Advances in Mathematics 347 (2019) 408-441

Advances in Mathematics

Contents lists available at ScienceDirect

MATHEMATICS

www.elsevier.com /locate/aim

H*°-calculus for semigroup generators on BMO

Timothy Ferguson?®, Tao Mei"™*!  Brian Simanek "

)]

Check for
Updates

2 Department of Mathematics, University of Alabama, Box 870350, Tuscaloosa,

AL, 35487-0350, USA

b Department of Mathematics, Baylor University, One bear place #97328, Waco,

TX 76798, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 6 March 2017
Received in revised form 11
February 2019

Accepted 15 February 2019
Available online 4 March 2019
Communicated by D. Voiculescu

We prove that the negative generator L of a semigroup of
positive contractions on L*° has bounded H(S;)-calculus
on the associated Poisson semigroup-BMO space for any angle
n > 7/2, provided L satisfies Bakry-Emery’s I'2 > 0 criterion.
Our arguments only rely on the properties of the underlying
semigroup and work well in the noncommutative setting.
A key ingredient of our argument is a type of quasi monotone

Keywords:

Markov semigroups
Fractional powers
H°-calculus

BMO

Group von Neumann algebras

properties for the subordinated semigroup 7%, = et 0 <
a < 1, that is proved in the first part of this article.
© 2019 Elsevier Inc. All rights reserved.

Introduction

Let A = —0? be the negative Laplacian operator on R". The associated Poisson

semigroup of operators P,

= e_t\/Z,t > 0 has many nice properties that make it a

very useful tool in the classical analysis. In particular, the Poisson semigroup has a quasi
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monotone property that there exist constants c, ; such that, for any nonnegative function

f S Ll(Rn, ﬁdl‘%

\tjﬁgPth < Cr,jPrtfa (1)

for any 0 < r < 1,7 = 0,1,2,.... As a first result of this article, we show that the
quasi monotone property (1) extends to all subordinated semigroups T}, = e L for
all 0 < a < 1 if L generates a semigroup of positive preserving operators on a Banach
lattice X. The case of 0 < a < % is easy and is previously known because of a precise
subordination formula (see e.g. [28,24]). This type of quasi-monotonicity has been a
useful tool in proving certain functional inequalities (see [16,28,24,23]).

Functional calculus is a theory of studying functions of operators. The so-called
H*°-calculus is a generalization of the Riesz-Dunford analytic functional calculus and
defines ®(L) via a Cauchy-type integral for an (unbounded) sectorial operator L and
a function @ that is bounded and holomorphic in a sector S, of the complex plane.
L is said to have the bounded H-calculus property if the so-defined ®(L) extend to
bounded operators on X and ||®(L)|| < ¢||®|lo for all such ®’s. The theory of bounded
H*°-calculus has developed rapidly in the last thirty years with many applications and
interactions with harmonic analysis, Banach space theory, and the theory of evolution
equations, starting with A. McIntosh’s seminal work in 1986 (see [1], [7], [20], [27], [17],
[26], [35]).

It is a major task in the study of the bounded H*°-calculus theory to determine which
operators have such a strong property. Cowling, Duong, and Hieber & Priiss ([8,12,19,
15,30]) prove that the infinitesimal generator of a semigroup of positive contractions on
LP,1 < p < oo always has the bounded H*°(S,)-calculus on L? for any n > 7. When the
semigroup is symmetric, the angle can be reduced to n > w, = |5 — %| by interpolation.
It is not surprising that this result fails for L in general. One may want to seek a
BMO-type space that could be an appropriate alternative for the p = oo case.

The main theorem of this article states that the negative generator L of a semi-
group of positive contractions on L always has bounded H°(S,,)-calculus on the space
BMO(V/L) for any 7 > 5, provided L satisfies Bakry-Emery’s I'? criterion. Junge and
Mei attempted to prove this result (see Theorem 3.3 of [24]) under the same assumptions,
but only managed to obtain a bounded H*>(S,) (n > %) calculus result for v/L, instead
of L. This is due to the fact that Lemma 3.2 and Theorem 3.3 of [24] are proved only
for the operator M, defined for the subordinated Poisson semigroup P, = e~tVT. The
unknownness of the quasi-monotonicity for general subordinated semigroups e **" was
a major obstacle that prevented Junge and Mei from reaching further. Please note that
L is incorrectly written in place of v/L in the proof of Corollary 5.4 in [24]. Its corrected
version is proved in this article as Corollary 3.
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The classical BMO norm of a function f € L*(R", ﬁdx) can be defined as

| ety )

1
2
oo

= sup
HfHBMO(\/Z) >0

BMO spaces associated with semigroup generators have been intensively studied recently
(e.g. [14,13,11] and the subsequent works). When a cubic-BMO is available, one can
often compare it with the semigroup BMO and they are equivalent in many cases. In
this article, we consider the BMO(v/L)-(semi)norm studied in [24,28], which are defined
similarly to (2), merely replacing A with the semigroup generator L. The corresponding
space BMO(\/E) interpolates well with LP-spaces when the semigroup is symmetric
Markovian (see Lemma 11).

Under the assumptions of our main theorem, we also study semigroup-BMO spaces
BMO(L%),0 < o < 1 and prove that they are all equivalent. We further prove that the
imaginary power Li® is bounded on the associated semigroup-BMO space BMO(L®)
with a bound < (1 + |s|)|%‘exp(|‘7r28|\) (see (72), (75)). This complements Cowling’s
LP-estimate (see [8, Corollary 1]) and fixes a mistake in [24] (see the Remark at the end

of Section 3).

The related topics and estimates on semigroup generators have been studied with
geometric/metric assumptions on the underlying measure space. This article is from a
functional analysis point of view and tries to obtain a general result by abstract argu-
ments. Cowling and Hieber /Priiss’s method for their H>-calculus results on L? is based
on the transference techniques of Coifman and Weiss, which does not work for non-UMD
Banach spaces, such as BMO. Our method is to consider the fractional power of the gen-
erator to take advantage of the quasi-monotone property (1). Our argument works well
for the noncommutative case, that is for L that generates a semigroup of completely
positive contractions on a semifinite von Neumann algebra.

We analyze a few examples to illustrate our results and demonstrate their applications
to Fourier multipliers on non-classical LP spaces at the end of the article. We use ¢ for
an absolute constant which may differ from line to line.

1. The complete monotonicity of a difference of exponential power functions

A nonnegative C*°-function f(t) on (0,00) is completely monotone if
(—D)*orf(t) =0

for all ¢t. Easy examples are f(t) = e~ for any A > 0. It is well-known that completely
monotonicity is preserved by addition, multiplication, and taking pointwise limits. So
the Laplace transform of a positive Borel measure on [0, c0), which is an average of e~
in A, is completely monotone. The Hausdorff-Bernstein-Widder Theorem says that the

reverse is also true; namely that a function is completely monotone if and only if it is the
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Laplace transform of a positive Borel measure on [0, 00). In particular, gs(t) = e " is

completely monotone and is the Laplace transform of a positive integrable C*° function
¢s,o on (0,00) for all s > 0,0 < a < 1.

oo oo

et = [eNouadr= [ N0, ®3)

0 0

The function ¢, o is uniquely determined by the inverse Laplace transform

o+1i00
_1 -1 — —s52% 1 z —s2¢
Ps.a(A) =8 o1 a(s 2N =L 1(6 )(A) = 9 / ee dz, (4)

for o > 0, A > 0. The derivative 9s¢s  is again an integrable function (see e.g. [36, page
263]), and

oo

—tet = / e Myps o (N)dN. (5)

0

The properties of ¢s  are important in the study of the fractional powers of semigroup
generators.

The goal of this section is to prove a few pointwise inequalities for ¢ o, which will be
used in the next section. For that purpose, we first prove the complete monotonicity of
several variants of e ~5t" .

For k,n e N1 <k <n,let a,(cn) be the real coefficients in the expansion

d" —t® n - (n) —n+ka ,—t*
P =(-1) ;ak t e .

It is easy to see that

n
jt_r; —ct® — (_1)n Ckagﬂ)t—n-&-kae—ct“.

k=1
Convention: We define a,(cn) =0ifk>nork<0.
The proof of the following lemma is simple and elementary. We leave it for the reader
to verify.

Lemma 1. The a,(gn) ’s satisfy the relation

a,(cnﬂ) =(n-— ka)a,,(gn) + oza,(;i)l (6)

forall k € Z,n € N.
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Lemma 2. Let K;,i = 1,2 be the first integer m such that == > «. Then, for all
Jj € Z,n € N, we have

o~ G+ Dal >0 i k> K (7)
G+ D@0~ G+ Da ) <o), —G+Da,, Ek>K (8

Proof. We only need to prove the case j > 0. Let D be the right derivative for discrete
functions: Df = f(5+1)— f(j). It is easy to see that the product rule holds D(j f)(j) =
JD;f(j) + f(j +1). Fix k € Z. Let

i) = a3t (9)

for j > 0, where we use the convention that 0! = 1. By (6), we have

fo1(G) = (n = (K + 7)) fu(4) + ajfu(d = 1),

for all j > 1 and fr,41(0) = (n — ka) f,(0) + aa,(f_)l. Taking the discrete derivative on
both sides, we get

Dfni1(j) = (n— (b + 7)) Dfn(j) —afu(i +1) + ajDfu(j — 1) + afu(j)
:(n_(k+]+1) )Dfn( )+a]Dfn( - )7 (10)

for j > 1 and Df,1(0) = (n — (k+ 1)a)Df,(0) — aa,(gi)l. By induction, we get

D' fns1(5) = (n = (k +j +0)a) D" fu(j) + D" fu(j — 1), (11)

for all i > 1,5 > 1 and Dif,1(0) = (n — (k +9)a) D' f,(0) + (—1)iaal™,.

Let k = K; in (9). Note that the condition D f,,(j) < 0 trivially holds for n < K + j
because a(j) = 0 for ¢ > j. In particular, Df,(j) < 0 for all j > 0,n = K;. We apply
induction on n. Assume Df,(j) < 0 holds for all j > 0. The equality (10) implies that
Dfn+1( /) <0 for all j > 0 satisfying n > (K7 +j+1)a, which holds if n+1 > Ky +j+1
since 5 > a. On the other hand, if n +1 < K; + j we have Df,1(j) < 0 trivially.
So D fn+1( i) <0 for all j > 0. Therefore, D f,(j) < 0 and equivalently (7) holds for all
neN,j7>0.

The argument for (8) is similar. Let k = K5 in (9). Note that D2 £, (j) > 0 is equivalent

o (8) for j > 0, which trivially holds for n < K3 + j since Ko > K; and aK2)+j -G+
l)ag?)ﬂ+1 > 0. In particular, (8) holds for n = Ks,j > 0. Assume that (8) holds for
n = m,j > 0. We consider the case n = m+ 1. If n = m+ 1 < Ky + 4, (8) holds
trivially. Otherwise, m + 1 > Ky + j + 1 and by applying (11) we see that D?f, 1 > 0.
By induction, (8) holds for alln € N, > 0. O
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Remark. The argument of the previous lemma shows that (—1)*Dif,,(j) > 0 for all
n € N, j > 0 if we choose k so that kiﬂ < a.
For a fixed K > K1, let

D)= Ky e = Y ot o (12)
j=1

j=—00

and for a fixed K > Ko, let

n+1 o0
Gul(z) =2 K (@™, — (j — K)al)ad "t = N (afP),_, — jal) )a?~t (13)
j=1 j=—00

Lemma 3. Let f(z) = F,(z), or Gp(x) for the given suitable K. We have (f(z)e™®) <0
and f(x +rx) < e f(x) for all r,xz > 0.

Proof. It is easy to see that f(x) — f'(z) > 0 for x > 0 by Lemma 2. So (f(z)e™*) =
(f' = fle® <0 and hence f(x +rz) <e™f(x) forr >0. O

We now come to the main result of this section.

Theorem 1. Let 0 < o, ¢ < 1, and s > 0 be fized. Then

(i) e~est” — cKig—st” z's completely monotone in t.
i) Kie™ st 4 st@e=st s completely monotone in t.
cK2 (1— c)
iv) (max{ ol m})hﬁ’“ta + s7ti*e=st" are completely monotone in t for any
jeN.

(
(iii) —gi—=e " — st®e " is completely monotone in t.
(

Proof. By dilation, we may assume s = 1. We prove (i) first. Let z = t* and F,, be as
in 12,

dr - (n ny—n+Ka -z
T # ;—: Jgke=® = (1)~ HEKee—T | ()
and
dr —ct® _ n k_(n) k_ —zx e ny—n+Ka K _—cx
€ = "t g c'ay 'x"e = (—1)ngrtRecRem et B (ex).  (14)

Applying Lemma 2 and Lemma 3 to Fj, gives us

d"” —ct®
dt™ K
dar o—t* Z c,

dtm
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for any K > K. This implies (i) since e —t" is completely monotone for any 0 < o < 1.
We now prove (ii). Let g(s,t) = e=**" s~ K1, Then —0,g(s, t), is the limit of the family

of functions
1

st K —est®
SK1+1(C_1)(€ e emet)

as ¢ — 1, which are completely monotone in ¢ by (i). So
Kie st st = —sK1H19, (s, 1)

is completely monotone in t.
For (iii), we denote by f(™)(t) = 07 f(t) and, for K > Ko > K, write

a @ 1 [e3 «@
(%) + K(e™)™ = = ft(e™" )] + K(em )™

[t(e™) " (™)) + K (e7)™

nt— &
[Z v —Ka)ai"ht’“"@_ta]

1
o

k=1
= () [Z@"l (k— K)a “”)tkae-t‘*]
k=1
NG POIC NIRRT
k=—o0
= (=)t " HEogerq, (2) (15)

with x = t* and G,(z) defined as in 13, which depends on K. Lemma 3 says that
Gn(x)e™™ deceases in z if K > K and note that G, (z)e ™ = —(F,(z)e ") > 0. We
have

- #x s)e °ds
2Gn(@)e S(pc)/G"() d

1 —s8\/
m!—(Fn(s)e )'ds
1 cx
< a _C)Fn(c:c)e )

for 0 < ¢ < 1. Combining this inequality with (14) and (15) we get

(1)L (toe " + Kpe ") _ 1

(Drme =)
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This proves (iii) since e~ and e~*" are completely monotone.

For (iv), let f(t) = maX{CKTll, m}e’csw,g(t) = st By (i), (ii) and (iii)
we have that both f + g, f — g are completely monotone in t. Recall that complete
monotonicity is preserved by multiplication. Note that

FI 4 g = L~ )~ )+ (P 4 ) + )
PR g = LI - )+ 9) + (P4 ) - g))

We get, by induction, that (maux{CKTl17 m})je*jcst“ — §7ti%e=I5t" is completely

monotone for any s > 0, which implies (iv). O

We will apply Theorem 1 to pointwise estimates of @5 o (). Let us first list a few basic
properties of ¢ .

Lemma 4. For any s > 0,0 < o, f < 1, we have

51 (V) = ﬁﬂ (16)
610600 = [ 000(No15(s)ds. (17)

0
Bea(N) = 57 d1a(sTwN), (18)
—805Ps,0(A) = Ps.0(A) + A0r@s o (N). (19)

Proof. (16) is well-known (see e.g. [36], page 268). (17), (18) can be easily seen from (3)
and (4). (18) implies (19). O

Corollary 1. For all \;s > 0,0 < c<1,j € N, we have

g a(N) < desalN) (20)
0 < a)\(/\lJraKl (z)s,a()‘))7 (21)
o K ; J
|5J8§¢s,a(/\)| S <max {.707117 m}) (bcs,om (22)
10
|Sas¢s,a(>‘)| S <1—Oz> ¢O¢S,O4()\)7 (23)

570 s 0 (V)]

IN

(ﬁ) Pasa(V). (24)

11—«
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Proof. These are direct consequences of Theorem 1, the identity (3), and the Hausdorff-
Bernstein-Widder Theorem because K; < Ep a,
calculation. To prove (21), note that (5) and Theorem 1 (ii) imply that

fl‘i‘é ) K a (V) — 50u60m(V) < 0.

except that (21) requires a little more

Since @g,a(A) = s‘égbl,a(s_é)\), we get

1 1
- (— + Kl) sTE TR G (sTAN) — =57 T NS T T (a1 a)(sTH ) < 0.
(67 (67

That is

(14 K10)d1.0(5"%A) + As™# (Ordr.a)(s = A) > 0.

Therefore

(1 + Kla)(bs,a()‘) + Aak(bs,a()‘) >0,
since Ox¢s,a(N) = s’%a,\gb&a(s’i)\). This is (21). O

Lemma 5. For any s > 0,0 < § < a < 1, we have that

o0

/ ’ln (s‘éu) ‘ ¢s,0(u)du < % (25)

//‘m ]qsw )ds.a(v )dudv<ﬁ (26)

Proof. Since ¢y o (u) = s~ d1.o(s~ > u), the left hand side of (25) is independent of s.
We only need to prove the case s = 1. For o = 3, we can verify directly from (16) that
(25) holds. Denote by u(«) the left hand side of (25). We then get u(3) < oc. Using (17),

we get u(5+) < 0. Now, for o > we use (17) again and get

27L )

/qssa b1,y ()ds
/% 611 (s)ds

oy (20)) 2 61,0V / 9Dy (5)ds

0

7271
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> Ca¢1,a()\)~

We conclude that u(a) < oo for all 0 < o < 1. Since ¢1 () is continuous as a function
in o and this continuity is uniform for A € [§, N] for any 0 < § < N < oo, one can easily
see that u(«a) is continuous in « for @ € (0,1). We conclude that u(«) is bounded on
[5k, 3] for any n € N. Note that (17) also implies that

/¢1,aﬂ(x)|1nx|dx
0

://qsmm1nA|dA¢1,5(s)ds
0

d1.0(0)|In(s70)|dvey 5(s)ds

\% I
_ e o — g ©

/¢1,a —|1ns|—\1m|)dv¢1 (s)ds (27)
0

IN

(

Our change in the order of integration is justified because all the terms are positive. Note
J5° #t.a(s)ds =1 for any ¢, a. (27) and (28) imply that

[ OO¢>1,a *|1n5|+|1nv|)dv¢1 (s)d (28)
[[o )

[u(a) ~ u(B)] < uaf) < u(0) + ~u(s) (29)

We then obtain (25). (26) follows from (25). O

Remark (Bell Polynomials). We define the complete Bell polynomial B, (x1,...,x,) by
its generating function

n

0o ,
u’ U

exp Zx]F ZB Tiy..., n)n'
= !

From this, we get the formula

Bn(z1,...,2,) = — exp Z:L'j

u=0

Now, for s > 0, let
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d7 )
rj=—s—1t% = —s(a);t*7, (30)

where («); denotes the falling factorial. Then

e . - .

Applying Theorem 1 part (i), we see that for alln € N, ¢ € (0,1), and ¢ > 0 it holds that

dd" e—sc(t+u)®
un

u=0 - CKl

- )

dd" o—s(t+u)™
o

u=0

where K is as in Lemma 2. We can rewrite this inequality as

d" _sct®—sc(t+u)®

L dur©
e(lfc)st u=0 > CK1
dd%est"‘fs(tqtu)o‘
u=0
We conclude that if we define x; by (30), then
e(1—c)st® Br(cay, ..., can) > (31)
Bo(x1,. . xn)

forall n € N, ¢ € (0,1), and ¢t > 0. All of these calculations are easily reversible, and we
conclude that (31) is actually equivalent to part (i) of Theorem 1.

2. Positive semigroups and BMO

Let (M, 0, 1) be a sigma-finite measure space. Let L'(M) be the space of all complex
valued integrable functions and L (M) be the space of all complex valued measurable
and essentially bounded functions on M. Denote by f* the pointwise complex conjugate
of a function f on M and by (f, g) the duality bracket [ fg*.

Definition 1. A map T from L>*°(M) to L (M) is called positive if Tf > 0 for f > 0.
If T is positive on L>*°(M), then T ® id is positive on matrix valued function spaces
L>*(M) ® M, for all n € N, i.e. T is completely positive.

A positive map T commutes with complex conjugation, i.e. T(f*) = T(f)*. For two
positive maps S, T, we will write S > T if S — T is positive.

We will need the following Kadison-Schwarz inequality for completely positive maps
T

)



T. Ferguson et al. / Advances in Mathematics 347 (2019) 408—441 419
IT(HI? < NITW =T f?), feL>(M). (32)
2.1. Positive semigroups

We will consider a semigroup (T3);>o of positive, weak*-continuous contractions on
L with the weak* continuity at ¢ = 0+. That is a family of positive, weak*-continuous
contractions T3, ¢ > 0 on L such that TsTy = Tsqe, To = id and (Ti(f),g) — (f,9) as
t — 0+ for any f € L™, g € L.

Such a semigroup (7,) always admits an infinitesimal negative generator L =
limy 0 id;Ty which has a weak*-dense domain D(L) C L*°. We will write T}, = e vl

These definitions and facts extend to the noncommutative setting. Namely, given a

semifinite von Neumann algebra M and a normal semifinite faithful trace 7, we let
L*®(M) = M and L'(M) be the completion of {f € M : | fl|z: = 7|f|] < oo}. Here
lg| = (g*g)% and ¢g* denotes the adjoint operators of g and we set (f,g) = 7(fg*). We
say a map T on M is completely positive if (T'®id)(f) > 0 for any f > 0, f € M ® M,.
We say fy weak® converges to f if limy(f,g) = (f,g) for all g € L*(M) (see [25] for
details).

The so-called subordinated semigroups 1} o = e YL" 0 < o < 1 are defined as

Touf = O/ T, 10 ()t = O/ T foraw)du, (33)

with ¢¢ o given in Section 1. The generator L is given by

Lo(f) = T(~a)™! / (T, — id) ()t~ dt, (34)
0

for f € D(L). There are other (equivalent) formulations for L*. The formula (34) is due
to Balakrishnan (see [5] and [36, page 260]). For T; = e~**id with Re(z) > 0, L* = 2
with a chosen principal value so that Re(z%) > 0.

(Ty,a) is again a semigroup of positive weak*-continuous contractions. The semigroup
has an analytic extension and has the well-known norm estimate that

sup Hyk(’?;;T%a | < cp. (35)
y>0
What we wish is a pointwise estimate.
Note that (33) implies
Ty Ti s
SN <TEN amd WL, <oy (36)
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for any 0 <t <y and f > 0 because of the positivity of T, and the precise formulation

of (Z)y7 1.
Corollary 1 and the identity (33) actually imply the following corollary.

Corollary 2. For all f > 0,s > 0,0 < c,a <1, and j € N, we have

Ty o f < Tosof (37)

|§%Q@Uﬂ§qgiyﬂmdﬁ- (38)

Remark. Corollary 2 says that, when L generanates a positive semigroup, we have the
point-wise estimate that

105

|50%u(z, 5)| < e(==) [u(, )|

for the canonical solution u(z,s) = e *L" f(x) of the PDE
(La + 88)“(‘7:7 5) = O,U(J?,O) = f(.]?)

with f(x) > 0. When « = 1, a similar estimate to Corollary 2 may hold for some special
semigroups. For example, the heat semigroups generated by the Laplacian operator on
R™ has a similar estimate with ¢ > 1. But one can not hope this in general since (38) is
already stronger than the analyticity of semigroup T o on L, which fails for o« =1 in
general.

2.2. T? criterion

P. A Meyer’s gradient form I' (also called “Carré du Champ”) associated with T} is
defined as,

UL (fr9) = —=L(f"g) + (L(f7)g) + 7 (L(9)), (39)
for f,g with f*, g, f*g € D(L). It is easy to verify that for L = —A = —%, Tr(f,9) =
Vf*-Vg.

Convention. We will write I'(f) for T'z,(f, f).

It is well known that the completely positivity of the operators T; implies that T'(f, g)
is a completely positive bilinear form. We then have the Cauchy-Schwartz inequality

o0 oo

O [ aduto). [ audus) <7d|u|(8)701“(as,as)dul(8) (40)
0 0 0 0

Bakry-Emery’s I'? criterion plays an important role in this article. We use an equiv-
alent definition.
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Definition 2. A semigroup of positive operator (7;); satisfies the I'? > 0 criterion if
®(s) = Ts_u|Tuf|? s > u is (midpoint) convex in u, i.e.

TT 1 = |TTuf1? < Tu(Tf1? = 1T 1) (41)
for all t,u > 0 and f € L*°.

For L equal to the Laplace-Beltrami operator on a complete manifold, the I'? > 0
criterion holds if the manifold has nonnegative Ricci curvature everywhere. The “I'?” cri-
terion is satisfied by a large class of semigroups including the heat, Ornstein-Uhlenbeck,
Laguerre, and Jacobi semigroups (see [2,4]), and also by the semigroups of completely
positive contractions on group von Neumann algebras. We refer the reader to [3] and
references therein for the so-called curvature-dimension criterion which is more general
than the “I'2” criterion.

D. Bakry usually assumes that there exists a *-algebra A which is weak® dense in
L*>°(M) such that T5(A) C A C D(L). This is not needed in this article because we will
only use the form T} oI5 (Ts a0 f, Ts,09),0 < @ < 1,a < < 1 which is well defined as

_LﬁTt,a[(Ts,af*)(TS,ag)] + Tt,a[(TS,af*)(LBTe,ag)] + Tt,a[(LBTS,af*)(Ts,ag)} (42)

for all f,g € L since Ts (L) C D(L) C D(L*) because of (33).
We will need the following Lemma due to P.A. Meyer. We add a short proof for the
convenience of the reader.

Lemma 6. For any f € L such that Tsf, Ts f*, Ts|f|> € D(L) for all s > 0, we have

S

TIf? — T2 =2 / T, T(T,f)dt.

0
In particular, for 0 < a <1,

S

ToolfI? = |Teaf* = Q/TH,QFLQ (Ty.of)dt (43)
0

for any f € L.
Proof. For s fixed, let
Fy = T o(|T ).

Then
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OF,  OT._, T, . o,
T T(ITJI?) +Tsft[(ﬁ V] + Ts—ilf (g )]

= _2TsftF(th)' (44)

Therefore

S

To\f|?> = |Tsf)? = —Fs + Fo = 2/Ts,tr(th)dt.
0

Since T (L) C D(L*) we get (43) for all f € L™, O
Remark. Equation (44) shows that the I'> > 0 criterion implies that

T Tyt f) < Togs (D(T1S)) (45)
for all v,s,t > 0 and f € L™ such that T, f, T, f*, Ts| f|*> € D(L) for all s > 0.

The following lemma says that the I'? > 0 criterion passes to fractional powers, which
could be known to some experts. We add a proof as we do not find a reference.

Lemma 7. If T, = e~ 'F satisfies the T? > 0 criterion (41), then Ty o = e " satisfies
(41) and (45) for all f € L™ and 0 < a < 1. Moreover,

J
P60 f) < (12 ) Tealn(1) (46)

Proof. Applying (34), we have that, with ¢, = —(I'(—=a))™! > 0,

Cra(f. ) =ca [ (TP = (Tf)f = f*(Tf) + | )71 dt

(Tl f1P = |Tef 1P + | T f — fIP)e ot (47)

:Ca

if f,f*,|f|* € D(L). The integration converges because
T f* = |Tef )] < cmin{t, 1}, (48)

for f € D(L). In fact, by the I'> > 0 criterion (41), we see that

TT f|? — |Torf1? < 5 (Tl f1? = [Tae fI?).

DN | =

So
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1 1 1
T f1? = | Tof PIIE < Tl — Tof PP = IT(f = Tf)PN? + ITITf P — [ Tocf1?)2
< et 4273 ||Toe 2 — | T f1?) 2

Let u(t) = =2 | T,| f|* — T f[?]|=. We get
u(t) < et + u(2t).

Since u(t) is uniformly bounded on [1,00), we get u(t) is uniformly bounded on [0, c0)
by iteration. This proves (48).

Applying the Cauchy-Schwartz inequality (40) and the I'? > 0 criterion for T} to (47),
we get

FL“ (Tuf7 Tuf) S TuFLQ (fa f) (49)

Applying the subordination formula that T}, = fooo Tu¢t,o(u)du and the Cauchy-
Schwartz inequality (40), we obtain

Pre(Thof, Thaf) < Thal'e (f, f). (50)

One can easily adapt the proof to get
Tu,ozFLo‘ (Tt,aTv,aga Tt,aTv,ag) S Tu,aTt,aFL"‘ (Tv,ozgv Tv,ag)a (51)

for all g € L since Ty.09, Tu.a|Tv.ag|> € D(L). Applying (43), we get (45) for T; 4.
Now, apply (40) to Iz« and a(s) = T f, du(s) = s70;¢t.q(s)ds; we get (46) from (33),
(24), and (51). O

2.3. BMO spaces associated with semigroups of operators

BMO spaces associated with semigroup generators have been intensively studied re-
cently (see [14]). In this article, we follow the ones studied in [24] and [28] because they
are defined in a pure semigroup language. Set

1
£ lbmo(rey = | Teal f12 = [ Teaf Pl (52)

sup
0<t<oo
1
IflleMorey = sup | Tvalf — Traf* e (53)
0<t<oco

for feL* 0<a<l.

We wish to define the space BMO(L%),0 < a < 1 so that it is a dual space and
L is weak* dense in it, to be consistent with the classical ones (where L§°(M) =
L>°(M)/kerL®). In [24] and [28], this is done by using a SOT- topology in the corre-
sponding Hilbert C* modulars. In this article, we prefer to use the following detour to
avoid introducing the theory of Hilbert C* modulars. Define, for g € L',
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gl pey = sup{[(f, 9)| : £ € L=, |fllBrowe), If | Bmo@sy < 1} (54)

Let HY(LY) = {g € L'; ||g||z: < oo}. For a net f) € L5°(M), we say fy converges in the
weak* topology if (fx,g) converges for any g € H*(L®). Let BMO(L®) be the abstract
closure of L (M) with respect to this weak* topology, that is the linear space of all
weak™® convergent nets fy € L§°(M). For a weak® convergent fy, let

[ lim fallBaroLey = sup  Hm(fx,g).
A lgll i<t A

It is easy to see that this coincides with (53) if limy f\ € L.
As an application of Corollary 2, we show that these BMO and bmo norms with
different 0 < a < 1 are all equivalent if we assume the I'2 > 0 criterion.

Lemma 8. Suppose L generates a weak™® continuous semigroup of positive contractions,
we have

CcQ

I fll Brocrs)y < E”f”BMO(L“)a (55)
4

I fll Brrocrs)y < m”f”bmo(Lﬁ)» (56)

for any 0 < B < a < 1. Assuming in addition that the semigroup Ty = e ™' satisfies the
I'2 > 0 criterion (45), we have that

I fllBaro=y = | fllomoczey = 1 flbmo(r)s (57)

for all 0 < B,a < 1. In particular,

c(1- a)QHfHBMO(La) < Hf”BZV[O(\/Z) < dfllBmocre), (58)
forall%<a<1.

Proof. The argument for (55) is the same as that for the second inequality of [24, The-
orem 2.6]. We sketch it here. By the Cauchy-Schwartz inequality,

—7@3 UM/@ —Ty.of)dv|?du

//¢t,é (V)T ol f = Toof*dudv.
0 0

It is easy to see that || Ty.o|f — To.of]?| < (1+|In %DHfHQBMO(LG)’ so we get (55) from
(26).
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For the rest of this proof, we use I" for I' s, T} for T} g and P; for T, s to simplify the

)

notation. Since T} has the quasi monotone property (37), we have

t2

T u\ K1 1
P = u¢t 1 ( )du Z (t—z) Tt2¢t1% (u)du Z Mth. (59)
0

0

We now prove (56). Note

ITe|f = Tef P = 1Tl = Tof 1 = ITof = T f1? + |Tof — T fP
<F = Tefllpmoqrey + ITef — TaefII*.
Let v = 9%1 and S = 2Ty — T'y¢. Then S is a unital completely positive map because of
(37). We have
ITof = Ty fI* +|Sf = Tif | = =2|T fI” + [T f* + [SFP?
—2|Tof? + Toel f* + SIfP?
=2|Tf|* + 23| f1?
< 2[ fllomors):

We get by the triangle inequality that
ITef = Torf|| < Kysup | Tsf = Tos fI| < V2K flbmo(rs)-

Therefore,

IfllBaowsy < \/4+2K3(| fllomo(rs)-

To prove (57), we note that the I'> > 0 assumption for L passes to L* by Lemma 7.
The inequality ||f|lpmo < (2 + v2||fllBrmo) is proved in [24, Proposition 2.4] assuming
the I > 0 criterion. Together with (56), we get || f||parore) = IIflomo(re)- We now
show the second equivalence in (57). Note,

t t 0o

/Tt,SI‘(TSP\/Zf)ds = O/TtSI‘ /qﬁ\/l(v)T T,fdv | ds

0

oo t

g/qsﬂu /Tt J(T, T, f)dsdv
0 0
t

(oo}
S /(ZS\/Z,Q /Tt+v f+v Tt+v f)de'U
0

0
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0o t+v
t+ t
w="""5 < / by g (V) / TypomuD (T, f)dsdv
0
(43) / 04 (7= (Topo | FI? = [T f )

t
< / 0t O ooy < 1Sz
0

We then have

(LI f? — | T f[?)2
<(T|f = Pyf? —|Tof = TP f1*)? + (| P f? — |ToP i f|2)2

1 5
< 100K (Ps|f — Pif|*)? + \/gfllbmo@ﬁ)

5
A0S+ 2 T
SO
<
I fllomocrsy < 1200K1||f||bm0(Lg)-
Therefore,
1Flmaros) < W0000KRIF ooy

Applying (55), we have || fl|parore) = || fllBmos) forall 0 < B,a < 1. O

Remark. The equivalence (57) fails for a = 1 in general. See Section 4, Example 2.
3. Imaginary powers and H °°-calculus
3.1. H*-calculus

Let us review some definitions and basic facts about H*°-calculus. We refer the readers
to [9,25,17] for details. For 0 < 8 < 7, let Sy be the following open sector of the complex
plane:

Sep={z€C,|argz| < 6}.

Recall that we say a closed operator A on a Banach space X is a sectorial operator
of type w < 7 if the spectrum of A is contained in S, the closure of S,,, and for any
O,w <0 <m,z¢ Sy, there exists ¢y such that
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l2(2 = A)7H| < cp.

We will assume that the domain of A is dense in X (or weak* dense in X when X is a
dual space). We may also assume that A has dense range and is one to one by considering
A+ e (see [25, Lemma 3.2, 3.5]).

Let H*(S,) be the space of all bounded analytic functions on S,, and H§°(S,) be the
subspace of the functions ® € H*(S,) with an extra decay property that

cl2"

|®(2)| < RENEER

for some ¢,r > 0. Then for any ® € H§°(S,), and 6 > 7,

P(A) = ! /cp(z)(zfA)*ldz (60)

211
e

is a well defined bounded operator on D(A) and its (weak*) extension is bounded on X.
Here 7 is the boundary of Sy oriented counterclockwise. For general ® € H>(S,)), set

®(A) = p(4)" (2¥)(A), (61)

with ¥(z) = i1z 1t turns out that the so defined ®(A) is a closed (weak™) densely
defined operator, which may not be bounded, and it coincides with ®(A) defined as in
(60) for ® € HG°(S,). Moreover, these definitions are consistent with the definitions in

the “older” functional calculus.

Definition 3. We say a (weak®) densely defined sectorial operator A of type w has
bounded H>(S))-calculus, w < n < m, if the map ®(A) extends to a bounded oper-
ator on X and there is a constant C' such that

[2(A)]| < Cll®@llmo=s,) (62)
for any bounded analytic function ® € H>(S,)).

Remark. Suppose a densely defined sectorial A has bounded H*°(S,)-calculus on Y
and suppose Y is a weak* dense subspace of a dual Banach space X. Then the weak*
extension of ®(A) onto X, still denoted by ®(A), is bounded and satisfies (62) with the
same constant. So a weak* dense sectorial operator A has H>-calculus on X if and only
if it has H°-calculus on the norm closure of D(A).

The negative infinitesimal generator L of any uniformly bounded (weak*) strong con-

tinuous semigroup on a dual Banach space X is actually a (weak*) densely defined
673

sectorial operator of type § and L® is of type % on X. Cowling, Duong, and Hiebe &
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Priiss ([8,12,19]) prove that the negative infinitesimal generator of a semigroup of pos-
itive contractions on L”,1 < p < oo always has the bounded H*(S,)-calculus for any
™

n > 5. One cannot hope to extend this to p = co. We will prove that the associated

BMO(v/L) space is a good alternative, as desired.

Lemma 9. Suppose A is a densely defined sectorial operator of type w < w/2 on a Banach
space X . Assume fooo Ae~t4a(t)dt is bounded on X with norm smaller than C for any
function a(t) with values in 1. Then A has a bound H*(S9) calculus for any 1 > m/2.

Proof. This is a consequence of [9, Example 4.8] by setting a(t) to be the sign of
(Te *Ty,v) for any pair (u,v) in a dual pair (X,Y). O

We are going to prove that the negative generator L of a semigroup of positive contrac-
tions satisfies the assumptions of Lemma 9. We follow an idea of E. Stein and consider
scalar valued functions a(t) such that

7 a(v —s)|?
3/%(1@ < é, (63)

for all s > 0 and some constant c,. Define M, by

()= [Pt ae— [arotiasa (64)
0

0

for f € L*°,0 < « < 1. For now, we assume a is supported on a compact subset of (0, c0)
so we do not worry about the convergence of the integration.

Lemma 10. Assume that L generates a weak® continuous semigroup of positive contrac-
tions on L™ satisfying the T2 > 0 criterion (}5). We have

cc

[Ma(f)llbmo(rey < ﬁ”f”bmo(ﬂ’), (65)

IMa(F)llmrowe) < =l o), (66)

IMa(P)lsrrowe < =g lflle, (67)
forany f e L>*,0<a<1.

Proof. We consider the case o > % only. The case a < % is easier and follows from

this case by subordination. Recall that the I'? > 0 assumption for L passes to L® by
Lemma 7, and Ty, o (L%°) C D(L?*®), L**T} o, = 82T} o. In this proof, we use I for ' the
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gradient form associated with L, T; for T} , and P; for T2 to simplify the notation.
Let r = ﬁ > 4. We have that

t

/Trts

0

S

oo

rt s /LavadU ds
rt—s

IN

/T /F (LT, f v?dv/vfgdvds
0 s

Tri_ g/ (LT, f) v?dv2s zds

25*%Tn_sdsF(Lava)v%dv

0\8 o
o\g

t/\v

Let S, = 2572 Ty_sds. So by Lemma 6 and the I'? > 0 criterion,

Tt

11Gmo =500 | [ Toue (T )ds
0
rt

sup/TTt_gF(Tgf)ds
t

0

IN

¢
= Slip?“/ rt—s (Tf)
0
<supr /SUF(LaTv)v%dv .
¢
So,

1
; ”Maf”gmo

IN
—
&
=
h

2
~
=
=3
U
S

= /SUF(TU/a(u)LQO‘Tufdu)v%dv
0 0

oo

= /Svl"(/ a(u)LQaTquyfdu)U%dv
0

0
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s [ 1
U§SUI‘(/ a(u — U)EuLmTufdu)dv

o0

2 oo
visv(/@du/F(uL“Tuf) du)dv
(%

v

(Inequality (40))

IA

§c§ /SU</F(uL2°‘Tuf) du)védv
0 v

oo uAt
=c2 //U%SUdUF(uLQQTuf)dU .
00

Note K; < r and SUPT>4(1+%,£1)T < ¢. By (37), we have, for u < t,

tAu tAu tAv

2 r
/’U%Svd’l)g /’U% /SiéTlJrTa(rt_u) <1—|——aril) dsdv
0

0 0

2 0.2
< CTrge gy t” A0’

Applying (46), we get

t uNt t

1 2 2 Top
v2 Sy dvl (uL™*TuTu f)du|| < er >
0 0

v? Spdvl' (T f)du

o\i
&

< er? /T<1+a>rt_HF(T%f)du
2 2
0

%
<o / T, (T, f)ds| < || |-
0

For o "t <u < a " 1t,n >0, we use

tAu tAu tAv r
/v%SvdUS /U% /257%Trt_t <T1) dsdv < ¢Tre_it® N u?.
r—
0 0 0
Similar to (46), we get T(u?L**Ty-nif) < cr?Toq-ni— I'(f) because 2= = -1+ <
a "t <1 So

2a"t—u

2
r
F(UL2aTa_"tTu—a_"tf)| < CETQQ_”'t—uI‘(Tu—a_"tf)
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Therefore,

a" " ltunt
1 20
/v?SvdUF(uL TuTu f)du
a~ "t

a—n—lt

t2 Au?
<ecr? / - Tro-nt—ul (Ty—a-ntf)du

>~ w2
a~ "t

a " (1—a)
= cria® / Ty T(T,f)ds
0

< er®a® || f[3mo-

Summing up for n > 0, we get

oo uAt
1 [e%
/v?SvdvF(uL2 TuTu f)du| < e | N7

t 0

Combining the estimates above, we conclude that

”Ma(f)Hbmo(La) < CCaTQHbemO(L")'
Applying (57), we actually get
| Mo ()l Brrowe) < ccar® | fllzrowe) < ccar®|| fllLos.

But we wish to get a better estimate. Note

(Tt - T2t)Ma(f) = a(S)as(TH-s - T2t+s)fd5

a(s —t)0s(Ts — Tyys) fds

‘*\8 0\8

Nf=

1
2 e’} 2

e’} t

2
/Mds /52 /83Tv+sfdv ds
t 0

t

IN

D=

o) t
<c¢g /82/|852Tv+5f|2d’0d8
t 0
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[e3e] t 2
) 25¢, _
oy (59) < g | [ 57 [ Tl P
t 0
Therefore
25¢
[(T% — To) M, ()IILw<( G)QIIfIILw
and hence

1Ma(Allroe) < 1Mafllomotzey +sup [[(Ty — Tor) Ma( )l < cr?cal fllz=. ©

Given f € L, g € H'(L*), let a(t) = sign(L®T} o f,g)a(t). Then a satisfies (63) if a
does. We have from Lemma 10 that

N
Jim / (a(t)LOT,.o f, g)\dt

N,M—o0
1

N
= N’lelgoo </a(t)L Tt7afdt,g>

1
M

CCa”M&fHBMo(La)”gHHl

/| LT, o f. g)dt
0

IA

IN

C,
u_iz)g"fHL""HgHHL

This shows that limy, a/— 00 f a(t) LT} o f, g)dt exists and f t) LTy o f dt weak*
converges in BMO(L®) as N, M — oo. So the integration in (()4) Weak* converges and
M, is well defined for all f € L* and a(t) satisfying (63). The weak* extension of M,
is then a bounded map from BMO(L®) to BMO(L®).

Theorem 2. Suppose a(t) satisfies (63). M, extends to a bounded operator from BMO(L®)
to BMO(L®) for 0 < o < 1. The estimates are as in Lemma 10.

Theorem 3. Suppose Ty = e *F is a weak* continuous semigroup of positive contractions

on L satisfying the T? > 0 criterion. Then L has a complete bounded H>(S,) calculus
on BMO(\L) for any n > 5

Proof. Given a € (3,1), let Y be the norm closure of D(L) in BMO(L®). It is easy to
check that T3 o = e 'L" are contractions on Y. Then L is a densely defined sectorial
operator of type 7 in Y*. Lemma 9 and Lemma 10 imply that L* has a bounded H>(S,,)
calculus on Y* for any n > 7. Note ®(z) = U(za) € Sy if ¥ € S and ®(L*) = V(L).

We conclude that L has a bounded H*°(S,) calculus on Y for any n > g-. Given
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0 > Z, choose 3 < o < 1 so that af > Z. Then L has a bounded H>(Sy) calculus on
Y. Lemma 8 then implies that L has a bounded H>(Sp) calculus on Y2 ~ Y and
on BMO(VL) for any § > Z, since Y2 is weak * dense in BMO(v/L) and ®(L) is the
weak* extension of its restriction on Y2 by definition. The same argument applies to

id ® L. We then obtain the completely bounded H>(S,) calculus as well. O
3.2. Imaginary Power and Interpolation

Given 0 < o < 1, choose § < 6 < 5. By (61), we have the identities

Loe " = %w(L)*l/zaw(z)e%za (z — L) 'dz, (68)
T
Yo
s __ L —1 s _ —1

L = (i) / 952 (2 — L)~ de. (69)

e

Note
21 =T(1 —is)™? /t_isz“e_tza dt. (70)
0

Since these integrals converge absolutely, we can exchange the order of the integrations
and get

Li** =T(1 —is)~! /t*“L%*t”dt. (71)
0
The inequality (67) of Lemma 10 implies that

Cc

mr(l —is) | fll oo

||Lmsf||BM0(La) <
Thus for a > %,

18 . S8 -1
1L fllpoe < el (1=i2) £l

c

o (22)
< e () W~

for s large, we get

|s]
ls]+1

Choosing « =

mls

IL* fll amo(rey < e(1+ |5|)% exp (T) | fll oo (72)
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The same estimate holds with bmo(L®)-norms putting on both sides of (72) because
we can apply the same argument to (65) of Lemma 10 instead of (67). Applying the
inequality (55) to (72), we get

is 3 TS
12 o < (141D exo (T ) 1= (73)

Applying the inequalities (66), (58) instead of (67), (55), we will have similarly

mls|

is 9
12 lpssorvm < o+ 1D e (T2L) 1 lLpnsormy ()

Definition 4. We say a weak™ continuous semigroup of positive contractions is a symmet-
ric Markov semigroup if (T f, g) = (f,Tyg) for f € L=, g € L' and it admits a standard
Markov dilation in the sense of [24, page 717].

Remark. The Markov dilation assumption in the above definition holds automatically
in many cases. In the commutative case (i.e. the underlying von Neumann algebra
M = L*(M)), this is due to Rota (see [34, page 106, Theorem 9]). Therefore every
weak* continuous semigroup of unital symmetric positive contractions is automatically
a symmetric Markov semigroup. In [33] it is proven that this is the case for convolution
semigroups on group von Neumann algebras. In [10,22] it is proven that this holds for
the finite von Neumann algebras case. The case of a general semifinite von Neumann
algebra is conjectured but there has not been a written proof.

Lemma 11. ([JM12]) Assume that Ty = e ** (e.g. A = L%) is a symmetric Markov
semigroup on a semifinite von Neumann algebra M. Then, the following interpolation
result holds

[BMO(A), Ly(M)]s = L§(M)

8=

for 1 < p < oo. Here LE(M) = LP(M)/ker A.

Since || L%||2_, 2 = 1 if L generates a symmetric Markov semigroup, by interpolation,
we get from (73) the following result.

tL

Corollary 3. Suppose Ty = e~ ** is a symmetric Markov semigroup of operators on a

semifinite von Neumann algebra M and satisfies the T2 > 0 criterion. Then, L has the
completely bounded H(S,)-calculus on LP for any n > w, = |§ — %|, 1<p<ooand

VL rs e < o1+ [s]) 53 exp (|”—s - ”—ﬂ) , (75)

foralll <p< .
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Remark. Let us point out that the left-hand side of the inequality on [24, line 4, page
728] misses a “1”. It should be L% f|| instead of ||[L% f]|, because Theorem 3.3 of [24]
is for the semigroup generated by v/L. So the estimate of the constants Cs,p given in
[24, Corollary 5.4] is not correct. Also [21] contains a similar estimate to (75) without
assuming the I'2 > 0 criterion. Their method is the transference principle and works for
LP only.

Junge, Le Merdy, and Xu ([25]) studied the H-calculus in the noncommutative
setting. In particular, they prove a H°(S,)-calculus property of L : A\, — |g|Ay on

A~ A

LP(Fy) for all 1 < p < oo,n >[5 — 7| Here LP(IF,) is the noncommutative LP-space

associated with the free group von Neumann algebra.
4. Examples

The “I'2 > 0” criterion is known to be satisfied by a large class of semigroups including
the heat, Ornstein-Uhlenbeck, and Jacobi semigroups (see [2]). The results proved in this
article apply to all of them. The main example in the noncommutative setting, is the
semigroup of operators on a group von Neumann algebra, generated from a conditionally
negative function on the underlying group (see Example 4). We will analyze a few of them
in the following.

Example 1. Let —L = A be the Laplace-Beltrami operator on a complete Riemannian
manifold with nonnegative Ricci curvatures. Then the associated heat semigroup T3 =
e tl g symmetric Markovian and satisfies the I'> > 0 criterion. All the theorems of this
article hold for L, and it has bounded H>(S,) calculus on BMO(V/L) for any n > Z.
In the special case that L = —9? the Laplacian on Euclidean space R", the BMO(L),
bmo(L), and BMO(v/L) spaces are all equivalent to the classical BMO space of all

functions f € L'(R", ﬁdw) with a finite BMO norm,

1
Iflmo@n) = sup (Ep|f — Epf|*)? < oo.
BCR»

Here the supremum runs on all balls (or cubes) in R™ and Fp = \_él J p fdz denotes the
mean value operator. This can be verified by the integral representation of T3, T} 1 the
convexity of | -|? and the fact that |Epf — Expf| S log k|| f| smon)- By Lemma 8 we
then get the equivalence between BMO(R™) and BMO(L?) for all 0 < « < 1.

Example 2. Let L = 9, on R. Then T; = e~ ¥ is the translation operator sending f(-) to
f(-—1t). It is a Markov semigroup and the I'? > 0 criterion holds trivially. The BMO(L)
space is equivalent to L5 and the bmo(L) (semi)norm vanishes. For any 0 < a < 1,
BMO(L®) is equivalent to the classical BMO(R"™) space. Indeed, by the subordination

formula, we get the following integral representation for T} 1= e tVL,
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(oo}
1 t2
T f(z) = m/f(x - s)te‘ﬂs_%ds.
0
From this, it is easy to check that, for I, ; = [z — 2’” okt Tk eN,

B, |fI < T 4 U fl(e <CZ? SEL L f]

After an elementary calculation and using the fact that

|Epf — Expf| S logkl fll Barony,

one can see that || - || prrovz) = | - IBao®n), thus || - [Bvore) = || - [[Bmo@n) for all
0 < a <1 by Lemma 8.

By Theorem 3, L has H*(S,)-calculus on BMO(VL) ~ BMO(R") for any n > %
It is easy to see that

L' =Pe 3" A% + P_eT A%,
So L does not have H*(Sy)-calculus on BMO(L) ~ L*°(R)/C for any positive 6 and

i =|s| is
IL* || Brossrmo ~ e 2 |A% || BvossBro

for |s| large. This indicates that it is better to consider BMO(v/L) instead of BMO(L)
for the purpose of this article.

Example 3. Let —L = %3 — - J; be the Ornstein-Uhlenbeck operator on (R™, e"$‘2da:).
Let Oif = Oi1 = e tl. O is a symmetric Markov semigroup with respect to the
Gau551an measure dp = e ~l2I” 42 and satisfies the I'2 > 0 criterion. Theorem 3 says that
L =—% + 10, has bounded H>(S,)-calculus on BMO(V/'L) for any n > Z.

Maucerl and Meda (see [31]) introduced the following BMO space for the Ornstein-
Uhlenbeck semigroup

IflBromany = sup  (E4|f — E4f)3, (76)

7'B§min{1,ﬁ}

with rg,cp the radius and the center of B, and Eg’ = ﬁf-d/i the mean value
operator with respect to the Gaussian measure du. Note, for the balls B satisfying
rp < min{1, o |} we have the equivalence E';|f| ~ Eg|f|. One may replace E;, by Ep,
the mean value operator with respect to the Lebesgue measure dz in (76). The resulted
BMO norms are equivalent to each other. From the integral presentation

0uf) = gy [ (<2220 st (7
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one easily see that, for ¢t < 4 and V/t|z| < 1,

2
E— % / eXp< 2 e_g/lt)f(y)dy

> Cp B(z,\/{)|f|($)~ (78)

Ol f(z) >

Note EB(w,\/IZ)|f‘ < cnEpa, )l f| for all t < s < 2t. We then have from (78) that, for
O 1 = e 2 ¢ <1, tx <1,

42
0,4 If1( / O.lf|(x b= < / Olf1(@)ds > enEnon|f1().

We then easily get

4010l = Oraf (@) Z enEy 2 If =By f@)P (@), (79)

by the convexity of | - |2, for a = %, 1. Therefore,

|| ||BMO(MM)§|| ||BMO(L) || ”bmo(L || ”BMo(f)v

and by Lemma 8§,
Il - IBaronry S - llBaone)

for all 0 < a < 1. By Theorem 3, the Ornstein-Uhlenbeck operator L = ——2 +x -0, has
bounded H>(S, ) calculus from L (R™) to Mauceri-Meda’s BMO(M M) for any n > 3.

Let f(y) = \/E exp(— ‘y‘ —), with s > 100. We have

(Ol fI* = 10ef1?) (&

()
1 . ( e m|2> 1 . ( e tx2>
4/ (s + 2v)s P25+ a0 47(s +v) P\ 25+ 20

( 1 1 e ( le=tz|? )
— — X —_
dr/(s +2v)s  4m(s+wv) P 25 4+ 4v

N 1 le=tz|? le~tx|?
——|exp | — —exp | —
47 (s + v) P\T s 1w P\ 7520

SS+35
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1 le~ta|? 1 _le=?2?

(Ouf = Oaf) (@) = — e it — o™ il

VA (s +v) 4m(s +v')

For 2% = €?!(4s + 4v),t = 10, we get

B 1 e S S
(0 = O f)@)| 2 |7t ™ = e ™
1 1

> .
T2 /An(s+ ) 10y/s

So,

S
50 2 110 = Ol 2 L lumotsy

Therefore, the BMO(L) and bmo(L)-norms are not equivalent for the Ornstein-
Uhlenbeck semigroup, by letting s — oo. This shows that one can not extend Lemma 8
to the case of a = 1.

Example 4. Let (G, i) be a locally compact unimodular group with its Haar measure.
Let Ay, g € G be the translation-operator on L?(G) defined as

Ag(f)(h) = (g™ h).

~

The so-called group von Neumann algebra L>(G) is the weak* closure in B(Ly(G)) of
the operators f = [ f(g))\gd,u(g) with f € C.(G). The canonical trace 7 on L>=(Q3) is
defined as 7f = f(e). If G is abelian, then L>°(G) is the canonical L space of functions
on the dual group G. In particular, if G = Z, the integer group, then Ay = e’** k € Z
and LP(Z) = LP(T), the function space on the unit circle. Please refer to [32] for details
on noncommutative LP spaces.

Let ¢ be a scalar valued function on G. We say ¢ is conditionally negative if p(g~t) =

¢(g)* and

Y @ganelgh) <0 (80)
g,h

for any finite collection of coefficients a, € C with Zg ag = 0. Schoenberg’s theorem
says that

Tt : Ag = e_t“’(g)/\g
extends to Markov semigroups of operators on the group von Neumann algebra L>(G) if
and only if ¢ is a conditionally negative function with ¢(e) = 0. The negative generator
of the semigroup is the unbounded map
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L:X;—=p(g9)Ag
which is weak* densely defined on L>(G).

Let K, (g,h) = 3(¢(g) + ¢(h) — ¢(g7*h)), the Gromov form associated with ¢. Then
one can directly verify from (80) that K, is a positive definite function on G x G. Thus
K «29 is a positive definite function too. This is equivalent to the I'> > 0 criterion for T},
and therefore Theorem 3 applies to all such (T3);’s. If in addition, ¢ is real valued, then
(T}) is a symmetric Markov semigroup. We then obtain the following corollary.

Corollary 4. Let G be a locally compact unimodular group. Suppose ¢ is a conditionally
negative function on G with p(e) = 0. Let L be the weak* densely defined linear map on
L>=(G) such that L(\g) = p(g)A,- Then,

(1) For anyn > % and any bounded analytic ® on S, the map ®(L) : Ag = P(p(9))Ag
extends to a completely bounded operator on BMO(V'L) and | ®(L)|| < Cy)|®||co-

(ii) Suppose in addition that ¢ is real valued. If ® is a bounded analytic function on

Sy with n > |5 — % , then the map ®(L) extends to a completely bounded operator on

LP(G) for1 < p < co.

Remark. Corollary 4 (i) was proved in [29] for L : Ay — \/¢(g)A\g with ¢ a symmetric
conditionally negative function on G.

Example 5. Let G = F, be the nonabelian free group with a countably infinite number
of generators. Let |g| be the reduced word length of ¢ € G. Then ¢ : g — |g| is a
conditionally negative function (see [18]) and L : A\, — |g|\, generates a symmetric
Markov semigroup on the free group von Neumann algebra. Fix 6 € (5,7), let ®(2) =
(In(z +2))~! for z € Syg. Then ® € H*(Sy). Corollary 4 then implies that the Fourier
multiplier

1
Ag — ————=A
? In(lgl+2)77

extends to a bounded operator on BMO(\/E). By the interpolation result Lemma 11, we

A

conclude that this multiplier is bounded on LP(F.,) with constant < ppTQI.

This produces a slowly decreasing multiplier which is bounded on LP(F.) for all
1 < p < oo. Note that Bozejko and Fendler disproved the uniform LP boundedness of
the £1-length projections Py, that map Ay to X{g:|g/<N}Ag, for all p > 3 (see [6]). So the
classical method of producing slowing decreasing LP-multipliers through Py fails on free

groups.
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