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We prove that the negative generator L of a semigroup of 
positive contractions on L∞ has bounded H∞(Sη)-calculus 
on the associated Poisson semigroup-BMO space for any angle 
η > π/2, provided L satisfies Bakry-Émery’s Γ2 ≥ 0 criterion. 
Our arguments only rely on the properties of the underlying 
semigroup and work well in the noncommutative setting. 
A key ingredient of our argument is a type of quasi monotone 
properties for the subordinated semigroup Tt,α = e−tLα

, 0 <
α < 1, that is proved in the first part of this article.

© 2019 Elsevier Inc. All rights reserved.

Introduction

Let Δ = −∂2
x be the negative Laplacian operator on Rn. The associated Poisson 

semigroup of operators Pt = e−t
√

Δ, t ≥ 0 has many nice properties that make it a 
very useful tool in the classical analysis. In particular, the Poisson semigroup has a quasi 
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monotone property that there exist constants cr,j such that, for any nonnegative function 
f ∈ L1(Rn, 1

1+|x|2 dx),

|tj∂j
tPtf | ≤ cr,jPrtf, (1)

for any 0 < r < 1, j = 0, 1, 2, .... As a first result of this article, we show that the 
quasi monotone property (1) extends to all subordinated semigroups Tt,α = e−tLα for 
all 0 < α < 1 if L generates a semigroup of positive preserving operators on a Banach 
lattice X. The case of 0 < α ≤ 1

2 is easy and is previously known because of a precise 
subordination formula (see e.g. [28,24]). This type of quasi-monotonicity has been a 
useful tool in proving certain functional inequalities (see [16,28,24,23]).

Functional calculus is a theory of studying functions of operators. The so-called 
H∞-calculus is a generalization of the Riesz-Dunford analytic functional calculus and 
defines Φ(L) via a Cauchy-type integral for an (unbounded) sectorial operator L and 
a function Φ that is bounded and holomorphic in a sector Sη of the complex plane. 
L is said to have the bounded H∞-calculus property if the so-defined Φ(L) extend to 
bounded operators on X and ‖Φ(L)‖ ≤ c‖Φ‖∞ for all such Φ’s. The theory of bounded 
H∞-calculus has developed rapidly in the last thirty years with many applications and 
interactions with harmonic analysis, Banach space theory, and the theory of evolution 
equations, starting with A. McIntosh’s seminal work in 1986 (see [1], [7], [20], [27], [17], 
[26], [35]).

It is a major task in the study of the bounded H∞-calculus theory to determine which 
operators have such a strong property. Cowling, Duong, and Hieber & Prüss ([8,12,19,
15,30]) prove that the infinitesimal generator of a semigroup of positive contractions on 
Lp, 1 < p < ∞ always has the bounded H∞(Sη)-calculus on Lp for any η > π

2 . When the 
semigroup is symmetric, the angle can be reduced to η > ωp = |π2 − π

p | by interpolation. 
It is not surprising that this result fails for L∞ in general. One may want to seek a 
BMO-type space that could be an appropriate alternative for the p = ∞ case.

The main theorem of this article states that the negative generator L of a semi-
group of positive contractions on L∞ always has bounded H∞(Sη)-calculus on the space 
BMO(

√
L) for any η > π

2 , provided L satisfies Bakry-Émery’s Γ2 criterion. Junge and 
Mei attempted to prove this result (see Theorem 3.3 of [24]) under the same assumptions, 
but only managed to obtain a bounded H∞(Sη) (η > π

2 ) calculus result for 
√
L, instead 

of L. This is due to the fact that Lemma 3.2 and Theorem 3.3 of [24] are proved only 
for the operator Ma defined for the subordinated Poisson semigroup Pt = e−t

√
L. The 

unknownness of the quasi-monotonicity for general subordinated semigroups e−tLα was 
a major obstacle that prevented Junge and Mei from reaching further. Please note that 
L is incorrectly written in place of 

√
L in the proof of Corollary 5.4 in [24]. Its corrected 

version is proved in this article as Corollary 3.
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The classical BMO norm of a function f ∈ L1(Rn, 1
1+|x|2 dx) can be defined as

‖f‖BMO(
√

Δ) = sup
t>0

∥∥∥∥e−t
√

Δ
∣∣∣f − e−t

√
Δf

∣∣∣2∥∥∥∥
1
2

L∞
. (2)

BMO spaces associated with semigroup generators have been intensively studied recently 
(e.g. [14,13,11] and the subsequent works). When a cubic-BMO is available, one can 
often compare it with the semigroup BMO and they are equivalent in many cases. In 
this article, we consider the BMO(

√
L)-(semi)norm studied in [24,28], which are defined 

similarly to (2), merely replacing Δ with the semigroup generator L. The corresponding 
space BMO(

√
L) interpolates well with Lp-spaces when the semigroup is symmetric 

Markovian (see Lemma 11).
Under the assumptions of our main theorem, we also study semigroup-BMO spaces 

BMO(Lα), 0 < α < 1 and prove that they are all equivalent. We further prove that the 
imaginary power Lis is bounded on the associated semigroup-BMO space BMO(Lα)
with a bound � (1 + |s|)| 32 | exp(| |πs|2 |) (see (72), (75)). This complements Cowling’s 
Lp-estimate (see [8, Corollary 1]) and fixes a mistake in [24] (see the Remark at the end 
of Section 3).

The related topics and estimates on semigroup generators have been studied with 
geometric/metric assumptions on the underlying measure space. This article is from a 
functional analysis point of view and tries to obtain a general result by abstract argu-
ments. Cowling and Hieber/Prüss’s method for their H∞-calculus results on Lp is based 
on the transference techniques of Coifman and Weiss, which does not work for non-UMD 
Banach spaces, such as BMO. Our method is to consider the fractional power of the gen-
erator to take advantage of the quasi-monotone property (1). Our argument works well 
for the noncommutative case, that is for L that generates a semigroup of completely 
positive contractions on a semifinite von Neumann algebra.

We analyze a few examples to illustrate our results and demonstrate their applications 
to Fourier multipliers on non-classical Lp spaces at the end of the article. We use c for 
an absolute constant which may differ from line to line.

1. The complete monotonicity of a difference of exponential power functions

A nonnegative C∞-function f(t) on (0, ∞) is completely monotone if

(−1)k∂k
t f(t) ≥ 0

for all t. Easy examples are f(t) = e−λt for any λ > 0. It is well-known that completely 
monotonicity is preserved by addition, multiplication, and taking pointwise limits. So 
the Laplace transform of a positive Borel measure on [0, ∞), which is an average of e−λt

in λ, is completely monotone. The Hausdorff-Bernstein-Widder Theorem says that the 
reverse is also true; namely that a function is completely monotone if and only if it is the 
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Laplace transform of a positive Borel measure on [0, ∞). In particular, gs(t) = e−stα is 
completely monotone and is the Laplace transform of a positive integrable C∞ function 
φs,α on (0, ∞) for all s > 0, 0 < α < 1.

e−stα =
∞∫
0

e−λtφs,α(λ)dλ =
∞∫
0

e−s
1
α λtφ1,α(λ)dλ. (3)

The function φs,α is uniquely determined by the inverse Laplace transform

φs,α(λ) = s−
1
αφ1,α(s− 1

αλ) = L−1(e−szα

)(λ) = 1
2πi

σ+i∞∫
σ−i∞

ezλe−szα

dz, (4)

for σ > 0, λ > 0. The derivative ∂sφs,α is again an integrable function (see e.g. [36, page 
263]), and

−tαe−stα =
∞∫
0

e−λt∂sφs,α(λ)dλ. (5)

The properties of φs,α are important in the study of the fractional powers of semigroup 
generators.

The goal of this section is to prove a few pointwise inequalities for φs,α, which will be 
used in the next section. For that purpose, we first prove the complete monotonicity of 
several variants of e−stα .

For k, n ∈ N, 1 ≤ k ≤ n, let a(n)
k be the real coefficients in the expansion

dn

dtn
e−tα = (−1)n

n∑
k=1

a
(n)
k t−n+kαe−tα .

It is easy to see that

dn

dtn
e−ctα = (−1)n

n∑
k=1

cka
(n)
k t−n+kαe−ctα .

Convention: We define a(n)
k = 0 if k > n or k ≤ 0.

The proof of the following lemma is simple and elementary. We leave it for the reader 
to verify.

Lemma 1. The a(n)
k ’s satisfy the relation

a
(n+1)
k = (n− kα)a(n)

k + αa
(n)
k−1 (6)

for all k ∈ Z, n ∈ N.
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Lemma 2. Let Ki, i = 1, 2 be the first integer m such that m
m+i ≥ α. Then, for all 

j ∈ Z, n ∈ N, we have

a
(n)
k+j − (j + 1)a(n)

k+j+1 ≥ 0 if k ≥ K1 (7)

(j + 1)(a(n)
k+j+1 − (j + 2)a(n)

k+j+2) ≤ a
(n)
k+j − (j + 1)a(n)

k+j+1 if k ≥ K2 (8)

Proof. We only need to prove the case j ≥ 0. Let D be the right derivative for discrete 
functions: Df = f(j+1) −f(j). It is easy to see that the product rule holds D(jf)(j) =
jDjf(j) + f(j + 1). Fix k ∈ Z. Let

fn(j) = a
(n)
k+jj! (9)

for j ≥ 0, where we use the convention that 0! = 1. By (6), we have

fn+1(j) = (n− (k + j)α)fn(j) + αjfn(j − 1),

for all j ≥ 1 and fn+1(0) = (n − kα)fn(0) + αa
(n)
k−1. Taking the discrete derivative on 

both sides, we get

Dfn+1(j) = (n− (k + j)α)Dfn(j) − αfn(j + 1) + αjDfn(j − 1) + αfn(j)

= (n− (k + j + 1)α)Dfn(j) + αjDfn(j − 1), (10)

for j ≥ 1 and Dfn+1(0) = (n − (k + 1)α)Dfn(0) − αa
(n)
k−1. By induction, we get

Difn+1(j) = (n− (k + j + i)α)Difn(j) + αjDifn(j − 1), (11)

for all i ≥ 1, j ≥ 1 and Difn+1(0) = (n − (k + i)α)Difn(0) + (−1)iαa(n)
k−1.

Let k = K1 in (9). Note that the condition Dfn(j) ≤ 0 trivially holds for n ≤ K1 + j

because a(j)
i = 0 for i > j. In particular, Dfn(j) ≤ 0 for all j ≥ 0, n = K1. We apply 

induction on n. Assume Dfn(j) ≤ 0 holds for all j ≥ 0. The equality (10) implies that 
Dfn+1(j) ≤ 0 for all j ≥ 0 satisfying n ≥ (K1 +j+1)α, which holds if n +1 ≥ K1 +j+1
since n

n+1 ≥ α. On the other hand, if n + 1 ≤ K1 + j we have Dfn+1(j) ≤ 0 trivially. 
So Dfn+1(j) ≤ 0 for all j ≥ 0. Therefore, Dfn(j) ≤ 0 and equivalently (7) holds for all 
n ∈ N, j ≥ 0.

The argument for (8) is similar. Let k = K2 in (9). Note that D2fn(j) ≥ 0 is equivalent 
to (8) for j ≥ 0, which trivially holds for n ≤ K2 + j since K2 ≥ K1 and a(n)

K2+j − (j +
1)a(n)

K2+j+1 ≥ 0. In particular, (8) holds for n = K2, j ≥ 0. Assume that (8) holds for 
n = m, j ≥ 0. We consider the case n = m + 1. If n = m + 1 ≤ K2 + j, (8) holds 
trivially. Otherwise, m + 1 ≥ K2 + j + 1 and by applying (11) we see that D2fn+1 ≥ 0. 
By induction, (8) holds for all n ∈ N, j ≥ 0. �
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Remark. The argument of the previous lemma shows that (−1)iDifn(j) ≥ 0 for all 
n ∈ N, j ≥ 0 if we choose k so that k

k+i ≤ α.
For a fixed K ≥ K1, let

Fn(x) = x−K
n∑

j=1
a
(n)
j xj =

∞∑
j=−∞

a
(n)
K+jx

j , (12)

and for a fixed K ≥ K2, let

Gn(x) = x−K
n+1∑
j=1

(a(n)
j−1 − (j −K)a(n)

j )xj−1 =
∞∑

j=−∞
(a(n)

K+j−1 − ja
(n)
K+j)x

j−1. (13)

Lemma 3. Let f(x) = Fn(x), or Gn(x) for the given suitable K. We have (f(x)e−x)′ ≤ 0
and f(x + rx) ≤ erxf(x) for all r, x > 0.

Proof. It is easy to see that f(x) − f ′(x) ≥ 0 for x > 0 by Lemma 2. So (f(x)e−x)′ =
(f ′ − f)e−x ≤ 0 and hence f(x + rx) ≤ erxf(x) for r > 0. �

We now come to the main result of this section.

Theorem 1. Let 0 < α, c < 1, and s ≥ 0 be fixed. Then

(i) e−cstα − cK1e−stα is completely monotone in t.
(ii) K1e

−stα + stαe−stα is completely monotone in t.
(iii) 1

cK2 (1−c)e
−cstα − stαe−stα is completely monotone in t.

(iv) (max{ jK1
cK1 , 

j
cK2 (1−c)})

je−cstα ± sjtjαe−stα are completely monotone in t for any 
j ∈ N.

Proof. By dilation, we may assume s = 1. We prove (i) first. Let x = tα and Fn be as 
in 12,

dn

dtn
e−tα = (−1)nt−n

n∑
k=1

a
(n)
k xke−x = (−1)nt−n+Kαe−xFn(x)

and

dn

dtn
e−ctα = (−1)nt−n

n∑
k=1

cka
(n)
k xke−xe−rx = (−1)nt−n+KαcKe−cxFn(cx). (14)

Applying Lemma 2 and Lemma 3 to Fn gives us

dn

dtn e
−ctα

dn −tα
≥ cK ,
dtn e
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for any K ≥ K1. This implies (i) since e−tα is completely monotone for any 0 < α ≤ 1.
We now prove (ii). Let g(s, t) = e−stαs−K1 . Then −∂sg(s, t), is the limit of the family 

of functions

1
sK1+1(c− 1)(e−stα − c−K1e−cstα)

as c → 1, which are completely monotone in t by (i). So

K1e
−stα + stαe−stα = −sK1+1∂sg(s, t)

is completely monotone in t.
For (iii), we denote by f (n)(t) = ∂n

t f(t) and, for K ≥ K2 ≥ K1, write

(tαe−tα)(n) + K(e−tα)(n) = − 1
α

[t(e−tα)′](n) + K(e−tα)(n)

= − 1
α

[t(e−tα)(n+1) + n(e−tα)(n)] + K(e−tα)(n)

= (−1)nt−n

α

[ ∞∑
k=1

(a(n+1)
k − (n−Kα)a(n)

k )tkαe−tα

]

= (−1)nt−n

[ ∞∑
k=1

(a(n)
k−1 − (k −K)a(n)

k )tkαe−tα

]

= (−1)nt−n+Kα

[ ∞∑
k=−∞

(a(n)
K+k−1 − ka

(n)
K+k)t

kαe−tα

]

= (−1)nt−n+Kαxe−xGn(x) (15)

with x = tα and Gn(x) defined as in 13, which depends on K. Lemma 3 says that 
Gn(x)e−x deceases in x if K ≥ K2 and note that Gn(x)e−x = −(Fn(x)e−x)′ ≥ 0. We 
have

xGn(x)e−x ≤ 1
(1 − c)

x∫
cx

Gn(s)e−sds

= 1
(1 − c)

x∫
cx

−(Fn(s)e−s)′ds

≤ 1
(1 − c)Fn(cx)e−cx,

for 0 < c < 1. Combining this inequality with (14) and (15) we get

(−1)n dn

dtn (tαe−tα + K2e
−tα)

n dn −ctα
≤ 1

cK2(1 − c) .
(−1) dtn e
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This proves (iii) since e−ctα and e−tα are completely monotone.
For (iv), let f(t) = max{ K1

cK1 , 
1

cK2 (1−c)}e
−cstα , g(t) = stαe−stα . By (i), (ii) and (iii) 

we have that both f + g, f − g are completely monotone in t. Recall that complete 
monotonicity is preserved by multiplication. Note that

f j+1 + gj+1 = 1
2[(f j − gj)(f − g) + (f j + gj)(f + g)]

f j+1 − gj+1 = 1
2[(f j − gj)(f + g) + (f j + gj)(f − g)].

We get, by induction, that (max{ K1
cK1 , 

1
cK2 (1−c)α})

je−jcstα − sjtjαe−jstα is completely 
monotone for any s > 0, which implies (iv). �

We will apply Theorem 1 to pointwise estimates of φs,α(λ). Let us first list a few basic 
properties of φs,α.

Lemma 4. For any s > 0, 0 < α, β < 1, we have

φs, 12
(λ) = 1

2
√
π
se−

s2
4λλ− 3

2 . (16)

φ1,αβ(λ) =
∞∫
0

φs,α(λ)φ1,β(s)ds. (17)

φs,α(λ) = s−
1
αφ1,α(s− 1

αλ), (18)

−αs∂sφs,α(λ) = φs,α(λ) + λ∂λφs,α(λ). (19)

Proof. (16) is well-known (see e.g. [36], page 268). (17), (18) can be easily seen from (3)
and (4). (18) implies (19). �
Corollary 1. For all λ, s > 0, 0 < c < 1, j ∈ N, we have

cK1φs,α(λ) ≤ φcs,α(λ) (20)

0 ≤ ∂λ(λ1+αK1φs,α(λ)), (21)

|sj∂j
sφs,α(λ)| ≤

(
max

{
jK1

cK1
,

j

cK2(1 − c)α

})j

φcs,α, (22)

|s∂sφs,α(λ)| ≤
(

10
1 − α

)
φαs,α(λ), (23)

|sj∂j
sφs,α(λ)| ≤

(
10j

1 − α

)j

φαs,α(λ). (24)
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Proof. These are direct consequences of Theorem 1, the identity (3), and the Hausdorff-
Bernstein-Widder Theorem because Ki ≤ i

1−α , except that (21) requires a little more 
calculation. To prove (21), note that (5) and Theorem 1 (ii) imply that

∂s
φs,α(λ)
sK1

= −s−K1−1(K1φs,α(λ) − s∂sφs,α(λ)) ≤ 0.

Since φs,α(λ) = s−
1
αφ1,α(s− 1

αλ), we get

−
(

1
α

+ K1

)
s−

1
α−K1−1φ1,α(s− 1

αλ) − 1
α
s−

1
α−1λs−

1
α−K1(∂λφ1,α)(s− 1

αλ) ≤ 0.

That is

(1 + K1α)φ1,α(s− 1
αλ) + λs−

1
α (∂λφ1,α)(s− 1

αλ) ≥ 0.

Therefore

(1 + K1α)φs,α(λ) + λ∂λφs,α(λ) ≥ 0,

since ∂λφs,α(λ) = s−
2
α ∂λφs,α(s− 1

αλ). This is (21). �
Lemma 5. For any s > 0, 0 < β < α < 1, we have that

∞∫
0

∣∣∣ln(
s−

1
αu

)∣∣∣φs,α(u)du <
c

β
. (25)

∞∫
0

∞∫
0

∣∣∣ln(u
v

)∣∣∣φs,α(u)φs,α(v)dudv <
c

β2 . (26)

Proof. Since φs,α(u) = s−
1
αφ1,α(s− 1

αu), the left hand side of (25) is independent of s. 
We only need to prove the case s = 1. For α = 1

2 , we can verify directly from (16) that 
(25) holds. Denote by u(α) the left hand side of (25). We then get u(1

2 ) < ∞. Using (17), 
we get u( 1

2n ) < ∞. Now, for α > 1
2n , we use (17) again and get

φ1, 1
2n

(λ) =
∞∫
0

φs,α(λ)φ1, 1
α2n

(s)ds

≥
1∫

0

φs,α(λ)φ1, 1
α2n

(s)ds

(by (20)) ≥ φ1,α(λ)
1∫
sK1(α)φ1, 1

α2n
(s)ds
0



T. Ferguson et al. / Advances in Mathematics 347 (2019) 408–441 417
≥ cαφ1,α(λ).

We conclude that u(α) < ∞ for all 0 < α < 1. Since φ1,α(λ) is continuous as a function 
in α and this continuity is uniform for λ ∈ [δ, N ] for any 0 < δ < N < ∞, one can easily 
see that u(α) is continuous in α for α ∈ (0, 1). We conclude that u(α) is bounded on 
[ 1
2n , 12 ] for any n ∈ N. Note that (17) also implies that

∞∫
0

φ1,αβ(λ)| lnλ|dλ

=
∞∫
0

∞∫
0

φs,α(λ)| lnλ|dλφ1,β(s)ds

=
∞∫
0

∞∫
0

φ1,α(v)| ln(s 1
α v)|dvφ1,β(s)ds

≥ ±
∞∫
0

∞∫
0

φ1,α(v)( 1
α
| ln s| − | ln v|)dvφ1,β(s)ds (27)

(
≤

∞∫
0

∞∫
0

φ1,α(v)( 1
α
| ln s| + | ln v|)dvφ1,β(s)ds

)
(28)

Our change in the order of integration is justified because all the terms are positive. Note ∫∞
0 φt,α(s)ds = 1 for any t, α. (27) and (28) imply that

|u(α) − 1
α
u(β)| ≤ u(αβ) ≤ u(α) + 1

α
u(β) (29)

We then obtain (25). (26) follows from (25). �
Remark (Bell Polynomials). We define the complete Bell polynomial Bn(x1, . . . , xn) by 
its generating function

exp

⎛
⎝ ∞∑

j=1
xj

uj

j!

⎞
⎠ =

∞∑
n=0

Bn(x1, . . . , xn)u
n

n!

From this, we get the formula

Bn(x1, . . . , xn) = dn

dun
exp

⎛
⎝ ∞∑

j=1
xj

uj

j!

⎞
⎠∣∣∣∣

u=0

Now, for s > 0, let
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xj = −s
dj

dtj
tα = −s(α)jtα−j , (30)

where (α)j denotes the falling factorial. Then

∞∑
j=1

xj
uj

j! = −stα
∞∑
j=1

(α)j
j!

(u
t

)j

= stα − stα
(
1 + u

t

)α

= stα − s(t + u)α

Applying Theorem 1 part (i), we see that for all n ∈ N, c ∈ (0, 1), and t > 0 it holds that

dn

dun e
−sc(t+u)α

∣∣∣∣
u=0

dn

dun e−s(t+u)α
∣∣∣∣
u=0

≥ cK1 ,

where K1 is as in Lemma 2. We can rewrite this inequality as

e(1−c)stα
dn

dun e
sctα−sc(t+u)α

∣∣∣∣
u=0

dn

dun est
α−s(t+u)α

∣∣∣∣
u=0

≥ cK1 .

We conclude that if we define xj by (30), then

e(1−c)stα Bn(cx1, . . . , cxn)
Bn(x1, . . . , xn) ≥ cK1 (31)

for all n ∈ N, c ∈ (0, 1), and t > 0. All of these calculations are easily reversible, and we 
conclude that (31) is actually equivalent to part (i) of Theorem 1.

2. Positive semigroups and BMO

Let (M, σ, μ) be a sigma-finite measure space. Let L1(M) be the space of all complex 
valued integrable functions and L∞(M) be the space of all complex valued measurable 
and essentially bounded functions on M . Denote by f∗ the pointwise complex conjugate 
of a function f on M and by 〈f, g〉 the duality bracket 

∫
fg∗.

Definition 1. A map T from L∞(M) to L∞(M) is called positive if Tf ≥ 0 for f ≥ 0. 
If T is positive on L∞(M), then T ⊗ id is positive on matrix valued function spaces 
L∞(M) ⊗Mn for all n ∈ N, i.e. T is completely positive.

A positive map T commutes with complex conjugation, i.e. T (f∗) = T (f)∗. For two 
positive maps S, T , we will write S ≥ T if S − T is positive.

We will need the following Kadison-Schwarz inequality for completely positive maps 
T ,
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|T (f)|2 ≤ ‖T (1)‖L∞T (|f |2), f ∈ L∞(M). (32)

2.1. Positive semigroups

We will consider a semigroup (Tt)t≥0 of positive, weak*-continuous contractions on 
L∞ with the weak* continuity at t = 0+. That is a family of positive, weak*-continuous 
contractions Tt, t ≥ 0 on L∞ such that TsTt = Ts+t, T0 = id and 〈Tt(f), g〉 → 〈f, g〉 as 
t → 0+ for any f ∈ L∞, g ∈ L1.

Such a semigroup (Ty) always admits an infinitesimal negative generator L =
limy→0

id−Ty

y which has a weak*-dense domain D(L) ⊂ L∞. We will write Ty = e−yL. 
These definitions and facts extend to the noncommutative setting. Namely, given a 
semifinite von Neumann algebra M and a normal semifinite faithful trace τ , we let 
L∞(M) = M and L1(M) be the completion of {f ∈ M : ‖f‖L1 = τ |f | < ∞}. Here 
|g| = (g∗g) 1

2 and g∗ denotes the adjoint operators of g and we set 〈f, g〉 = τ(fg∗). We 
say a map T on M is completely positive if (T ⊗ id)(f) ≥ 0 for any f ≥ 0, f ∈ M ⊗Mn. 
We say fλ weak* converges to f if limλ〈fλ, g〉 = 〈f, g〉 for all g ∈ L1(M) (see [25] for 
details).

The so-called subordinated semigroups Ty,α = e−yLα

, 0 < α < 1 are defined as

Tt,αf =
∞∫
0

Tufφt,α(u)du =
∞∫
0

T
t

1
α u

fφ1,α(u)du, (33)

with φt,α given in Section 1. The generator Lα is given by

Lα(f) = Γ(−α)−1
∞∫
0

(Tt − id)(f)t−1−αdt, (34)

for f ∈ D(L). There are other (equivalent) formulations for Lα. The formula (34) is due 
to Balakrishnan (see [5] and [36, page 260]). For Tt = e−tzid with Re(z) ≥ 0, Lα = zα

with a chosen principal value so that Re(zα) ≥ 0.
(Ty,α) is again a semigroup of positive weak*-continuous contractions. The semigroup 

has an analytic extension and has the well-known norm estimate that

sup
y>0

‖yk∂k
yTy,α‖ < ck. (35)

What we wish is a pointwise estimate.
Note that (33) implies

Ty, 12 (f) ≤
Tt, 12 (f) and |yk∂yTy, 12

f | ≤ ck,tTt, 12
f, (36)
y t
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for any 0 ≤ t ≤ y and f ≥ 0 because of the positivity of Tu and the precise formulation 
of φy, 12

.
Corollary 1 and the identity (33) actually imply the following corollary.

Corollary 2. For all f ≥ 0, s > 0, 0 < c, α < 1, and j ∈ N, we have

cK1Ts,αf ≤ Tcs,αf (37)

|sj∂j
sTs,α(f)| ≤ ( 10j

1 − α
)jTαs,α(f). (38)

Remark. Corollary 2 says that, when L generanates a positive semigroup, we have the 
point-wise estimate that

|sj∂j
su(x, s)| ≤ c( 10j

1 − α
)j |u(x, s)|

for the canonical solution u(x, s) = e−sLα

f(x) of the PDE

(Lα + ∂s)u(x, s) = 0;u(x, 0) = f(x)

with f(x) ≥ 0. When α = 1, a similar estimate to Corollary 2 may hold for some special 
semigroups. For example, the heat semigroups generated by the Laplacian operator on 
R

n has a similar estimate with c > 1. But one can not hope this in general since (38) is 
already stronger than the analyticity of semigroup Ts,α on L∞, which fails for α = 1 in 
general.

2.2. Γ2 criterion

P. A Meyer’s gradient form Γ (also called “Carré du Champ”) associated with Tt is 
defined as,

2ΓL(f, g) = −L(f∗g) + (L(f∗)g) + f∗(L(g)), (39)

for f, g with f∗, g, f∗g ∈ D(L). It is easy to verify that for L = −
 = − ∂2

∂2x , ΓL(f, g) =
∇f∗ · ∇g.

Convention. We will write Γ(f) for ΓL(f, f).

It is well known that the completely positivity of the operators Tt implies that Γ(f, g)
is a completely positive bilinear form. We then have the Cauchy-Schwartz inequality

Γ

⎛
⎝ ∞∫

0

asdμ(s),
∞∫
0

asdμ(s)

⎞
⎠ ≤

∞∫
0

d|μ|(s)
∞∫
0

Γ(as, as)d|μ|(s) (40)

Bakry-Émery’s Γ2 criterion plays an important role in this article. We use an equiv-
alent definition.
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Definition 2. A semigroup of positive operator (Tt)t satisfies the Γ2 ≥ 0 criterion if 
Φ(s) = Ts−u|Tuf |2, s > u is (midpoint) convex in u, i.e.

Tt|Tuf |2 − |TtTuf |2 ≤ Tu(Tt|f |2 − |Ttf |2) (41)

for all t, u > 0 and f ∈ L∞.

For L equal to the Laplace-Beltrami operator on a complete manifold, the Γ2 ≥ 0
criterion holds if the manifold has nonnegative Ricci curvature everywhere. The “Γ2” cri-
terion is satisfied by a large class of semigroups including the heat, Ornstein-Uhlenbeck, 
Laguerre, and Jacobi semigroups (see [2,4]), and also by the semigroups of completely 
positive contractions on group von Neumann algebras. We refer the reader to [3] and 
references therein for the so-called curvature-dimension criterion which is more general 
than the “Γ2” criterion.

D. Bakry usually assumes that there exists a ∗-algebra A which is weak∗ dense in 
L∞(M) such that Ts(A) ⊂ A ⊂ D(L). This is not needed in this article because we will 
only use the form Tt,αΓLβ (Ts,αf, Ts,αg), 0 < α < 1, α ≤ β ≤ 1 which is well defined as

−LβTt,α[(Ts,αf
∗)(Ts,αg)] + Tt,α[(Ts,αf

∗)(LβTs,αg)] + Tt,α[(LβTs,αf
∗)(Ts,αg)] (42)

for all f, g ∈ L∞ since Ts,α(L∞) ⊂ D(L) ⊂ D(Lα) because of (33).
We will need the following Lemma due to P.A. Meyer. We add a short proof for the 

convenience of the reader.

Lemma 6. For any f ∈ L∞ such that Tsf, Tsf
∗, Ts|f |2 ∈ D(L) for all s > 0, we have

Ts|f |2 − |Tsf |2 = 2
s∫

0

Ts−tΓ(Ttf)dt.

In particular, for 0 < α < 1,

Ts,α|f |2 − |Ts,αf |2 = 2
s∫

0

Ts−t,αΓLα(Tt,αf)dt (43)

for any f ∈ L∞.

Proof. For s fixed, let

Ft = Ts−t(|Ttf |2).

Then
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∂Ft

∂t
= ∂Ts−t

∂t
(|Ttf |2) + Ts−t[(

∂Tt

∂t
f∗)f ] + Ts−t[f∗(∂Tt

∂t
f)]

= −2Ts−tΓ(Ttf). (44)

Therefore

Ts|f |2 − |Tsf |2 = −Fs + F0 = 2
s∫

0

Ts−tΓ(Ttf)dt.

Since Ts,α(L∞) ⊂ D(Lα) we get (43) for all f ∈ L∞. �
Remark. Equation (44) shows that the Γ2 ≥ 0 criterion implies that

TsΓ(Tv+tf) ≤ Tv+s(Γ(Ttf)) (45)

for all v, s, t > 0 and f ∈ L∞ such that Tsf, Tsf
∗, Ts|f |2 ∈ D(L) for all s > 0.

The following lemma says that the Γ2 ≥ 0 criterion passes to fractional powers, which 
could be known to some experts. We add a proof as we do not find a reference.

Lemma 7. If Tt = e−tL satisfies the Γ2 ≥ 0 criterion (41), then Tt,α = e−tLα satisfies 
(41) and (45) for all f ∈ L∞ and 0 < α < 1. Moreover,

ΓLα(sj∂j
sTs,αf) ≤

(
10

1 − α

)j

Ts,αΓLα(f) (46)

Proof. Applying (34), we have that, with cα = −(Γ(−α))−1 > 0,

ΓLα(f, f) = cα

∞∫
0

(Tt|f |2 − (Ttf
∗)f − f∗(Ttf) + |f |2)t−1−αdt

= cα

∞∫
0

(Tt|f |2 − |Ttf |2 + |Ttf − f |2)t−1−αdt, (47)

if f, f∗, |f |2 ∈ D(L). The integration converges because

‖Tt|f |2 − |Ttf |2‖ ≤ cmin{t, 1}, (48)

for f ∈ D(L). In fact, by the Γ2 ≥ 0 criterion (41), we see that

Tt|Ttf |2 − |T2tf |2 ≤ 1
2(T2t|f |2 − |T2tf |2).

So
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‖Tt|f |2 − |Ttf |2‖
1
2 ≤ ‖Tt|f − Ttf |2 − |Tt(f − Ttf)|2‖ 1

2 + ‖Tt|Ttf |2 − |T2tf |2‖
1
2

≤ ct + 2− 1
2 ‖T2t|f |2 − |T2tf |2‖

1
2 .

Let u(t) = t−
1
2 ‖Tt|f |2 − |Ttf |2‖

1
2 . We get

u(t) ≤ ct
1
2 + u(2t).

Since u(t) is uniformly bounded on [1, ∞), we get u(t) is uniformly bounded on [0, ∞)
by iteration. This proves (48).

Applying the Cauchy-Schwartz inequality (40) and the Γ2 ≥ 0 criterion for Tt to (47), 
we get

ΓLα(Tuf, Tuf) ≤ TuΓLα(f, f). (49)

Applying the subordination formula that Tt,α =
∫∞
0 Tuφt,α(u)du and the Cauchy-

Schwartz inequality (40), we obtain

ΓLα(Tt,αf, Tt,αf) ≤ Tt,αΓLα(f, f). (50)

One can easily adapt the proof to get

Tu,αΓLα(Tt,αTv,αg, Tt,αTv,αg) ≤ Tu,αTt,αΓLα(Tv,αg, Tv,αg), (51)

for all g ∈ L∞ since Tv,αg, Tu,α|Tv,αg|2 ∈ D(L). Applying (43), we get (45) for Tt,α.
Now, apply (40) to ΓLα and a(s) = Tsf, dμ(s) = sj∂jφt,α(s)ds; we get (46) from (33), 

(24), and (51). �
2.3. BMO spaces associated with semigroups of operators

BMO spaces associated with semigroup generators have been intensively studied re-
cently (see [14]). In this article, we follow the ones studied in [24] and [28] because they 
are defined in a pure semigroup language. Set

‖f‖bmo(Lα) = sup
0<t<∞

‖Tt,α|f |2 − |Tt,αf |2‖
1
2
L∞ , (52)

‖f‖BMO(Lα) = sup
0<t<∞

‖Tt,α|f − Tt,αf |2‖
1
2
L∞ , (53)

for f ∈ L∞, 0 < α ≤ 1.
We wish to define the space BMO(Lα), 0 < α ≤ 1 so that it is a dual space and 

L∞
0 is weak* dense in it, to be consistent with the classical ones (where L∞

0 (M) =
L∞(M)/kerLα). In [24] and [28], this is done by using a SOT- topology in the corre-
sponding Hilbert C* modulars. In this article, we prefer to use the following detour to 
avoid introducing the theory of Hilbert C* modulars. Define, for g ∈ L1,
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‖g‖H1(Lα) = sup{|〈f, g〉| : f ∈ L∞, ‖f‖BMO(Lα), ‖f∗‖BMO(Lα) ≤ 1}. (54)

Let H1(Lα) = {g ∈ L1; ‖g‖H1 < ∞}. For a net fλ ∈ L∞
0 (M), we say fλ converges in the 

weak* topology if 〈fλ, g〉 converges for any g ∈ H1(Lα). Let BMO(Lα) be the abstract 
closure of L∞

0 (M) with respect to this weak* topology, that is the linear space of all 
weak* convergent nets fλ ∈ L∞

0 (M). For a weak* convergent fλ, let

‖ lim
λ

fλ‖BMO(Lα) = sup
‖g‖H1≤1

lim
λ
〈fλ, g〉.

It is easy to see that this coincides with (53) if limλ fλ ∈ L∞.
As an application of Corollary 2, we show that these BMO and bmo norms with 

different 0 < α < 1 are all equivalent if we assume the Γ2 ≥ 0 criterion.

Lemma 8. Suppose L generates a weak* continuous semigroup of positive contractions, 
we have

‖f‖BMO(Lβ) ≤
cα

β
‖f‖BMO(Lα), (55)

‖f‖BMO(Lβ) ≤
4

1 − β
‖f‖bmo(Lβ), (56)

for any 0 < β < α ≤ 1. Assuming in addition that the semigroup Tt = e−tL satisfies the 
Γ2 ≥ 0 criterion (45), we have that

‖f‖BMO(Lα) � ‖f‖bmo(Lα) � ‖f‖bmo(Lβ), (57)

for all 0 < β, α < 1. In particular,

c(1 − α)2‖f‖BMO(Lα) ≤ ‖f‖BMO(
√
L) ≤ c‖f‖BMO(Lα), (58)

for all 1
2 < α < 1.

Proof. The argument for (55) is the same as that for the second inequality of [24, The-
orem 2.6]. We sketch it here. By the Cauchy-Schwartz inequality,

Tt,β |f − Tt,βf |2 =
∞∫
0

φt, βα
(u)Tu,α|

∞∫
0

φt, βα
(v)(f − Tv,αf)dv|2du

≤
∞∫
0

∞∫
0

φt, βα
(u)φt, βα

(v)Tu,α|f − Tv,αf |2dudv.

It is easy to see that ‖Tu,α|f − Tv,αf |2‖ ≤ (1 + | ln u
v |)‖f‖2

BMO(Lα), so we get (55) from 
(26).
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For the rest of this proof, we use Γ for ΓLβ , Tt for Tt,β and Pt for Tt,β2
to simplify the 

notation. Since Tt has the quasi monotone property (37), we have

Pt =
∞∫
0

Tuφt, 12
(u)du ≥

t2∫
0

( u

t2

)K1
Tt2φt, 12

(u)du ≥ 1
100K1

Tt2 . (59)

We now prove (56). Note

‖Tt|f − Ttf |2‖ = ‖Tt|f − Ttf |2 − |Ttf − TtTtf |2 + |Ttf − TtTtf |2‖
≤ ‖f − Ttf‖2

bmo(Lβ) + ‖Ttf − T2tf‖2.

Let γ = 2
1

K1 and S = 2Tt − Tγt. Then S is a unital completely positive map because of 
(37). We have

|Ttf − Tγtf |2 + |Sf − Ttf |2 = −2|Ttf |2 + |Tγtf |2 + |Sf |2

≤ −2|Ttf |2 + Tγt|f |2 + S|f |2

≤ −2|Ttf |2 + 2Tt|f |2

≤ 2‖f‖2
bmo(Lβ).

We get by the triangle inequality that

‖Ttf − T2tf‖ ≤ K1 sup
s

‖Tsf − Tγsf‖ ≤
√

2K1‖f‖bmo(Lβ).

Therefore,

‖f‖BMO(Lβ) ≤
√

4 + 2K2
1‖f‖bmo(Lβ).

To prove (57), we note that the Γ2 ≥ 0 assumption for L passes to Lα by Lemma 7. 
The inequality ‖f‖bmo ≤ (2 +

√
2‖f‖BMO) is proved in [24, Proposition 2.4] assuming 

the Γ2 ≥ 0 criterion. Together with (56), we get ‖f‖BMO(Lα) � ‖f‖bmo(Lα). We now 
show the second equivalence in (57). Note,

t∫
0

Tt−sΓ(TsP√
tf)ds =

t∫
0

Tt−sΓ

⎛
⎝ ∞∫

0

φ√
t, 12

(v)TvTsfdv

⎞
⎠ ds

≤
∞∫
0

φ√
t, 12

(v)
t∫

0

Tt−sΓ(TvTsf)dsdv

≤
∞∫
φ√

t, 12
(v)

t∫
Tt+v− t+v

t sΓ(T t+v
t sf)dsdv
0 0
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(u = t + v

t
s) ≤

∞∫
0

φ√
t, 12

(v) t

t + v

t+v∫
0

Tt+v−uΓ(Tuf)dsdv

(43) =
∞∫
0

φ√
t, 12

(v) t

t + v
(Tt+v|f |2 − |Tt+vf |2)dv

≤
∞∫
0

φ√
t, 12

(v) t

t + v
‖f‖2

bmo(Lβ)dv <
5
6‖f‖

2
bmo(Lβ).

We then have

(Tt|f |2 − |Ttf |2)
1
2

≤ (Tt|f − P√
tf |2 − |Ttf − TtP√

tf |2)
1
2 + (Tt|P√

tf |2 − |TtP√
tf |2)

1
2

≤ 100K1(P√
t|f − P√

tf |2)
1
2 +

√
5
6‖f‖bmo(Lβ)

≤ 100K1‖f‖
bmo(L

β
2 )

+
√

5
6‖f‖bmo(Lβ),

so

‖f‖bmo(Lβ) ≤ 1200K1‖f‖
bmo(L

β
2 )
.

Therefore,

‖f‖BMO(Lβ) ≤ 10000K2
1‖f‖BMO(L

β
2 )
.

Applying (55), we have ‖f‖BMO(Lα) � ‖f‖BMO(Lβ) for all 0 < β, α < 1. �
Remark. The equivalence (57) fails for α = 1 in general. See Section 4, Example 2.

3. Imaginary powers and H∞-calculus

3.1. H∞-calculus

Let us review some definitions and basic facts about H∞-calculus. We refer the readers 
to [9,25,17] for details. For 0 < θ < π, let Sθ be the following open sector of the complex 
plane:

Sθ = {z ∈ C, | arg z| < θ}.

Recall that we say a closed operator A on a Banach space X is a sectorial operator 
of type ω < π if the spectrum of A is contained in Sω, the closure of Sω, and for any 
θ, ω < θ < π, z /∈ Sθ, there exists cθ such that
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‖z(z −A)−1‖ ≤ cθ.

We will assume that the domain of A is dense in X (or weak* dense in X when X is a 
dual space). We may also assume that A has dense range and is one to one by considering 
A + ε (see [25, Lemma 3.2, 3.5]).

Let H∞(Sη) be the space of all bounded analytic functions on Sη and H∞
0 (Sη) be the 

subspace of the functions Φ ∈ H∞(Sη) with an extra decay property that

|Φ(z)| ≤ c|z|r
(1 + |z|)2r ,

for some c, r > 0. Then for any Φ ∈ H∞
0 (Sη), and θ > η,

Φ(A) = 1
2πi

∫
γθ

Φ(z)(z −A)−1dz (60)

is a well defined bounded operator on D(A) and its (weak*) extension is bounded on X. 
Here γθ is the boundary of Sθ oriented counterclockwise. For general Φ ∈ H∞(Sη), set

Φ(A) = ψ(A)−1(Φψ)(A), (61)

with ψ(z) = z
(1+z)2 . It turns out that the so defined Φ(A) is a closed (weak*) densely 

defined operator, which may not be bounded, and it coincides with Φ(A) defined as in 
(60) for Φ ∈ H∞

0 (Sη). Moreover, these definitions are consistent with the definitions in 
the “older” functional calculus.

Definition 3. We say a (weak*) densely defined sectorial operator A of type ω has 
bounded H∞(Sη)-calculus, ω < η < π, if the map Φ(A) extends to a bounded oper-
ator on X and there is a constant C such that

‖Φ(A)‖ ≤ C‖Φ‖H∞(Sη) (62)

for any bounded analytic function Φ ∈ H∞(Sη).

Remark. Suppose a densely defined sectorial A has bounded H∞(Sη)-calculus on Y
and suppose Y is a weak* dense subspace of a dual Banach space X. Then the weak* 
extension of Φ(A) onto X, still denoted by Φ(A), is bounded and satisfies (62) with the 
same constant. So a weak* dense sectorial operator A has H∞-calculus on X if and only 
if it has H∞-calculus on the norm closure of D(A).

The negative infinitesimal generator L of any uniformly bounded (weak*) strong con-
tinuous semigroup on a dual Banach space X is actually a (weak*) densely defined 
sectorial operator of type π and Lα is of type απ on X. Cowling, Duong, and Hiebe &
2 2



428 T. Ferguson et al. / Advances in Mathematics 347 (2019) 408–441
Prüss ([8,12,19]) prove that the negative infinitesimal generator of a semigroup of pos-
itive contractions on Lp, 1 < p < ∞ always has the bounded H∞(Sη)-calculus for any 
η > π

2 . One cannot hope to extend this to p = ∞. We will prove that the associated 
BMO(

√
L) space is a good alternative, as desired.

Lemma 9. Suppose A is a densely defined sectorial operator of type ω < π/2 on a Banach 
space X. Assume 

∫∞
0 Ae−tAa(t)dt is bounded on X with norm smaller than C for any 

function a(t) with values in ±1. Then A has a bound H∞(S0
η) calculus for any η > π/2.

Proof. This is a consequence of [9, Example 4.8] by setting a(t) to be the sign of 
〈Te−tTu, v〉 for any pair (u, v) in a dual pair (X, Y ). �

We are going to prove that the negative generator L of a semigroup of positive contrac-
tions satisfies the assumptions of Lemma 9. We follow an idea of E. Stein and consider 
scalar valued functions a(t) such that

s

∞∫
s

|a(v − s)|2
v2 dv ≤ c2a, (63)

for all s > 0 and some constant ca. Define Ma by

Ma(f) =
∞∫
0

a(t)∂Tt,αf

∂t
dt =

∞∫
0

a(t)LαTt,αfdt, (64)

for f ∈ L∞, 0 < α < 1. For now, we assume a is supported on a compact subset of (0, ∞)
so we do not worry about the convergence of the integration.

Lemma 10. Assume that L generates a weak* continuous semigroup of positive contrac-
tions on L∞ satisfying the Γ2 ≥ 0 criterion (45). We have

‖Ma(f)‖bmo(Lα) ≤
cca

(1 − α)2 ‖f‖bmo(Lα), (65)

‖Ma(f)‖BMO(Lα) ≤
cca

(1 − α)3 ‖f‖BMO(Lα), (66)

‖Ma(f)‖BMO(Lα) ≤
cca

(1 − α)2 ‖f‖L
∞ , (67)

for any f ∈ L∞, 0 < α < 1.

Proof. We consider the case α ≥ 3
4 only. The case α < 3

4 is easier and follows from 
this case by subordination. Recall that the Γ2 ≥ 0 assumption for L passes to Lα by 
Lemma 7, and Tt,α(L∞) ⊂ D(L2α), L2αTt,α = ∂2

t Tt,α. In this proof, we use Γ for ΓLα the 
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gradient form associated with Lα, Tt for Tt,α and Pt for Tt,α2
to simplify the notation. 

Let r = 1
1−α > 4. We have that

t∫
0

Trt−sΓ(Tsf)ds =
t∫

0

Trt−sΓ

⎛
⎝ ∞∫

s

LαTvfdv

⎞
⎠ ds

≤
t∫

0

Trt−s

∞∫
s

Γ(LαTvf)v 3
2 dv

∞∫
s

v−
3
2 dvds

=
t∫

0

Trt−s

∞∫
s

Γ(LαTvf)v 3
2 dv2s− 1

2 ds

=
∞∫
0

t∧v∫
0

2s− 1
2Trt−sdsΓ(LαTvf)v 3

2 dv

Let Sv =
∫ t∧v

0 2s− 1
2Trt−sds. So by Lemma 6 and the Γ2 ≥ 0 criterion,

‖f‖2
bmo = sup

t

∥∥∥∥∥∥
rt∫

0

Trt−sΓ(Tsf)ds

∥∥∥∥∥∥
≤

∥∥∥∥∥∥sup
t

rt∫
0

Trt− s
r
Γ(T s

r
f)ds

∥∥∥∥∥∥
=

∥∥∥∥∥∥sup
t

r

t∫
0

Trt−sΓ(Tsf)ds

∥∥∥∥∥∥
≤ sup

t
r

∥∥∥∥∥∥
∞∫
0

SvΓ(LαTv)v
3
2 dv

∥∥∥∥∥∥ .
So,

1
r
‖Maf‖2

bmo ≤

∥∥∥∥∥∥
∞∫
0

SvΓ(LαTvMa(f))v 3
2 dv

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∫
0

SvΓ(Tv

∞∫
0

a(u)L2αTufdu)v 3
2 dv

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∫
SvΓ(

∞∫
a(u)L2αTu+vfdu)v 3

2 dv

∥∥∥∥∥∥

0 0
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=

∥∥∥∥∥∥
∞∫
0

v
3
2SvΓ(

∞∫
v

a(u− v) 1
u
uL2αTufdu)dv

∥∥∥∥∥∥
(Inequality (40)) ≤

∥∥∥∥∥∥
∞∫
0

v
3
2Sv

( ∞∫
v

|a|2
u2 du

∞∫
v

Γ
(
uL2αTuf

)
du

)
dv

∥∥∥∥∥∥
≤ c2a

∥∥∥∥∥∥
∞∫
0

Sv

( ∞∫
v

Γ
(
uL2αTuf

)
du

)
v

1
2 dv

∥∥∥∥∥∥
= c2a

∥∥∥∥∥∥
∞∫
0

u∧t∫
0

v
1
2SvdvΓ(uL2αTuf)du

∥∥∥∥∥∥ .
Note K1 ≤ r and supr>4( 2

1+α
r

r−1 )r ≤ c. By (37), we have, for u ≤ t,

t∧u∫
0

v
1
2Svdv ≤

t∧u∫
0

v
1
2

t∧v∫
0

s−
1
2T 1+α

2 (rt−u)

(
2

1 + α
· r

r − 1

)r

dsdv

≤ cT 1+α
2 (rt−u)t

2 ∧ u2.

Applying (46), we get
∥∥∥∥∥∥

t∫
0

u∧t∫
0

v
1
2SvdvΓ(uL2αTu

2
Tu

2
f)du

∥∥∥∥∥∥ ≤ cr2

∥∥∥∥∥∥
t∫

0

Tαu
2

u2

u∧t∫
0

v
1
2SvdvΓ(Tu

2
f)du

∥∥∥∥∥∥
≤ cr2

∥∥∥∥∥∥
t∫

0

T (1+α)rt
2 −u

2
Γ(Tu

2
f)du

∥∥∥∥∥∥
≤ cr2

∥∥∥∥∥∥∥
t
2∫

0

T t
2−sΓ(Tsf)ds

∥∥∥∥∥∥∥ ≤ cr2‖f‖2
bmo.

For α−nt < u ≤ α−n−1t, n ≥ 0, we use

t∧u∫
0

v
1
2Svdv ≤

t∧u∫
0

v
1
2

t∧v∫
0

2s− 1
2Trt−t

(
r

r − 1

)r

dsdv ≤ cTrt−tt
2 ∧ u2.

Similar to (46), we get Γ(u2L2αTα−ntf) ≤ cr2T2α−nt−uΓ(f) because r−1
r−2 = 1

2−α−1 ≤
α−nt

2α−nt−u ≤ 1. So

Γ(uL2αTα−ntTu−α−ntf)| ≤ c
r2

T2α−nt−uΓ(Tu−α−ntf)

u2
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Therefore,
∥∥∥∥∥∥∥

α−n−1t∫
α−nt

u∧t∫
0

v
1
2SvdvΓ(uL2αTu

2
Tu

2
f)du

∥∥∥∥∥∥∥
≤ cr2

∥∥∥∥∥∥∥
α−n−1t∫
α−nt

t2 ∧ u2

u2 T2α−nt−uΓ(Tu−α−ntf)du

∥∥∥∥∥∥∥
= cr2α2n

∥∥∥∥∥∥∥
α−n−1t(1−α)∫

0

Tα−nt−sΓ(Tsf)ds

∥∥∥∥∥∥∥
≤ cr2α2n‖f‖2

bmo.

Summing up for n ≥ 0, we get
∥∥∥∥∥∥

∞∫
t

u∧t∫
0

v
1
2SvdvΓ(uL2αTu

2
Tu

2
f)du

∥∥∥∥∥∥ ≤ cr3‖f‖2
bmo.

Combining the estimates above, we conclude that

‖Ma(f)‖bmo(Lα) ≤ ccar
2‖f‖bmo(Lα).

Applying (57), we actually get

‖Ma(f)‖BMO(Lα) ≤ ccar
3‖f‖BMO(Lα) ≤ ccar

3‖f‖L∞ .

But we wish to get a better estimate. Note

(Tt − T2t)Ma(f) =
∞∫
0

a(s)∂s(Tt+s − T2t+s)fds

=
∞∫
t

a(s− t)∂s(Ts − Tt+s)fds

≤

⎛
⎝ ∞∫

t

|a(s− t)|2
s2 ds

⎞
⎠

1
2
⎛
⎜⎝

∞∫
t

s2

∣∣∣∣∣∣
t∫

0

∂2
sTv+sfdv

∣∣∣∣∣∣
2

ds

⎞
⎟⎠

1
2

≤ ca

⎛
⎝ ∞∫

s2
t∫
|∂2

sTv+sf |2dvds

⎞
⎠

1
2

t 0
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(by (38)) ≤ 25ca
(1 − α)2

⎛
⎝ ∞∫

t

s−2
t∫

0

Tα(v+s)|f |2dvds

⎞
⎠

1
2

.

Therefore

‖(Tt − T2t)Ma(f)‖L∞ ≤ 25ca
(1 − α)2 ‖f‖L

∞ ,

and hence

‖Ma(f)‖BMO(Lα) ≤ ‖Maf‖bmo(Lα) + sup
t

‖(Tt − T2t)Ma(f)‖L∞ ≤ cr2ca‖f‖L∞ . �
Given f ∈ L∞, g ∈ H1(Lα), let ã(t) = sign〈LαTt,αf, g〉a(t). Then ã satisfies (63) if a

does. We have from Lemma 10 that

∞∫
0

|〈a(t)LαTt,αf, g〉|dt = lim
N,M→∞

N∫
1
M

|〈a(t)LαTt,αf, g〉|dt

= lim
N,M→∞

〈 N∫
1
M

ã(t)LαTt,αfdt, g

〉

≤ cca‖Mãf‖BMO(Lα)‖g‖H1

≤ cca
(1 − α)2 ‖f‖L

∞‖g‖H1 .

This shows that limN,M→∞
∫ N

1
M
〈a(t)LαTt,αf, g〉dt exists and 

∫ N
1
M

a(t)LαTt,αfdt weak* 

converges in BMO(Lα) as N, M → ∞. So the integration in (64) weak* converges and 
Ma is well defined for all f ∈ L∞ and a(t) satisfying (63). The weak* extension of Ma

is then a bounded map from BMO(Lα) to BMO(Lα).

Theorem 2. Suppose a(t) satisfies (63). Ma extends to a bounded operator from BMO(Lα)
to BMO(Lα) for 0 < α < 1. The estimates are as in Lemma 10.

Theorem 3. Suppose Tt = e−tL is a weak* continuous semigroup of positive contractions 
on L∞ satisfying the Γ2 ≥ 0 criterion. Then L has a complete bounded H∞(Sη) calculus 
on BMO(

√
L) for any η > π

2 .

Proof. Given α ∈ (1
2 , 1), let Y α be the norm closure of D(L) in BMO(Lα). It is easy to 

check that Tt,α = e−tLα are contractions on Y α. Then Lα is a densely defined sectorial 
operator of type π2 in Y α. Lemma 9 and Lemma 10 imply that Lα has a bounded H∞(Sη)
calculus on Y α for any η > π

2 . Note Φ(z) = Ψ(z 1
α ) ∈ Sη if Ψ ∈ S η

α
and Φ(Lα) = Ψ(L). 

We conclude that L has a bounded H∞(Sη) calculus on Y α for any η > π . Given 
2α
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θ > π
2 , choose 1

2 < α < 1 so that αθ > π
2 . Then L has a bounded H∞(Sθ) calculus on 

Y α. Lemma 8 then implies that L has a bounded H∞(Sθ) calculus on Y
1
2 � Y α and 

on BMO(
√
L) for any θ > π

2 , since Y
1
2 is weak * dense in BMO(

√
L) and Φ(L) is the 

weak* extension of its restriction on Y
1
2 by definition. The same argument applies to 

id ⊗ L. We then obtain the completely bounded H∞(Sη) calculus as well. �
3.2. Imaginary Power and Interpolation

Given 0 < α < 1, choose π2 < θ < π
2α . By (61), we have the identities

Lαe−tLα

= 1
2πiψ(L)−1

∫
γθ

zαψ(z)e−tzα

(z − L)−1dz, (68)

Liαs = 1
2πiψ(L)−1

∫
γθ

ziαsψ(z)(z − L)−1dz. (69)

Note

ziαs = Γ(1 − is)−1
∞∫
0

t−iszαe−tzα

dt. (70)

Since these integrals converge absolutely, we can exchange the order of the integrations 
and get

Liαs = Γ(1 − is)−1
∞∫
0

t−isLαe−tLα

dt. (71)

The inequality (67) of Lemma 10 implies that

‖Liαsf‖BMO(Lα) ≤
c

(1 − α)2 Γ(1 − is)−1‖f‖L∞ .

Thus for α > 1
2 ,

‖Lisf‖BMO(Lα) ≤ cΓ
(
1 − i

s

α

)−1
‖f‖L∞

≤ c

(1 − α)2(1 + |s|) 1
2

exp
(
π|s|
2α

)
‖f‖L∞ .

Choosing α = |s|
|s|+1 for s large, we get

‖Lisf‖BMO(Lα) ≤ c(1 + |s|) 3
2 exp

(
π|s|

)
‖f‖L∞ . (72)
2
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The same estimate holds with bmo(Lα)-norms putting on both sides of (72) because 
we can apply the same argument to (65) of Lemma 10 instead of (67). Applying the 
inequality (55) to (72), we get

‖Lisf‖BMO(
√
L) ≤ c(1 + |s|) 3

2 exp
(
π|s|
2

)
‖f‖L∞ . (73)

Applying the inequalities (66), (58) instead of (67), (55), we will have similarly

‖Lisf‖BMO(
√
L) ≤ c(1 + |s|) 9

2 exp
(
π|s|
2

)
‖f‖BMO(

√
L). (74)

Definition 4. We say a weak* continuous semigroup of positive contractions is a symmet-
ric Markov semigroup if 〈Ttf, g〉 = 〈f, Ttg〉 for f ∈ L∞, g ∈ L1 and it admits a standard 
Markov dilation in the sense of [24, page 717].

Remark. The Markov dilation assumption in the above definition holds automatically 
in many cases. In the commutative case (i.e. the underlying von Neumann algebra 
M = L∞(M)), this is due to Rota (see [34, page 106, Theorem 9]). Therefore every 
weak* continuous semigroup of unital symmetric positive contractions is automatically 
a symmetric Markov semigroup. In [33] it is proven that this is the case for convolution 
semigroups on group von Neumann algebras. In [10,22] it is proven that this holds for 
the finite von Neumann algebras case. The case of a general semifinite von Neumann 
algebra is conjectured but there has not been a written proof.

Lemma 11. ([JM12]) Assume that Tt = e−tA (e.g. A = Lα) is a symmetric Markov 
semigroup on a semifinite von Neumann algebra M. Then, the following interpolation 
result holds

[BMO(A), L1
0(M)] 1

p
= Lp

0(M)

for 1 < p < ∞. Here Lp
0(M) = Lp(M)/kerA.

Since ‖Lis‖L2→L2 = 1 if L generates a symmetric Markov semigroup, by interpolation, 
we get from (73) the following result.

Corollary 3. Suppose Tt = e−tL is a symmetric Markov semigroup of operators on a 
semifinite von Neumann algebra M and satisfies the Γ2 ≥ 0 criterion. Then, L has the 
completely bounded H∞(Sη)-calculus on Lp for any η > ωp = |π2 − π

p |, 1 < p < ∞ and

‖Lis‖Lp→Lp ≤ c(1 + |s|)| 32− 3
p | exp

(
|πs2 − πs

p
|
)
, (75)

for all 1 < p < ∞.
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Remark. Let us point out that the left-hand side of the inequality on [24, line 4, page 
728] misses a “1

2”. It should be ‖L is
2 f‖ instead of ‖Lisf‖, because Theorem 3.3 of [24]

is for the semigroup generated by 
√
L. So the estimate of the constants cs,p given in 

[24, Corollary 5.4] is not correct. Also [21] contains a similar estimate to (75) without 
assuming the Γ2 ≥ 0 criterion. Their method is the transference principle and works for 
Lp only.

Junge, Le Merdy, and Xu ([25]) studied the H∞-calculus in the noncommutative 
setting. In particular, they prove a H∞(Sη)-calculus property of L : λg �→ |g|λg on 
Lp(F̂n) for all 1 < p < ∞, η > |π2 − π

p |. Here Lp(F̂n) is the noncommutative Lp-space 
associated with the free group von Neumann algebra.

4. Examples

The “Γ2 ≥ 0” criterion is known to be satisfied by a large class of semigroups including 
the heat, Ornstein-Uhlenbeck, and Jacobi semigroups (see [2]). The results proved in this 
article apply to all of them. The main example in the noncommutative setting, is the 
semigroup of operators on a group von Neumann algebra, generated from a conditionally 
negative function on the underlying group (see Example 4). We will analyze a few of them 
in the following.

Example 1. Let −L = Δ be the Laplace-Beltrami operator on a complete Riemannian 
manifold with nonnegative Ricci curvatures. Then the associated heat semigroup Tt =
e−tL is symmetric Markovian and satisfies the Γ2 ≥ 0 criterion. All the theorems of this 
article hold for L, and it has bounded H∞(Sη) calculus on BMO(

√
L) for any η > π

2 .
In the special case that L = −∂2

x the Laplacian on Euclidean space Rn, the BMO(L), 
bmo(L), and BMO(

√
L) spaces are all equivalent to the classical BMO space of all 

functions f ∈ L1(Rn, 1
1+|x|2 dx) with a finite BMO norm,

‖f‖BMO(Rn) = sup
B⊂Rn

(EB |f − EBf |2)
1
2 < ∞.

Here the supremum runs on all balls (or cubes) in Rn and EB = 1
|B|

∫
B
fdx denotes the 

mean value operator. This can be verified by the integral representation of Tt, Tt, 12
, the 

convexity of | · |2 and the fact that |EBf − EkBf | � log k‖f‖BMO(Rn). By Lemma 8 we 
then get the equivalence between BMO(Rn) and BMO(Lα) for all 0 < α ≤ 1.

Example 2. Let L = ∂x on R. Then Tt = e−tL is the translation operator sending f(·) to 
f(· − t). It is a Markov semigroup and the Γ2 ≥ 0 criterion holds trivially. The BMO(L)
space is equivalent to L∞

0 and the bmo(L) (semi)norm vanishes. For any 0 < α < 1, 
BMO(Lα) is equivalent to the classical BMO(Rn) space. Indeed, by the subordination 
formula, we get the following integral representation for Tt, 1 = e−t

√
L:
2
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Tt, 12
f(x) = 1

2
√
π

∞∫
0

f(x− s)te− t2
4s s−

3
2 ds.

From this, it is easy to check that, for Ix,k = [x − 2k t2

4 , x − 2−k t2

4 ], k ∈ N,

c−1EIx,1 |f | ≤ Tt, 12
|f |(x) ≤ c

∑
k

2− k
2 EIx,k

|f |.

After an elementary calculation and using the fact that

|EBf − EkBf | � log k‖f‖BMO(Rn),

one can see that ‖ · ‖BMO(
√
L) � ‖ · ‖BMO(Rn), thus ‖ · ‖BMO(Lα) � ‖ · ‖BMO(Rn) for all 

0 < α < 1 by Lemma 8.
By Theorem 3, L has H∞(Sη)-calculus on BMO(

√
L) � BMO(Rn) for any η > π

2 . 
It is easy to see that

Lis = P+e
−sπ

2 Δ is
2 + P−e

sπ
2 Δ is

2 .

So L does not have H∞(Sθ)-calculus on BMO(L) � L∞(R)/C for any positive θ and

‖Lis‖BMO→BMO � e
π|s|
2 ‖Δ is

2 ‖BMO→BMO

for |s| large. This indicates that it is better to consider BMO(
√
L) instead of BMO(L)

for the purpose of this article.

Example 3. Let −L = ∂2
x

2 − x · ∂x be the Ornstein-Uhlenbeck operator on (Rn, e−|x|2dx). 
Let Otf = Ot,1 = e−tL. Ot is a symmetric Markov semigroup with respect to the 
Gaussian measure dμ = e−|x|2dx and satisfies the Γ2 ≥ 0 criterion. Theorem 3 says that 
L = −∂2

x

2 + x · ∂x has bounded H∞(Sη)-calculus on BMO(
√
L) for any η > π

2 .
Mauceri and Meda (see [31]) introduced the following BMO space for the Ornstein-

Uhlenbeck semigroup

‖f‖BMO(MM) = sup
rB≤min{1, 1

|cB |}
(Eμ

B|f −Eμ
Bf |2)

1
2 , (76)

with rB , cB the radius and the center of B, and Eμ
B = 1

μ(B)
∫
·dμ the mean value 

operator with respect to the Gaussian measure dμ. Note, for the balls B satisfying 
rB ≤ min{1, 1

|cB |}, we have the equivalence Eμ
B|f | � EB |f |. One may replace Eμ

B by EB , 
the mean value operator with respect to the Lebesgue measure dx in (76). The resulted 
BMO norms are equivalent to each other. From the integral presentation

Ot(f) = 1
(π − πe−2t)n

2

∫
exp

(
−|e−tx− y|2

1 − e−2t

)
f(y)dy, (77)
Rn
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one easily see that, for t ≤ 4 and 
√
t|x| ≤ 1,

Ot|f |(x) ≥ 1
(π − πe−2t)n

2

∫
B(x,

√
t)

exp
(
−2|x− y|2

1 − e−2t

)
f(y)dy

≥ cnEB(x,
√
t)|f |(x). (78)

Note EB(x,
√
t)|f | ≤ cnEB(x,

√
s)|f | for all t < s < 2t. We then have from (78) that, for 

Ot, 12
= e−tL

1
2 , t ≤ 1, tx ≤ 1,

Ot, 12
|f |(x) =

∞∫
0

Os|f |(x)φt, 12
(s)ds ≥ c√

t

4t2∫
t2

Os|f |(x)ds ≥ cnEB(x,t)|f |(x).

We then easily get

4Ot,α|f −Ot,αf |2(x) ≥ cnE
B(x,t

1
2α )

|f −E
B(x,t

1
2α )

f(x)|2(x), (79)

by the convexity of | · |2, for α = 1
2 , 1. Therefore,

‖ · ‖BMO(MM) � ‖ · ‖BMO(L), ‖ · ‖bmo(L), ‖ · ‖BMO(
√
L),

and by Lemma 8,

‖ · ‖BMO(MM) � ‖ · ‖BMO(Lα)

for all 0 < α ≤ 1. By Theorem 3, the Ornstein-Uhlenbeck operator L = −∂2
x

2 +x · ∂x has 
bounded H∞(Sη) calculus from L∞(Rn) to Mauceri-Meda’s BMO(MM) for any η > π

2 .
Let f(y) = 1√

4πs exp(− |y|2
4s ), with s > 100. We have

(Ot|f |2 − |Otf |2)(x)

= 1
4π

√
(s + 2v)s

exp
(
− |e−tx|2

2s + 4v

)
− 1

4π(s + v) exp
(
− |e−tx|2

2s + 2v

)

= ( 1
4π

√
(s + 2v)s

− 1
4π(s + v) ) exp

(
− |e−tx|2

2s + 4v

)

+ 1
4π(s + v)

(
exp

(
− |e−tx|2

2s + 4v

)
− exp

(
− |e−tx|2

2s + 2v

))

� 1
s3 + 1

s2 � 1
s2 .

On the other hand, for v = 1−e−2t
, v′ = 1−e−4t

,
4 4
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(Otf −O2tf)(x) = 1√
4π(s + v)

e−
|e−tx|2
4s+4v − 1√

4π(s + v′)
e−

|e−2tx|2
4s+4v′

For x2 = e2t(4s + 4v), t = 10, we get

|(Otf −O2tf)(x)| ≥ | 1√
4π(s + v)

e−1 − 1√
4π(s + v′)

e−
1

100 |

≥ 1
2
√

4π(s + v′)
≥ 1

10
√
s
.

So,

‖f‖BMO(L) ≥ sup
t>0

‖Otf −O2tf‖L∞ ≥
√
s

5 ‖f‖bmo(L).

Therefore, the BMO(L) and bmo(L)-norms are not equivalent for the Ornstein-
Uhlenbeck semigroup, by letting s → ∞. This shows that one can not extend Lemma 8
to the case of α = 1.

Example 4. Let (G, μ) be a locally compact unimodular group with its Haar measure. 
Let λg, g ∈ G be the translation-operator on L2(G) defined as

λg(f)(h) = f(g−1h).

The so-called group von Neumann algebra L∞(Ĝ) is the weak* closure in B(L2(G)) of 
the operators f =

∫
G
f̂(g)λgdμ(g) with f̂ ∈ Cc(G). The canonical trace τ on L∞(Ĝ) is 

defined as τf = f̂(e). If G is abelian, then L∞(Ĝ) is the canonical L∞ space of functions 
on the dual group Ĝ. In particular, if G = Z, the integer group, then λk = eikt, k ∈ Z

and Lp(Ẑ) = Lp(T), the function space on the unit circle. Please refer to [32] for details 
on noncommutative Lp spaces.

Let ϕ be a scalar valued function on G. We say ϕ is conditionally negative if ϕ(g−1) =
ϕ(g)∗ and

∑
g,h

agahϕ(g−1h) ≤ 0 (80)

for any finite collection of coefficients ag ∈ C with 
∑

g ag = 0. Schöenberg’s theorem 
says that

Tt : λg = e−tϕ(g)λg

extends to Markov semigroups of operators on the group von Neumann algebra L∞(Ĝ) if 
and only if ϕ is a conditionally negative function with ϕ(e) = 0. The negative generator 
of the semigroup is the unbounded map
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L : λg �→ ϕ(g)λg

which is weak* densely defined on L∞(Ĝ).
Let Kϕ(g, h) = 1

2 (ϕ(g) +ϕ(h) −ϕ(g−1h)), the Gromov form associated with ϕ. Then 
one can directly verify from (80) that Kϕ is a positive definite function on G ×G. Thus 
K2

ϕ is a positive definite function too. This is equivalent to the Γ2 ≥ 0 criterion for Tt, 
and therefore Theorem 3 applies to all such (Tt)t’s. If in addition, ϕ is real valued, then 
(Tt) is a symmetric Markov semigroup. We then obtain the following corollary.

Corollary 4. Let G be a locally compact unimodular group. Suppose ϕ is a conditionally 
negative function on G with ϕ(e) = 0. Let L be the weak* densely defined linear map on 
L∞(Ĝ) such that L(λg) = ϕ(g)λg. Then,

(i) For any η > π
2 and any bounded analytic Φ on Sη, the map Φ(L) : λg �→ Φ(ϕ(g))λg

extends to a completely bounded operator on BMO(
√
L) and ‖Φ(L)‖ ≤ Cη‖Φ‖∞.

(ii) Suppose in addition that ϕ is real valued. If Φ is a bounded analytic function on 
Sη with η > |π2 − π

p |, then the map Φ(L) extends to a completely bounded operator on 

Lp(Ĝ) for 1 < p < ∞.

Remark. Corollary 4 (i) was proved in [29] for L : λg �→
√
ϕ(g)λg with ϕ a symmetric 

conditionally negative function on G.

Example 5. Let G = F∞ be the nonabelian free group with a countably infinite number 
of generators. Let |g| be the reduced word length of g ∈ G. Then ϕ : g → |g| is a 
conditionally negative function (see [18]) and L : λg �→ |g|λg generates a symmetric 
Markov semigroup on the free group von Neumann algebra. Fix θ ∈ (π2 , π), let Φ(z) =
(ln(z + 2))−1 for z ∈ Sθ. Then Φ ∈ H∞(Sθ). Corollary 4 then implies that the Fourier 
multiplier

λg �→ 1
ln(|g| + 2)λg

extends to a bounded operator on BMO(
√
L). By the interpolation result Lemma 11, we 

conclude that this multiplier is bounded on Lp(F̂∞) with constant � p2

p−1 .
This produces a slowly decreasing multiplier which is bounded on Lp(F̂∞) for all 

1 < p < ∞. Note that Bożejko and Fendler disproved the uniform Lp boundedness of 
the �1-length projections PN , that map λg to χ{g:|g|<N}λg, for all p > 3 (see [6]). So the 
classical method of producing slowing decreasing Lp-multipliers through PN fails on free 
groups.
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