
2k−1 dr

= σ 2k

λ

∫ 1

0
�Q2 r2k−1 dr � σ 2k

λ

and

2

λk2

∫ 1

σ

(�Qσ )
2�Q�2Q

dr

r
� σ 2k

λ

∫ 1

σ

r4k−1

(σ 2k + r2k)2
dr � σ 2k |log σ |

λ

On the interval [1,∞] we use the formulas (3.45) (3.46) to estimate

∣∣�Q(r)�2Q(r)
∣∣ � r4k

(1+ r2k)3

which means

2

λk2

∫ ∞
σ

(�Qσ )
2�Q(r)�2Q(r)

dr

r
� σ 2k

λ

∫ ∞
σ

r6k−1 dr
(σ 2k + r2k)2(1+ r2k)3

� σ 2k

λ

∫ ∞
0

r2k−1

(1+ r2k)3
dr � σ 2k

λ

Putting this all together, we’ve shown that

〈
�Qλ |

(
f (Qλ − Qμ)− f (Qλ)+ f (Qμ)

)〉
= 8k2

λk−1
μk
+ O

(
λk−1
μk

(
λ

μ

) k
2
)

which is precisely Claim 3.14. ��
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Next, we claim the second term (3.67) in our expansion of b′(t) satisfies
〈
�Qλ | 1

r2

(
f ′(Qλ − Qμ)− f ′(Qλ)

)
g

〉
= o(λk−1) (3.73)

and can thus be absorbed into the error. First note that the we have

f ′(Qλ − Qμ)− f ′(Qλ) = k2 sin 2Qλ sin 2Qμ − 2k2 cos 2Qλ sin
2 Qμ

= 4

k2
�2Qλ�

2Qμ − (�Qμ)
2 cos 2Qλ

For the contribution from the first term above we integrate by parts, change
variables, and use the explicit formulae (3.45) (3.46) (3.47) to estimate

∣∣∣∣
〈
�Qλ | 4

k2r2
(�2Qλ�

2Qμ

)
g

〉∣∣∣∣ � 1

λ

∣∣∣∣
∫ ∞
0

(�Qλ)
2�3Qμg

dr

r

∣∣∣∣
+

∣∣∣∣
∫ ∞
0

(�Qλ)
2�2Qμr∂r g

dr

r

∣∣∣∣

� 1

λ
‖g‖H

[(∫ ∞
0

(�Qσ )
4(�3Q)2

dr

r

) 1
2 +

(∫ ∞
0

(�Qσ )
4(�2Q)2

dr

r

) 1
2
]

= o(σ k/λ)

where σ = λ/μ as before. For the second term we write

∣∣∣∣
〈
�Qλ | 1

r2
((�Qμ)

2 cos 2Qλ)g

〉∣∣∣∣ � ‖g‖H
(∫ ∞

0
(�Qσ )

2(�Q)4
dr

r

) 1
2

� 1

λ
σ

k
2σ k |log σ | 12 = o(σ k/λ)

which finishes the proof of (3.73).
Finally, we consider the last two terms (3.68) (3.69). We will reorganize

these terms in anticipationof applications ofLemma3.5. Firstwe rewrite (3.68)
as follows:

〈
�Qλ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉

= −
〈
A(λ)g | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− k2g

)〉

+
〈
A(λ)g | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− k2g

)〉

+
〈
A(λ)(Qλ − Qμ) | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉
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+
〈
A(λ)Qμ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉

+
〈
�Qλ −A(λ)Qλ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉

The second two terms on the right-hand-side can be controlled by setting
g1 = Qλ − Qμ and g2 = g in (3.22):

∣∣∣∣
〈
A(λ)g | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− k2g

)〉

+
〈
A(λ)(Qλ − Qμ) | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉 ∣∣∣∣
� c0λ

k−1

Using the pointwise bound

∣∣ f (Qλ − Qμ + g)− f (Qλ − Qμ)− f ′(Qλ − Qμ)g
∣∣

= k2

2

∣∣sin(2Qλ − 2Qμ)[cos 2g − 1] + cos(2Qλ − 2Qμ)[sin 2g − 2g]∣∣ � |g|2

along with (3.26) the second to last line of the above can be estimated by

〈
A(λ)Qμ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉

� c0λ
k−1.

Similarly, the last line of the expansion of (3.68) can be controlled as follows

∣∣∣∣
〈
�Qλ −A(λ)Qλ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉∣∣∣∣
� ‖�Qλ −A(λ)Qλ‖L∞‖g‖2H ≤ Cc0λ

k−1 � λk−1

In the last line we used (3.25) and the fact that c0 can be taken small indepen-
dently of λ in Lemma 3.5.

Thus, up to terms of order� λk−1 we have

〈
�Qλ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉

� −
〈
A(λ)g | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− k2g

)〉

(3.74)
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We now transform the last line (3.69) adding and subtracting terms as before.
Using (3.23) we have

−
〈
∂2r g +

1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

) | A0(λ)g
〉

= −
〈
A0(λ)g | ∂2r g +

1

r
∂r g − k2

r2
g

〉

+
〈
A0(λ)g | 1

r2

(
f (Qλ − Qμ)− f (Qλ)+ f (Qμ)

)〉

+
〈
A0(λ)g | 1

r2

(
f (Qλ − Qμ + g)− f (Qλ − Qμ)− k2g

)〉

≥ −c0
λ
‖g‖2H +

1

λ

∫ Rλ

0

(
(∂r g)

2 + k2

r2
g2

)
rdr

+
〈
A0(λ)g | 1

r2

(
f (Qλ − Qμ)− f (Qλ)+ f (Qμ)

)〉

+
〈
A0(λ)g | 1

r2
(
f (−Qμ + Qλ + g)+ f (−Qμ + Qλ)− k2g

)〉

(3.75)

where R is as in Lemma 3.5. Note that from (3.70) we have the pointwise
inequality

∣∣ f (Qλ − Qμ)− f (Qλ)+ f (Qμ)
∣∣ � (�Qλ)

2(�Qμ)+�Qλ(�Qμ)
2

Since ‖A0(λ)g‖L2 � ‖g‖H , and sinceA0(λ)g is supported on a ball of radius
Rλ, the term on the second to last line above can be estimated as follows,

∣∣∣∣
〈
A0(λ)g | 1

r2

(
f (Qλ − Qμ)− f (Qλ)+ f (Qμ)

)〉∣∣∣∣

� ‖g‖H
⎡
⎣
(∫ Rσ

0
r−2(�Qσ )

4(�Q)2
dr

r

) 1
2

+
(∫ Rσ

0
r−2(�Q)4(�Qσ )

2 dr

r

) 1
2
⎤
⎦

� σ
k
2 σ k−1 � λk−1

where σ = λ/μ as usual and μ � 1.
Therefore, up to terms of order � λk−1, we can put together (3.74)

and (3.75) to estimate the combination of (3.68) and (3.69) from below by

〈
�Qλ | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− f ′(−Qμ + Qλ)g

)〉

−
〈
∂2r g +

1

r
∂r g − 1

r2
(
f (Qλ − Qμ + g)− f (Qλ)+ f (Qμ)

) | A0(λ)g
〉
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≥ 1

λ

∫ Rλ

0

(
(∂r g)

2 + k2

r2
g2

)
rdr

+
〈(A0(λ)−A(λ)

)
g | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− k2g

)〉

(3.76)

SinceA0(λ)−A(λ) is the operator of multiplication by 1
2λ

(
q ′′

( r
λ

)+ λ
r q
′( r

λ

))
,

we can use (3.27) to estimate the last term above,

〈(A0(λ)−A(λ)
)
g | 1

r2
(
f (−Qμ + Qλ + g)− f (−Qμ + Qλ)− k2g

)〉

= 1

λ

∫ +∞
0

1

r2
(
f ′(Qλ)− k2

)
g2 rdr + O(c0λ

k) (3.77)

where c0 > 0 is as in Lemma 3.5.
Putting together the estimates from Claims 3.14, (3.73), (3.76), and (3.77)

we obtain the estimate

b′(t) ≥ 8k2
λk−1

μk
+ o(λk−1)+ 1

λ

∫ Rλ

0

(
(∂r g)

2 + k2

r2
g2

)
rdr

+1

λ

∫ +∞
0

1

r2
(
f ′(Qλ)− k2

)
g2 rdr

Finally we conclude by using the following localized coercivity estimate,

1

λ

∫ Rλ

0

(
(∂r g)

2+ k2

r2
g2

)
rdr+ 1

λ

∫ +∞
0

1

r2
(
f ′(Qλ)−k2

)
g2 rdr ≥ −c1

λ
‖g‖2H

where we use again crucially here that
〈Zλ | g

〉 = 0; see [22, Lemma 5.4, eq.
(5.28)] for the proof. Above the constant c1 > 0 can be made as small as we
like by taking R > 0 large enough, which we are free to do. This completes
the proof. ��

4 Dynamics of non-scattering threshold solutions

4.1 Overall scheme

In this section we prove the Main Theorem. We deduce it from the following
proposition, whose proof will be split into several lemmas.
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Proposition 4.1 Let ψ(t) : (T−, T+) → H0 be a solution to (1.5) with
E( �ψ) = 2E( �Q) which does not scatter in forward time. Then

lim
t→T+

d( �ψ(t)) = 0. (4.1)

To begin with, note the following special case of Theorem 1.2.

Proposition 4.2 Let �ψ(t) : (T−, T+) → H0 be a solution to (1.5) with
E( �ψ) = 2E( �Q) which does not scatter in forward time. Then

lim inf
t→T+

d( �ψ(t)) = 0.

An analogous statement holds if �ψ(t) does not scatter in backwards time. ��
Let us summarize the main idea of the proof of Proposition 4.1. We know

from Proposition 4.2 that (4.1) holds for a sequence of times. Thus, in order
to obtain (4.1), we should prove that �ψ(t), after exiting a small neighborhood
of a two-bubble configuration, can never approach a two-bubble again. Such a
result is similar in nature to the no-return lemma proved by Krieger et al. [37]
in their study of the dynamics near the ground state stationary solution for the
energy critical NLW. Such results are usually obtained bymeans of a convexity
argument based on monotonicity formulas, which is also the scheme that we
adopt here.

Until the end of this section, �ψ(t) always denotes a solution to (1.5), �ψ(t) :
(T−, T+) → H0, such that E( �ψ) = 2E( �Q) and �ψ(t) does not scatter in
forward time. Let T− < τ1 ≤ τ2 < T+. Integrating the virial identity from
Lemma 2.15 for t ∈ [τ1, τ2] yields

∫ τ2

τ1

‖∂tψ(t)‖2L2 dt ≤ |〈∂tψ | χRr∂rψ〉 (τ1)| + |〈∂tψ | χRr∂rψ〉 (τ2)|

+
∫ τ2

τ1

∣∣∣�R( �ψ(t))
∣∣∣ dt

where �R( �ψ(t)) is defined in (2.26). Note that for any R > 0 we can use
Lemma 2.16 to bound the first two terms on the right-hand-side above and
obtain

∫ τ2

τ1

‖∂tψ(t)‖2L2 dt ≤ C0

(
R
√
d( �ψ(τ1))+ R

√
d( �ψ(τ2))

)

+
∫ τ2

τ1

∣∣∣�R( �ψ(t))
∣∣∣ dt. (4.2)
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Our goal is to show that with a good choice of R, τ1 and τ2 the right hand
side can be absorbed into the left hand side. As mentioned in the Introduction,
we use different arguments depending whether d( �ψ(t)) is small or not.

4.2 Splitting of the time axis

We would like to divide the time axis into good intervals where d( �ψ(t)) is
large and bad intervalswhere it is small.We begin with a preliminary splitting,
which will then need to be refined.

Claim 4.3 Suppose that (4.1) fails. Then for any ε0 > 0 sufficiently small
there exist sequences pn, qn such that

T− < p0 < q0 < p1 < q1 < · · · < pn−1 < qn−1 < pn < qn < . . .

such that the following holds for all n ∈ {0, 1, 2, 3, . . .}:

∀t ∈ [pn, qn] : d( �ψ(t)) ≤ ε0, (4.3)

∀t ∈ [qn, pn+1] : d( �ψ(t)) ≥ 1

2
ε0, (4.4)

lim
n→+∞ pn = lim

n→+∞ qn = T+. (4.5)

Proof Suppose that (4.1) fails and let ε0 be any number such that

0 < ε0 < min(lim sup
t→T+

d( �ψ(t)), η1) (4.6)

(recall that d( �ψ(t0)) < η1 guarantees that the modulation estimates hold for t
in some neighborhood of t0). Let T0 ∈ (T−, T+) be such that d( �ψ(T0)) > ε0.
We set

p0 := sup
{
t : d( �ψ(τ)) ≥ 1

2
ε0,∀τ ∈ [T0, t]

}
.

Proposition 4.1 implies that p0 < T+ and d( �ψ(p0)) = 1
2ε0. Then we define

inductively for n ≥ 1:

qn−1 := sup
{
t : d( �ψ(τ)) ≤ ε0,∀τ ∈ [pn−1, t]

}
,

pn := sup
{
t : d( �ψ(τ)) ≥ 1

2
ε0,∀τ ∈ [qn−1, t]

}
.
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By a simple inductive argument using (4.6) and Proposition 4.2 we can show
that for n ∈ {1, 2, . . .} there holds

pn−1 < qn−1 < T+,
qn−1 < pn < T+,

d( �ψ(pn)) = 1

2
ε0, (4.7)

d( �ψ(qn)) = ε0. (4.8)

Bounds (4.4) and (4.3) follow directly from the definitions of pn and qn .
Suppose that (4.5) does not hold. Then, by monotonicity,

lim
n→+∞ pn = lim

n→+∞ qn = T1 < T+.

By the local well-posedness d( �ψ(t)) has a limit as t → T1, which is in con-
tradiction with (4.7) and (4.8). ��
Claim 4.4 Let ε > 0. There exist λ0, ε′ > 0 having the following property.
Assume that d( �ψ(t)) < η1, with η1 as in Proposition 3.8, and let λ(t), μ(t) be
the modulation parameters given by Lemma 3.1 and let ζ(t) be the correction
to λ(t) defined in (3.34). Then

ζ(t)

μ(t)
≥ λ0 ⇒ d( �ψ(t)) > ε′, (4.9)

ζ(t)

μ(t)
≤ λ0 ⇒ d( �ψ(t)) < ε. (4.10)

Remark 4.5 Note that ε′ < ε.

Proof Lemma 3.1 yields d( �ψ(t)) ≤ (C2 + 1)
(
λ(t)/μ(t))k ≤ 2(C2 +

1)
(
ζ(t)/μ(t))k , so we get (4.10) with any λ0 <

(
ε/2(C2 + 1)

) 1
k .

In order to prove (4.9), we notice that from Lemma 3.1 and (3.35) we get
d( �ψ(t)) ≥ 1

C

(
ζ(t)/μ(t)

)k , hence it suffices to take ε′ < 1
C λk0. ��

Lemma 4.6 Suppose that (4.1) fails. Let ε0 > 0 be small enough so that
Claim 4.3 and Proposition 3.10 hold. Then there exist ε, ε′ > 0 with ε′ < ε

and ε < 1
10ε0 as in Proposition 3.10, and a splitting of the time axis

T− < a1 < c1 < b1 < · · · < am < cm < bm < am+1 < . . .

such that the following holds for all m ∈ {2, 3, 4, . . .}:
∀t ∈ [bm, am+1] : d( �ψ(t)) ≥ ε′, (4.11)
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1312 J. Jendrej, A. Lawrie

∃t ∈ [bm, am+1] : d( �ψ(t)) ≥ 2ε,

d( �ψ(am)) = d( �ψ(bm)) = ε, (4.12)

C0

∫ cm+1

am+1

√
d( �ψ(t)) dt ≤ 1

10

∫ am+1

bm
‖∂tψ(t)‖2L2 dt (4.13)

C0

∫ bm

cm

√
d( �ψ(t)) dt ≤ 1

10

∫ am+1

bm
‖∂tψ(t)‖2L2 dt (4.14)

and
lim inf
m→+∞d( �ψ(cm)) = 0. (4.15)

Proof We choose ε, ε0 > 0 such that Claim 4.3 and Proposition 3.10 hold,
where the constant C0 in Proposition 3.10 is given by Lemma 2.16. We can
assume that ε < 1

10ε0. Let λ0 and ε′ be given by Claim 4.4.
We begin by defining the times cm . Let 0 ≤ n1 < n2 < ... be the sequence

of these indices nm for which

inf
t∈[pnm ,qnm ]

d( �ψ(t)) ≤ ε′. (4.16)

Recall that the modulation parameters λ(t), μ(t), and ζ(t) � λ(t) are well
defined on [pnm , qnm ]. Let cm ∈ [pnm , qnm ] be such that

ζ(cm)/μ(cm) = inf
t∈[pnm ,qnm ]

ζ(t)/μ(t).

Claim 4.4 and (4.16) imply that ζ(cm)/μ(cm) < λ0, which implies again by
Claim 4.4 that d( �ψ(cm)) < ε < 1

10ε0. Hence cm ∈ (pnm , qnm ) and

d

dt

∣∣∣
t=cm

( ζ(t)

μ(t)

)
= 0.

We will use Proposition 3.10 with various t0, in forward and backward
direction. Thus the meaning of t0, t1 and t2 will change depending on the
context.

UsingProposition 3.10with t0 = cm in the backward time directionwe obtain
times t1 ≤ cm and t2 ≤ t1. Note that (3.41) and (4.4) imply that t1 ∈ (pnm , cm].
We set

am := sup{t ≥ t1 : d( �ψ(t)) ≥ ε, ∀τ ∈ [t1, t]}.
By (3.40) we have d( �ψ(t1)) > ε. Since d( �ψ(cm)) < ε, we have am ∈
(pnm , cm) and d( �ψ(am)) = ε.
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Two-bubble dynamics for wave maps 1313

Denote σm := t2. Then (3.40) yields d( �ψ(t)) ≥ ε for t ∈ [σm, t1]. By
definition of am we also have d( �ψ(t)) ≥ ε for t ∈ [t1, am], hence

d( �ψ(t)) ≥ ε, ∀t ∈ [σm, am]. (4.17)

Bound (3.42) together with (4.3) yields σm < pnm , so (4.17) implies that

d( �ψ(t)) ≥ ε, ∀t ∈ [pnm , am]. (4.18)

Finally, (3.43) yields

∫ am

σm

‖∂tψ(t)‖2L2dt ≥ C
∫ cm

am

√
d( �ψ(t))dt. (4.19)

Now using Proposition 3.10 with t0 = cm in the forward time direction
we obtain times t1 ≥ cm and t2 ≥ t1. Note that (3.41) and (4.4) imply that
t1 ∈ [cm, qnm ). We set

bm := inf{t ≤ t1 : d( �ψ(t)) ≥ ε, ∀τ ∈ [t, t1]}.
As in the case of am , we obtain bm ∈ (cm, qnm ) and d( �ψ(bm)) = ε. Denote
τm := t2. Adapting the proofs of (4.17) and (4.18) we get

d( �ψ(t)) ≥ ε, ∀t ∈ [bm, τm], (4.20)

d( �ψ(t)) ≥ ε, ∀t ∈ [bm, qnm ], (4.21)∫ τm

bm
‖∂tψ(t)‖2L2dt ≥ C

∫ bm

cm

√
d( �ψ(t))dt. (4.22)

Wewill prove that τm < am+1. Suppose not. Sinced( �ψ(τm)) ≥ 2ε0, see (3.42),
the fact that am+1 ∈ [pnm+1, qnm+1] would imply that τm > qnm+1 . Thus by
(4.20)wewould haved( �ψ(t)) ≥ ε, ∀t ∈ [bm, qnm+1]. But bm < qnm < pnm+1 ,
so we obtain

d( �ψ(t)) ≥ ε, ∀t ∈ [pnm+1, qnm+1].
Since ε′ < ε, this contradicts the definition of nm+1. Thus τm < am+1, so
(4.22) implies (4.14). Also d( �ψ(τm)) ≥ 2ε0 yields (4.12), since ε0 ≥ ε.

Analogously, we have σm+1 > bm , so (4.19) yields (4.13).
It remains to prove (4.11). Take t such that d( �ψ(t)) < ε′. Then t ∈
[pnm , qnm ] for some m, so (4.18) and (4.21) yield t ∈ [am, bm], which is
exactly (4.11).

Finally, (4.15) follows from Proposition 4.2, (3.8), and (3.35). ��
Remark 4.7 It follows from the proof that ε can be taken as small as we wish.
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1314 J. Jendrej, A. Lawrie

Until the end of the proof of Proposition 4.1, we fix ε, ε′ > 0 and a partition
of the time axis given by the last lemma. In particular, all the constants are
allowed to depend on ε and ε′. We denote

Im := [bm−1, am], I :=
⋃
m≥1

Im .

Then (4.11) is equivalent to

∀t ∈ I : d( �ψ(t)) ≥ ε′. (4.23)

We will see that �ψ(t) has a compactness property for t ∈ I , which allows
to deal with the right hand side of (4.2) for t ∈ I . For t /∈ I we will rely on
(4.13) and (4.14).

4.3 Compactness on I

The objective of this step is to deduce a compactness statement on I that will
allow us to obtain a lower bound for the left-hand-side of (4.2) restricted to
I and to uniformly control the errors �R( �ψ(t)) on I , by choosing R large
enough.

Lemma 4.8 There exists a continuous function ν : I → (0,+∞) such that
the set

K := { �ψ(t)1/ν(t) | t ∈ I } ⊂ H0

is pre-compact in H0.

Proof We will first prove that for any sequence {tn} ∈ I there exists a subse-
quence (still denoted by tn) and a sequence of scales νn , so that

�ψ(tn)1/νn → �ϕ ∈ H0 (4.24)

for some �ϕ ∈ H0.
We observe that by Lemmas 2.13 and (4.23) we have the uniform bound

‖ �ψ(t)‖H0 ≤ C(ε′) ∀t ∈ I,

which means in particular that

‖ �ψ(tn)‖H0 ≤ C(ε′) <∞.

Thus (4.24) follows from Lemma 2.9.
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We are now ready to construct the function ν(t). For each t ∈ I let ν(t) be
the unique number such that

∫ ∞
0

e−r
(
(∂tψ1/ν(t)(t, r))

2 + (∂rψ1/ν(t)(t, r))
2 + k2

(ψ1/ν(t)(t, r))2

r2

)
r dr

= 1

2
‖ �ψ(t)‖2H0

(the function e−r could be replaced by any continuous strictly decreasing
function whose value is 1 for r = 0 and tending to 0 as r → +∞). We see
that ν(t) is a continuous function.

Suppose that �ψ(t)1/ν(t) is not pre-compact in H0. Thus there exists a
sequence �ψ(tn)1/ν(tn) which has no convergent subsequence. But we know
(by assumption) that there exist a subsequence (still denoted tn) and numbers
νn such that �ψ(tn)1/νn converges in H0 to some �ϕ = (ϕ0, ϕ1). This implies
that
∫ ∞
0

e−r
(
(∂tψ1/νn (tn, r))

2 + (∂rψ1/νn (tn, r))
2 + k2

(ψ1/νn (tn, r))
2

r2

)
r dr

converges to

∫ ∞
0

e−r
(
ϕ1(r)

2 + (∂rϕ0(r))
2 + k2

ϕ0(r)2

r2

)
r dr ∈ (0, ‖�ϕ‖H0).

Since ‖ �ψ(tn)‖H0 converges to ‖�ϕ‖H0 , we deduce that νn/ν(tn) is bounded.
This implies that νn/ν(tn) has a convergent subsequence, hence �ψ(tn)1/ν(tn)
has a convergent subsequence, so we have a contradiction. This completes the
proof. ��

For m ∈ {1, 2, 3, . . .} we define
νm := |Im | = am − bm−1.

Lemma 4.9 There exists C1 > 0 such that for all m ≥ 1 and all t ∈ Im there
holds

1

C1
ν(t) ≤ νm ≤ C1ν(t).

Remark 4.10 The last lemma tells us that ν(t) is comparable to νm for t ∈ Im .
In particular, the set

K1 :=
⋃
m≥1
{ �ψ(t)1/νm | t ∈ Im} (4.25)
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1316 J. Jendrej, A. Lawrie

is pre-compact inH0.

Proof of Lemma 4.9 Suppose that there exists a sequence m� and times t� ∈
Im�

such that

lim
�→+∞

νm�

ν(t�)
= 0. (4.26)

Let �ψ�(s) be the solution of (1.5) with initial data �ψ�(0) = �ψ(t�)1/ν(t�).
After extracting a subsequence, �ψ�(0) converges in H0 to some �ϕ0. Let
�ϕ(s) : [−s0, s0] → H0 be the solution of (1.5) with initial data �ϕ(0) = �ϕ0
(where s0 > 0). By the standard Cauchy theory, for sufficiently large � the
solution �ψ�(s) is defined for s ∈ [−s0, s0] and �ψ�(s)→ �ϕ(s) inH0, uniformly
for s ∈ [−s0, s0].

Let t ′� ∈ Im�
be any sequence. Let s� = t ′�−t�

ν(t�)
, Then (4.26) implies that

lim�→+∞ s� = 0. Thus s� ∈ [−s0, s0] for large � and we deduce that

lim
�→+∞‖ �ψ�(s�)− �ϕ(s�)‖H0 = 0.

But of course lim�→+∞ ‖�ϕ(s�)− �ϕ0‖H0 = 0, so the triangle inequality yields

lim
�→+∞‖ �ψ�(s�)− �ϕ0‖H0 = 0.

In particular, lim�→+∞ d( �ψ�(s�)) = d( �ϕ0). We have �ψ�(s�) = �ψ(t ′�)1/ν(t�),
thus d( �ψ(t ′�)) = d( �ψ�(s�)) and we obtain

lim
�→+∞ d( �ψ(t ′�)) = d( �ϕ0),

for any sequence t ′� ∈ Im�
. This is impossible, because we know that

d( �ψ(am�
)) = ε and on the other hand for each � we have supt∈Im�

d( �ψ(t)) ≥
2ε.

Now suppose that there exist a sequence m� and times t� ∈ Im�
such that

lim
�→+∞

ν(t�)

νm�

= 0.

Without loss of generality we can assume that

lim
�→+∞

ν(t�)

am�
− t�
= 0

(the case ν(t�)/(t� − bm�−1)→ 0 can be treated similarly).
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Two-bubble dynamics for wave maps 1317

Again, let �ψ�(s) be the solution of (1.5) with initial data �ψ�(0) =�ψ(t�)1/ν(t�), and let �ψ�(0)→ �ϕ0 ∈ H0. Let �ϕ(s) : (−T−( �ϕ0), T+( �ϕ0))→ H0
be the solution of (1.5) with initial data �ϕ(0) = �ϕ0. By Lemma 2.9 we know
that �ϕ(s) is non-scattering in both time directions and satisfies

E( �ϕ) = E( �ψ) = 2E( �Q).

Thus Proposition 4.2 implies that there exists σ ∈ [0, T+( �ϕ0)) such that
d( �ϕ(σ)) ≤ 1

2ε
′. By Cauchy theory, for � large enough �ψ�(s) is defined for

s ∈ [0, σ ] and �ψ�(σ) → �φ(σ) in H0, in particular d( �ψ�(σ)) → d( �φ(σ)) ≤
1
2ε
′.
Let t ′� := t� + ν(t�)σ . Then �ψ(t ′�) = �ψ�(σ)ν(t�), so we have

lim
�→+∞ d( �ψ(t ′�)) = lim

�→+∞d( �ψ�(σ)) ≤ 1

2
ε′.

However, (4.26) implies that for � large enough there holds t� ≤ t ′� ≤ am�
,

thus (4.11) yields d( �ψ(t ′�)) ≥ ε′. The contradiction finishes the proof. ��
Lemma 4.11 There exists δ1 > 0 such that for all m there holds

∫
Im
‖∂tψ(t)‖2L2dt ≥ δ21νm .

Proof Let tm := 1
2 (bm−1 + am) and recall that νm := am − bm−1. Then for

any 0 < s1 ≤ 1/2,

bm−1 ≤ tm − νms1 ≤ tm + νms1 ≤ am . (4.27)

We consider the following sequence of solutions of (1.5):

�ψm(s) := �ψ(tm + νms)1/νm for s ∈ [−s1, s1].

Then (4.27) implies that

∫
Im
‖∂tψ(t)‖2L2dt ≥ νm

∫ s1

−s1
‖∂sψm(s)‖2L2ds.

Suppose that the conclusion fails. Then there exists a sequence m1,m2, . . .

such that

lim
l→+∞

∫ s1

−s1
‖∂sψml (s)‖2L2ds = 0. (4.28)
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1318 J. Jendrej, A. Lawrie

After extraction of a subsequence, �ψml (0) → �ϕ0 ∈ H0. Let �ϕ(s) be the
solution of (1.5) such that �ϕ(0) = �ϕ0. Then by the standard Cauchy theory
�ψml (s)→ �ϕ(s) in H0, uniformly for s ∈ [−s1, s1] for s1 > 0 small enough.
In particular, (4.28) yields

∫ s1

−s1
‖∂sϕ(s)‖2L2ds = 0,

so the limiting wave map �ϕ(s) must be time-independent. Hence ϕ(s) ∈ H
is a harmonic map. But then ϕ(s) ≡ 0 since the constant map is the unique
harmonic map with topological degree 0. However, we also have E( �ϕ) =
2E( �Q) > 0, which gives a contradiction. ��
Lemma 4.12 There exists R0 > 0 such that if R1 ≥ R0, then for all m ∈
{2, 3, . . .} there holds

∫
Im

�νm R1(
�ψ(t))dt ≤ δ21

10
νm .

Proof With a change of variables, it suffices to prove that for all t ∈ I there
holds

�R1(
�ψ(t)1/νm ) ≤

δ21

10
.

This is a standard consequence of the pre-compactness of the set K1 defined
in (4.25). ��

4.4 Conclusions

Proof of Proposition 4.1 Choose 1 ≤ m1 < m2 such that

√
d( �ψ(cm1))+

√
d( �ψ(cm2)) ≤

δ21

10C0R0
. (4.29)

This is possible thanks to (4.15). Let

R := R0 max
m1<m≤m2

νm .

Inequalities (4.13) and (2.28) yield

1

5

∫ cm2

cm1

‖∂tψ(t)‖2L2dt ≥
m2∑

m=m1+1

1

5

∫ am

bm−1
‖∂tψ(t)‖2L2dt
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Two-bubble dynamics for wave maps 1319

≥
m2∑

m=m1+1
2C0

∫ cm

am

√
d( �ψ(t))dt

≥ 2
m2∑

m=m1+1

∫ cm

am
�R( �ψ(t))dt.

Similarly, (4.14) and (2.28) yield

1

5

∫ cm2

cm1

‖∂tψ(t)‖2L2dt ≥
m2−1∑
m=m1

1

5

∫ am+1

bm
‖∂tψ(t)‖2L2dt

≥
m2−1∑
m=m1

2C0

∫ bm

cm

√
d( �ψ(t))dt

≥ 2
m2−1∑
m=m1

∫ bm

cm
�R( �ψ(t))dt.

Next, from Lemma 4.11 we have

1

5

∫ cm2

cm1

‖∂tψ(t)‖2L2dt ≥
m2∑

m=m1+1

1

5

∫ am

bm−1
‖∂tψ(t)‖2L2dt ≥ δ21

5

m2∑
m=m1+1

νm .

(4.30)

By the definition of R, for each m ∈ {m1 + 1,m1 + 2, . . . ,m2} we have
R = R1νm with R1 ≥ R0. Thus Lemma 4.12 gives

1

5

∫ cm2

cm1

‖∂tψ(t)‖2L2dt ≥ 2
m2∑

m=m1+1

∫ am

bm−1
�R( �ψ(t))dt.

Finally, (4.30) and (4.29) imply

1

5

∫ cm2

cm1

‖∂tψ(t)‖2L2dt ≥ δ21

5
max

m1<m≤m2
νm

≥ 2C0R

(√
d( �ψ(cm1))+

√
d( �ψ(cm2))

)
.

Summing the four inequalities above and using (4.2) for (τ1, τ2) = (cm1, cm2)

we get

123

Author's personal copy



1320 J. Jendrej, A. Lawrie

4

5

∫ cm2

cm1

‖∂tψ(t)‖2L2dt ≥ 2
∫ cm2

cm1

‖∂tψ(t)‖2L2dt.

This contradiction finishes the proof. ��
Proof of the Main Theorem 1.6 Step 1Let ε > 0 be such that Proposition 3.10
holds with some ε0 ≥ 10ε. Define

T1 := sup{t : ∃t ′ ≥ t such that d( �ψ(t ′)) ≥ ε}.
By Proposition 4.1 we have T1 < T+, and we know that the modulation
parameters λ(t) and μ(t) are well-defined for t ∈ [T1, T+). Define ζ(t) as
in (3.34). Assume without loss of generality that μ(T1) = 1.

There exists a sequence τn → T+ such that

d

dt

∣∣∣
t=τn

( ζ(t)

μ(t)

)
≤ 0.

For any such t0 = τn we are in the setting of Proposition 3.10 in the backward
time direction, so we obtain times t1 ≤ τn and t2 ≤ t1. By the definition of
T1 and (3.40) we have t1 ≤ T1, so the proof of Proposition 3.10 yields in
particular 1

2 ≤ μ(t) ≤ 2 for t ∈ [t1, τn], thus 1
2 ≤ μ(t) ≤ 2 for t ∈ [T1, T+).

Furthermore, (3.44) implies that
∫ τn
T1

√
d( �ψ(t)) dt is bounded as τn → T+.

Thus (3.29) implies that
∫ T+
T1
|μ′(t)|dt < +∞, hence μ(t) converges to some

μ0 ∈ [12 , 2]. Eventually rescaling again, we can assume that μ0 = 1.

As in the proof of Proposition 3.10, we consider ξ(t) := b(t)+κ1ζ(t)
k
2 and

we find that it is strictly decreasing on [T1, τn] and satisfies

ξ ′(t) ≤ −κ2ξ(t) 2k−2k . (4.31)

Hence ξ(t) is strictly decreasing on [T1, T+) and satisfies (4.31) for t ∈
[T1, T+). From the modulation equations we also obtain

ξ ′(t) ≥ −κ3ξ(t) 2k−2k . (4.32)

for some κ3 depending only on k. Indeed, (3.28) and (3.38) yield

|ξ ′(t)| � |b′(t)| + |ζ ′(t)|ζ(t) k−22 � ζ(t)k−1 � ξ(t)
2k−2
k ,

Since limt→T+ ξ(t) = 0 and 2k−2
k ≥ 1, (4.32) implies that T+ = +∞.

Showing that the sign ι is constant is standard. Lemma 2.14 implies that
d+( �ψ(t)) ≤ ε for t ∈ [T1,+∞) or d−( �ψ(t)) ≤ ε for t ∈ [T1,+∞). Indeed,
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suppose that t1, t2 ≥ T1, t1 ≤ t2 are such that d+( �ψ(t1)) ≤ ε and d−( �ψ(t2)) ≤
ε. Without loss of generality we can assume that ε < 1

2α0, where α0 is the
constant from Lemma 2.14. Then Lemma 2.14 yields d+( �ψ(t2)) ≥ α0, hence
there exists t0 ∈ [t1, t2] such that d+( �ψ(t0)) = 1

2α0 > ε. But Lemma 2.14

gives that also d−(�(ψ(t0)) ≥ α0 > ε, which contradicts the choice of T1.
Step 2 We now deduce the rate of decay of λ(t) as t → +∞. Bounds (3.50),

(3.53), and (3.35) imply that ξ(t) is comparable to λ(t)
k
2 . Rewrite (4.31) and

(4.32) as follows:

−κ3 ≤ ξ ′(t)
ξ(t)

2k−2
k

≤ −κ2, κ2, κ3 > 0,

In the case k = 2, after integrating and possibly changing the values of the
constants, we obtain

e−κ3t ≤ ξ(t) ≤ e−κ2t ,
which implies that there exists a constant C such that

e−Ct ≤ λ(t) ≤ e−
1
C t as t →+∞. (4.33)

(recall that we rescale the solution so that μ0 = limt→+∞ μ(t) = 1).
Similarly, for k > 2 we obtain

1

C
t−

2
k−2 ≤ λ(t) ≤ Ct−

2
k−2 as t →+∞, (4.34)

with a constant depending on k.
Step 3 Suppose that �ψ does not scatter in either time direction. Take any δ > 0.
Bounds (4.33) and (4.34) imply that

∫ +∞
−∞

√
d( �ψ(t)) dt < +∞. (4.35)

Indeed, it suffices to consider the behavior as t → ±∞. In this situation we
have well-defined modulation parameters λ(t), μ(t) and (3.7) together with
the fact that μ(t) → μ0 > 0 imply that d( �ψ(t)) � λ(t)k , so (4.35) follows

from time integrability of λ(t)
k
2 .

Thus (2.28) implies that there exist T1, T2 such that for all R > 0

∫ T1

−∞
�R( �ψ(t)) dt ≤ 1

3
δ,

∫ +∞
T2

�R( �ψ(t)) dt ≤ 1

3
δ.
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Since [T1, T2] is a finite time interval, there exists R > 0 such that

∫ T2

T1
�R( �ψ(t)) dt ≤ 1

3
δ.

But d( �ψ(t))→ 0 as t →±∞, hence (4.2) yields

∫ +∞
−∞
‖∂tψ(t)‖2L2 dt ≤ δ.

This would imply that �ψ(t) is a constant in time solution (because δ was any
strictly positive number), which is impossible. ��
Remark 4.13 Suppose that �ψ(t) does not scatter in the forward time direction.
From the modulation equations we know that

b′(t) ≤ −κ6λ(t)k−1, κ6 > 0,

so integration yields

b(t) ≥ κ7

∫ ∞
t

λ(s)k−1 ds.

But, as noticed in Step 1. above, we also have |(λ(t) k2 )′| � λ(t)k−1, which
yields λ(t)

k
2 �

∫∞
t λ(s)k−1 ds, so we obtain

b(t) ≥ κ8λ(t)
k
2 ⇒ b(t)2 ≥ κ9d( �ψ(t)),

which in turn implies

∣∣∣
〈 1

λ(t)
�Qλ(t), ∂tψ

〉∣∣∣2 ≥ c d( �ψ(t)), as t →+∞,

where c > 0 is a constant depending only on k. Thus the projection of the time
derivative of the solution constitutes at least a fixed fraction of the total distance
from a two-bubble. In fact, if we were more precise in our computations, we
could probably obtain that this projection is the leading term of the error.
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