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Abstract We consider the energy-critical wave maps equation R'*? — S? in
the equivariant case, with equivariance degree k > 2. It is known that initial
data of energy < 8wk and topological degree zero leads to global solutions
that scatter in both time directions. We consider the threshold case of energy
8mk. We prove that the solution is defined for all time and either scatters in
both time directions, or converges to a superposition of two harmonic maps in
one time direction and scatters in the other time direction. In the latter case, we
describe the asymptotic behavior of the scales of the two harmonic maps. The
proof combines the classical concentration-compactness techniques of Kenig—
Merle with a modulation analysis of interactions of two harmonic maps in the
absence of excess radiation.

1 Introduction

This paper concerns energy critical wave maps W : (Rtl,}'z, m) - (M, g),

where m is the Minkowski metric and M is a Riemannian manifold with a
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metric g. Wave maps arise in the physics literature as examples of nonlinear
o-models. A particularly interesting case is when the target manifold admits
nontrivial finite energy stationary wave maps, or harmonic maps, as these
give simple examples of topological (albeit unstable) solitons. Mathematically,
wave maps simultaneously generalize the classical harmonic maps equation
to Lorenztian domains as well as the free wave equation to manifold-valued
maps.

Viewing (M, g) as an isometrically embedded sub-manifold of Euclidean
space (RV, (-, -)rN), @ wave map is defined as a formal critical point of the
Lagrangian action

1
LV = > /;ng m*? (aa\p, aﬂ\p)RN dx dr.

The Euler-Lagrange equations are given by
Ov 1L TyM,
which can be rewritten as
Ov = S(W)(Qw, ov), (1.1)

where S denotes the second fundamental form of the embedding (M, g) —
(RN, (-, -)). The conserved energy is given by

1
E, 0, W) (1) = 5/ IE),\IJ(t)I2 + IV\IJ(t)|2 dx = constant. (1.2)
R2

Smooth finite energy initial data for (1.1) consist of a pair \fJ(O) = (W, V1),
where
Yo(x) e M CRY, W i(x) € TyyyM, ¥ x € R%.

We assume here that we can find a fixed vector W, € M so that

Yy(x) > Woo as |x| — o0. (1.3)

Wave maps on R}’Jf are called energy critical because the conserved energy

and the equation are invariant under the same scaling: If 7 (1) solves (1.1) then
so does

R 1
0, (1, x) := (W, (1, x), 3 Wy (1, x)) = (W(t/k,x/k), Xa,qf(t/,\,x/x))
(1.4)
and it also holds that £(¥;) = ().
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Two-bubble dynamics for wave maps 1251

The geometry of the target manifold, and in particular the existence of non-
constant finite energy harmonic maps W : R*> — M, plays a crucial role in
determining the possible dynamics of solutions to the wave maps equation.
Here we’ll focus on a special case when the target manifold is the 2-sphere,
M = §? ¢ R3? with the round metric g. One advantage is that here the
harmonic maps are explicit: by a classical theorem of Eells and Wood [20]
they are either holomorphic or anti-holomorphic with respect to the complex
structure on S2, and by (1.3) with the removable singularity theorem [47] they
can thus be identified with the rational functions p : Co, — Co. It follows
that each harmonic map R? — S? has a topological degree given by the degree
of the corresponding rational map.

In fact, the condition (1.3) allows us to assign a topological degree to
each smooth finite energy data. Given data (W, V), we can identify ¥
with a map Uy : S > §? by assigning the point at oo to the vector
Woo := limy|— 00 W(x). Abusing notation slightly by writing Uy = Wy, the
degree of the map Wy is defined by

1
= — * = — *
deg(Wg) = Area(S?) Joo Vi (w) s /RZ Vo (w) € Z

where w is the area element of S> C R?. The degree deg(Wy) is preserved by
the smooth wave map flow on its maximal interval of existence Iy, that is,

deg(Wp) = deg(¥ (1)) VI € Imax-

Importantly, any harmonic map Qy, of degree k minimizes the energy amongst
all degree k wave maps, and in fact

E(Qr) = 4 |deg(Qx)| = 4 [k] .

1.1 k-equivariant wave maps

To simplify the analysis we’ll take advantage of a symmetry reduction and
study a restricted class of maps W satisfying the equivariance relation Wo pF =
pXoW forall rotations p € SO (2). We consider a subclass of such maps known
as k-equivariant, or k-corotational, which correspond to equivariant maps that
in local coordinates take the form

W(t,r0) = (Y, r), kO) < (siny coskf, sin ¥ sin k6, cos ) € S* C R3,

where i is the colatitude measured from the north pole of the sphere and
the metric on S? is given by ds? = dy> + sin? ¢ dw”. The Euler-Lagrange
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1252 J. Jendrej, A. Lawrie

equations (1.1) reduce to an equation for ¥ and we are led to the Cauchy

problem:
1 sin 24

— — - k> =0

Yie — Vrr p vr + 2,2 , (1.5)

(¥ (0), 89 (0)) = (Yo, ¥1).

We’ll often use the notation 17/(t) to denote the pair

Yt r) = (Y, r), Y, 1))

and we remark that the scaling (1.4) can be expressed as follows: If 1/7(t, r)is
a solution to (1.5) then so is

- 1
Ualt.r) = (W /hr /3, 3o r/0))

for each fixed A > 0.
The conserved energy from (1.2) takes the form

k> —sinz ‘ﬁz(l‘, ) > rdr.
r

- 1 [©
EW () =2m5 /0 ((«W(r, M+ @y (t, 1)) +

From the above it’s clear that any k-equivariant data @(0, r) of finite energy
must satisfy lim, .o ¥ (0,7) = mm and lim,_ - ¥ (0, 0c0) = nm for some
m,n € Z. Since the smooth wave map flow depends continuously on the
initial data these integers are fixed over any time interval ¢ € I on which the
solution is defined. This splits the energy space into disjoint classes according
to this topological condition and it is natural to consider the Cauchy problem
(1.5) within a fixed class

Hmn,nn

= {0, Y1) [ EGo, Y1) <00 and lim yo(r)=mm, lim o(r)=nm}.

We can restrict to Ho ,» and we’ll denote these by H,r 1= Ho nr. We also
define H = (J,,cz, Hnr to be the full energy space.

The equivariant reduction introduces a good deal of rigidity into the problem,
but still allows us access to the family of harmonic maps. Indeed the degree &
harmonic map Q corresponding to z — zX as aholomorphic map Co, — Coo,
can be expressed uniquely (up to scaling) as the |k|-equivariant map

Oi(r, 0)=(Qx(r), k) < (sin Oy cos kO, sin Oy sin kO, cos Q)€ S? C R?,
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Two-bubble dynamics for wave maps 1253

where Qy is the explicit finite energy stationary solution to (1.5) given by
O (r) := 2 arctan k.
Note that Qy (r) satisfies

0r(0) =0, rl—inO Or(r) =m.

We often write O := (Qx, 0). We see that £(Qy) = 4k, which is minimal
amongst all k-equivariant maps in the energy class Hy; see Sect. 2.4 for a
direct argument. .

Here we consider k-equivariant maps ¥ = (¥, Y1) in the class Hy, i.e.,
that satisfy

lim Yo(r) =0 and lim yo(r) =0,
r—0 r—00

so that ¥y is the polar angle of a finite energy map W into S? with deg(¥) = 0.
Before stating our mains results let us first motivate this restriction with a brief
summary of recent developments.

1.2 Threshold theorems and bubbling

The energy critical wave maps Eq. (1.1) has been extensively studied over
the past several decades; [5,6,28-34,48,49,53,54,56,57]. In recent years the
focus has centered on understanding the nonlinear dynamics of solutions with
large energy. At the end of the last decade, the following remarkable sub-
threshold conjecture was established [38,50,51,55]: Every wave map with
energy less than that of the first nontrivial harmonic map is globally regular
on R!*2 and scatters to a constant map. The role of the least energy harmonic
map in the statement of the sub-threshold conjecture is based on fundamental
work of Struwe [52], who showed that the smooth equivariant wave map
flow can only develop a singularity by concentrating energy at the tip of a
light cone by bubbling off at least one non-trivial finite energy harmonic map.
In breakthrough works, Krieger et al. [39], Rodnianski and Sterbenz [46],
Raphaél and Rodnianski [44], constructed examples solutions of such blow-
up by bubbling, with the latter two works yielding a stable blow-up regime; see
also the recent stability analysis of Krieger [35] for type-II blow ups solutions
to the energy critical NLW, which suggests that the solutions from [39] should
also exhibit stability properties.

The starting point for the present work is the following natural question: Can
one give a satisfactory description of the possible dynamics for arbitrary initial
data? In dispersive models such as (1.1) this is typically referred to as the soliton
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1254 J. Jendrej, A. Lawrie

resolution conjecture, which states roughly that any smooth solution asymptot-
ically decouples into weakly interacting (possibly concentrating) solitons plus
free radiation. The wave maps Eq. (1.1) with N = S? is an intriguing model
in which to study this question: all stationary solutions (the harmonic maps)
are known explicitly, the conserved topological degree of the solution intro-
duces additional rigidity, and the equivariant reduction (1.5) greatly simplifies
certain aspects of the analysis without destroying the essential mechanisms
of truly nonlinear behavior, e.g., solitons, blow-up. There has been exciting
recent progress in this direction for the general Eq. (1.1), see [12,21]. Here we
focus on the equivariant model (1.5) where more is known.

Our analysis is motivated by several results proved in the last few years;
we will in fact use some of them explicitly. First, note that, by continuity,
lim, o ¥ (z, r) and lim,_, o, ¥ (¢, r) are independent of 7. Hence scattering to
a constant map is only possible if lim, .o ¥o(r) = lim,_ o Yo(r). We can
assume without loss of generality that both these limits equal 0, i.e. the initial
data (Yo, 1) is in Hg. For such maps, the following refined threshold theorem
was proved in [9].

Theorem 1.1 (2& (é) Threshold Theorem). [9, Theorem 1.1] For any smooth
initial data 1 (0) € Ho with

EW(0)) < 2E(Qy) = 87k,

there exists a unique global evolution € C O(R; Ho). Moreover: Y (t) scatters
to zero in both time directions, i.e., there exist solutions gﬁzc to the linearized
Eq. (2.2) such that

V() = @zc(t) + op,y (1) as t — +oo.

The analogous result for the full model without symmetries was obtained
by the second author and Oh in [40], as a consequence of the bubbling analysis
in [51]. The heuristic reasoning behind the threshold 2& (Q) is as follows. The
topological degree counts (with orientation) the number of times a map ‘wraps
around’ S?. If a harmonic map of degree k bubbles off from a wave map w (1),
then, in order for x//(t) to satisfy deg(y) = 0, it must ‘unwrap’ precisely
k times away from the bubble. The minimum energy cost for wrapping and
unwrapping is 47k, which is also the energy of Q. The total energy cost is at
least 87k = ZE(Qk)

Similar intuition motivated the works [9,10], which established soliton
resolution for 1-equivariant maps with energies that only allow for one concen-
trating bubble, namely for data in H, with energy below 3£(Q). These works
showed that for any such solution there exists a regular map ¢ € H (free radi-
ation if the solution is global) and a continuous dynamical scale A(¢) € [0, o)
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Two-bubble dynamics for wave maps 1255

such that . .
V() = Oy + @) +0ry(1) as t — Ty (1.6)

Cote [8] and later Jia and Kenig [25] extended the theory to handle arbitrary
energies, the latter work in all equivariance classes. It was shown that in this
case the decomposition (1.6) holds with possibly many concentrating harmonic
maps, but only along at least one sequence of times t, — T,. The proofs
of [8-10,25] rely heavily on concentration compactness techniques and were
all inspired by the remarkable series of papers by Duyckaerts et al. [14—17]
on the focusing quintic nonlinear wave equation in 3 space dimensions. We’ll
discuss these latter works more below; see Remark 1.13.

Theorem 1.2 (Sequential Decomposition). [8,25] Let J(I) € Hyr be a
smooth solution to (1.5) on [0, T}). Then there exists a sequence of times
tn = Ty, an integer J € N, a regular map ¢ € Ho, sequences of scales Ly, j
and signs 1; € {—1, 1} for j € {1, ..., J}, so that

J
V) =D 105, + $t) + 01,(1) as n — 00 (1.7)
j=1

In the case of finite time blow-up at least one scale A, 1 — 0 as n — 0o and
@(t) — @(1) is a finite energy map with £(¢(1)) = 5(1/7) - JS(Q). In the
case of a global solution, ¢(t) can be taken to be a solution to the linear wave
Eq. (2.2) and signs tj are required to match up so that

J
lim §(0,r) = ¢x = lim X;Lj 01, ; (r).
J:

Remark 1.3 A decomposition into bubbles for a sequence of times for the full
non-equivariant model was obtained by Grinis [21] up to an error that vanishes
in a weaker Besov-type norm. Duyckaerts et al. [12] proved that for energies
slightly above £(Q) a one-bubble decomposition holds for continuous time.
The same authors obtained in [13] a sequential decomposition into bubbles in
the case of the focusing energy critical power-type nonlinear wave equation
(NLW).

Theorem 1.2 raises two natural questions:

e Are there any solutions to (1.5) with J > 2 in (1.7), i.e., are there any
solutions that form more than one bubble?

e And, if so, does the decomposition (1.7) hold continuously in time, i.e.,
does soliton resolution hold for (1.5)?
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1256 J. Jendrej, A. Lawrie

In view of Theorems 1.1 and 1.2 it is natural to ask both questions at the
minimal possible energy level where multiple bubble dynamics can occur,
namely for solutions v (¢) € Ho having threshold energy, that is such that

EW) =2£(0).

In [22] the first author obtained an affirmative answer to the first question,
proving the following result.

Theorem 1.4 [22, Theorem 2] Let k > 2. There exists a solution Jr :
(=00, To] — Ho of (1.5) such that

-

im0~ (~0+0 2l =0

Vit

where vy, > 0 is an explicit constant depending on k. O

Remark 1.5 Similar solutions could be obtained for k = 2 by the same method.

1.3 Main result

In this paper, we address the problem of classification of solutions at threshold
energy level, in the spirit of the works of Duyckaerts and Merle [18,19]. The
major difficulty in the analysis is that in our case the threshold solutions contain
two bubbles, which leads to significantly more complicated dynamics._

Let z//(t) (T—, T}) — Ho be a solution to (1.5) with 8(1&) = ZS(Q) We
will say that 1//(t) is a two-bubble in the forward time direction if there exist
t € {1, —1} and continuous functions A(z), u(¢) > 0 such that

Jim (@) = Qo) — Quw)- Yl =0, A1) K p(t)ast — T

The notion of a two-bubble in the backward time direction is defined similarly.
We prove the following result.

Theorem 1.6 (Main Theorem). Fix any equivariance class k > 2. Let @(t) :
(T, Ty) — Ho be a solution to (1.5) such that

E()) = 2E(0) = 8nk.

Then T— = —oo, T+ = 400 and one the following alternatives holds:

e (1) scatters in both time directions,
e (1) scatters in one time direction and is a two-bubble in the other time
direction with the scales of the bubbles A(t), u(t) satisfying

w(t) = o € (0, 400), A(t) = 0.
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Two-bubble dynamics for wave maps 1257

Remark 1.7 Asaby-product of the proof, we will determine the rate of decay of
A(t) in the two-bubble case. Suppose a two-bubble solution forms as ¢t — oc:

2
If £k > 3 there exists a constant C; > 0 such that Cikuot_m < A1) <

Cy /Lot_% for ¢ large enough, see (4.34). In the case k = 2 there exists a
constant C > 0 such that we have exp(—Ct) < A(t) < exp(—t/C) for t large
enough, see (4.33).

Remark 1.8 In particular, the two-bubble solutions from Theorem 1.4 scatter
in forward time, which provides an example of an orbit connecting different
types of dynamical behavior for positive and negative times.

Remark 1.9 Non-existence of solutions which form a pure two-bubble in both
time directions is reminiscent of the work of Martel and Merle [41,42]. This
seems to be a typical feature of models which are not completely integrable.
One of the main points of our paper is an analysis of what we could call a
collision of bubbles in the simplest possible case of threshold energy.

Remark 1.10 Recall that in [18] a complete classification at the threshold
energy was obtained. It is tempting to believe that the solutions from Theo-
rem 1.4 should play a similar role as the solution W~ from [18], in which case
they would be unique non-dispersive solutions up to rescaling. This remains
an open question.

Remark 1.11 We conjecture that for k = 1 a similar result holds, but in the
two-bubble case A(f) — 0 in finite time. The slower decay of Q would be a
source of additional technical difficulties in Section 3, but the general scheme
could be applied without major changes.

Remark 1.12 Our method establishes the exact analog of Theorem 1.6 in the
case of the equivariant Yang-Mills equation, by making the usual analogy
between equivariant Yang-Mills and k& = 2-equivariant wave maps, see for
example [9, Appendix] for the analog of the Threshold Theorem 1.1 and [22]
for the analog of Theorem 1.4. There the harmonic map Q is replaced by
the first instanton, the notion of topological degree is replaced by the second
Chern number, and the threshold energy is exactly twice the energy of the first
instanton.

Remark 1.13 The full soliton resolution conjecture was established for the
radial solutions of focusing energy critical NLW by Duyckaerts, Kenig, and
Merle in the landmark work [17]. This result is the only known case of a
complete continuous-in-time classification for a model that is not completely
integrable. The proof relies on a particularly strong form of the “channels of
energy” method introduced by the same authors. However, proving channel
of energy estimates in other settings is a delicate issue, and the strong form of
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1258 J. Jendrej, A. Lawrie

these estimates used in [17] is known to fail for the linear wave equation in
even dimensions, see [11].

Aside from [17], Theorem 1.6 is the only other classification result for a
dispersive equation that holds for continuous times in the presence of more
than one non-trivial elliptic profile. Upgrading sequential decompositions such
as Theorem 1.2 or the one in [13] to hold for continuous times is regarded as
a major open problem.

1.4 Structure of the proof

Inspired by the work of Duyckaerts and Merle [ 18], we merge the concentration-
compactness techniques with a careful analysis of the modulation equations
governing the evolution of the scales A(¢) and 1(¢). As mentioned above, the
main difference with respect to [18] consists in the fact that our threshold
solutions contain two bubbles, one of which is concentrating, whereas in [18]
the modulation happens essentially around one stationary bubble. Thus our
analysis requires substantially new technique. Our proof can be summarized
as follows.

Step 1 If the solution does not scatter, then, by a special case of Theorem 1.2,
it approaches a two-bubble configuration for a sequence of times.

Step 2 We divide the time axis into regions where the solution is close to a
two-bubble configuration, which we can call the bad intervals |a,,, b, ], and
regions where it is not, which are the good intervals [b,, an+1]-

Step 3 On a bad interval [a,,, b,,], we decompose the solution as follows:

V(1) = (= Qua + Oray + &), 3 ().

In order to specify the values of A(z) and u(¢), we use suitable orthogonality
conditions, see Lemma 3.1. For technical reasons, we introduce a parameter
£ (t) such that | () — A(1)| <« A(¢). We consider ¢,, € (au, byy) where the
quantity ¢ (¢)/u(t) attains its global minimum on [a,,, b,,] (we make sure that
the minimum is not attained at one of the endpoints).

The orthogonality conditions yield modulation equations for the evolution
of ¢(¢) and wu(t). From these equations we can deduce crucial information
about the behavior of () and ¢(¢) fort > ¢, and t < ¢,,. We refer to the
beginning of Sect. 3 for a short description of the method. The main conclu-
sion can be intuitively phrased as follows: 1 (¢) does not change much on a bad
interval, whereas ¢ () grows in a controlled way both for ¢ > ¢;, and ¢ < ¢y,.
The decisive point is that the bad interval [a,,, by, ] can be long if ¢ (¢;,) /1 (cim)
is small, but

(0N
f (—) dt < Cy, Cy depending only on k. (1.8)
an  SH(T)
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Two-bubble dynamics for wave maps 1259

Note that the only information about the solution which is used in this process
is the fact that £ (1// (1)) =2& (Q) w (cm) 1s close to a two-bubble configuration
and

P );:cm (/) =

Step 4 Using concentration-compactness arguments and Theorem 1.1 we
obtain that the solution has the compactness property on the union of the
good intervals. Now the idea is to run a convexity argument based on a mono-
tonicity formula between two times where v (¢) is close to a two-bubble. It
is as this stage that we reach a contradiction — if the solution has exited a
neighborhood of two-bubble configurations during the interim, the total cost
in terms of time derivative is too great to allow it to return. This is a type of
no-return result and one can draw parallels here to the ignition and ejection
lemmas from the work of Krieger et al. [36,37] concerning near ground-state
dynamics for the energy critical NLW.

There can potentially be many good and bad intervals between the two times

where /() is close to a two-bubble. It is well-known that one needs to use a cut-
off in the monotonicity formula, which introduces an error in the estimates. On
the good intervals, this error is controlled thanks to the compactness property.
On the bad intervals, the bound (1.8) comes into play. More precisely, we
obtain that the error on a bad interval is absorbed by positive terms obtained
on intervals preceding and following the bad interval.
Step 5 Once the convergence to a two-bubble for continuous time is proved,
we deduce easily from the modulation equations that the solution is global and
u(t) — po € (0, 4+00). Scattering on at least one side follows easily from
the previous analysis. Namely, if the solution is non-scattering in both time
directions, then the time axis is divided into two bad regions near 00 and one
good interval in between. We reach a contradiction by a similar (but simpler)
argument as in Step 4.

2 Preliminaries and technical lemmas

In this section we establish a few preliminary facts about solutions to (1.5) that
will be required in our analysis. We first aggregate here some notation.

2.1 Notation

Given a radial function f : RY — R we’ll abuse notation and simply write
f = f(r), where r = |x|. We’ll also drop the factor 277 in our notation for the
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1260 J. Jendrej, A. Lawrie

L? pairing of radial functions on R?
1 o0
= — = d
1= o= U gy = [ FOOs0)rdr
Recall the definition of the space Hj:
Ho = {(lﬁo, V) | EWo, Y1) < o0, lim yo(r) = Hm yo(r) = 0}

We define a norm H by
> 2
1ol = fo ((3r1//0(r))2 + k2(‘/’°r¥) rdr

and for pairs 1/7 = (Yo, Y1) € Ho we write
1V 1+ == 11 (W0s Y 2

The change of variables r — ¢* gives us an identification between the radial
functions H(R?) and H'(R), i.e., Yo(r) € H < yo(e*) € H'(R). In partic-
ular this means that

Vol = Cllvolla

Scaling invariance plays a key role in our analysis. Given a radial function
¢ : R? > R we denote the H'! and L? re-scalings as follows

1
() =or/1), d1(r) = -p(r/4)

The corresponding infinitesimal generators are given by

Ag = _2 ¢r = rdr¢ (H)y(R?) scaling)
Ao := _9 ¢ = (1 +rd)g (LE(R?) scaling) 2.1)
IA =1

2.2 Review of the Cauchy theory

For initial data (¢p, ¢1) in the class Hg the formulation of the Cauchy prob-
lem (1.5) can be modified to take into account the strong repulsive potential
term in the nonlinearity:

K2sin2¢) k> K2 K 0%
T2 T r—2¢ + ﬁ(sm(Zqﬁ) —2¢) = r—2¢ + 2
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Two-bubble dynamics for wave maps 1261

2 . .
The presence of the potential /;—2 indicates that the linear wave equation,

92— A ﬁ =0 2.2
t R2+r2 v =0, (2.2)

of (1.5) has more dispersion than the 2d wave equation. In fact, it has the same
dispersion as the free wave equation in dimension d = 2k + 2 as can be seen
from the following change of variables: given a radial function ¢ € H, define
v(r) by ¢ (r) = r*v(r). Then

1 k2
pr <_A]R2 + 72) ¢ = —Agni2v,  N9llm = vl g1 gasay- (2.3)

Thus one way of studying solutions &(t) € Hp of Cauchy problem (1.5)
is to define v(1) = (r %y (), r %y, (1)) € H' x L*(R?**2) and analyze the
equivalent Cauchy problem for the radial nonlinear wave equation in R,l j; (2k+2)
satisfied by v(r). Unfortunately, this route leads to unpleasant technicalities
when k > 2 (spatial dimension = 2k 4+ 2 > 6) due to the high dimension and
the particular structure of the nonlinearity.

There is a simpler approach that allows us to treat the scattering theory
for the Cauchy problem (1.5) for all equivariance classes k£ > 1 in a unified
fashion. The idea is to make use of some, but not all, of the extra dispersion in
—Ap2 + k2/r2. Indeed, given a solution J(l) to (1.5) we define u by ru = ¢
and obtain the following Cauchy problem for u.

3 k*—1 5 2ru — sin(2ru) 3
ut,—urr—;ur-f— r2 u==xk T=: Z(}’M)I/l

u(0) = (ug, u). (2.4)

where the function Z defined above is a clearly smooth, bounded, even func-
tion. The linear part of (2.4) is the radial wave equation in R'*# with a repulsive
inverse square potential, namely

2_
v,t—vrr—%vr+k 21v=0. (2.5)

r

For each k > 1, define the norm Hj for radially symmetric functions v on R4
by
oo 2
(k= —=1)
||v||§1k(R4) = /O [(a,v)2 + r—2”2 rdr
Solutions to (2.5) conserve the Hy norms. By Hardy’s inequality we have
”U“Hk(R4) = ”U”HI(R‘t)
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The mapping,
Hi x L*RY) 3 (ug, u1) = (Yo, 1) := (ruo, ruy) € H x L*(R?)
satisfies

[l (o, ”1)||H'><L2(R4) >~ || (uo, M1)||Hka2(R4) = [ (Yo, W1)||H><L2(]R2) (2.6)

Thus we can conclude that the Cauchy problem for (2.4) with initial data
in H' x L*(R*) is equivalent to the Cauchy problem for (1.5) for initial
clata (Yo, ¥1) € Ho, allowing us to give a scattering criterion for solutions

Y (t) € Ho to (1.5).

I:emma 2.1 Let 1/7(0) = (Yo, ¥1) € Ho. Then there exists a unique soéution
v(t) equ to gl.S) defined on a maximal interval of existence Imax (V) =
(=T-(), T () with the following properties: Define

a(t,r) = Y@, e ) € H x L2RY)
Then for any compact time interval J € Inax we have
”u”LtS(J;L?(R“)) <C{J) <
In addition, if

leell 230, (gyy: Lo Ry < O°

then Ty = ocoand 1/7 (t) scatterst — o9, i.e., there exists a solution J’L (t) € Hop
to (2.2) so that

1 (1) — ¢r ()3, — O as t — oo.

Conversely, any solution (t) that scatters as t — o0 satisfies

¥ /71 13 15 (10.00) x %) < OO

The proof of Lemma 2.1 is standard consequence of Strichartz estimates
for (2.5) and the equivalence of the Cauchy problems (1.5) and (2.4). In this
case, we need Strichartz estimates for the radial wave equation in R!™* with
a repulsive inverse square potential. For these we can cite the more general
results of Planchon et al. [43]; see also [2,3] which cover the non-radial case.

Lemma 2.2 (Strichartz estimates). [43, Corollary 3.9] Fix k > 1 and let v(t)
be a radial solution to the linear equation

3 K2 —1

Vit — Upp — —Up + 3
r r

v=F(,r), 50)= (v, v1) € H' x L*RY
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Then, for any time interval I C R we have
”v”LfL%(IXR“) + sup ||5(t)||Hl><L2(R4) ~ ||v(0)||H1><L2(R4) + ”F”L (L2 (I xR%)
’ tel

where the implicit constant above is independent of 1.

We’ll also explicitly require the following nonlinear perturbation lemma
from [27]; see also [9, Lemma 2.18].

Lemma 2.3 (Perturbation Lemma). [27, Theorem 2.20] [9, Lemma 2.18]
There are continuous functions ey, Co : (0,00) — (0, 00) such that the
following holds: Let I C R be an open interval, (possibly unbounded),
v, ¢ € COI; H) N CY(I; L?) radial functions satisfying for some A > 0

”w”LOO(I;HxLZ(]RZ)) + ||¢”L°°(1;H><L2(R2)) + ||¢/V||L[3(1;L§(R4)) <A
||€61(1/f/r)||Ltl (I;L,%(R4)) + ”eq((/)/")”]‘[l (I;L/%(R“)) + ”wO”Lg(l;Lg) <& =<¢gy(A)

where eq(Y/r) := "zrgl YW /1) + (W/r)3Z () in the sense of distri-

butions, and wy(t) := S(t — l‘o)(l} —@)(to) with ty € I arbitrary, but fixed and
S denoting the linear wave evolution operator in R'** (i.e., the propagator

for (2.2)). Then,

- L 1
1 =@ = woll o1 mx 222y + 11 W = O3 Ls@ey) = ColAe

In particular, ¥/ 71l 137, o)) < O©-

2.3 Concentration compactness

Another consequence of (2.6) and Lemma 2.2 is that we can translate the
concentration compactness theory of Bahouri and Gérard to solutions to (2.2)
and (1.5). We begin by stating the linear profile decompositions in the 4d
setting for solutions to (2.5).

Lemma 2.4 (Linear 44 profile decomposmon) [1, Main Theorem] Let k >
1 be fixed. Consider a sequence i, = (un0,uy.1) € Hp X LZ(R4) which
is bounded in the sense that ||”n||Hka2(R4) < 1. Then, up to passing to a

subsequence, there exists a sequence of solutions to (2.5), ‘71{ € Hy x L>(R%),
sequences of times {t, j} C R, and sequences of scales {, ;j} C (0, 00), and
wk defined by
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ﬁ(r)—i( 1 vf<_t””' r) : avf'(_t”’f ’ ))
" M E\ M M) 0w 2 E e A

j=1
+ (wh o, wh ()

so that the following statements hold: Let w,]i 1 () denote the linear evolution
of the data 17),12, i.e., solutions to (2.5). Then, for any j < k,

Wk L (tn o dn ) g jwWt . An j)) — O weakly in Hy x L*(R?).
In addition, for any j # k we have

An,j An k |tn»j - tﬂ,k‘ |tn,j - tn,k‘
)\n,k * )\n,j * )Ln,j + )Mn,k

— 0 as n — Q.

k

Moreover, the errors 171”

vanish asymptotically in the sense that

lim sup H wﬁ L ‘
n—00 ’

— 0 as k— oo. 2.7)
LPLANLI LO(RxRY)

Finally, we have almost-orthogonality of the Hy x L? norms of the decompo-
sition:

- 12 7 J 2 =k 2
Nl 2= D WV (=t /2n Dy 2 10513, o p2+0n (1) as n—o0
I<j<k

Remark 2.5 The difference between Lemma 2.4 and the main theorem in [1]
is that here we have phrased matters in terms of solutions to the 4d linear wave
equation with a repulsive inverse square potential (2.5) (which conserve the
Hy x L? norm), as opposed to the free wave equation in 4d with datain H'x L.
However, a proof identical to the one in [ 1] can be used to establish Lemma 2.4.
Alternatively, one can establish Lemma 2.4 by conjugating (2.5) to the free
wave equation in dimension d = 2k + 2 via the map v(r) — r " yr) = u.
This map induces an isometry Hj (RY — H L(R%+2): see (2.3). Then the
usual Bahouri-Gérard profile decomposition in d = 2k + 2 induces a profile
decomposition in Hi. Once must check that the errors w,{’ ; can be made to
vanish as in (2.7), but this follows by combining the vanishing of r <! w,{ L
in appropriate dim = 2k 4 2 Strichartz norms with the Strauss estimate, ’

7 J
sup ‘rwnvL(I, I”)‘ S ||wn,L||L,°°Hk(R4)’
teR,r>0

and interpolation.
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A direct consequence of Lemma 2.4 and (2.6) with the identifications

Un(r) i=run(r), vl () =rw!,

. r .
@1 (—tn [ n js T/ An j) = rvg(—rn, i T )

n,j

is the following profile decomposition for bounded sequences 1/_},1 € Ho.

Corollary 2.6 (Linear profile decomposition). Consider a sequence 1},1 € Ho
that is uniformly bounded in Hoy. Then, up to passing to a subsequence, there
exists a sequence of solutions g_o'i € Ho to (2.2), sequences of times {t, j} C R,
sequences of scales {A,, j} C (0, 00), and errors )7,1] defined by

J
- ; l .
Yn= > (@] (~tnj/2n.j»/Dn.}): P 0@y (—tnj/Anjs /o)) + 0o vl )
n

j=1 "/

so that the following statements hold: Let yn{ 1 (t) € Ho denote the linear
evolution, [i.e., solution to (2.2)] of the data )7,{ € Ho. Then, forany j <,

(V;f (tn,j7 )Mn,j')’ )Ln,jyyf (tn,jv )‘n,j')) -0 Weakly in HO-
In addition, for any j # £ we have

Anj | ne |t”vj - tn,ﬁ| |tn,j - tn,£|
+ =+ +
)\n,E )Vn,j )\n,j )\n,ﬁ

— 00 as n — oo. (2.8)

Moreover, the errors )7,{ vanish asymptotically in the sense that

J
yn,L

r

— 0 as J — o0.
L®LANLI LS (RxRY)

lim sup
n—0o0

Finally, we have almost-orthogonality of the Ho norms of the decomposition:

Wl = D 167 (=t 2n Mgy + 17 134, + 0a(1) as n — o0
1<j<J

Our applications of the concentration-compactness techniques developed
by Kenig and Merle [26,27] requires a “Pythagorean decomposition” of the
nonlinear energy proved in [9].

Lemma 2.7 [9,Lemma 2.16] Let &n € Ho be a bounded sequence with a lin-
ear profile decomposition as in Corollary 2.6. Then the following Pythagorean
decomposition holds for the nonlinear energy of the sequence:
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J
EWm) =Y E@) (=t j/Mn.)) + EF]) +0n(1) as n — o0, (2.9)
j=1

We will also require the following nonlinear profile decomposition analo-
gous to [9, Proposition 2.17], or [14, Proposition 2.8]. We’ll use the following
notation: Given a linear profile decomposition as in Corollary 2.6 with pro-
files {goi} and parameters {t, ;}, {A,, ;} we denote by {¢/} the nonlinear profile
associated to {(pi(—t,{ /)»,{), (,bi(—t,{ /)»{;)}, i.e., the unique solution to (1.5) so
that for all —t,{/)»,{ € Imax(¢/) we have

T 167 (<t 2n, 1) = B (~tn,j /o Ity = .

The existence of a non-linear profile is immediate from the local well-
posedness theory for (1.5) in the case that —z, j /A, ; — Teo,; € R.If
—ty,j/An,j — Zoo then the existence of the nonlinear profile follows from
the existence of wave operators for (1.5) and it follows that the maximal for-
ward/backward time of existence T4 (¢) = oo. Each of these facts are now
standard consequences of the Strichartz estimates in Lemma 2.2.

Lemma 2.8 (Nonlinear Profile Decomposition). [9, Proposition 2.17] [14,
Proposition 2.8] [1] Let 1/7,, (0) € Ho be a uniformly bounded sequence with
a profile decomposition as in Corollary 2.6. Assume that the nonlinear profile
@/ associated to the linear profile (pi has maximal forward time of existence
T, (7). Let s, € (0, 00) be any sequence such that for all j and for all n,

Sn —

I @), limsup ! /e -
+ s L? <|:_ Inj Sn—In,j );L? (R4))

R W

An,j n—o00
m.J n, j n, j

Let 1;,1 (tldenote the solution of (1.5) with initial data 1},, (0). Then for n large
enough r, (t) exists on the interval s € (0, s,) and satisfies,

lim sup |Wn/r||L,3([0,sn);L§(R4)) < 00.
n—oo

Moreover; the following non-linear profile decomposition holds for all s <

[0, sn),

J
- (S —tnj T 1 (S =ty T
w (S,r)= § (P] ( : ) >’_~8t¢j ( : )
! Anj  Anj Al Anj o Anj

j=1

+7] 5.1 + 6] (s.1)
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with yn{L(t) as in (2.7) and

hm lim sup <||9 /L3 10,500 L6 R4 T IIQ | 252 ([0.5,): Ho)) 0.

J—=00 p—soo
The analogous statement holds for sequences s, € (—00, 0).

Our main application of these ideas can be summarized in the following
compactness lemma.

Lemma 2.9 Let w(t) € Ho be a solution to (1.5) defined on its forward
maxlmal interval of existence [0, T+(w)) Suppose that £ (1#) =2&E(Qy) and
that w(t) does not scatter as t — T+(w) Then the following holds: Suppose
that t, — T4 is any sequence of times such that

sup |9 (1) [l < € < 00 (2.10)
n

Then, up to passing to a subsequence of the t,, there exists scales v, > 0 and
a nonzero ¢ € Hy such that

Y (ta) 1 — ¢ € Ho

strongly in Ho and E(¢) = 2E(Qy). Moreover, the nonlinear evolution §(s)
of the data ¢(0) = ¢ is non-scattering in both forwards and backwards time.

Remark 2.10 One consequence the main result, Theorem 1.6, is that the
hypothesis of Lemma 2.9 are not satisfied by any solution! However, we’ll
use Lemma 2.9 in the context of a contradiction argument in the proof of
Proposition 4.1 in Sect. 4. Since the proof of the lemma uses only standard
facts about profile decompositions, the local Cauchy theory, and the Threshold
Theorem 1.1 we include it here in Sect. 2.3.

Proof of Lemma 2.9 By (2.10) we can perform a linear profile decomposition
as in Corollary 2.6 on v (¢,).

First we observe that there can only be one non-zero profile ¢ = ¢' and that
the errors y ', must vanish strongly Ho as n — oo. Indeed, if there were two
non-trivial proﬁles or if the errors did not vanish strongly in Hy, then (2.9)
along with our hypothesis that £ (1//) = 2£(Q) imply that every nonzero profile
must have energy < 2£(Q). Thus each non-zero nonlinear profile scatters
in both directions by the Threshold Theorem 1.1. A now standard argument
based on the nonlinear Perturbation Lemma 2.3, and the orthogonality of the
parameters in (2.8) implies that w(t) must also scatter in forward time, a
contradiction.
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Thus, there exists times f, 1 and scales v, 1, and a single limiting profile
= (90, ¢1) so that

(WPt + Unln,1, Un,l')a Vn,lll’t(tn + vnln i1, Vn,l') - QZ € Hp as n — o0

Next we claim both —*= — 400 are impossible and we can therefore assume
without loss of generahty that #, 1 = 0O for all n. To see this, first assume first

f)” L 400. Then § scatters in forward time and we can deduce that

||¢/r||L3L6([ it )XR4> — 0 as n — 00

by the definition of the nonlinear profile. But then the Nonlinear Perturba-
tion Lemma 2.3 implies that 1//(1‘) must also scatter in forward time, which
contradicts our initial assumptions on w(t)

Now assume that —#, 1/v,,1 — —o0. Then the nonlinear profile ¢(s) scat-
ters in backwards time, and the Nonlinear Perturbation Lemma 2.3 implies
that

”w/r”Lng(([O,tn])x]R“) = ||(p/r“L?L§([_m_tn’l —t"—’l]xR“) +o0,(1) = 0,

Vn,1 7 Vel

a contradiction. Thus we can assume that #,, | = 0 and we simply write v, | =
v,. At this point we’ve shown that up to passing to a subsequence in f, we
have

V()1 — @ € Hoo E@) =2£(Q)

Vn

We can now run a nearly identical argument to show that nonlinear evolution
¢(s) € Hp can not scatter in either time direction. To see this, first suppose
that ¢ scatters in forward time. Then, the Nonlinear Perturbation Lemma 2.3
implies that v (¢) must also scatter as 1 — oo. If ¢(s) were to scatter as
s — —o0, then,

19/ L31800.01x8%) = 18/ 7113181010, 0pxE) T+ 0n(1) = € < 00,

Letting limit n — oo, we see that ”W/r||L,3L§([O,T+(1/7))XR4) < C, which again

means that 1} (1) scatters in forward time, a contradiction. Hence ¢ (s) does not
scatter in either direction. O
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2.4 The harmonic maps Q = Qy
We record a few properties about the unique (up to scaling) k-equivariant
harmonic map Q = Qi (r) = 2arctan r* and some consequences of the fact

that each Q; minimizes the energy functional amongst all k-equivariant maps.
First observe that Q satisfies

ro,Q(r) =ksin Q(r), Q@0) =0, Q(o0)=rm.

Recall that H; the set of all finite energy k-equivariant maps, with ¢(0) = 0
and ¢o(00) =7,

Ho = {90, #1) | E@) <00, ¢0(0) =0,  lim go(r) = 7}

The fact that 0 minimizes the energy in H, can be easily seen from the
following Bogomol’'nyi factorization of the energy:

. 2
sm(wo)) v dr

r

o0
a%wo=nwm;+nf @w«w
0

o0
+271k/ sin(gg) o, dr
0

o0 sin(go) \ >
=nwm;+n/’<&%—k rdr
0

r

%0(00)
+ 2k f sin(p) dp
%0(0)

o sin 2
=n||<p1||iz+n/0 <3r§00—k §¢0)> rdr + 47k (2.11)

Hence,

E(po. 91) = mllill32 + 4mk = 7ll@1l7, + E(Qk. 0)

where the inequality in the last line above is in fact strict if ¢y #= Q.
We define a functional on maps ® : R> — S? of finite energy. Let ws2
denote the volume form on S?. Given Q C R? set

G(P, Q) = f

()

ws2 =/ O*(wg2)
Q
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where ®*(ws2) denotes the pull-back. Given k-equivariant ® with polar angle
¢, this reduces to

bo(r)
G(¢o(r)) == 271/ klsinp| dp
¢0(0)

Observe that for any (¢, 0) with £ (g?)) < oo and for any R € [0, co) we have

$o(R)
27‘[/ k|sin p| dp
$0(0)

< ER (0, 0)

|G (¢o(R))| =

R
27 /0 ke sin(@o(r) | 3, do(r) dr

where for any 0 < a < b we define the localized energy & by

"1 sin?
ED (o, p1) = Zn/ 3 (d)f T (8y¢0)% + k2 r2¢o> dr
a
The same argument shows that

|G (go(R)| < ER°(¢0, 0)

On the other hand, since Q satisfies rd, Q(r) = ksin(Q), forany 0 < a <
b < oo we see that

b
G(Q(b)) = G(Q(a)) = 271/ Isin(Q(r)] @, (r)dr = £,(Q,0) (2.12)

Letting a — 0 and b — oo we recover the fact that £(Q, 0) = G () = 4nk.
We recall the following variational characterization of Q in H, from [7],
which amounts to the coercivity of the energy functional near Q.

Lemma 2.11 [7, Proposition 2.3] There exists a function c : [0, o0) — [0, 00)
such that c(a) — 0as a — 0 and such that the following holds: Let (¢, 0) €
Hy. Suppose
a = E(¢o,0) —E(Q,0) =0
Then for A > 0 defined so that 53((150, 0) = 5(% (Q) = £(Q)/2, we have
[¢o — Oulle < c(a)

Moreover, o = 0 if and only if po(r) = Q(r/A) for some X > 0.
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2.5 Threshold solutions near a 2-bubble configuration
The goal of this section is to relate the proximity of amap ¢ € Hy to a2-bubble
configuration to the size of the Hp-norm of ¢. With this in mind we make the

following definition.

Definition 2.12 (Proximity to a 2-bubble). Given a map ¢; = (¢, ¢1) € Ho
we define its proximity d(¢) to a pure 2-bubble by

d@ = inf (10— (0 — Q) $DIF, + (/) (213)

)»,/L>0,1L€{+1,—1}
The proof of Theorem 1.6 will require a few technical lemmas concerning
d. We’ll state the lemmas first and postpone the proofs until the end of this
section.
Lemma 2.13 Suppose thatd; = (@0, ¢1) € Ho is k-equivariant and satisfies,
E(®) = 26(0p).
Then for each B > O there exists a there exists a constant C(B) > 0 such that

d(@) = B = [1(d0. $1)llry < C(B) (2.14)

Conversely, for each A > 0 we can find o« = a(A) such that

d($) < a(A) = [(¢0, 1)l = A (2.15)

Note that d is small when ¢§ is close to either a bubble/anti-bubble (1 = +
in the definition of d) or anti-bubble/bubble conﬁguragion (t = —). The next
lemma makes precise the intuitive notion that a map ¢ cannot be simultane-
ously close to both configurations. With this in mind we define

de(@) = inf (160F (0 — Q). $DIF, + A/w)  (2.16)
A, >0

Lemma 2.14 There exists ag > 0 with the following property: Let (z € Ho.
Then,

d+($) < ap = d (@) = .
We begin by proving Lemma 2.13.
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Proof of Lemma 2.13 1t suffices to consider (E of the form qu = (¢, 0). First
we prove (2.14). To see this we’ll ﬁrst show that f(lr each 8 > 0 there exists a
constant 6 = §(f) so that for any ¢ € Ho with £(¢p) = 2E(Q) we have

d($) = B = l[pllL> <7 — 5(B). (2.17)

Supposeﬁ(2.17) fails. Then we can find 8 > 0, a sequence <;_§n = (¢, 0) € Ho
with £(¢,,) = 2E(Q), and numbers r,, > 0 so that

d(¢n. 0) > B and |¢y(rn) — 7| = 0,(1) as n — o0 (2.18)
Define scales A, and pu, by
E" (@) = E(Q)/2. EX () = £(Q)/2 (2.19)

Then, by (2.12) we see that for n large enough A, < r, and wu,, > r,. Now
define ¢, 1 and ¢, 2 as follows

Gn(r) if0<r=<m
Gn1(r) =+ T2 G —2r) if 7 € (1, 2]
T if r>2r,
b a(r) = T+ —¢”(rr"n)_”r if r <r,
’ Gn(r) it r>r,

And define 71, (r) by

Ma(r) = ¢n(r) = Gu1(r) — dp2(r) + 7

We claim that

E(@Pn.1,0) = E(Q,0) +on(1) as n — o0 (2.20)
E(Pn2,0)=E(0Q,0) 4+ 0,(1) as n — oo
M llg — 0 as t — oo (2.21)

First we prove (2.20) (2.21). Since ¢, (r,,) — m we have

0" (Pn,1,0) = 7" (@0, 0) = G(a (1)) — G() = £(Q,0) as n — o0
El(@n, 0) = E2°(dn, 0) = Gy 2(rn)) — G() = E(Q,0) as n — o0

From the above and the fact that £ (q;) = 2£(Q) we see that in fact
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&y (Pn,1,0) = E(Q,0) +0,(1) as 1 — 00
5;}’10(%,2, 0)=&E(0,0)+0,(1) as t - 00 (2.22)

Direct computations using the definitions of ¢, 1, ¢, 2 then show that

Ex(Bn1,0) S (m — Gu(ra))> — 0 as n — oo
E (Pn2,0) S (T — u(ra))* — 0 as n — oo (2.23)

Combining (2.22) and (2.23) gives (2.20) and (2.21). By construction
M(r) =7 —¢p2(r) if r <rn, Np(r) =7 —Ppa(r) if r>=ry

A direct computation using the above and the definitions of ¢, 1, ¢, 2 on the
relevant intervals then yields

||77n||%( < (T = u(rp))*> > 0 as n — 00

By (2.20), and (2.21), and A,,, u,, defined in (2.19) we use Lemma 2.11 to find
Mn,1> Mn,2 € H so that

¢n,1(7') = Q)\n + 77n,1(r), ¢n,2(”) = — Qun - 77n,2(7')
1M, jllH — 0 as n — oo

for j =1, 2. Thus,

on = Qs + Quu i = 1n + Mnt — Mp2llr — 0 as n — oo (2.24)

Moreover, we must have A,,/u,, — 0 as n — oo. To see this, simply note
that if A,/u, =~ 1 then Q;, — Q, stays bounded away from 7. But this
contradicts (2.24) and the assumption that ¢, (r,) — 7 as n — oo. Hence,

an \
Ibn — On + O I + (—) S0

Mn

and thus d(¢,,0) — 0, which contradicts (2.18). To finish the proof, note
that (2.17) implies the estimate

¢*(r) < C(B)sin® ¢ (r)

which means we can control the H norm of ¢ by a constant (which depends
only on B) times £(¢) = 2E(Q).
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Lastly, we prove (2.15). Suppose that d(qz) < «. Then we can find, say,
1o, o such that

@ < (@0 — Qg + Quo> dlI11e + (Ro/120)* < 20

A direct computation then shows,

ldollr = 105 — Quollr — llpo — Oxy + Quolla
> [log(ro/mo)| —2a — o0 as a — 0

which completes the proof.

We next prove Lemma 2.14.

Proof of Lemma 2.14 1f the conclusion fails we could find a sequence ¢,, € H,

and two sequences of scales A, ot A7, . so that

)L-I-
||¢n—QA++QM+||H+—"+—>O as n — oo
" " Mn

A
||¢n+Q)\;_QM;”H+_n__>O as n — o0

Mn

It follows that

0=l — Qs + Qi) — B+ Q. — 0, )+ (05 — Ot
+ Q)L; - QM;)”H
= ”ij - Q/L;j + Q)L; - QM;”H —on(1) as n — o0 (2.25)

Passing to subsequences if necessary, relabeling £, or rescaling, we can assume
that 1.7 < A~ for all n and that one of the following three possibilities holds

—"+—>0, or —"+—>oo, or —”+—>1>0, as n — oo
Mn Mn Mn

Assume we are in the first situation. Then, we can choose n large enough so
that

Qm(r) + Q)L;(r) > Vreli,,2A,]
0,1 (N +0,, (N =3 Vrelh;. 2]
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and thus
2 x? (P dr  n?
“Q}J_QMJ‘FQ)W_QM”“[-IET/M TZTIng

for all n large enough, which is impossible by (2.25). Now suppose we are in
the second case 2—’; — 00. This means that
R AR T

and so for large enough n we have

(O3 = Qi + Q- = Q) = —, Vrelr,22]]

T
4 9
which similarly leads (2.25) into a contradiction. Finally, if Ii—"; — 1 we have

”Q)L;r - Q/L;r + Q)L; - QM;”H = ”Q}L;r - QM;”H - On(l)

Then setting ¢, = Qﬁ - Q0 - We see that d((¢,,0)) — 0 and hence
the right-hand-side above is bounded below by a fixed constant by (2.15) in
Lemma 2.13. This again leads to a contradiction in (2.25), which completes
the proof. O

2.6 Virial identity

In this section we record a nonlinear estimate related to a virial-type identity
that will be used in the proof of Theorem 1.6.

We begin with a virial-type identity for solutions to (1.5). In what follows we
fix a smooth radial cut-off function x € Coy (R?), so that, writing x = x(r)
we have

x(r)=1if r <1 and x(r)=0if r >3 and [x'(r)| <1 Vr>=0
For each R > 0 we then define
Xr(r) := x(r/R)

Lemma 2.15 Let IZ(I) be a solution to (1.5) on a time interval 1. Then for any
timet € I and R > 0 fixed we have

a (Ve | xrrdpr) 2 (1) = —/0 Y2t ) rdr 4+ QrO(D))
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where

QR (1)) = /O V21 = xp) rdr
1

[T o v - O e
(2.26)
satisfies
0 00 )
‘QR(&@))‘ 5/ wtz(t,r)rdrdt—i-/ f—kﬂt—zw‘ rdrds
R R
SER W)
Proof By direct calculation, using (1.5) we have
d 3
@ (Ve | xrrorr) 2 (1)
—f Yi(t) rdr +/ YO — xg) rdr
0 0
00 2
-5 | oo -eT O Lo

0
We show below how the quantities appearing on the right hand side of the
virial identity can be estimated in terms of d (1) in the vicinity of a two-bubble.

Lemma 2.16 There exists a number Cy > 0 depending only on k such that
Sfor all ¢ = (¢o, ¢1) € Ho with E(p) = 2E(Q) and all R > O there holds

| (b1, xrTO-¢0) | < CoRy/d(), (2.27)
Qr($) < Coy/d(P). (2.28)

Proof By Cauchy—Schwarz, we get

| (@1, xrrordo) | S RligllL2110-¢oll L2 (2.29)

Wehave [|0,(Qx— Q)72 S 1forall A and , hence by the triangle inequality

10,¢0ll 2 < 14++/d(¢). Ifd(¢) < 1, then we obtain [|0,¢ol ;2 < 1.1fd(d) >

1, then Lemma 2.13 gives ||<Z)'||H0 < 1, in particular again || 9,¢o|| ;2 < 1. Thus
(2.29) yields (2.27).
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To prove (2.28), we write

£12
sin” ¢y
—kz—2 rdr.
r

- +00
1Qr(9)] 5/0 ¢irdr + | (3.¢0)°

Again, the conclusion is clear if d(q;) > 1, we can assume d(q;) < 1. Find
A, u > 0 such that, say,

A\ K . )
(;) <2d(¢) and [[(¢o — Qx + Qu). d1ll7, < 2d(¢)

By the above it suffices to show that for g := ¢9 — O, + Q, we have

| @ 252 rar ((—) +ligln
0 r 12

Using trigonometric identities we expand

1
sinz(Q;L - Qu+g) = sin’ 0, + sin? Ou— 3 sin2Q; sin2Q,,
1
— 2sin? 0, sin? O, + 3 sin2gsin2(Qy — Q)
+sin® g cos 2(Q; — Q)
Then, since A Q; :=ro,Q; = ksin Q; we have
> 2 2.0, |dr Oo
/ (9,90)% — K*sin ¢o}75f [AQiAQ,| +1AQirdgl
0 0
dr
+|AQurog| —
o0
+f 9AQ:1 + |gAQur|
0
dr
+1ro,gl* + 1g1 —

To estimate the first term above we see that setting o = A/u we have

> dr [ WANGIRN dr
AQIAQu| — < -
/0 403800 5 N/o A+ /0 A + (/) r

p2k—1

o0 A

k k
=0 dr <o"|logo| <[ —
/(; (02K +r2K)(1 4 r2k) ™ log lN(M)

The remaining terms can be controlled by || g ||z by Cauchy—Schwarz. O
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3 The modulation method: analysis of 2-bubble collisions

In this section we give a careful analysis of the modulation equations that
govern the evolution of 2-bubble configurations. The intuition is that the less
concentrated bubble does not change its scale and influences the dynamics of
the more concentrated bubble. We will quantify this influence.

3.1 Modulation equations

We consider solutions @(t) to (1.5) that are close to a 2-bubble configuration
on a time interval J in the sense that d(lﬂ (1)), defined in (2.13), is small for
all ¢ € J. Recall that d(w(t)) is the smaller of the numbers d (w (¢)) and
d_ (w(t)) defined in (2.16).

Linearizing (1.5) about Q; leads to the Schrédinger operator

1
Ly = —07 — ~0r + k-

cos2Q;.
2

r

We write £ := L. Recall from (2.1) that A = r 9, is the infinitesimal generator
of dilations in H'(R?). One can check that A Q is a zero energy eigenfunction
for L, i.e.,

LAQ =0, and AQ € L2 (R?).

When k = 1, LAQ = 0 still holds but in this case AQ ¢ L? due to slow
decay as r — oo and is O is referred to as a threshold resonance.

In fact, A Q spans the kernel of £. This can be seen using the following well
known factorization of L,

1+ k k
L = A*A where A*:8r+LS(Q), A:_3F+L(Q) (3.1)
r r

together with the observation that A(A Q) = 0; we note that (3.1) is a conse-
quence of the Bogomol’nyi factorization (2.11); see [44,46] for more.
The fact that £, A Q; = 0 will play an important role in the modulation

estimates.
We fix a radial function Z € C§° (R2?) so that

0 Z(r)
f Zr)-AQ@r)r dr > 0, ‘ z
0 r

<1 Vr<l. (3.2)

Lemma 3.1 (Modulation Lemma). There exist no >_0 and C > 0 with the
following property: Let J C R be a time interval, ¥ (t) a solution to (1.5)
defined on J, and assume that

@ Springer



Two-bubble dynamics for wave maps 1279

(@) <ny Vel

Then, there exist unique C L Sfunctions \(t), u(t) so that, defining g(t) € H
by

gt) :=Y((t) — Oy + Quwy» (3.3)

we have, for eacht € J,
<ZM | g(t)) —0, (3.4)
(zﬂ | g(t)> —0, (3.5)

4, (G (0) < 10, veDIZ, + (A0O)/n®)* < Cdy @ 1), (3.6)

Moreover,
k
1) ¥ )13y < C(&) (3.7)
SV ==\ ) ‘
and hence
4 (G (1)) = (@)k (3.8)
i “\nn) '

Remark 3.2 The following version of the implicit function theorem will be
used in the proof.

Let X, Y, Z be Banach spaces. Let (xg, yo) € X x Y, let 81,62 > 0 and
consider a mapping G : B(xg, 81) X B(yo, 82) — Z that is continuous in x
and Cl in y. Suppose that G(xo, yo) = 0 and (DyG)(xo, yo) has bounded
inverse Lo. Moreover, suppose that

Lo — DyG(x, e,z £ ———
3Ly Nz

82

1G(x, yo)llz < (3.9)

31ILy ez

Sforall |x — xollx <61 and ||y — yolly < 82. Then, there exists a continuous
function ¢ : B(xg, 81) — B(yo, 62) such that for all x € B(xg, 81), y = ¢(x)
is the unique solution of G(x, ¢(x)) = 0in B(yo, 62).

The above is proved in the same fashion as the usual implicit function
theorem, see, e.g., [4, Section 2.2]. The key point is that the bounds (3.9) give
uniform control on the size of the open set on which the Banach contraction
mapping theorem can be applied.
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Proof The proof follows by standard techniques that we outline below; we
refer the reader to [23, Lemma 3.3] for a detailed proof of a similar statement.

We begin by showing that for each ¢ € J there exist unique A(#), u(t), and
g(¢) that satisty (3.3), (3.6) and the orthogonality conditions (3.4) (3.5) using
an argument based on the implicit function theorem stated in Remark 3.2. That
A(t) and p(¢) are actually C(J)is then proved via a standard ODE argument,
which we postpone until Remark 3.13 in Sect. 3.2.

To establish the former statement let ¢ € Ho be such thatd (¢) < no. This
means we can find Ag, no > 0 such that for gg € H defined by

80 :=¢0 — (Qro — Qo) (3.10)

we have

2 o \*
(g0, @I, 2 + o < 2no
Define the mapping F : H x (0, co) x (0, co) — H by
F(g, 2, p) :=8 = (Qx — Qu) + (g — Quo)

Note that F'(0, Ag, o) = 0 and moreover that

1 1
IF (g, w, Mlla < lglla + [(A/Ao) — 112 + [(n/po) — 112

Next define a mapping G : H x (0, 00) x (0, c0) — R? by
Ggr ) = ((F21 Flg 2 ). (£ 20 | Flgo0 )

For g € H we have

1 _ _ 1
122 18) <1 2l gl S sl (21 8) S sl

which ensures that the mapping G is well-defined and continuous. Taking the
A, u derivatives of G, we have

d /1 1 1
dA< Z) | F(g. A, M)> (ZL | AQy) — ﬁ((l\o +1)Z, | F(g. 4, )
1
=: xAll(g, Ay )
L e I Fe o w) = —2 (21 A0,) = ~An(s. 1 3.11
@<X L F, ,u)>——x( L IAQ) =A@ ) (B
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and

d /1 1 1
—(—=Zu | F(g. 4, M)> Zu | AQy) = —A21(8, 2, 1)
da < £ < © 7) w

d

du

1 1 1
< 2] F(g.h, u>> = {180 - 5 (o + D20 1 g2 )

1
= ;Azz(gd,u) (3.12)

For convenience in applying the implicit function theorem we change variables,
setting £ := log A and m := log u. In the new variables we write

G(g, t,m)=G(g, ), F(g t,m)=F(g k)

We now check that the conditions (3.9) are satisfied for xo = 0 € H, yg =
(€o, mo) € R?> and G : By (0,2n0) x Bg2((£o, mp), Con) — R?, for §; =
2np > 0 small enough and Cy a uniform constant. Since d; = 19, and 9,, =
na, we deduce using (3.11), (3.12) that

~ A , A, A A,
De,mG(g,Z,m):( 1(g, A, ) An(g M))

Ani(g, A, ) An(g, A, )
Restricting to (g, A, n) = (0, Ag, Ko), this yields

<ZLO|AQLO - ZLHAQQ

Lo := ngm5f(g:0,é=(’,o,m=mo):
(z@mQ@ - ZﬂlAQ@

_. (A An
\A21 Ax
The diagonal terms in the matrix Lo above are size O (1) by (3.2). We can
estimate the off-diagonal terms as follows:

Claim 3.3 For A < u we have

‘(Zﬁ | AQ&H S O/w )(Zg I AQ&H S O/t (3.13)

To prove the Claim, without loss of generality we can assume pu = 1 and
A < 1.Let B > 0be such that supp Z C {r < B}. Then, using (3.2) we have

1 o
(Zo1AQ)| S —f Zr/M)AQ(r) rdr

1 . rk+1 | [B» K+l .
/ (r/A) dr—l— /A T % dr <A
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Similarly,

1 oo
(Z1a0:)| < X/o AQ(r/MZ(r) dr

A k B 2k+1
r Z(r) r
gxk—‘/ —— rk+1dr—|—kk_1/ A,
o Ak 42k ok Ak 2k

A
< )L—k—l‘/ P2 g kel < gkl k=T < ke
0
which proves Claim 3.3.
This proves that the off diagonal terms in L are of size O ((rg/ uo)k_l).
Hence for £ > 2 the matrix Ly is invertible as long as (Ag/ [,Lo)k_l is small

enough.
The second condition in (3.9) is clear since F (g, Ag, ito) = g and hence

1G(g. 2o, o)l = |(+(22 1 8). 1 (2w 18))| S glla

The first condition in (3.9) follows from a direct computation checking that
forl < j, k<2,

1 1
|Aij(g, 4 ) — Aij| S (A/ho — 112 4+ 1i/po — 112 + liglla) < 1
as long as no > 0 is chosen small enough. Here let us just remark that the

factors involving A /Ao and p/po on the right-hand-side above appear from
the estimates

1
IAQs — AQgyll2 + 125 — 25,12 < lo/oo — 112
An application of Remark 3.2 yields the following: There exists 79 > 0 small
enough and a continuous mapping ¢ : By (0, 2n9) — Bg2((£o, mo), Cono)
so that for all (g, £, m) € By (0, no) x Br2((£o, mp), Cono) we have
Gg, ) =0 (t,m)=c(g), r=c¢' n=e"

Finally, we observe thatif we let gg be asin (3.10), and define (A, ) = (e, e™)
and g € H by
(€,m) :=¢(go), &:= F(go,r, 1)

we see that ¢9 = Q) — O, + g and moreover that
(2,18)=0 and <Z&|g>:0.
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Lastly, since |[£ — £o| < Cono and |m — mg| < Cono, we have

A/ho— 1+ /o — 1 Sno <1, gl < /mo < 1.

In particular, we have

A/ )k < (ho/po)* < di(9). (3.14)

Now we establish the estimate (3.7). This follows by expanding the non-
linear energy. We’ll make use of trigonometric identities here for simplicity
but note that the following computation relies only on the fact that the
nonlinearity in (1.5) is smooth, that Q is a solution, and the orthogonality
conditions (3.4) (3.5).

2 1, - 2 o0 ) o0 2
—=&(Q) = =& = *E(QH-/ gy rdr +/ Y rdr
T b4 T 0 0

o oo o
—2/ 8rQ)L8rQ“rdr+2/ BrQ;Lgrrdr—Z/ 0r Qugrrdr
0 0 0

+k2f°° sin (03— Qu+ ) _k2/°° (sin® 0 +sin® Q)
0 0

dr
2 2

(3.15)

We expand the nonlinear terms on the last line using trigonometric identities

. ) 1 . )
Sin®(Q = Qp + 8) = sin*(Q — Q) + 7 sin 2 5in 2(Q5 — Q)
+ sin? g cos 2(Qs — Q)
1
= sin® Q; +sin® Q,, — 3 sin2Q; sin20,

— 2sin? 0, sin? Qu+gsin2(Qy — Q)
+ g7 c0s2(Q5 — Qu) + 0(Igl)

which further reduces to
= sin? 0, + sin? O+ g2 cos2(Qx — Qu) — 2 sin? 0, sin’ Ou
+gsin2Q; —gsin2Q, —sin20; 0, + % sin2Qk[2Qu —sin20Q,]
— g(2sin2Q; sin®> Q,, — 25in2Q,, sin®> Q) + O(lgl*) (3.16)

Next we observe that the first three terms in the second line of (3.16) will give
exact cancelations with the terms in the second line of (3.15). Indeed, using
the identity
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2r2

1
~8,(rd, 0;) = k
-

we integrate by parts to obtain

e¢]

) sm2Q;L 1
k A . Qurdr=2 ;Br(rarQ)\)Qurdr =-2 A 0r 030, Qp rdr

5 [ sin2Q; °°1 o0
k A 3 grdr=2 A ;Br(rBrQ)L)grdr:—Z A 0rQygrrdr

r

2 [ sin20, <1 *
B T erdr=2 | St Quigrdr==2 | & Qugrrdr

r

We can use the same identity to integrate by parts the terms arising from the
rest of (3.16).

~ i o |
o2 sin2Q;, sin> Qugrdr = —4 ~0,(rd, Q;) sin* Qg r dr
A 2 H o r '
0o o0
= / 9030, Qp sin2Q, g rdr +4/ 0, Q). sin® Qg rdr
A 0

and the same for the symmetric term in X, u. Finally, we have

2 [ sin20; . 00 1 )
k A >3 [20, —sin2Q,]rdr = A ;Br(rarQl)[ZQu—sm2Q#]rdr

o0 o0
=—/ 8,Q;L8r[2Q,L—sin2QM]rdr=—4/ 3 03,0y Oy sin® O, r dr
0 0

Therefore using the above, (3.16), the identity AQ = ksin Q, and the fact
that £ (lﬁ) = 2£(Q), we can deduce from (3.15) that

o0

2 _

/W,rdr—l—/ grrdr—l—kz/ cos (sz Qﬂ)gzrdr
0 r

2dr

d
_k_2 AQA(AQM)3TF——/ (AQA(AQL)

o0 ) dr
—4f0 ANOWAQ, s1n2QMg7 - ﬁfo AQ;(AQ)? ("gr)T
e . dr 4 [ 2 dr
+4 [T A0A0usin20,6T + 5 [ A0 00 00T
0 r k 0 r

+ 0 / lgl” — 3.17)
0 r

Next, we estimate each of the terms on the right-hand-side of (3.17). Denote
o = A/u. We claim that first term on the right-hand-side of (3.17) gives the
leading order, i.e., we claim that
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o

4 AQ 3 dr k 2%
2 W(AQL)Y — = 16kak (1 + 0(c)) (3.18)
k* Jo r

We compute, using the identity k sin Q) = A Q;, and setting o = A/,

4 [T a0 L= L [T ag, a0 Y
k2 0 A " N k2 0 7 r
- 00 r4k—1
— 64k dr (3.19
o /o 02 + 121 1 123 (3.19)

First we estimate the contribution of the integral on the interval [0, o ]. Since
we can assume that o < 1, we have

7 rH-l T T 2%
dr ~o~ / r T dr >~ o
/0 (02K 4 r2k) (1 + r2k)3 0

Next, we estimate the integral on [0, oo]. For o < r we have

1 1 1 1
o2k 4 p2k T <O-2k+r2k - rﬂ)

R I 1

-+ (e )
1o

= ¢ + = (~(0/r* + 0(0/n™))

Hence,

00 r4k—1 00 r2k—1
/ dr = / ——dr
o (GZk + er)(l + r2k)3 0 (1 + r2k)3
o r2k—1 o
— —d 0]
[, e o+ 0

0o 2k—1 ”
= ————=dr + 0
/0 TS r+0(@©@™)

1
= — 4+ 0@
m 4+ 0(@0™)

where the integral on the second to last line can be computed explicitly by
contour integration. Inserting the above into the last line of (3.19) yields (3.18).

Next we observe that all of the remaining terms on the right-hand-side
of (3.17) are o(c¥). Indeed, a similar computation to the one performed above
yields,
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/ T 00020002 Y < 6% Jlogo]
0 r

Moreover since ||g]lz~ < |||z we have

* o dr 3 2
lgl - Slgly S vnollgly
0

And the remaining terms in (3.17) can be controlled by a combination of these
last two estimates together with Cauchy—Schwarz. Therefore as long as 1y is
small enough and since 0 = A/ < no we have

o0 [ele] &) 2 —
/ wtz rdr + / g,2 rdr + k2 / c0s2(0. = Op) gzrdr
0 0

0 r

— 16ka* — 0(c 7 [loga)

To complete the proof of (3.7) we claim the following coercivity statement:
there exists a uniform constant ¢ > 0 so that

o0  cos?2 —
/ g2rdr +k2/ (Qrkz QW 214r > cligl
0 0

for all g € H such that (3.4) (3.5) hold and such that ||g| g is small enough.
This is a standard consequence of the orthogonality conditions (3.4), (3.5) and
the smallness of A/, ||g||mz and we refer the reader to [22, Lemma 5.4] for a
detailed proof.

The left inequality in (3.6) is trivial and the right inequality follows from
(3.7) and (3.14). O

3.2 Dynamical control of the modulation parameters

In this section we obtain precise control of the evolution of the modulation
parameters A(7), ;(7) on any time interval J on whichd (y (7)) is small. We’ll
show that any solution 1 (¢) that lies within a small enough e-neighborhood
of a 2-bubble at some time 7y, must be ejected from this e-neighborhood in at
least one time direction.

This ejection happens by a defocalisation of the more concentrated bubble
Q;. until its scale becomes comparable with the less concentrated bubble Q
(which does not change in the process). The influence of the bubble Q, on
the evolution of Q; is reflected in the time derivative of the function b(t)
defined in (3.32) below. Indeed, the main term of »'(¢) is given precisely by
the interaction between the two bubbles, see (3.39). The main term of b(z) is
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related to A'(¢). Hence b’ (¢) is related to A” (¢) so that the interaction influences
the acceleration, as it should be expected.

In this subsection we define a truncated virial functional and state some
estimates related to it. The same functional was used crucially in the two-
bubble construction by the first author in [22]. For the proofs of the following
statements we refer the reader to [22, Lemma 4.6] and [22, Lemma 5.5].

Lemma 3.4 [22, Lemma4.6] Foreachc, R > 0 there exists a function q(r) =
qe.r(r) € C>1((0, +00)) with the following properties:

(P1) q(r) = %rzforr <R,

(P2) there exists R = ﬁ(R, ¢) > R such that q(r) = const forr > ﬁ,

(P3) 1q'(r)| S rand|q”"(r)| < 1forall r > 0, with constants independent
of ¢, R,

(P4) q"(r) > —c and %q/(r) > —c¢, forallr > 0,

2
(P5) (% + %(%) q(r)y <c-r~2 forallr >0,
(P6) |r(q/(r))/} <c, forallr > 0.

r

For each A > 0 we define the operators A(A) and Ay(L) as follows:

(A =4 () - rg(r). (3.20)
[Ao(1)gl(r) := (%q (D) + 54 (%)) s +4'(3) - g 32D

Note the similarity between .4 and %A and between A and %Ao. For technical
reasons we introduce the space

X:={geH|§,8rgeH}
r

Let f(p) := ]‘2—2 sin 2p denote the nonlinearity in (1.5).

Lemma 3.5 [22, Lemma 5.5] Let co > 0 be arbitrary. There exists ¢ > 0

small enough and R, R > 0 large enough in Lemma 3.4 so that the operators
A(L) and Ay()) defined in (3.20) and (3.21) have the following properties:

o the families {A()) : & > 0}, {Ao(A) : A > 0}, (A9, AX) : A > 0} and
{23, Ao(M) : A > 0} are bounded in £ (H; L?), with the bound depending
only on the choice of the function q(r),

e forall . > 0and g1, g» € X there holds
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1
\<A<x>g1 5 (f(g1+ 8 = f(gD) = £ (gD >

1
+<A(A)g2 | r—z(f(gl +82) — f(g1) —K'g2) >) 70 182113

(3.22)
e forall g € X we have
1 k2
<Ao()»)g|(3r2 + 0 — r—z)g>
co oo L K
<Dl -5 [ (@02 +5e) e 02)
e Moreover, for A, u > QO with L/u < 1,
[A0A Qs — Ao AQyll 2 < co, (3.24)
C
IAQ; — AG) QL < 70 (3.25)
1
IAR) QpullLe + Ao Qplire < X(A/mk, (3.26)

and, forany g € H,

+oo] )
'fo §<q”(£) _q( )) (f( O+ 01+2
—f(=Qu + Q) —k*g)grdr

—+00 1
—/0 r_z(f/(QA)—kz)gzrdr < collgl% + /wh. (327

Remark 3.6 The conditions g, g1, g2 € X is required only to ensure that the
left-hand-side of (3.22) and (3.23) are well defined, but do not appear on the
right-hand-side of the estimates. Note also that in (3.22), (3.23) and (3.27) we
have extracted the linear part of f. Lastly, the estimate (3.26) is not stated
in [22] but follows immediately from P2, P3 in Lemma 3.4 and the explicit
formula for Q.

We are now ready to state the main modulation estimates. Proofs are given

in Sect. 3.3. Our first estimate is a consequence of the orthogonality condi-
tions (3.4) and (3.5).
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Proposition 3.7 (Modulation Control Part 1). Let no > 0 be as in Lemma 3.1,
let J C R be a time interval, and let (t) be a solution to (1.5) on J such that

d(y (1) <no Vel

Let A (t), u(t) be given by Lemma 3.1. Then the following estimates hold for
tel:

V@) S A2 /)3, (3.28)
W (D] S 203 ), (3.29)

The control we obtain on A(¢), 14(¢) above is not sufficient for our purposes.
In particular, we’d like to show that the ratio A(¢)/u(¢) grows in a controlled
fashion away from any small enough local minimum value. For this purpose
we introduce a virial-type correction b(r) to A’'(¢). The idea of modifying a
modulation parameter by a virial term was used in [24] and, in a different
context of minimal mass blow-up for non-homogeneous L2-critical NLS, in
an earlier work of Raphaél and Szeftel [45].

Given scaling parameters A(t), () we write

&) =) — Oxr) + Quay
&) :== Y (1)

so that the vector g := (g, ¢) satisfies the system of equations
g =8+ NAQL— WAQ, (3.30)

1 1
e =09g+ g = (F(Qr = Qu+8) = f(Q) + f(Q) (3D

We then define the auxiliary function b(¢) by

b1 i= = (A 0w 1 20) = (20 | AG-)g®) (332

We’ll show below that we can think of b(¢) as a subtle monotonic correction
to the derivative A/ (z).

Before stating the estimates satisfied by b(¢) we record the following num-
bers, which can be computed using contour integration:

: 2.
1AQI3 = 2MReS[(1AQ§)) GO expi 4k
- %k
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1290 J. Jendrej, A. Lawrie

which means that

T
AQlI=——— =k =k(k) >0
IAQI5 s k=K (k) >
We will also use fact that
o0
/ (AQ(r)* r*~ldr = 2k* (3.33)
0

Lastly, the modulation parameter A(¢) itself is an imprecise proxy for the true
dynamics because it was defined with respect to a somewhat arbitrary function
Z as in (3.2). To account for this imprecision we introduce a correction to A(t)
as follows. Fix a radial cutoff x € Cg° (R?) such that x(r) = 1if r < 1,
supp(x) € B(0, 2). Define

1
¢(1) == A(t) — ;(Xu(t)AQM | g(0)) (3.34)

Note that £ (¢) is C! (because 9, g(¢) is continuous in L? with respect to t).

Proposition 3.8 (Modulation Control Part 2). Fix k > 2. Assume the same
1

hypothesis as in Proposition 3.7. Let 0 < 6 < 1 — 27 %=1 be arbitrary and let

no be as in Lemma 3.1. Let b(t) be as in (3.32) andﬁlet L(t) be as in (3.34).

Then, there exists 11 = 1n1(8) < no such that if d.- (Y (t)) < ny forallt € J

we have

C() /() — 1] <8, (3.35)

¢/t = b()| < 82003 /u(t)? < 26()% /()2 (3.36)

Ib(1)] < AVKKGL() /(1) ? + 832 (1) /12()® < 105kke (1) /pa(1)?,
(3.37)

In addition, b(t) is locally Lipschitz and the derivative b’ (t) satisfies

1B/ (1)] < Cor() ™1/ (¥ < 2Coc (1) 1/ ()* (3.38)
b'(t) = 8k )k (1) — A5 () /() = 2k () @)k (3.39)
where Coy > 0 depends only on k.

Remark 3.9 If k > 3, then we can take Z = AQ in Lemma 3.1 and use no
cut-off function in the definition of ¢. Then ¢(¢) = A(¢). This fails for k = 2,
which was pointed out to us by one of the referees.

We’ll deduce the following consequence of Propositions 3.7 and 3.8.
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Proposition 3.10 Let C > 0. For any €9 > 0 small enough, and for all
€ > 0 sufficiently small relative to € the following conclusions hold true. Let
lﬁ(t) [To, Ty) — Ho be a solution of (1.5). Assume that ty € [Ty, T+) is
such that d(l//(l‘())) <eand & 37 (€ @)/ ()|i=1y = 0. Then there exist 1) and 1,
To <ty <t <ty < Ty, such that

AW (1) = 2¢, fort €[t bl (3.40)
A (1)) < %60, fort €[t 111, (3.41)
d(y (1)) > 2€0, (3.42)

15} n >
f Ilazw(t)llizdt > C/ VA (@))de (3.43)
1 0]

Analogous statements hold with times t» < t; < ty if %(C @)/ (@)= < 0.

Remark 3.11 We will take € < ng, so that d(tﬁ(to)) < € implies that the
modulation parameters A(¢), i (¢) and also ¢ (¢) are well-defined C ! functions
in a neighborhood of ¢ = 1.

Remark 3.12 We will actually deduce (3.43) from the following stronger state-
ment. There exist €y, Cy depending only on k such that for any € > 0 small
enough, Proposition 3.10 holds and additionally

! 1
/ A1) di < Cret
fo

1] 1
f 1oy ()2, di > — (3.44)
1 C

3.3 Proofs of the modulation estimates

We first assume the conclusions of Propositions 3.7 and 3.8 and prove Propo-
sition 3.10. We record here a few useful formulae:

AQ :=rd,0 =ksinQ = 2hr (3.45)
=7r0,0 =ksi1 = T .
k2 1 —r2k
2 _ . _ 2k
A3Q ik 1 4 72k — 5p4k _ L6k
(1 +r2k)4
AoAQ = (rd, + 1)(rd, Q) = 2AQ + 2920 (3.47)
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Proof of Proposition 3.10 From (3.7) and (3.35) it follows that there exists
€1 > O such thatif ¢ (7)/u(¢) < €1, the modulation estimates hold in a neigh-
borhood of time z. If needed, we will assume that € is sufficiently small, but
depending only on k. Let 7, be the first time #» > #g such that £ (t2)/u(t2) = €1
(if there is no such time, we set f, = T-.). By the estimate (3.8) in Lemma 3.1
along with (3.35), which accounts for the difference between A(¢) and ¢(¢),
there exists €g sufficiently small such that ¢(#2)/u(t2) = €1 implies (3.42).
The number € > 0 will be chosen later in the proof and should be thought of
as being much smaller than (61)%, whereas we can think of €y as comparable

k
to (e€1)2.

Without loss of generality we can assume that @ (fp) = 1. Lett3 < t; be the

last time such that () € [% 2] for all r € [1g, 3]. If there is no such final

time we set 13 = t». (Later we will see that we can always take 13 = #, as long
as €1 > 0 is small enough.)
For t € [19, t3], from (3.39) we obtain

k2
b0 = St (3.48)

We also obtain from (3.36)

1 k
¢ = <b(t) =\ 5t 0.

Letk; :=,/ 2’;—51 and consider £(¢) := b(t) + x1£(¢) % Using the two inequal-
ities above we obtain

£'(1)

%

k? _ ko w1 k k
=TI IOk 1(;19(0— 2k_1K€<f>2>

ak ko k_z_'ﬂ\/z ol
Lo b<r>+(2,<_1 R R (3.49)

=k

k1 K2 k—1

k

=k e .

It is easy to compute that (3.37) yields |b(?)| < K12k+4{(l)§, so we have
E(D) < 2500} (3.50)

@ Springer



Two-bubble dynamics for wave maps 1293

and (3.49) leads to
E(1) > KE(N) T, (3.51)
for some constant k5 > 0 depending only on k.
Let £ (1) := b(t) + 5¢(1)7 = 1b(t) + 1£(0). Since b'(1) > 0, we have

() = 260 =~ i e =~ i ). B2
2 2V k2k+1 2V k2k+1

Since 11(f9) = 1, wehave 0 < £ (u(1)/1(1)) 1=, = ' (t0) — £ (to) i’ (10) . 50
(3.29) and (3.35) imply that k¢’ (zp) > —’%{(to)% as long as ¢ is taken small

enough. Now (3.36) gives b(fg) > —%lg(to)%, s0 &1(tp) > 0 and (3.52) yields
&1(t) > Oforallt € [1, t3]. Thus

£(1) > K—zlg(r)é, for t € [f0. 13]. (3.53)

In particular, (3.51) implies that £(¢) is strictly increasing on [#g, #3] and by
(3.50) we see that ¢ (¢) and thus A(z) is far from O on [#g, #3].

Bounds (3.50) and (3.35) imply that there exists a constant x3 depending
only on k such that £(r) > k3./€ forces d(¥ (1)) > 2¢. Let 1] € [tg, 13] be the
last time such that & (1;) = k34/€ (set t; = 3 if no such time exists). Then by
(3.53) and (3.35) we have

| 2
Em)% <t < =2 /e fort e [tg. 1],
K1

which yields (3.41) if € is small enough.
Case k = 2. In this case (3.51) reads

E'(t) > k& (t). (3.54)

IIltegrating between ¢ and 3 we get é:([) < ng(t—z3)§(t3)‘ Thus ( . )
(350) yield hus (3.53) and
é(t) < K4CK2(t t3)é‘(t3) < 2K16K2(1_t3)51,

with a universal constant x4 > 0. Thus integrating (3.29) and using u(f) = 1
we get u(t3) € [2/3,3/2] if €; is small enough, which implies that 13 = 1,.
Also, suppose that there is no #; > ty such that ¢(#2)/u(t2) = €1. Then, since
¢(t) (and hence A(¢)) is far from O, by known arguments, see for instance [22,
Corollary A.4], the solution is global and (3.51) implies that £ (¢) is unbounded.
Thus A(?) is also unbounded, which is a contradiction. We infer that there must
be 15 < T4 such that {(f2)/u(t2) = €1, which implies (3.42) by choosing €g
comparable to (61)%.
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We have |£/(1)| < |¢(1)], see (3.36) and (3.37), hence there exists a constant
ks such that £ () > L) fort € [tp — ks, 12]. Thus (3.48) yields

b(t) — b(tg) = ke(t — (12 — k5))er,  fort € [t — ks, 12].

Thus, if € is small enough, we get b(t) > k7¢; fort € [t — %Ks, t>]. Note that
k7 is independent of €. From the definition of b(¢) and the Cauchy—Schwarz
inequality we can deduce, if € is small enough, that ||g(¢)||;2 > «ge; for
t el — %Ks, t>], which leads to

15}

(/ 1817 2dt > koef. (3.55)
t2—%l(5

Integrating (3.54) between ¢ and ¢; and using (3.53), (3.50) and the definition

of t; we obtain

1
SA0) =¢() = ki0e 2" e, fort € [to, 11].

t
‘/ﬂM@UWUSMWE
1o

Comparing this bound with (3.55) and choosing € small enough, we get (3.43).
Case k > 3. Most of the argument can be repeated without major changes.
We can rewrite (3.51) as

Thus

k=2

2=k
EDT™) < .

Integrating and using (3.53), (3.50) we obtain

k 2—k k
()2 <ka(C(13)7T + (13— 1)) 7F, (3.56)

with k4 only depending on k. Thus

1 & k 13 k +00 k
_/ Ar)2de f/ c(r)2de < K4/ - T2-kdt
2 Ju fo tt3)° T

<

kar(13) < (k — 2)Kkq€q.

As in the case k = 2, we can deduce that t3 = , and that ¢(12)/u(t2) = €1,
which implies (3.42).
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The proof of (3.55) applies without significant changes and yields
n
/ 16 12adr > ge2 2. (3.57)
t2—%l(5
The proof of (3.56) yields

1k k 2k L
Ek(t)2 <t <kio(e ® + (1 —1)>*, fort € [ty, 1]

After integrating, this implies

11 =
/ JAG0)dr < ek
fo

With «11 depending only on k. Comparing this bound with (3.57) and choosing
€ small enough, we get (3.43). O

Proof of Proposition 3.7 Let 1y € J be any point in J. By rescaling J(I) —
V(1) 4y (1)-1 We can assume without loss of generality that n(f9) = 1. We can
also assume that

1
- < 1) <?2
2_/L()_

for all t € J (we work in a small neighborhood of 7).

We begin by differentiating the orthogonality conditions (3.4) and (3.5) to
derive a linear system for (A/, ).

Differentiating (3.4) yields

d 1
0= E<ZA | g)=—A <X[A°Zh | g> +(24 | drg)

Plugging in (3.30) above and rearranging we have

. ! 1 /
—(Z18)=» <(Z/\ | AQy) — <X[A02h | g>) — (21 00,)
Differentiating (3.5) yields

0= (201 8)= - (L1roZ1 | 8) + (2 1 01¢)

Plugging in (3.30) above and rearranging we have
. 1
—(Zu18) =% (201 00:)+ 1 (— (20 180,) - <;[AOZJH | g>)
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We then arrive at the following linear system for (1, i),

() )= ()
where

1
My :=(Z, | AQy) — <X[A02h | g>
My, = —<ZA | AQM>
= (3.58)
My = <z& | AQ&>

1
My = _<Zﬁ | AQ&) - <;[AOZ]M | g>

We first claim that M = (M;;) is diagonally dominant with coefficients of
size >~ 1 on the diagonal. This will allow us to invert M and estimate A’, u’.
Indeed, in Claim 3.3 we showed that the off-diagonal terms M1, and M>;
satisfy [M1z| < A1 and [Ma;] < AK~!. To estimate the diagonal terms
define B := (Z | AQ) and note that 8 > 0 is a fixed positive number by (3.2).
Then

k
M1 — Bl + My + B| S A2

To see this, note that by the definitions of M|, M7, and the fact that Z € Cgo
we have

r _ r _
My = Bl+ 1Mo + B1 < |(Z1A0ZL [~ g)| + ‘<;[AOZ]M " 1g>‘
k
S lgln S 4°

where the last inequality above follows from (3.7).
We solve for (A, u’), by inverting M,

<)J) 1 —Mx (2,1 ¢)+ M12<Z& | é’>
/ = . .
H det M\ My, (ZA|8>—M11<ZE|8>

Now note that by (3.7) we have

(221 8)l +|(Zu 1 8)| S N2l S 28 (3.59)
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Our estimates for the coefficients of M imply that

det M = My My + 0 (1%, + 0

det M - My M

Using the above we now write A" and " as follows,

v (M11M22 i O(AZk)) (—Mzz (Za18)+ M12<Z& | g>)

and thus using (3.13) and (3.59) we conclude that
x| 23

Similarly, for ©’ we have

’ 2k . .
W=7+ 00 )) (M1 (21 8) = Mur (2,1 8)
(M 1M (Z.18) £
and hence,
k
w5
which proves (3.29) and completes the proof of Proposition 3.7. O

Remark 3.13 We remark here that A(f), u(¢f) obtained in the proof of
Lemma 3.1 can be easily seen to be C! functions. Recall the ODE

() -(
My Mxn)\u')  \-
obtained by formally differentiating the orthogonality conditions (3.4)
and (3.5); the coefficients M;; are given explicitly in (3.58). For any 7y € J the
stallness of A(tg)/u(to) guarantees the existence of a unique C I solution
(A(2), 1(¢)) with initial data (A, )(r9) = (A(t9), u(tp)) in a neighbor-
hood of #y. Because of how the system (3.60) was derived, X(t), () and
gt) =y @) — (Q;(t) + Qi) satisfy (3.4) (3.5) and (3.6) in a small enough
neighborhood of 7. Since the A(¢), u(¢) obtained by the implicit value theo-
rem are unique with these properties we have A(t) = x(t) and () = u@)
proving that A(¢), u(t) are indeed C L

(3.60)

ARG
Z, 1 %i))

Proof of Proposition 3.8 As in the proof of Proposition 3.7 we can assume
that § < u(f) < 2 below.
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We first prove (3.35). From (3.7) we have ||g]lze < Ag, so it suffices to
check that .
IxpAQallpirary < A'72 as A — 0 (3.61)

which follows from

4/x 4/

A
XA Qa1 rary <+ /O AQ(ryrdr S A fo (1+ )~ dr < 4 llog(@/1)]

Now we prove (3.36). From (3.30) we have

d . / !
A5 1 8) = (xuA Qs )+ (1A Qs | AQy) — i (XA Qi1 AQ)

/

A
~ > [ufoA Qu8) = 1 (AxuA s | 8) (3.62)

Most terms on the right hand side are negligible (that is, < X%). Since
A < 1, we have

(1= XA Q472 S /1 /Z(AQQZrdr = f (AQ)*r dr
2

Al

oo

< [ P dr <A (3.63)
11
2

Together with (3.7) this yields

(1= ) A Qs 1 8)] S A1A5 < as,

so in the first term we can erase x . Similarly, from (3.63) and (3.28) we have

IV {(1 = x)AQ | AQL)| < A3, s0 X.. can be erased also in the second
term.
Regarding the third term, since we are assuming % < u <2, we have

(PRNNPN IS /04 L0/ 0 ) rdr

1 4 (}”/)\)k I"k+1
S dr
Ao 14 (/22K 1 4 r2

A r2k—|—l 1
S Ak_l/ dr
~ o AK 42kl 4 p2%

4 2k+1 1
+ Xk_lf d dr
W2k 2K 2k
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To estimate the first integral on the right above on the interval [0, A] we note
that since A <« 1 we have

A r2k+l 1 A
0 AN+ rkl4r 0

On the interval [A, 4] we write
1 1 1 1
k2k+r2k=,,_yc+ a2k 4 g2k T 2k

_ L1 1 |
T 2k 72k 1+ ()L/r)zk
1 1

- = + et (_)szrfzk + 0()\4kr74k))

This yields,

4 2k+1 1 o0
kk_lf i dr = Ak_I/ I dr
iy )\‘Zk + r2k 1+ r2k 0 14 I"2k

A
k—1 r k+1
— A /0 T dr + O )

— C)\,k_l + 0()\.k+1)

This and (3.29) imply that the third term of the right hand side in (3.62) is
negligible.
As for the fourth term, we have

/

» <1V < )k
7<XMAOAQL’ g)‘ S ALl XumAoAQl L1 S AT X2/ Mo A QL1

which is < )L% , see the proof of (3.61). The fifth term is even smaller (we gain
an additional factor 1).
Summarizing, from the definition of ¢ (¢) and (3.64), we obtain

g’ —(AQy | 8)] < 3. (3.64)

Recall that
b(t) :=—(AQx | &) — (& Ao(M)g)

By (3.7) and the fact that Ay : H — L? is bounded independently of A—see
Lemma 3.5—we have

. . . k
(¢ 1 Ao)g) S N8ll2llAoMgllzz S 118, )i, S 1K < A2
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Together with (3.64) this means that

e’ — b < A2,

which is (3.36).
Arguing as above we have

b)) < 1AQsll2 1Yl — O = Vil — 0F)

From the expansion of the nonlinear energy in the proof of (3.7) and our
assumption that () >~ 1 we see that

1Y ()13 < 16k(A/m)* + 0(3F)

Plugging this in above yields (3.37).

Finally, we begin the delicate proof of (3.39); we note that (3.38) will also
be a consequence of this analysis. It is sufficient to prove the result for smooth
solutions. Indeed, we can then use a standard approximation procedure. We
approximate a solution 1,0 J — Hp by a sequence of smooth solutions Wn
Then b, (t) converges to b(t) uniformly for t € J, and we can pass to a limit in
(3.38) and (3.39). Differentiating b(¢) and recalling the formulae (3.30), (3.31)
we have

)\/
b(t) = - ([AOA QI | &) — (AQs | &) — (38 | Ag(W)g)
/

A
- ; (&1 Ao g) — (& | Ao(M)drg)
; ([A0A QT 1 8)
1
- <AQ5 | 92¢ + ;arg - (f(On—Qu+g — f(Q)+ f(Qu))> (3.65)

1 1
- <3ng +org = ) (f(Q1—Qu+8) — Q)+ f(Qw) | Ao()n)g>

A
= = (81 (0. A0 ()8) — (¢ | Ao)g) = (3 | ApGIA Q)
+ 1/ (¢ 1 Ag)A Q)

Let us first identify terms above that we’ve already established to be <« AK~!
and discard them. First note that since (A9, A9(A)) : H — L? is bounded, and

. k
since we’ve already shown |)J | < A2 we have

/

A . -
— (&1 000 A()g) S 118, D3y S A <A
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Then we note that
(g1 A(M)g) =0,

which can be shown directly by integration by parts. Next, using the fact that
w =~ 1, along with the boundedness of Ay(A) : H — L? we have

B (& 1 AIAQu) = = (&1 AdIA )
SN2 NA Qi S |1 [ 182 S A% < Akt

Next, the combination of the first and sixth terms on the right-hand-side
of (3.65) can be estimated using (3.24),

/

A . A .
~ ([A0AQIL &) =2 (&1 Ao(W)AQy) \ = | = {[A0A QI — Ao(MAQy | &)

!/
N

k_ .
SATTHI[AGA QY — AoWA Qs 218112
< cons—1n5 k=1
S co <A

where in the last line above we rely on our ability to take cg as small as we
like in the estimate (3.24) from Lemma 3.5.

Thus we’ve show that up to terms of order <« A*~!, which can be absorbed
into the error, we have

1 1
(1) = —<AQL |07g + ~org = ) (f(Qn—Qu+g —f(Q0)+ f(Qu))>

1 1
—<3ng +o0rg - ") (f(Qx—Qu+8 — Q)+ [(Q) | Ao()»)g>
(3.66)

Next, rescaling the equation LA Q = 0, we see that
I (QA)
I"

LyAQ; = <—3 8 + )AQ1= 0

And since £, is symmetric we have

1
<AQA | 978 + - arg> = <AQA L (@) >
We thus rewrite (3.66) as

1
V(1) = (AQx | — (f(Qx— Qu+8) = f(Qu)+ f(Qu) — ()8
2

1 1
- <83g g = 5 (00— Qut 9~ Q)+ F(Q) | Ao()»)g>
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where the symbol ~ above means “up to terms of order < A¥~1”. Adding and
subtracting we have

1
b0 = <AQA |5 (f(@n— 00— o+ f(QM))>
1
+ <AQA | (r/ -0 - f/(QA)>g> (3.67)

1
+ <AQA |5 (@ = 0+ = F(Q1— )~ F(Qs - Qu)g)>
(3.68)

1 1
- <83g +-08 = = (@1 = Qu+ ) = £+ £(Qw) | Ao()»)g>
(3.69)

Let’s begin by estimating the first term on the right-hand-side above, which
we’ll show contributes the leading order:

Claim 3.14

k—1

1 A
(101 5(r@: = 0 = 1@ + (@) )= 822 -

where again ~ means “up to terms of order < A*=1.”
Proof Let’s prove the claim. Recall that the nonlinearity f(p) is given by

k2
flp):= = sin2p), f'(p) = k* cos(2p)

Using trigonometric identities we can write

K2
FOn— 0w — fQ0)+ f(Qu = 7(sin2Q,\(cos2Q,L — 1) +5in2Q, (1 — c0s20Q;))
- sin2Q; sin? Ou+ K2 sin2Q, sin? [N

= — sin20;,(AQ,)% +5sin20,(A0y)>. (3.70)

We show that the leading order contribution comes from the second term above.
Indeed, writing 0 = A/u and changing variables we have
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Two-bubble dynamics for wave maps 1303

<AQA|—<AQA> sm2Qu> / (AQa(r))3sm2Q(r)—

1 o 3 . r 3 . dr
= —/ (AQqs(r)) SIHZQ(F)—+—/ (AQs(r))’sin2Q(r)—
A 0 r A \/E r
(3.71)
Since 0 = A/u < 1, on the interval [0, /o] we write
. 2 o4 1= k 3k
sin2Q = =2k r*—— =4r" + O(r’") (3.72)

kZ (1 + r2k)2

Changing variables again we have

1[A 34 _O‘k
X/O(Qg)r —T/O

= "7 f (A0 ) dr

5

(A Q) (r*tar

—47 /1 (AQ)*(r)r*~tdr

k 1
_8k2“—+0(k Lo 2Ky

where we used (3.33) in the last line above. Moreover, using (3.72) we estimate

d N
LT @weorsinao a5 4 [T o e
r 0

A Jo
3k L 3k )
L/ﬁ(AQ)3r3k—ldr50 |logo|
A Jo A

Finally, we estimate the second term on the last line (3.71) by

1
‘X/ (AQa(r))3SIH2Q(r)—’ (AQa(r)) —

(A Q(r))3—
.

1 [
S_/ —3k ldr<
AJ L A

g

o

k

I\)\U)
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1304 J. Jendrej, A. Lawrie

Next we estimate the contribution of the first term in (3.70). Recalling that
sin2Q; = k%AZQ;L = k%ra,(A 0,) we integrate by parts to obtain

2 1
<AQA | 5 5in20,(AQy) > m <(AQA>2 | F—ZAQ,LAZQ,L>

1 2
= o <( 00) | AQA Q>

where o = A /u as before. We first estimate the last line above on the interval
[0, o] and [o, 1] using (3.45) (3.46) to obtain the bound

AQ(A2Q(r)| < r¥
which gives

/ (AQy) AQAszr < X/UAQirZ"“dr
0

2k 2k
o o
- AerZk_l dr < —

r Jo A

k2

and

—1 2k |10g0_|

AkZ/ (AQo)ZAQAZQ— S _/ (02k+r2k)2d < 2

On the interval [1, oo] we use the formulas (3.45) (3.46) to estimate

4k
2 T
|[AQ(NA* Q] S TENEE

which means

2 00 ) o2k ro—ldr
| (AQ,)*AQ()A —<—
e / (M Qo *AQ(MIAP QT S = | (02" FRTCT T
2% oo ,2k—1 2k
< <%
~oa o (23T

Putting this all together, we’ve shown that

Sk 3k=1 /5
(A0u1 (£@1= 0 = (@) + QW) =8k o ( i (*)

which is precisely Claim 3.14. O
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Next, we claim the second term (3.67) in our expansion of b'(r) satisfies

1 _
<AQA |5 (r'@ -0 - f’(Qx))g> =00t (3.73)
and can thus be absorbed into the error. First note that the we have

f'(0n—0p — f1(0) = k2 sin2Q,sin2Q,, — 2k> c0s20; sin? ou

_—AZQAAZQM (AQ,)? c0s2Q;

For the contribution from the first term above we integrate by parts, change
variables, and use the explicit formulae (3.45) (3.46) (3.47) to estimate

KAQA | 2(A QAAZQM) >‘ S - ’/ (AQ;)*A° ng*’
+‘/ (AQ)2A QﬂrargT‘
1 0 d d
x||g||H[</O (AQU)4<A3Q>27’) (/ (AQs)*(220)> r) }
:0(0 /)

where o = A/u as before. For the second term we write

1 o0 dr\ 2
‘(AQA | r—2<<AQ,L)2cos2QA>g>‘ < gl ( /O (AQa)z(AQ)“Tr)

1 &
2

<o o lloga|? = o(a* /1)

which finishes the proof of (3.73).
Finally, we consider the last two terms (3.68) (3.69). We will reorganize

these terms in anticipation of applications of Lemma 3.5. First we rewrite (3.68)
as follows:

1
(AQs1 5 (F(=Qu+ Qi+ 8) = F(=Qu+ Q1) = F(~Qu + Q1)3))
1
- <A(x>g |5 (f(=Qu+ Qi) = F(=Qu + Q3 - kzg)>
1
+<A(x)g | S (F0u+ 00+ = f(=Qu+ Qi) - kzg)>

1 /
+<A()»)(Q)\ - 0wl ﬁ(f(_QM + O+ - f(=0u+ Q) - f(=Qun+ Qk)8)>
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1306 J. Jendrej, A. Lawrie

1
+<A(A)Qu | fz(f(_QM + 0 +8)— f(=0u+ 00— f(=Qu+ Qx)g)>

1
+<AQA_~A()L)QA | ﬁ(f(_Qu + 00+ 8~ f(=Qu+ Q) — f(=0u+ Qx)g)>

The second two terms on the right-hand-side can be controlled by setting
g1 =0, — 0y and g, = gin (3.22):

1
‘(A@)g | S(f0u+ 040 = f(=0u+03) = k2g)>

1
+<A(/\)(Qx -0l ﬁ(f(_Qu + 0+~ f(=0u+ Q) — f(=0Qu+ Q)\)g)H

5 CO)"k7]

Using the pointwise bound

|f(01— Qu+8 — f(Q5— 0w — f(Qr— 0ug|

k2
=5 |sin(20y —20Q,)[cos2g — 1]+ cos(2Q; —20,)[sin2g — 2¢g]| < lgl?

along with (3.26) the second to last line of the above can be estimated by

1 /
<A(A)Qu | ﬁ(f(—Qu +O0+8) - f(=0u+ Q) - f(=Qun+ Qx)8)>

< C())»k_l.
Similarly, the last line of the expansion of (3.68) can be controlled as follows
1
'<AQA— AN Q). | ﬁ(f(—Qu +00+8)—f(=Qu+ 0 —f(—0u+ Qx)g)>'
SIAQ, — AW QuliL=liglyy < Ceor* ! < 2k

In the last line we used (3.25) and the fact that cg can be taken small indepen-
dently of A in Lemma 3.5.
Thus, up to terms of order <« A1 we have

1
AOu | 5 (f(=0u+ Qi +8) — f(=0u+ 01) = f(=Qu + Q1))
r

1
=~ (A S0+ 049 = F-0,+ 01 - )
(3.74)
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We now transform the last line (3.69) adding and subtracting terms as before.
Using (3.23) we have

1 1
— (28 +~0:8 = 5 (f(Q2 = Qu+8) = F(Q) + F(20) | Ao(h)g)
1 k2
= - <Ao(k)g | 97g + —0,8 — —2g>
r r
1
= <«40(?»)g 5 (f@i— 00— ron+ f(Qu)>>
1
T <Ao()»)g |5 (/@ = Qu+ 9= £(21— 00 - kzg)> (3.75)
co 1 RX k2
> ——lgls + 5 fo (@) +~58?)rdr
1
= <A0()»)g 5 (f@i— 00— reon+ f(QM))>
1
+ (Ao | 5 (f(=Qu + Qa + &)+ F(—Qu+ ) —K%))

where R is as in Lemma 3.5. Note that from (3.70) we have the pointwise
inequality

| £(05 — Q) — F(Q) + F(O)] S (AQD*(AQ) + AQu(AQ,)?

Since || Ao(M)gll;2 S |lglla, and since Ag(L)g is supported on a ball of radius
R, the term on the second to last line above can be estimated as follows,

1
KA()(A)g | (£ 0w - ree + f(Q,L>)>‘

k
So‘fo'kil < )\kfl
where 0 = A/ as usual and p >~ 1.

Therefore, up to terms of order <« A*~!, we can put together (3.74)
and (3.75) to estimate the combination of (3.68) and (3.69) from below by

1
(AQ11 5(F(=Qu+ Qa4 ) = (=0 + Q) = f'(=Qu + Q)8))
, 1 1
(078 + ~0rg — = (£(Q1 = Qu+8) = £(Q) + F(Q) | Ao(h)g)
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1308 J. Jendrej, A. Lawrie

RA 5 k2 5
/0 (v + 8%)rar

1
Ao(3) = AG)g | —5(f (= Qu + Qs +8) = (= Qpu + 02) — Kg))
(3.76)

>

o

> =

—

Since Ag(A) — A(1) is the operator of multiplication by ﬁ <q” (%) + %q/ (%)),
we can use (3.27) to estimate the last term above,

1
((A00) = A@)g | 5 (F(=Qu+ Qs+ 8) = (= Qut 01) —Kg))

1 [T 1
— X/o r—z(f’(QA) — k%) g% rdr + O(cor*) (3.77)

where co > 0 is as in Lemma 3.5.
Putting together the estimates from Claims 3.14, (3.73), (3.76), and (3.77)
we obtain the estimate

/ LM k—1 1 R 2 K,
b(l‘)28k 74‘0()\ )+X (3rg) +r—2g rdr
0

+1f+ool(f/(Q ) — k*)g* rdr
A 0 }"2 * §

Finally we conclude by using the following localized coercivity estimate,

1 (R k? 1
- 39,0)*+—g2)rd _/
k/o (( g)+r2g>r " 0

where we use again crucially here that <ZL | g> = 0; see [22, Lemma 5.4, eq.
(5.28)] for the proof. Above the constant ¢; > 0 can be made as small as we
like by taking R > 0 large enough, which we are free to do. This completes
the proof. m|

+00

1 c
(/1@ —K)g rdr = —fngn%,

4 Dynamics of non-scattering threshold solutions
4.1 Overall scheme

In this section we prove the Main Theorem. We deduce it from the following
proposition, whose proof will be split into several lemmas.
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Two-bubble dynamics for wave maps 1309

Pr0p051t10n4 1 Let (t) : (T-,Ty+) — Ho be a solution to (1.5) with
E (W) =2& (Q) which does not scatter in forward time. Then

lim d(¥ (7)) = 0. 4.1)
t—T4

To begin with, note the following special case of Theorem 1.2.

Proposition 4.2 Let W(t) (T_,Ty) — Ho be a solution to (1.5) with
E (lﬁ) =2& (Q) which does not scatter in forward time. Then

liminf (¥ (£)) = 0.
t—=>T4

An analogous statement holds if 1 (t) does not scatter in backwards time. O

Let us summarize the main idea of the proof of Proposition 4.1. We know
from Proposition 4.2 that (4.1) holds for a sequence of times. Thus, in order
to obtain (4.1), we should prove that v/ (¢), after exiting a small neighborhood
of a two-bubble configuration, can never approach a two-bubble again. Such a
result is similar in nature to the no-return lemma proved by Krieger et al. [37]
in their study of the dynamics near the ground state stationary solution for the
energy critical NLW. Such results are usually obtained by means of a convexity
argument based on monotonicity formulas, which is also the scheme that we
adopt here.

Until the end of this section, W(t) always denotes a solution to (1.5), W(t)
(T—-,T+) — Ho, such that 5(1&) 25(Q) and w(t) does not scatter in
forward time. Let 7 < 11 < 70 < T4. Integrating the virial identity from
Lemma 2.15 for ¢ € [11, 72] yields

[5)
/ ||at‘/’(f)||iz dr < (0¥ | xrroryr) (Tl + [0 | xrr0r ) (T2)]

1

153 R
+ / Qe 1) dr
T

where 2 R(l}(t)) is defined in (2.26). Note that for any R > 0 we can use
Lemma 2.16 to bound the first two terms on the right-hand-side above and

obtain
123 . .
/ 180 D13 dr = Co( Ry AW (z) + Ry d( (22)))
71

) .
+ / Qr(J ()] dr. 4.2)
T1
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1310 J. Jendrej, A. Lawrie

Our goal is to show that with a good choice of R, t; and 7> the right hand
side can be absorbed into the left hand side. As merltioned in the Introduction,
we use different arguments depending whether d (i (¢)) is small or not.

4.2 Splitting of the time axis
We would like to divide the time axis into good intervals where d(@(t)) is
large and bad intervals where it is small. We begin with a preliminary splitting,

which will then need to be refined.

Claim 4.3 Suppose that (4.1) fails. Then for any €9 > 0 sufficiently small
there exist sequences py, qn such that

T-<po<qo<pr<q1 <+ <pPn1<qn-1 <Pn<qn<...

such that the following holds for alln € {0, 1,2, 3, ...}:

Vi € [pn. qn] - A (1)) < €0, (4.3)
- 1
vt € [gn, pny1] 1 d(Y (1)) > 560’ 4.4)

Proof Suppose that (4.1) fails and let €9 be any number such that

0 < € < min(lim supd(y(£)), n1) (4.6)

t—Ty

(recall that d(lz (to)) < n1 guarantees that the modulation estimages hold for ¢
in some neighborhood of #g). Let Ty € (T—, T+) be such that d(y (Tp)) > €p.
We set

} 1
Po = sup {z  d() (7)) = 560, V7 € [T, z]}.

Proposition 4.1 implies that pg < T4 and d(fo (po)) = %60. Then we define
inductively for n > 1:

g1 = sup {1 1 d(W(D)) = €0, ¥ € [par 1],

. 1
pui=sup |1 : A () = 0. V7 € lgur. 11}
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By a simple inductive argument using (4.6) and Proposition 4.2 we can show
that forn € {1, 2, ...} there holds

Pn—1 < qn—1 < T4y,
Qn—l < pl’l < T+’
- 1
AW (pn) = <o, 4.7)
d(¥ (qn)) = €o. (4.8)

Bounds (4.4) and (4.3) follow directly from the definitions of p, and g,.
Suppose that (4.5) does not hold. Then, by monotonicity,

Jdm o=l gu =Ty < T

By the local well-posedness d(lZ(t)) has a limit as t — 77, which is in con-
tradiction with (4.7) and (4.8). |

Claim 4.4 Let € > 0. There exist A, €' > 0 having the following property.
Assume that d(Y (1)) < n1, with ny as in Proposition 3.8, and let .(t), u(t) be
the modulation parameters given by Lemma 3.1 and let £ (t) be the correction
to A(t) defined in (3.34). Then

()

2l > = A1) > € (4.9)
wu(r)
140) <= dW (1)) <e. (4.10)
wu(r)

Remark 4.5 Note that €’ < €.
Proof Lemma 3.1 yields d(¥/(1)) < (C? + D(A(t)/u(®)* < 2(C* +

1
D(¢ (@) /)", so we get (4.10) with any A < (€/2(C? + 1))F.
In order to prove (4.9), we notice that from Lemma 3.1 and (3.35) we get
d(¥ (1)) > é(g(r)/u(t))k, hence it suffices to take €’ < £AS. O

Lemma 4.6 Suppose that (4.1) fails. Let €9 > 0 be small enough so that

Claim 4.3 and Proposition 3.10 hold. Then there exist €, €' > 0 with € < ¢

and e < 1—1060 as in Proposition 3.10, and a splitting of the time axis
T_-<ay<ci<bi<---<ay<cpm<by <apy <...

such that the following holds for allm € {2,3,4,...}:

Vt € [bys 1] - A (1)) = €, (4.11)
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1312 J. Jendrej, A. Lawrie

3t € (b, ami1] - AW (1) > 2€,

d(V (am)) = d(¥ (b)) = €, (4.12)
Cm—+1 N 1 Am+1
Co / Ja@gwydr < - / B2, d (@13)

b
Co/ V@) dr < E ||3z¢(t)lliz dr (4.14)

and .
lim inf d(y (c;,)) = 0. 4.15)
m——+00

Proof We choose €, €g > 0 such that Claim 4.3 and Proposition 3.10 hold,
where the constant Cyp in Proposition 3.10 is given by Lemma 2.16. We can
assume that € < 1—1060. Let Ao and €’ be given by Claim 4.4.

We begin by defining the times ¢,,. Let 0 < n; < ny < ... be the sequence
of these indices n,, for which

inf  d(y() <€ (4.16)

tE[Pry Gnm

Recall that the modulation parameters A(¢), u(t), and ¢(t) ~ A(t) are well
defined on [py,, . gn,, 1. Let ¢, € [pn,,> qn,,] be such that

glem)/mlem) = inf  £(1) /(7).

ELPnm Inm

Claim 4.4 and (4.16) imply that {(¢u)/p(cm) < Ao, which implies again by
Claim 4.4 that d(¥ (c;)) < € < %60. Hence ¢,, € (pu,,, qn,,) and

= c,,,(;f(?)) =0

We will use Proposition 3.10 with various #p, in forward and backward
direction. Thus the meaning of 7y, #; and #, will change depending on the
context.

Using Proposition 3.10 with #g = ¢, in the backward time direction we obtain
times f; < ¢, andp < 1. Note that (3.41) and (4.4) imply that#; € (py,,, ¢l
We set

d
dr

am = supf{r > 1 Zd(l/_}(l‘)) >¢€, V1 € [11,t]}.

By (3.40) we ha\le d(l}(tl)) > €. Since d(lZ(cm)) < €, we have a,, €
(Pny» cm) and d(Y (ap)) = €.
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Denote o,, := t,. Then (3.40_2 yields d(&(z‘)) > € for t € [0, 11]. By
definition of a,, we also have d(y/(t)) > € for ¢ € [t1, a;,], hence

d(W (1)) > €, Vt € [om, am]. (4.17)

Bound (3.42) together with (4.3) yields o, < py,,, so (4.17) implies that

d(J (1)) > €, Vi € [py, . am]. (4.18)

Finally, (3.43) yields

f iy @l2.de > © f VA o)ar. (4.19)

Now using Proposition 3.10 with 7y = ¢;, in the forward time direction
we obtain times f; > ¢, and #, > f1. Note that (3.41) and (4.4) imply that
1 € [em, qn,,). We set

by :=inf{t <t : d(W¥ (1)) > €, VT € [t, 1]}

As in the case of a,,, we obtain b,, € (¢p, gn,,) and d(t}(bm)) = €. Denote
T = tp. Adapting the proofs of (4.17) and (4.18) we get

d( (1) > €, Vt € [bm, Tl (4.20)
AW (1) > €, V1 € (b, qu, 1, 4.21)

Tn bm .
fb 10 (D)]13dr = € / VA 0)dr. (4.22)

We will prove that t,, < a;,41.Suppose not. Since d(lz (tm)) = 2€p,see (3.42),
the fact that a1 € [pn,,,,» Gn,nyi] Would imply that 7, > gy, ,. Thus by
(4.20) we would have d(tﬁ(t)) > €, Vt € [bm, qn,,,, 1. Butby, < qn,, < Dupyiss
so we obtain .

d(y (1)) = €, V1 € [Pny iy Gnpg ]

Since €/ < e, this contradictsﬁthe definition of n,,11. Thus 7,, < ay+1, SO
(4.22) implies (4.14). Also d(¥ (7)) > 2e€p yields (4.12), since €g > €.

Analogously, we have 0,11 > by, so (4.19) yieldi (4.13).

It remains to prove (4.11). Take ¢ such that d(/()) < €’. Then t €
[pn,,> qn,,] for some m, so (4.18) and (4.21) yield ¢t € [ap, byy], Wwhich is
exactly (4.11).

Finally, (4.15) follows from Proposition 4.2, (3.8), and (3.35). m|

Remark 4.7 It follows from the proof that € can be taken as small as we wish.
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1314 J. Jendrej, A. Lawrie

Until the end of the proof of Proposition 4.1, we fix €, ¢’ > 0 and a partition
of the time axis given by the last lemma. In particular, all the constants are
allowed to depend on € and €’. We denote

Ly = [bm—1, am], I .= U L.

m>1
Then (4.11) is equivalent to
Viel:dW) > ¢€. (4.23)

We will see that @(z) has a compactness property for t € I, which allows
to deal with the right hand side of (4.2) forr € I. For ¢t ¢ I we will rely on
(4.13) and (4.14).

4.3 Compactness on /

The objective of this step is to deduce a compactness statement on / that will
allow us to obtain a lower bound for the leﬁt—hand—side of (4.2) restricted to
I and to uniformly control the errors Qg (¥ (¢)) on I, by choosing R large
enough.

Lemma 4.8 There exists a continuous function v : I — (0, 400) such that
the set .
K:={@®1pve |t el CHy

is pre-compact in H.

Proof We will first prove that for any sequence {#,} € I there exists a subse-
quence (still denoted by ¢#,,) and a sequence of scales v,, so that

Y (t)1 v, = & € Ho (4.24)

for some ¢ € Hy.
We observe that by Lemmas 2.13 and (4.23) we have the uniform bound

1V ()llny < C(e) Viel,

which means in particular that

19 ) 1, < C(€) < 0.

Thus (4.24) follows from Lemma 2.9.
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We are now ready to construct the function v(¢). Foreach ¢t € I let v(t) be
the unique number such that

00 2
/0 e <<an/f1/v<t)(r,r>>2+<ar¢n/vm<z,r))2+k2—(‘“/ ”“r)z(t’ r) )rdr

1 -
= SIF 0I5,

(the function e™" could be replaced by any continuous strictly decreasing

function whose value is 1 for » = 0 and tending to 0 as r — 400). We see
that v(r) is a cont&nuous function.

Suppose that v (2)1/y() is not pre-compact in Hy. Thus there exists a
sequence J(tn)l /v(t,) Which has no convergent subsequence. But we know
(by assumptio_}n) that there exist a subsequence (still denoted #,) and numbers
v, such that v (z,)1 /v, converges in Hy to some ¢ = (9o, ¢1). This implies
that

00 2
/ e’ ((aﬂm/vn (tn, 1)) + (B3 W1 v, (s 7)) + kZW) rdr
0

converges to

K2 ‘PO(”)2
72

/O e («m(ﬂz + (0 p0(r) + ) rdr € 0. 1gln).

Since ||@7/(t,1)||77[0 converges to ||¢l#,, we deduce that v, /v(z,) is bounded.
This implies that v, /v(z,) has a convergent subsequence, hence ¥ (1,)1/v(s,)
has a convergent subsequence, so we have a contradiction. This completes the
proof. O

Form € {1, 2,3, ...} we define
Vi = |Im| = @m — bpy—1.
Lemma 4.9 There exists C1 > 0 such that for allm > 1 and all t € I, there

holds

1
C—lv(t) < vm < Crv(@).

Remark 4.10 The last lemma tells us that v(¢) is comparable to v, for ¢t € I,,.
In particular, the set

Ki=JWOm, |1 € L) (4.25)

m>1

@ Springer



1316 J. Jendrej, A. Lawrie

is pre-compact in Hy.

Proof of Lemma 4.9 Suppose that there exists a sequence m, and times #;, €
Iy, such that

lim M _ . (4.26)
£—+o0 V(tp)

Let ¥¢(s) be the solution of (1.5) with initial data ¥¢(0) = ¥ (1) 1,v()-
After extracting a subsequence, lpg(O) converges in Hy to some @p. Let
@(s) : [—s0, S0] — Ho be the solution of (1.5) with initial data ¢(0) = @g
(where so > 0). By the standard Cauchy theory, for sufficiently large ¢ the
solution v, () is defined for s € [—s0, so] and ¥, (s) — @(s) in H, uniformly
for s € [—s0, So]. ,

Let tlf € I, be any sequence. Let s; = L7 Then (4.26) implies that

v(tp)
limy_, o0 s¢ = 0. Thus sy € [—s0, so] for large Zéand we deduce that

lim_[|9e(se) = G(se) 2y = 0.
{——+00
But of course limy_, 4 o0 [|¢(s¢) — @oll7, = 0, so the triangle inequality yields

im (| ¥e(se) — Gollrg = 0.
{— 400

In particular, limg— o0 d(We(se)) = d(@o). We have Ye(se) = V(1)1 /vy
thus d(v/(¢;)) = d(¢(s¢)) and we obtain

lim d(y (7)) = d(¢o).
{—+00

for any sequence t, € I,,. This is impossible, because we know that
d(lz (am,)) = € and on the other hand for each ¢ we have SUprey,,, d(tﬁ(t)) >

2e.
Now suppose that there exist a sequence my and times #; € I,,, such that

. v(te)
lim =

{—>+00 Vpy,

0.

Without loss of generality we can assume that

) v(te)
lim
l—>+o00 Ay, — Iy

=0

(the case v(t¢)/(t¢ — by,—1) — 0 can be treated similarly).

@ Springer



Two-bubble dynamics for wave maps 1317

Again, let wg(s) be the solution of (1.5) with initial data we(O) =

1#(%)1/1;(:@), and let ¥¢(0) — @o € Ho. Let (s) : (=T (o), T+ ($0)) — Ho
be the solution of (1.5) with initial data ¢(0) = ¢p. By Lemma 2.9 we know
that ¢ (s) is non-scattering in both time directions and satisfies

E(@) = EW) =2E(0).

Thus Proposmon 4.2 implies that there exists o € [0, T’y (¢0)) such that
d(¢(0)) < 6 By Cauchy theory, for ¢ large enough ‘W (s) is defined for

s € [0, 0] and 1//g(a) — ¢(0) in Hy, in particular d(l//e((f)) — d(d)(cr)) <
1 7/

zé . . .
Let t; :=t + v(te)o. Then ¥ (1)) = ¥¢(0)y(s), SO we have

S - 1
lim d(¥ () = lim d(¥¢(0)) < s€'.
{—+00 —+00 2
However, (4.26) implies that for ¢ large enough there holds 7, < tlf < am,,

thus (4.11) yields d(l/_}(l‘é)) > ¢’. The contradiction finishes the proof. O

Lemma 4.11 There exists 81 > O such that for all m there holds

13, ()13 2df = 87V,
Im

Proof Let t,, := %(bm_ 1 + a,,) and recall that v,, := a,, — b,,,—1. Then for
any 0 < s1 < 1/2,

bin—1 = tm — VS1 =< by + Vi S1 = G- (4.27)
We consider the following sequence of solutions of (1.5):

Y (5) = Wt + VnS) 1/,  fors € [—si,s1].

Then (4.27) implies that

51

13y (11227 = v, f 13y Y (5) 2.

In =51
Suppose that the conclusion fails. Then there exists a sequence m1, mo, ...
such that

51

lim 135 Y, ()17 ,ds = 0. (4.28)

[>+o00 J_g
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After extraction of a subsequence, ‘;mz (0) — @o € Hp. Let ¢(s) be the
sﬁolution of (1.5) such that ¢(0) = ¢@o. Then by the standard Cauchy theory
Ym, (8) — @(s) in Hp, uniformly for s € [—sy, s1] for s; > 0 small enough.
In particular, (4.28) yields

51
| 1o = o

S1

so the limiting wave map ¢(s) must be time-independent. Hence ¢(s) € H
is a harmonic map. But then ¢(s) = 0 since the constant map is the unique
harmonic map with topological degree 0. However, we also have & (@) =
2E(Q) > 0, which gives a contradiction. |

Lemma 4.12 There exists Ry > 0 such that if Ry > R, then for all m €
{2, 3, ...} there holds

- 82
/ Qu, p GO < 2.
L 10

Proof With a change of variables, it suffices to prove that for all ¢ € I there

holds
2

- ) 1
Qr, (Y () 1)v,) = 0"
This is a standard consequence of the pre-compactness of the set X; defined

in (4.25). O

4.4 Conclusions

Proof of Proposition 4.1 Choose 1 < m| < mj such that

2

= 5 1
VAW @)+ ) = 5o (4.29)

This is possible thanks to (4.15). Let

R := Ry max vy,.
mp<m=<mj

Inequalities (4.13) and (2.28) yield

1 [Cm ) 1 fam 2
5/% B ©I2.d > Y §/bm1 13 (1)1t

1 m=mi-+1
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> Y 26 / " Jad o

m=mi+1
my em .
>2 > / QR (1)dr.
m=mi+1°m
Similarly, (4.14) and (2.28) yield
1 [Cm 5 my—1 1 [am+1 5
E/C DTTEEDY §/b 00 (012, dr
mi m=m| m
mo—1 b
> Y 2o f VAW (0)ds
m=m, Cm
mo—1 bum
=2y [ erd o
m=m, ¥ Cm
Next, from Lemma 4.11 we have
1 [Cm ) AT % 5 8% o2
—f 19 (OlI7.de > > —f 10y ONI72de = L Y v
5/, 5 Jb, . 5
mj m=mi+1 m m=mi+1
(4.30)
By the definition of R, for each m € {m; + 1,m1 + 2, ..., m>} we have

R = Ryv,, with R; > Rg. Thus Lemma 4.12 gives

1 Cmy m2 Aam N
3/ 19, (1) 721 > 2 Z/b Qr(Y (1))dr.

1 m=mi+1

Finally, (4.30) and (4.29) imply

5 my<m=<mj

1 Cmy 82
2 1
—/ 10: ()17 2d2 = 5 AKX
Cmy

> 2CoR <\/d(x/7(cml)> + /d(&(cm))) .

Summing the four inequalities above and using (4.2) for (11, 172) = (¢, Cmy)
we get
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4 [Cm ’ Cmy )
§f 10: ()17 2d2 = 2/ 10 ()17 d2.
C, C,

my mi

This contradiction finishes the proof. O

Proof of the Main Theorem 1.6 Step I Lete > 0 be such that Proposition 3.10
holds with some €7 > 10¢. Define

T) := sup{s : 3¢’ > ¢ such that d(¥ (1)) > €.

By Proposition 4.1 we have 77 < T, and we know that the modulation
parameters A(¢) and wu(¢) are well-defined for r € [T, T5). Define ¢ (¢) as
in (3.34). Assume without loss of generality that u(77) = 1.

There exists a sequence 7,, — T such that

) =0

For any such ty) = 7, we are in the setting of Proposition 3.10 in the backward
time direction, so we obtain times #; < 7, and t» < t;. By the definition of
T1 and (3.40) we have t; < T, so the proof of Proposition 3.10 yields in
particular% < u() <2fort € [#, 1], thus % < u(t) <2fort [T, Ty).

Furthermore, (3.44) implies that f;l” ,/d(l}(t)) dt¢ is bounded as 7, — T4.
Thus (3.29) implies that fTTl+ |/ (1)|dr < 400, hence u(r) converges to some

d
dt

Ho € [%, 2]. Eventually rescaling again, we can assume that g = 1.

As in the proof of Proposition 3.10, we consider &£(¢) := b(t) +x1¢ (t)% and
we find that it is strictly decreasing on [77, 7,,] and satisfies

2%-2
E'(1) < —1k(t) F . (4.3

Hence &(¢) is strictly decreasing on [77, T4) and satisfies (4.31) for t €
[Ty, T4). From the modulation equations we also obtain

2k=2
§'(1) = —Kk3E(1) K . (4.32)
for some k3 depending only on k. Indeed, (3.28) and (3.38) yield
k=2 _ 2k—2
EOIS IO+ OlE0 T Sco ! SemE
Since lim;_.7, &(t) = 0 and 272 > 1, (4.32) implies that Ty = +o0.

Showing that the sign ¢ is constant is standard. Lemma 2.14 implies that
dy(¥(t)) <efort € [T1,+o00) ord_(¥(t)) < efort € [T],+00). Indeed,
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suppose that t1, to > T1,t; < tp are such that d+(1Z(t1)) <eandd_ (1/7(t2)) <
€. Without loss of generality we can assume that € < éao, where o is the
constant from Lemma 2.14. Then Lemma 2.14 ylelds d, (w (t2)) > ap, hence
there exists 7y € [t1, t>] such that d+(1//(t0)) = 2050 > €. But Lemma 2.14
gives that also d_ ((x//(to)) > g > €, which contradicts the choice of 77.

Step 2 We now deduce the rate of decay of A(¢) as t — +00. Bounds (3.50),

(3.53), and (3.35) imply that £(¢) is comparable to A(t)g. Rewrite (4.31) and
(4.32) as follows:

—K2, K2, k3 > 0,

In the case k = 2, after integrating and possibly changing the values of the
constants, we obtain
e < E(n) =e™,

which implies that there exists a constant C such that

e=Cl < A1) <e T' ast — +o0. (4.33)

(recall that we rescale the solution so that pg = lim;— 400 u(¢) = 1).
Similarly, for k > 2 we obtain

1
Ez—ﬁ <A < CrF2 ast — +oo, (4.34)

with a constant depending on k.

Step 3 Suppose that { does not scatter in either time direction. Take any § > 0.

Bounds (4.33) and (4.34) imply that

+00
/ VAW (@) dt < 4o0. (4.35)

Indeed, it suffices to consider the behavior as ¢t — 400. In this situation we
have well-defined modulation parameters A(t) w(t) and (3.7) together with
the fact that w(t) — o > 0 1mply that d(lﬁ(t)) < A0, so (4.35) follows
from time integrability of A(#) 5 .

Thus (2.28) implies that there exist 77, 7 such that for all R > 0

T
/ Qe (1) df <

wl»— m|>—~

+o0
/T Qr(p (1) di <

2
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Since [T}, T>] is a finite time interval, there exists R > 0 such that

T N 1
/ Qr(y(t))dr < Z4.
T1 3

Butd(y(r)) — 0 ast — =00, hence (4.2) yields

+00
| rawona s,

—00

This would imply that J(t) is a constant in time solution (because § was any
strictly positive number), which is impossible. m|

Remark 4.13 Suppose that 1/7 (t) does not scatter in the forward time direction.
From the modulation equations we know that

b (t) < —ker (), ke >0,

so integration yields

b(t) > k7 /Oo A(s) 1 ds.
t

But, as noticed in Step 1. above, we also have |()L(t)§)’| < A(H)F1, which
yields )L(t)g < 77 A(s)k 71 ds, so we obtain

b(t) > ksh ()T = b1 > kod(V (1)),

which in turn implies

1 2 -
KMAQ“”’B”/’)‘ >cd((1),  ast — +oo,

where ¢ > 0 is a constant depending only on k. Thus the projection of the time
derivative of the solution constitutes at least a fixed fraction of the total distance
from a two-bubble. In fact, if we were more precise in our computations, we
could probably obtain that this projection is the leading term of the error.

Acknowledgements J. Jendrej was supported by the ERC Grant 291214 BLOWDISOL and
by the NSF Grant DMS-1463746. This work was completed during his postdoc at the University
of Chicago. A. Lawrie was supported by NSF Grant DMS-1700127. We would like to thank
Raphag¢l Cote for many helpful discussions. And lastly, we would like to thank the anonymous
referees for their careful reading of an earlier version of the manuscript and for suggesting
substantial improvements.

@ Springer



Two-bubble dynamics for wave maps 1323

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear
wave equations. Am. J. Math. 121, 131-175 (1999)

Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the
wave and Schrodinger equations with the inverse-square potential. J. Funct. Anal. 203(2),
519-549 (2003)

. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the

wave and Schrodinger equations with potentials of critical decay. Indiana Univ. Math. J.
53(6), 1665-1680 (2004)

Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory, volume 251 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science].
Springer, New York (1982)

Christodoulou, D., Tahvildar-Zadeh, A.S.: On the asymptotic behavior of spherically sym-
metric wave maps. Duke Math. J. 71(1), 31-69 (1993)

Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave
maps. Commun. Pure Appl. Math. 46(7), 1041-1091 (1993)

Cote, R.: Instability of nonconstant harmonic maps for the (1 4 2)-dimensional equivariant
wave map system. Int. Math. Res. Not. 57, 3525-3549 (2005)

Cote, R.: On the soliton resolution for equivariant wave maps to the sphere. Commun. Pure
Appl. Math. 68(11), 1946-2004 (2015)

Cote, R., Kenig, C., Lawrie, A., Schlag, W.: Characterization of large energy solutions of
the equivariant wave map problem: I. Am. J. Math. 137(1), 139-207 (2015)

Cote, R., Kenig, C., Lawrie, A., Schlag, W.: Characterization of large energy solutions of
the equivariant wave map problem: II. Am. J. Math. 137(1), 209-250 (2015)

Cote, R., Kenig, C.E., Schlag, W.: Energy partition for the linear radial wave equation.
Math. Ann. 358(3—4), 573-607 (2014)

Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Universality of blow up profile for small blow
up solutions to the energy critical wave map equation (2016). arXiv:1612.04927
Duyckaerts, T., Jia, H., Kenig, C.E., Merle, E.: Soliton resolution along a sequence of times
for the focusing energy critical wave equation. Geom. Funct. Anal. 27(4), 798-862 (2017)
Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small radial
type 1I blow-up solutions of the energy critical wave equation. J. Eur. Math. Soc. (JEMS)
13(3), 533-599 (2011)

Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing,
energy-critical wave equation. Geom. Funct. Anal. 22(3), 639-698 (2012)

Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II
blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math.
Soc. JEMS) 14(5), 1389-1454 (2012)

Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing,
energy critical wave equation. Camb. J. Math. 1(1), 75-144 (2013)

Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equa-
tion. Int. Math. Res. Pap. 2008, rpn2002 (2008). https://doi.org/10.1093/imrp/rpn002
Duyckaerts, T., Merle, F.: Dynamic of threshold solutions for energy-critical NLS. Geom.
Funct. Anal. 18(6), 1787-1840 (2009)

Eells, J., Wood, J.C.: Restrictions on harmonic maps of surfaces. Topology 15(3), 263-266
(1976)

Grinis, R.: Quantization of time-like energy for wave maps into spheres. Commun. Math.
Phys. 352(2), 641-702 (2017)

Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. Am.
J. Math. (to appear). arXiv:1602.06524

@ Springer


http://arxiv.org/abs/1612.04927
https://doi.org/10.1093/imrp/rpn002
http://arxiv.org/abs/1602.06524

1324 J. Jendrej, A. Lawrie

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Jendrej, J.: Nonexistence of radial two-bubbles with opposite signs for the energy-critical
wave equation. Ann. Sci. Norm. Super. Pisa Cl. Sci. (to appear). arXiv:1510.03965
Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE
10(8), 1923-1959 (2017)

Jia, H., Kenig, C.: Asymptotic decomposition for semilinear wave and equivariant wave
map equations. Am. J. Math. 139(6), 1521-1603 (2017)

Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical,
focusing, non-linear Schrodinger equation in the radial case. Invent. Math. 166(3), 645-675
(2006)

Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical
focusing non-linear wave equation. Acta Math. 201(2), 147-212 (2008)

Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence
theorem. Commun. Pure Appl. Math. 46(9), 1221-1268 (1993)

Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Int.
Math. Res. Not. 1994(9), 383-389 (1994). https://doi.org/10.1155/S1073792894000425
Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke
Math. J. 81(1), 99-133 (1995)

Klainerman, S., Machedon, M.: On the regularity properties of a model problem related to
wave maps. Duke Math. J. 87(3), 553-589 (1997)

Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps
type. Commun. Partial Differ. Equ. 22(5-6), 901-918 (1997)

Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equa-
tions. Commun. Contemp. Math. 4(2), 223-295 (2002)

Krieger, J.: Global regularity of wave maps from R**! to H2. Small energy. Commun.
Math. Phys. 250(3), 507-580 (2004)

Krieger, J.: On stability of type II blow up for the critical NLW on R3 (2017).
arXiv:1705.03907

Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics away from the ground state for the
energy-critical nonlinear wave equation. Am. J. Math. 135(4), 935-965 (2013)

Krieger, J., Nakanishi, K., Schlag, W.: Center-stable manifold of the ground state in the
energy space for the critical wave equation. Math. Ann. 361(1-2), 1-50 (2015)

Krieger, J., Schlag, W.: Concentration Compactness for Critical Wave Maps. EMS Mono-
graphs. European Mathematical Society, Ziirich (2012)

Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant
wave critical wave maps. Invent. Math. 171(3), 543-615 (2008)

Lawrie, A., Oh, S.-J.: A refined threshold theorem for (1 + 2)-dimensional wave maps into
surfaces. Commun. Math. Phys. 342(3), 989-999 (2016)

Martel, Y., Merle, F.: Description of two soliton collision for the quartic gKdV equation.
Ann. Math. (2) 174(2), 757-857 (2011)

Martel, Y., Merle, F.: Inelastic interaction of nearly equal solitons for the quartic gKdV
equation. Invent. Math. 183(3), 563-648 (2011)

Planchon, F,, Stalker, J.G., Tahvildar-Zadeh, A.S.: L? estimates for the wave equation with
the inverse-square potential. Discrete Cont. Dyn. Syst. 9(2), 427-442 (2003)

Raphaél, P, Rodnianski, I.: Stable blow up dynamics for the critical co-rotational wave
maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Etudes Sci. 115,
1-122 (2012)

Raphaél, P., Szeftel, J.: Existence and uniqueness of minimal mass blow up solutions to an
inhomogeneous L2-critical NLS. J. Am. Math. Soc. 24(2), 471-546 (2011)

Rodnianski, L., Sterbenz, J.: On the formation of singularities in the critical O(3) o-model.
Ann. Math. 172, 187-242 (2010)

Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math.
(2) 113(1), 1-24 (1981)

@ Springer


http://arxiv.org/abs/1510.03965
https://doi.org/10.1155/S1073792894000425
http://arxiv.org/abs/1705.03907

Two-bubble dynamics for wave maps 1325

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Shatah, J., Tahvildar-Zadeh, A.: Regularity of harmonic maps from the Minkowski space
into rotationally symmetric manifolds. Commun. Pure Appl. Math. 45(8), 947-971 (1992)
Shatah, J., Tahvildar-Zadeh, A.S.: On the Cauchy problem for equivariant wave maps.
Commun. Pure Appl. Math. 47(5), 719-754 (1994)

Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in 2 + 1 dimensions.
Commun. Math. Phys. 1, 139-230 (2010)

Sterbenz, J., Tataru, D.: Regularity of wave maps in 2 4+ 1 dimensions. Commun. Math.
Phys. 1, 231-264 (2010)

Struwe, M.: Equivariant wave maps in two space dimensions. Commun. Pure Appl. Math.
56(7), 815-823 (2003)

Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension.
Int. Math. Res. Not. 6, 299-328 (2001)

Tao, T.: Global regularity of wave maps II: small energy in two dimensions. Commun.
Math. Phys. 224(2), 443-544 (2001)

Tao, T.: Global regularity of wave maps III-VII (2008-2009). arXiv:0805.4666,
arXiv:0806.3592, arXiv:0808.0368, arXiv:0906.2833, arXiv:0908.0776

Tataru, D.: Local and global results for wave maps. I. Commun. Partial Differ. Equ. 23(9—
10), 1781-1793 (1998)

Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math.
123(1), 37-77 (2001)

@ Springer


http://arxiv.org/abs/0805.4666
http://arxiv.org/abs/0806.3592
http://arxiv.org/abs/0808.0368
http://arxiv.org/abs/0906.2833
http://arxiv.org/abs/0908.0776

	Two-bubble dynamics for threshold solutions  to the wave maps equation
	Abstract
	1 Introduction
	1.1 k-equivariant wave maps
	1.2 Threshold theorems and bubbling
	1.3 Main result
	1.4 Structure of the proof

	2 Preliminaries and technical lemmas
	2.1 Notation
	2.2 Review of the Cauchy theory
	2.3 Concentration compactness
	2.4 The harmonic maps Q = Qk
	2.5 Threshold solutions near a 2-bubble configuration
	2.6 Virial identity

	3 The modulation method: analysis of 2-bubble collisions
	3.1 Modulation equations
	3.2 Dynamical control of the modulation parameters
	3.3 Proofs of the modulation estimates

	4 Dynamics of non-scattering threshold solutions
	4.1 Overall scheme
	4.2 Splitting of the time axis
	4.3 Compactness on I
	4.4 Conclusions

	Acknowledgements
	References




