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Detecting Changes in Dynamic Events
Over Networks

Shuang Li, Yao Xie, Mehrdad Farajtabar, Apurv Verma, and Le Song

Abstract—Large volumes of networked streaming event data are
becoming increasingly available in a wide variety of applications
such as social network analysis, Internet traffic monitoring, and
health care analytics. Streaming event data are discrete observa-
tions occurring in continuous time, and the precise time interval
between two events carries substantial information about the dy-
namics of the underlying systems. How does one promptly de-
tect changes in these dynamic systems using these streaming event
data? In this paper, we propose a novel change-point detection
framework for multidimensional event data over networks. We
cast the problem into a sequential hypothesis test, and we derive
the likelihood ratios for point processes, which are computed effi-
ciently via an expectation-maximization (EM) like algorithm that
is parameter free and can be computed in a distributedmanner.We
derive a highly accurate theoretical characterization of the false-
alarm rate, and we show that the method can provide weak signal
detection by aggregating local statistics over time and networks.
Finally, we demonstrate the good performance of our algorithm
on numerical examples and real-world datasets from Twitter and
Memetracker.

Index Terms—Change-point detection for event data, Hawkes
process, online detection algorithm, false alarm control.

I. INTRODUCTION

N ETWORKS have become a convenient tool for people to
efficiently disseminate, exchange and search for informa-

tion. Recent attacks on very popular web sites, such as Yahoo
and eBay [1], leading to a disruption of services to users, have
triggered increased interest in network anomaly detection. On
the positive side, the surge of hot topics and breaking news can
provide business opportunities. Therefore, the early detection
of changes, such as anomalies, epidemic outbreaks, hot topics,
or new trends, among streams of data from networked entities is
a very important task and has been attracting significant interest
[1]–[3].
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All types of the above-mentioned changes can be more con-
cretely formulated as the changes in time interval distributions
between events, combined with the alteration of interaction
structures across components in networks. However, change-
point detection based on event data occurring over a network
topology is nontrivial. Apart from the possible temporal depen-
dency of the event data aswell as the complex cross-dimensional
dependence among components in a network, event data from
networked entities are usually not synchronized in time. Be-
cause they are dynamic in nature, much of the collected data
are discrete events observed irregularly in continuous time [4],
[5]. The precise time interval between two events is random
and carries substantial information about the dynamics of the
underlying systems. These characteristics make such event data
fundamentally different from independently and identically dis-
tributed (i.i.d.) data and time-series data where time and space
are treated as indices rather than random variables (see Fig. 1
for further illustrations of the distinctive nature of event data vs.
i.i.d. and time-series data). Clearly, the i.i.d. assumption cannot
capture the temporal dependency between data points, while
time-series models require us to discretize the time axis and
aggregate the observed events into bins (such as in the approach
in [6] for neural spike train change detection). If this approach
is applied, it is unclear how one can choose the size of the bin
and how to best address the case where there is no event within
a bin.
In addition to the distinctive temporal and spatial aspects,

there are three additional challenges when using event data over
networks: (i) how to detect weak changes, (ii) how to update
the statistics efficiently online, and (iii) how to provide a theo-
retical characterization of the false-alarm rate for the statistics.
To address the first challenge, many approaches use random or
ad-hoc aggregations, which may not pool data efficiently or may
lose statistical power when detecting weak signals. The occur-
rence of change points (e.g., epidemic outbreaks and hot topics)
over networks usually evidences a certain clustering behavior
over dimensions and tend to synchronize in time. Smart aggre-
gation over dimensions and time horizons would improve the
strengths of signals and allow changes to be detected quicker [7].
To address the second challenge, many change-point detec-
tion methods based on likelihood ratio statistics do not con-
sider computational complexity nor can be computed in a dis-
tributed manner and, hence, are not scalable to large networks.
Temporal events can arrive at social platforms in very high
volumes and at very high velocities. For instance, every day,
on average, approximately 500 million tweets are tweeted on
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Fig. 1. Asynchronously and interdependently generated high-dimensional event data are fundamentally different from i.i.d. and time-series data. First, observations
for each dimension can be collected at different time points. Second, there can be temporal dependences as well as cross-dimensional dependences. In contrast,
the dimensions of i.i.d. and time-series data are sampled at the same time point, and in the figure, different marks indicate potentially different values or features
of an observation.

Twitter [8]. There is a great need for the development of effi-
cient algorithms for updating the detection statistics online. To
address the third challenge, it is usually very difficult to control
false alarms for change-point detection statistics over a large
network. When applied to real network data, traditional detec-
tion approaches usually have a high false-alarm rate [1]. This
would lead to a huge waste of resources because, every time
a change point is declared, subsequent diagnoses are needed.
Lacking an accurate theoretical characterization of false alarms,
existing approaches usually have to perform expensive Monte
Carlo simulations to determine the false alarms and are pro-
hibitive for large networks.

Our contributions: In this paper, we present a novel online
change-point detection framework tailored tomulti-dimensional
intertwined event data streams over networks (or conceptual net-
works), therein addressing the above challenges. We formulate
the problem by leveraging the mathematical framework of se-
quential hypothesis testing and point process modeling, where
before the change, the event stream follows one point process,
and after the change, the event stream becomes a different point
process. Our goal is to detect such changes as quickly as pos-
sible after the occurrences. We derive generalized likelihood
ratio statistics, and we present an efficient EM-like algorithm
to compute the statistics online with streaming data. The EM-
like algorithm is parameter free and can be implemented in a
distributed manner; hence, it is suitable for large networks.

Specifically, our contributions include the following:
i) We present a new sequential hypothesis test and likelihood

ratio approach for detecting changes for event data streams over
networks. We will use either the Poisson process as the null dis-
tribution to detect the appearance of temporal independence or
the Hawkes process as the null distribution to detect the possible
alteration of the dependency structure. For the (inhomogeneous)
Poisson process, time intervals between events are assumed to
be independent and exponentially distributed. For the Hawkes
process, the occurrence intensity of events depends on the events
that have occurred, which implies that the time intervals between
events would be correlated. Therefore, the Hawkes process can
be thought of as a special autoregressive process in time, and the
multivariate Hawkes process also provides a flexible model for
capturing cross-dimension dependencies in addition to tempo-
ral dependencies. Our model explicitly captures the information
diffusion (and dependencies) both over networks and time, and

it allows us to aggregate information for weak signal detection.
Our proposed detection framework is quite general and can be
easily adapted to other point processes.
In contrast, existing work on change-point detection for point

processes has also been focused on a single stream rather than
the multidimensional case with networks. These works include
detecting changes in the intensity of a Poisson process [9]–
[11] and the coefficients of continuous diffusion processes [12];
detecting changes using the self-exciting Hawkes processes,
including trend detection in social networks [13]; and detecting
Poisson processes using a score statistic [14].
ii) We present an efficient expectation-maximization (EM)-

like algorithm for updating the likelihood-ratio detection statis-
tic online. The algorithm can be implemented in a distributed
manner due to its structure: only neighboring nodes need to
exchange information for the E-step and M-step.
iii) We also present an accurate theoretical approximation of

the false-alarm rate (formally the average-run length or ARL)
of the detection algorithm via the recently developed change-
of-measure approach to handle highly correlated statistics. Our
theoretical approximation can be used to determine the threshold
in the algorithm accurately.
iv) Finally, we demonstrate the performance gain of our algo-

rithm over two baseline algorithms (which ignore the temporal
correlation and correlation between nodes) using synthetic ex-
periments and real-world data. These two baseline algorithms
represent current approaches for processing event stream data.
We also show that our algorithm is very sensitive to true changes,
and the theoretical false-alarm rates are very accurate compared
to the experimental results.
Related work: Recently, there has been a surge of interest

in using multidimensional point processes for modeling dy-
namic event data over networks. However, most of these works
focus on modeling and inference of the point processes over
networks. Related works include modeling and learning bursty
dynamics [5], shaping social activity by incentivization [15],
learning information diffusion networks [4], inferring causal-
ity [16], learning mutually exciting processes for viral diffusion
[17], learning triggering kernels for multi-dimensional Hawkes
processes [18] in networks where each dimension is a Pois-
son process [19], learning latent network structures for general
counting processes [20], tracking parameters of dynamic point
process networks [21], and estimating point process models for
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the co-evolution of network structures and information diffu-
sion [22], just to name a few. These works provide a wealth of
tools through which we can, to some extent, keep track of the
network dynamics if the model parameters can be sequentially
updated. However, when only given the values of the up-to-date
model parameters, especially in high-dimensional networks, it
remains unclear how one can perform change detection based
on these models in a principled manner.
Classical statistical sequential analysis (see, e.g., [23], [24]),

where one monitors i.i.d. univariate and low-dimensional mul-
tivariate observations from a single data stream, is a well-
developed area. Outstanding contributions include Shewhart’s
control chart [25], the minimax approach in Page’s CUSUM
procedure [26], [27], the Bayesian approach in the Shiryaev-
Roberts procedure [28], [29], and window-limited procedures
[30]. However, there is limited research on monitoring large-
scale data streams over networks or even event streams over
networks. The detection of change points in point processes has
so far mostly focused on simple Poisson process models without
considering temporal dependency, and most detection statistics
are computed in a discrete-time manner, that is, one needs to ag-
gregate the observed events into bins and then apply traditional
detection approaches to the time series of count data. Examples
include [2], [31], [32].

The notations used herein are standard. The remaining sec-
tions are organized as follows. Section II presents the point
process model and derives the likelihood functions. Section III
presents our sequential likelihood ratio procedure. Section IV
presents the EM-like algorithm. Section V presents our theoret-
ical approximation of the false-alarm rate. Section VI contains
the numerical examples. Section VI presents our results for real
data. Finally, Section VIII summarizes the paper. All proofs are
relegated to the Appendix.

II. MODEL AND FORMULATION

Consider a sequence of events over a network with d nodes,
represented as a double sequence

(t1 , u1), (t2 , u2), . . . , (tn , un ), . . . (1)

where ti ∈ R+ denotes the real-valued time when the ith event
occurs and i ∈ Z+ and ui ∈ {1, 2, . . . , d} indicate the node in-
dex where the event occurs. We use temporal point processes
[33] to model the discrete event streams because they repre-
sent a convenient tool for directly modeling the time intervals
between events, avoid the need to pick a time window to ag-
gregate events, and allow temporal events to be modeled in a
fine-grained manner.

A. Temporal Point Processes

A temporal point process is a random process whose real-
ization consists of a list of discrete events localized in time,
{ti}, with ti ∈ R+ and i ∈ Z+ . We start by considering one-
dimensional point processes. Let the list of times of events up
to but not including time t be the history

Ht = {t1 , . . . , tn : tn < t}.

Let Nt represent the total number of events until time t. Then,
the counting measure can be defined as

dNt =
∑

ti ∈Ht

δ(t− ti)dt, (2)

where δ(t) is the Dirac delta function.
To define the likelihood ratio for point processes, we first

introduce the concept of the conditional intensity function [34].
The conditional intensity function is a convenient and intuitive
way of specifying how the present depends on the past in a
temporal point process. Let F ∗(t) be the conditional probability
that the next event tn+1 occurs before t given the history of
previous events

F ∗(t) = P{tn+1 < t|Ht},

and let f ∗(t) be the corresponding conditional density function.
The conditional intensity function (or the hazard function) [34]
is defined by

λt =
f ∗(t)

1− F ∗(t)
, (3)

and it can be interpreted as the probability that an event occurs
in an infinitesimal interval

λtdt = P{event in [t, t+ dt)|Ht}. (4)

This generalmodel includes the Poisson process and theHawkes
process as special cases.
i) For (inhomogeneous) Poisson processes, each event is

stochastically independent of all the other events in the process,
and the time intervals between consecutive events are indepen-
dent of each other and are exponentially distributed. As a result,
the conditional intensity function is independent of the past,
which is simply deterministic λt = µt.
ii) For one-dimensional Hawkes processes, the intensity func-

tion is history dependent and models a mutual excitation be-
tween events

λt = µt + α

∫ t

0
ϕ(t− τ)dNτ , (5)

where µt is the base intensity (deterministic), α ∈ (0, 1) (due to
the requirement of stationary condition) is the influence param-
eter, and ϕ(t) is a normalized kernel function

∫
ϕ(t)dt = 1. To-

gether, they characterize how the history influences the current
intensity. Fixing the kernel function, a higher value of α means
a stronger temporal dependency between events. A commonly
used kernel function is the exponential kernel ϕ(t) = βe−β t ,
which we will use throughout the paper.
iii) The multi-dimensional Hawkes process is defined sim-

ilarly, with each dimension being a one-dimensional counting
process. It can be used to model the sequence of events over a
network such as (1). We may convert a multi-dimensional pro-
cess into a double sequence, therein using the first coordinate
to represent the time of the event and the second coordinate to
represent the index of the corresponding node.
Define a multivariate counting process (N 1

t , N
2
t , . . . , N

d
t ),

t ! 0, with each componentNi
t recording the number of events
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of the i-th component (node) of the network during [0, t]. The
intensity function is

λi
t = µi

t +
d∑

j=1

∫ t

0
αijϕ(t− τ)dNj

τ , (6)

whereαij , j, i ∈ {1, . . . , d} represents the strength of influence
of the j-th node on the i-th node by affecting its intensity process
λi . If αij = 0, thenNj is not influencingNi . Written in matrix
form, the intensity can be expressed as

λt = µt +A

∫ t

0
ϕ(t− τ)dN τ , (7)

where

µt = [µ1
t , µ

2
t , . . . , µ

d
t ]

ᵀ, dN τ = [dN 1
τ , dN

2
τ , . . . , dN

d
τ ]

ᵀ,

andA = [αij ]1"i,j"d is the influence matrix, which is our main
quantity-of-interest when detect a change. The diagonal entries
characterize the self-excitation, and the off-diagonal entries cap-
ture the mutual excitation among nodes in the network. The
influence matrix can be asymmetric because influence can be
bidirectional.

he topology of the network has been embedded in the sparsity
pattern of the influence matrix A, which are given as a priori.
The dependency between different nodes in the network and
the temporal dependency over events can be captured by updat-
ing (or tracking) the influence matrix A with the event stream.
This can be achieved through an EM-like algorithm, which re-
sults from solving a sequential optimization problemwith warm
start (i.e., we always initialize the parameters using the optimal
solutions of the previous step).

B. Likelihood Function

In the following, we will explicitly denote the dependence of
the likelihood function on the parameters in each setting. The
following three cases are useful for our subsequent derivations.
Let f(t) denote the probability density function. For the one-
dimensional setting, given a sequence of n events (event times)
{t1 , t2 , . . . , tn} before time t, using the conditional probability
formula, we obtain

L = f(t1 , . . . , tn ) = (1− F ∗(t))
n∏

i=1

f(ti |t1 , . . . , ti−1)

= (1− F ∗(t))
n∏

i=1

f ∗(ti) =

(
n∏

i=1

λti

)
exp

{
−

∫ t

0
λsds

}
.

(8)

The last equation is based on the following argument. From the
definition of the conditional density function, we have

λt =
d

dt
F ∗(t)/(1− F ∗(t)) = − d

dt
log(1− F ∗(t)).

Hence,
∫ t
tn

λsds = −log(1− F ∗(t)), where F ∗(tn ) = 0 be-
cause event n+ 1 cannot occur at time tn . Therefore,

F ∗(t) = 1− exp
{
−

∫ t

tn

λsds

}
, f ∗(t) = λtexp

{
−

∫ t

tn

λsds

}
.

The likelihood function for the multi-dimensional Hawkes pro-
cess can be derived similarly by redefining f ∗(t) and F ∗(t)
according to the intensity functions of the multi-dimensional
processes.
Based on the above principle, we can derive the following

likelihood functions.
1) Homogeneous Poisson process: For the homogeneous

Poisson process, λt = µ. Given a constant intensity, the log-
likelihood function for a list of events {t1 , t2 , . . . , tn} in the
time interval [0, t] can be written as

logL(µ) = nlogµ− µt. (9)

2) One-Dimensional Hawkes Process: For the one-
dimensional Hawkes process with constant baseline intensity
µt = µ and exponential kernel, wemay obtain its log-likelihood
function based on the above calculation. By substituting the
conditional intensity function (5) into (8), the log-likelihood
function for events in the time interval [0, t] is given by

logL(α,β, µ) =
n∑

i=1

log

⎛

⎝µ+ α
∑

tj <ti

βe−β (ti−tj )

⎞

⎠

− µt−
∑

ti <t

α
[
1− e−β (t−ti )

]
. (10)

To obtain the above expression, we have used the following two
simple results for exponential kernels based on the property of
counting measure defined in (2):

λt = µ+ α

∫ t

−∞
ϕ(t− τ)dNτ = µ+ α

∑

ti <t

βe−β (t−ti ) , (11)

and
∫ t

0
λsds = µt+

∑

ti <t

α
[
1− e−β (t−ti )

]
. (12)

3) Multi-Dimensional Hawkes Process: For multi-dimen-
sional point processes, we consider event stream such as (1).
Assume that the base intensities are constants with µi

t " µi . Us-
ing similar calculations as above, we obtain the log-likelihood
function for events in the time interval [0, t] as

logL (A,β,µ) =
n∑

i=1

log

⎡

⎣µui +
∑

tj <ti

αui ,uj βe
−β (ti−tj )

⎤

⎦

−
d∑

j=1

µj t−
d∑

j=1

∑

ti <t

αui ,j

[
1− e−β (t−ti )

]
. (13)

III. SEQUENTIAL CHANGE-POINT DETECTION

We are interested in detecting two types of changes sequen-
tially from event streams, which capture two general scenarios
in real applications (Fig. 2 illustrates these two scenarios for the
one-dimensional setting): (i) The sequence before the change is
a Poisson process, and after the change, it is a Hawkes process.
This can be useful for applications where we are interested in
detecting an emergence of self- or mutual-excitation between
nodes. (ii) The sequence before the change is a Hawkes process,
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Fig. 2. Illustration of scenarios for one-dimensional examples: (a) Poisson to
hawkes; (b) Hawkes to hawkes.

and after the change, the magnitude of the influence matrix in-
creases. This can be a more realistic scenario because, often,
nodes in a network will influence each other initially. This can
be useful for applications where a triggering event changes the
behavior or structure of the network, for instance, in detecting
the emergence of a community in a network [35].
In the following, we cast the change-point detection problems

as the sequential hypothesis test [36], and we derive the gen-
eralized likelihood ratio (GLR) statistic for each case. Suppose
that there may exist an unknown change-point κ such that, after
that time, the distribution of the point process changes.

A. Change From Poisson to Hawkes

First, we are interested in detecting the events over a network
changing from d-dimensional independent Poisson processes to
an intertwined multi-variate Hawkes process. This models the
effect that the change affects the spatial dependency structure
over the network. Below, we first consider the one-dimensional
setting, and then, we generalize to the multi-dimensional case.

1) One-Dimensional Case: The data consist of a sequence
of events occurring at time {t1 , t2 , . . . , tn}. Under the hypoth-
esis of no change (i.e., H0), the event time is a one-dimensional
Poisson process with intensity λ. Under the alternative hypoth-
esis (i.e., H1), there exists a change-point κ. The sequence is
a Poisson process with intensity λ initially, and it changes to
a one-dimensional Hawkes process with parameter α after the
change. Formally, the hypothesis test can be stated as

⎧
⎪⎨

⎪⎩

H0 : λs = µ, 0 < s < t;
H1 : λs = µ, 0 < s < κ,

λ∗
s = µ+ α

∫ s
κ ϕ(s− τ)dNτ , κ < s < t.

(14)

Assume that the intensityµ can be estimated from reference data
and that β is given a priori. We treat the post-change influence
parameter α as an unknown parameter because it represents an
anomaly.

Using the likelihood functions derived in Section II-B, equa-
tions (9) and (10), for a hypothetical change-point location τ ,
the log-likelihood ratio as a function of α, β and µ is given by

ℓt,τ ,α = logL(α,β, µ)− logL(µ)

=
∑

ti ∈(τ ,t)

log

⎡

⎣µ+ α
∑

tj ∈(τ ,ti )

βe−β (ti−tj )

⎤

⎦

− µ(t− τ)− α
∑

τ i ∈(τ ,t)

[
1− e−β (t−ti )

]
. (15)

Note that the log-likelihood ratio only depends on the events in
the interval (τ, t) and α. We maximize the statistic with respect
to the unknown parameters α and τ to obtain the log GLR statis-
tic. Finally, the sequential change-point detection procedure is
a stopping rule (related to the non-Bayesian minimax type of
detection rules; see [37]):

Tone−dim = inf{t : max
τ<t

max
α

ℓt,τ ,α > x}, (16)

where x is a prescribed threshold, the choice of which will be
discussed later. Although there does not exist a closed-form
expression for the estimator of α, we can estimate α via an
EM-like algorithm, which will be discussed in Section IV-B.

Remark 1 (Offline detection): We can adapt the procedure
for offline change-point detection by considering the fixed-
sample hypothesis test. For instance, for the one-dimensional
setting, given a sequence of n events with tmax " tn , we may
detect the existence of a change when the detection statistic,
maxτ<tm a x maxα ℓtm a x ,τ ,α , exceeds a threshold. The change-
point location can be estimated as the τ ∗ that obtains the max-
imum. However, the algorithm considerations for online and
offline detection are very different, as discussed in Section IV.
2) Multi-Dimensional Case: For the multi-dimensional

case, the event stream data can be represented as a double se-
quence defined in (1). We may construct a similar hypothesis
test as above. Under the hypothesis of no change, the event times
are a multi-dimensional Poisson process with a vector intensity
function λs = µ. Under the alternative hypothesis, there exists
a change point κ. The sequence is initially a multi-dimensional
Poisson process but changes to a multi-dimensional Hawkes
process with influence matrixA afterward. We omit the formal
statement of the hypothesis test, as it is similar to (14).
Again, using the likelihood functions derived in Section II-B,

we obtain the likelihood ratio. The log-likelihood ratio for data
up to time t, given a hypothetical change-point location τ and
parameter A, is given by

ℓt,τ ,A = logL(A,β, µ)− logL(µ)

=
∑

ti ∈(τ ,t)

log

⎡

⎣1 + 1
µui

∑

tj ∈(τ ,ti )

αui ,uj βe
−β (ti−tj )

⎤

⎦

−
d∑

j=1

∑

ti ∈(τ ,t)

αj,ui

[
1− e−β (t−ti )

]
. (17)

Here, recall from the original form of the data (1) that (ti , ui)
represents the ith event’s occurrence time and the corresponding
node ui where the event occurs. Hence, (17) means that, to
evaluate the likelihood for a time window (τ, t), one should
consider all events that fall within that interval and aggregate
the intensities using nodes corresponding to these events. The
sequential change-point detection procedure is a stopping rule:

Tmulti−dim = inf{t : max
τ<t

max
A

ℓt,τ ,A > x}, (18)

where x is a pre-determined threshold. The multi-dimensional
maximization can be computed efficiently via the EM algorithm
described in Section IV-B .
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B. Changes From Hawkes to Hawkes

Next, consider the scenario where the process prior to a
change is a Hawkes process, and the change occurs in the influ-
ence parameter α or the influence matrixA.
1) One-Dimensional Case: Under the hypothesis of no

change, the event stream is a one-dimensional Hawkes pro-
cess with parameter α. Under the alternative hypothesis, there
exists a change point κ. The sequence is a Hawkes process with
intensity α, and after the change, the intensity changes to α∗.
Assume that the parameter α prior to the change is known.

Using the likelihood functions derived in Section II-B, we
obtain the log-likelihood ratio

ℓt,τ ,α∗ = logL(α∗,β, µ)− logL(µ)

=
∑

ti ∈(τ ,t)

log

[
µ+ α∗ ∑

tj ∈(τ ,ti ) βe−β (ti−tj )

µ+ α
∑

tj ∈(τ ,ti ) βe−β (ti−tj )

]

− (α∗ − α)
∑

ti ∈(τ ,t)

[
1− e−β (t−ti )

]
, (19)

and the change-point detection is achieved through a procedure
in the form of (16) by maximizing with respect to τ and α. Here,
recall from the original form of the data (1) that ti represents the
ith event’s occurrence time. Hence, (19) means that, to evaluate
the likelihood for a time window (τ, t), one should consider
all events that fall within that interval and use their occurrence
times.

2) Multi-Dimensional Case: For the multi-dimensional set-
ting, we assume that the change will alter the influence
parameters of the multi-dimensional Hawkes process over the
network. This captures the effect that, after the change, the influ-
ence between nodes becomes different. Assume that ,under the
hypothesis of no change, the event stream is amulti-dimensional
Hawkes process with parameter A. Alternatively, there exists a
change point κ. The sequence is a multi-dimensional Hawkes
process with influence matrix A before the change, and after
the change, the influence matrix becomes A∗. Assume that the
influence matrixA prior to the change is known.
Using the likelihood functions derived in Section II-B, the

log-likelihood ratio at time t for a hypothetical change-point
location τ and post-change parameter value A∗ is given by

ℓt,τ ,A∗ = logL(A∗,β, µ)− logL(µ)

=
∑

ti ∈(τ ,t)

log

[
µui +

∑
tj ∈(τ ,ti ) α∗

ui ,uj
βe−β (ti−tj )

µui +
∑

tj ∈(τ ,ti ) αui ,uj βe
−β (ti−tj )

]

−
d∑

j=1

∑

ti ∈(τ ,t)

(
α∗
j,ui

− αj,ui

) [
1− e−β (t−ti )

]
, (20)

and the change-point detection is applied through a procedure
in the form of (18) by maximizing with respect to τ and A∗.
Here, recall from the original form of the data (1) that (ti , ui)
represents the ith event’s occurrence time and the nodewhere the
event occurs. Hence, (17) means that, to evaluate the likelihood
for a time window (τ, t), one should consider all events that fall
within that interval and aggregate the intensities using the edges

Fig. 3. Illustration of the sliding window approach for online detection.

α∗
ui ,uj

(null influence parameter) orαui ,uj (alternative influence
parameter) across nodes that correspond to these events.

IV. ALGORITHM FOR COMPUTING LIKELIHOOD ONLINE

In the online setting, we obtain new data continuously. Hence,
to perform online detection, we need to update the likelihood
efficiently to incorporate the new data. To reduce the computa-
tional cost, update of the likelihood function can be computed
recursively, and the update algorithm should have a low cost. To
reduce memory requirements, the algorithm should only store
the minimum amount of data necessary for detection rather than
the complete history. These requirements make online detection
drastically different from offline detection because, in the offline
setting, we can afford greater computational complexity.

A. Sliding Window Procedure

The basic idea of the online detection procedure is illustrated
in Fig. 3. We adopt a sliding window approach to reduce the
computational complexity as well the memory requirements.
We update the detection statistic asynchronously every γ events,
i.e., when mod(i, γ) = 0, where i is the event index (in all our
examples in Sections VI and VII, we set γ = 1, i.e., update
the detection statistic upon every new event). When evaluat-
ing the likelihood function, instead of maximizing over ever
possible change-point location τ < t, we pick several possi-
ble change-point locations within a window size L and max-
imize the statistics over several values of τ , e.g., τ ∈ Ωt "
{t− ∆1 , t− ∆2 , . . . , t− ∆k}, where ∆i are the chosen off-
sets of possible change-point locations from the current time. In
this way, we reduce the computational complexity because we
eliminate the maximization over all possible change-point loca-
tions before time t. This also reduces the memory requirement,
as we only need to store events that fall into the sliding window.
The drawback is that, by doing this, some statistical detection
power is lost because we do not use the most likely change-point
location, and this may increase the detection delay.
When implementing the algorithm, we choose the Ωt to

achieve a good balance in these two aspect. We have to choose a
window length that is sufficiently large so that there are enough
events stored for us to make a consistent inference. In prac-
tice, a proper length of window relies on the nature of the data.
If the data are noisy, a longer time window is usually needed
to achieve a better estimation of the parameter and reduce the
false-alarm rate.

B. Parameter-Free EM-Like Algorithm

We consider a one-dimensional point process to illustrate the
derivation of the EM-like algorithm. It can be shown that the



352 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 3, NO. 2, JUNE 2017

Algorithm 1: Online Detection Algorithm.
Require: Data {(ti , ui)}.

Grid points of change-point locations: Ωt " {t− ∆1 ,
t− ∆2 , . . . , t− ∆k}.
Update frequency γ (events).
Initialization for parameters α (one-dimension) or A
(multi-dimension).
Pre-defined threshold: x.
Estimation accuracy: ϵ.

1: repeat
2: if mod (i, γ) = 0 then
3: Initialize α(0) = α̂ or A(0) = Â {warm start}
4: repeat
5: Perform {E-step} and {M-step} from

Section IV-B
6: until ∥α(k+1) − α(k)∥ < ϵ or ∥A(k+1) −

A(k)∥ < ϵ
7: Let α̂ = α(k+1) and Â = A(k+1) .
8: Use α̂ or Â to compute log likelihood using (15),

(17), (19) or (20).
9: end if

10: untilmaxτ ∈Ω t ℓt,τ ,α̂ > x
or maxτ ∈Ω t ℓt,τ ,Â > x and announce a change.

likelihood function (15) is a concave function with respect to
the parameter α. One can use gradient descent to optimize this
objective function (maximizing the likelihood function), where
the algorithm will typically involve some additional tuning pa-
rameters such as the learning rate. In this problem, however, we
determine that we may use an EM algorithm that is free of any
tuning parameters. Although there does not exist a closed-form
estimator for the influence parameter α or the influence matrix
A, we develop an efficient EM algorithm to update the likeli-
hood, therein exploiting the structure of the likelihood function
[38]. The iterations in the EM method are performed before
any new observation. The overall algorithm is summarized in
Algorithm 1.

First, we obtain a concave lower bound of the likelihood
function using Jensen’s inequality. Consider that all events fall
into a slidingwindow ti ∈ (τ, t) at time t. Introduce the auxiliary
variables pij for all pairs of events (i, j)within the window such
that tj < ti . The variables are subject to the constraint

∀i,
∑

tj <ti

pij = 1, pij ! 0. (21)

These pij can be interpreted as the probability that the j-th event
influences the i-th event in the sequence. It can be shown that
the likelihood function defined in (10) can be lower bounded

ℓt,τ ,α !
∑

ti ∈(τ ,t)

⎛

⎝pii log(µ) +
∑

tj ∈(τ ,ti )

pij log
[
αβe−β (ti−tj )

]

−
∑

tj ∈(τ ,t)

pij logpij

⎞

⎠ − µ(t− τ)− α
∑

ti ∈(τ ,t)

[
1− e−β (t−ti )

]
,

Note that the lower bound is valid for every choice of {pij} that
satisfies (21).
To make the lower bound tight and ensure improvement in

each iteration, we will maximize it with respect to pij and obtain
(22) (assuming that we have α(k) from a previous iteration
or initialization). Once we have a tight lower bound, we will
take the gradient of this lower bound with respect to α. When
updating from the k-th iteration to the (k + 1)-th iteration, we
obtain (23)

p(k)ij =
α(k)βe−β (tj −ti )

µ+ α(k)β
∑

tm ∈(τ ,tj ) e
−β (tj −tm ) {E-step} (22)

α(k+1) =
∑

i<j p
(k)
ij∑

ti ∈(τ ,t) [1− e−β (t−ti ) ]
{M-step} (23)

where the superscript denotes the number of iterations. The
algorithm iterates these two steps until the algorithm converges
and obtains the estimated α. In practice, we find that we only
need 3 or 4 iterations to converge if using warm start.
Similarly, an online estimate for the influence matrix for the

multi-dimensional case can be estimated by iterating the follow-
ing two steps:

p(k)ij =
α(k)
ui ,uj βe

−β (ti−tj )

µui + β
∑

tm ∈(τ ,ti ) α(k)
ui ,um e−β (ti−tm )

, {E-step}

α(k+1)
u,v =

∑
i: ui=u

∑
j<i: uj =v p

(k)
ij∑

j : tj ∈(τ ,t),uj =v

[
1− e−β (t−tj )

] . {M-step}

The overall detection procedure is summarized in Fig. 3 and
Algorithm 1.

Remark 2 (Computational complexity): The key computa-
tion is to compute pairwise inter-event times for pairs of events
ti − tj , i < j. This is related to the window size (because we
have adopted a sliding window approach), the size of the net-
work, and the number of EM steps. However, note that, in the
EM algorithm, we only need to compute the inter-event times
for nodes that are connected by an edge because the summation
is weighted by αij , and the term only counts if αij is non-zero.
Hence, the updates only involve neighboring nodes, and the
complexity is proportional to the number of edges in the net-
work. Because most social networks are sparse, the complexity
will be lowered significantly. We may reduce the number of EM
iterations for each update by leveraging a warm start for ini-
tializing the parameter values because, for two adjacent sliding
windows, the corresponding optimal parameter values typically
should be very close to the previous values.

Remark 3 (Distributed implementation): Our EM-like algo-
rithm in a network setting can be implemented in a distributed
manner. This has been embedded in the form of the algorithm
already. Hence, the algorithm can be used for processes in large
networks. In the E-step, when updating the pij , we need to
evaluate a sum in the denominator, and this is the only place
where different nodes need to exchange information, i.e., the
event times occurred at that node. Because we only need to sum
over all events such that the corresponding αui ,uj is non-zero,
each node only needs to consider the events that occurred at the
neighboring nodes. Similarly, in the M-step, only neighboring
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TABLE I
EXPRESSIONS FOR I , I0 , σ2 AND σ2

0 UNDER DIFFERENT SETTINGS

nodes need to exchange their values of pij and event times to
update the influence parameter values.

V. THEORETICAL THRESHOLD

A key step in implementing the detection algorithm is to set
the threshold. The choice of threshold involves a trade-off be-
tween two standard performance metrics for sequential change-
point detection: the false-alarm rate and how fast we can detect
the change. Formally, these two performance metrics are (i) the
expected stopping time when there are no change points, called
the average run length (ARL), and (ii) the expected detection
delay when a change point exists.
Typically, a higher threshold x results in a larger ARL (and

hence a smaller false-alarm rate) but a larger detection delay.
A typical practice is to set the false-alarm rate (or ARL) to a
pre-determined value and find the corresponding threshold x.
The pre-determined ARL depends on how frequent we can
tolerate false detection (once a month or once a year). Usually,
the threshold is estimated via direct Monte Carlo by relating
the threshold to the ARL assuming that the data follow a null
distribution. However, Monte Carlo is not only computationally
expensive, but in some practical problems, repeated experi-
ments would be prohibitive. Therefore, it is important to find a
cheaper method to accurately estimate the threshold.

We develop an analytical function that relates the thresh-
old to ARL for the special case in which we set τ = t− L or
equivalently Ωt = {(t− L)}, where L is the window length.
This means that we consider all events within the time inter-
val (t− L, t). Given a prescribed ARL, we can solve for the
corresponding threshold x analytically. We first characterize the
property of the likelihood ratio statistic in the following lemma,
which states that the mean and variance of the log-likelihood

ratios both scale roughly linearly with the post-change time du-
ration. This property of the likelihood ratio statistics is key to
developing our main result.
Lemma 1 (Mean and variance of log-likelihood ratios):

When the number of post-change samples (t− τ) is large, the
mean and variance of the log-likelihood ratio for the single-
dimensional and multi-dimensional cases, denoted as ℓt,τ ,·, for
our cases converge to a simple linear form. Under the null hy-
pothesis,E[ℓt,τ ,·] ≈ (t− τ)I0 andE[ℓt,τ ,·] ≈ (t− τ)σ2

0 . Under
the alternative hypothesis, E[ℓt,τ ,·] ≈ (t− τ)I and E[ℓt,τ ,·] ≈
(t− τ)σ2 . Above, I , I0 , σ2 , and σ2

0 are defined in Table I for
various settings that we considered.
Our main theoretical result is the following general theorem

that can be applied for all hypothesis tests that we consider.
Denote the probability and expectation under the hypothesis of
no change by P∞ and E∞, respectively.

Theorem 1 (ARL under the null distribution): When x → ∞
and x/

√
L → c′ for some constant c′, the average run length

(ARL) of the stopping time T defined in (16) for the one-
dimensional case is given by

E∞[Tone−dim ] = ex

⎡

⎣
∫

α∈Θ
ν

(
2ξ
η2

) φ
(

LI−x√
Lσ 2

)

√
Lσ2

dα

⎤

⎦
−1

· (1 + o(1)). (24)

For the multi-dimensional case, the same expression holds for
E∞[Tmulti−dim ], except that

∫
α is replaced by

∫
A, which means

taking the integral with respect to all nonzero entries of the
matrix

∫
A =

∫
· · ·

∫ ∫
{α i j ,α i j ̸=0} . Above, the special function

ν(µ) ≈ (2/µ) (Φ(µ/2)− 0.5)
(µ/2)Φ(µ/2) + φ(µ/2)

.
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The specific expressions for I , I0 , σ2 , and σ2
0 for various settings

are summarized in Table I, and

ξ = −(I0 − I), η2 = σ2
0 + σ2 . (25)

Above, Φ(x) and φ(x) are the cumulative distribution function
(CDF) and the probability density function (PDF) of the standard
normal, respectively.

Remark 4 (Evaluating integral): The multi-dimensional in-
tegral can be evaluated using the Monte Carlo method [39]. We
use this approach for our numerical examples as well.

Remark 5 (Interpretation): The parameters I0 , I , σ2
0 and σ2

have the following interpretation:

I0 = E[ℓt,τ ,α ]/L, σ2
0 = Var[ℓt,τ ,α ]/L,

I = Et,τ ,α [ℓt,τ ,α ]/L, σ2 = Vart,τ ,α [ℓt,τ ,α ]/L, (26)

which are themean and variance of the log-likelihood ratio under
the null and alternative distributions, per unit time, respectively.
Moreover, I can be interpreted roughly as the Kullback-Leibler
information per time for each of the hypothesis tests that we
consider.
The proof of Theorem 1 combines the recently devel-

oped change-of-measure techniques for sequential analysis with
properties of the likelihood ratios for point processes, the
mean field approximation for point processes, and the Delta
method [40].

VI. NUMERICAL EXAMPLES

In this section, we present some numerical experiments using
synthetic data.We focus on comparing the EDDof our algorithm
with two baseline methods, and we demonstrate the accuracy of
the analytic threshold.

A. Comparison of EDD

1) TwoBaseline Algorithms: Wecompare ourmethod to two
baseline algorithms. Baseline approaches 1-2 are implemented
using a fixed window as the proposed method to achieve a fair
comparison.

i) Baseline 1: is related to the commonly used “data binning”
approach for processing discrete event data such as in [6]. This
approach, however, ignores temporal correlations and correla-
tions between nodes. Here, we convert the event data into counts
by discretize time into a uniform grid, and we count the number
of events occurring in each interval. Such counting data can be
modeled via a Poisson distribution. We may derive a likelihood
ratio statistic to detect a change. Suppose that n1 , n2 , . . . , nc

are the sequence of counting numbers following the Poisson
distribution with intensity λi , i = 1, 2, . . . , c is the index of the
discrete time step. Assume that, under the null hypothesis, the
intensity function is λi = µ. Alternatively, there may exist a
change point κ such that, before the change, λi = µ, and after
the change, λi = µ∗. It can be shown that the log-likelihood
ratio statistic as

ℓc,k ,µ∗ = −(c− k)(µ∗ − µ) +
c∑

i=k+1

ni log
µ∗

µ
.

Fig. 4. Illustration of network topology.

We detect a change whenever maxk<c maxµ∗ ℓk,c,µ∗ > x for
a pre-determined threshold x. Assume that every dimension
follows an independent Poisson process; then, the log-likelihood
ratio for the multi-dimensional case is simply a summation of
the log-likelihood ratio for each dimension. Suppose that the
total dimension is d; then,

ℓk,c,µ∗ =
d∑

j=1

[
−(c− k)(µ∗

j − µj ) +
c∑

i=k+1

nj
i log

µ∗
j

µj

]
.

We detect a change whenever maxk<c maxµ∗ ℓk,c,µ∗ > x.
ii) The Baseline 2 method calculates the one-dimensional

change-point detection statistic at each node separately as (15)
and (19), and then, it combines the statistics through summa-
tion into a global statistic to perform detection. This approach,
however, ignores the correlation between nodes and can also be
viewed as a centralized approach for change-point detection. In
addition, it is related to multi-chart change-point detection [37].
2) Set-Up of Synthetic Experiments: We consider the fol-

lowing scenarios and compare the EDD of our method to two
baseline methods. EDD is defined as the average time (delay)
it takes before we can detect the change and can be understood
as the power of the test statistic in the sequential setting. The
thresholds of all three methods are calibrated such that the ARL
under the null model is 104 unit time, and the corresponding
thresholds are obtained via direct Monte Carlo to provide a fair
comparison. The sliding window is set to be L = 10 unit time.
The exponential kernel ϕ(t) = βe−β t is used, and β = 1. The
scenarios that we considered are described below. The illustra-
tions of the Case 1 and Case 2 scenarios are presented in Fig. 2.
The network topology for Case 3 to Case 7 is demonstrated in
Fig. 4.
Case 1: Consider a situation in which the events first follow a

one-dimensional Poisson process with intensity µ = 10 but then
shift to a Hawkes process with influence parameter α = 0.5.
This scenario describes the emergence of temporal dependency
in the event data.
Case 2: The process shifts from a one-dimensional Hawkes

process with parametersµ = 10 andα = 0.3 to another Hawkes
process with a larger influence parameter α = 0.5. The scenario
represents the change of the temporal dependency in the event
data.
Case 3: Consider a star network scenario with one parent and

nine children, which is commonly used inmodeling information
broadcasting over the network. Before the change point, each
note has a base intensity µ = 1 and self-excitation αi,i = 0.3,
1 ≤ i ≤ 10. The mutual excitation from the parent to each child
is set to be α1,j = 0.3, 2 ≤ j ≤ 10 (if we use the first node to
represent the parent). After the change point, all the self- and
mutual- excitations increase to 0.5.
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TABLE II
EDD COMPARISON. THRESHOLDS FOR ALL METHODS ARE CALIBRATED SUCH

THAT ARL = 104

Baseline 1 Baseline 2 Our Method

Case 1 22.1 − 4.8
Case 2 19.6 − 18.8
Case 3 8.2 6.9 4.3
Case 4 × × 19.8
Case 5 6.1 5.7 4.7
Case 6 × 10.5 10.8
Case 7 × 32.5 32.5

Note: ‘×’ indicates that the corresponding method
fails to detect the changes; ‘−’ indicates that, in the
one-dimensional case, Baseline 2 is identical to ours.

Case 4: The network topology is the same as in Case 3.
However, we consider a more challenging scenario. Before the
change, the parameters are set to be the same as in Case 3. After
the change, the self-excitation αi,i , 1 ≤ i ≤ 10, deteriorates to
0.01, and the influence from the parent to the children increases
to α1,j = 0.6, j = 2 ≤ j ≤ 10. In this case, for each note, the
occurring frequency of events would be almost the same before
and after the change points. However, the influence structure
embedded in the network has actually changed.

Case 5: Consider a network with a chain of ten nodes, which
is commonly used to model information propagation over the
network. Before the change, each note has a base intensity
µ = 1, self-excitation αi,i = 0.3, 1 ≤ i ≤ 10, and mutual-
excitation αi,j = 0.3, where j − i = 1, 1 ≤ i ≤ 9. After the
change point, all the self- and mutual-excitation parameters in-
crease to 0.5.

Case 6:Consider a sparse network with an arbitrary topology
and one-hundred nodes. Each note has a base intensity µ = 0.1
and self-excitationαi,i = 0.3, 1 ≤ i ≤ 100.We randomly select
twenty directed edges over the network and set the mutual exci-
tation to be αi,j = 0.3, where i ̸= j, i, j are randomly selected.
After the change point, all the self- and mutual-excitations in-
crease to 0.5.

Case 7: The sparse network topology and the pre-change
parameters are the same as in Case 6. The only difference is
that, after the change point, only half of the self- and mutual-
excitation parameters increase to 0.5.

3) EDDResults andDiscussion: For the above scenarios,we
compare the EDD of our method and two baseline algorithms.
The results are shown in Table II. We see that our method
compares favorably to the two baseline algorithms. In the first
five cases, our method presents a significant performance gain.
Especially for Case 4, which is a challenging setting, only our
method succeeds in detecting the spatial structure changes. For
Case 6 and Case 7, our method achieves similar performance as
Baseline 2. One possible reason for this is that, in these cases,
the network topology is a sparse graph; thus, the nodes are
“loosely” correlated. Hence, the advantage of combining over
graphs is not significant in these cases.

Moreover, we observe that the Baseline 1 algorithm is not
stable. In certain cases (Case 6 and Case 7), it completely fails
to detect the change. An explanation for this is that there is a

Fig. 5. AUC curves: Comparison of our method with Baseline 1. The window
size L used is 1000.

chance that the number of events falling into a given time bin
is extremely small or close to zero, and this causes numerical
issues when calculating the likelihood function (because there
is a log function of the number of events). On the other hand,
our proposed log-likelihood ratio is event triggered and hence
will avoid such numerical issues.

B. Sensitivity Analysis

We also perform the sensitivity analysis by comparing
our method to Baseline 1 algorithm via numerical simula-
tion. The comparison is conducted under various kernel decay
parameter β, and the strength of the post-change signals, which
can be controlled by the magnitudes of the changes in α (orA).
For each dataset, we created 500 samples of sequences, with
half of them containing one true change point and the other half
containing no change points. We then plot the area under the
curve (AUC) (defined as the true positive rate versus the false
positive rate under various thresholds) for comparison, as shown
in Fig. 5.
1) Set-Up of Synthetic Experiments: Overall, we consider

various decay parameters β and magnitudes of the changes in α
to compare the approaches.
One-dimensional setting. First, consider that, before the

change, the data are a Poisson process with base intensityµ = 1.
For A.1-A.4, the post-change data become a one-dimensional
Hawkes process; for A.1–A.3, α = 0.2, and β = 1, 10, 100; and
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for A.4, α = 0.3, and β = 10. By comparing the AUC curves,
we see that our method has a remarkably better performance
in distinguishing the true positive changes from the false posi-
tive changes compared to the baseline method. The superiority
would become more evident under larger β and larger magni-
tudes of shifts in α. For weak changes, the baseline approach
is only slightly better than random guessing, whereas our ap-
proach consistently performs well. Similar results can be found
if the pre-change data follow the Hawkes process. For exam-
ple, in B.1-B.3, the pre-change data follow a Hawkes process
with µ = 1, α = 0.3, and β = 1, and the post-change parame-
ters shift to a Hawkes process with α = 0.5 and β = 1, 10, 100.
We can see a similar trend as before by varying β and α.

Network setting: We first consider the two-dimensional ex-
amples in the following and obtain the same results. For C.1-
C.2, the pre-change data follow two-dimensional Poisson pro-
cesses with µ = [0.2, 0.2]ᵀ, and the post-change data follow
two-dimensional Hawkes processes with influence parameter
A = [0.1, 0.1; 0.1, 0.1], with β = 1, 10. For D.1–D.3, consider
the star network with one parent and nine children. Before the
change point, for each node, the base intensity isµ = 0.1,β = 1,
and the influence from the parent to each child is α = 0.3. After
the change, α changes to 0.4 for D.1, and α changes to 0.5,
β = 1, 10, for D.2 and D.3.

C. Accuracy of Theoretical Threshold

We evaluate the accuracy of our approximation in Theorem 1
by comparing the threshold obtained via Theorem1with the true
threshold obtained by direct Monte Carlo. We consider various
scenarios and parameter settings. We demonstrate the results in
Fig. 6 and list the parameters below.
For Fig. 6(a)–(c), the null distribution is a one-dimensional

Poisson process with intensity µ = 1. We choose β = 1 as a
priori, and we vary the length of the sliding time window. We
set L = 10, 50, 100. For Fig. 6(d), we select L = 50, and we
let β = 10. By comparing these four examples, we find that our
approximated threshold is very accurate regardless of L and β.
For Fig. 6(e) and (f), the null hypothesis is a one-dimensional

Hawkes process with base intensity µ = 1 and influence pa-
rameter α = 0.3, β = 10. We vary the sliding window length
as L = 100, 150. We can see the accurate approximations as
before. For Fig. 6(g) and (h), we consider a multi-dimensional
case. The null distribution is a two-dimensional Poisson process
with base intensity µ = [0.5, 0.5]ᵀ. We set β = 1, and we vary
the window length as L = 300 and 400 respectively. The results
demonstrate that our analytical threshold is also highly accurate
in the multi-dimensional situation.

VII. REAL-DATA

We evaluate our online detection algorithm on real Twitter
and news website data. By evaluating our log-likelihood ratio
statistic on the real twittering events, we see that the statistics
would increase when there is an explanatory major event in an
actual scenario. By comparing the detected change points to the
true major event time, we verify the accuracy and effectiveness
of our proposed algorithm. In all our real experiments, we set

Fig. 6. Comparison of theoretical threshold obtained via Theorem 1 with
simulated threshold.

the sliding window size as L = 500 minutes, and we set the
kernel bandwidth β to be 1. The number of total events for the
tested sequences ranges from 3000 to 15000 for every dataset.

A. Twitter Dataset

For the Twitter dataset, we focus on the star network topology.
We create a dataset for famous users and randomly select 30 of
their followers among the tens of thousands of followers. We
assume that there is a star-shaped network from the celebrity to
the followers, and we collect all their re/tweets in late January
and early February 2016. Fig. 9(a) demonstrates the statistics
computed for the account associatedwith a TV series namedMr.
Robot. We identify that the statistics increase at approximately
late January 10-th and early January 11-th. This, surprisingly
corresponds to the winning of the 2016 Golden Globe Award1.
Fig. 9(b) shows the statistics computed based on the events re-
lated to the First Lady of the USA and 30 of her randomly

1http://www.tvguide.com/news/golden-globe-awards-winners-2016/
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Fig. 7. AUC for twitter dataset on 116 important real-world events.

selected followers. The statistics reveal a sudden increase on
the 13th of January. We find a related event - Michelle Obama
stole the show during the president’s final State of the Union
address by wearing a marigold dress, which sold out even be-
fore the president finished the speech2. Fig. 9(c) is related to
Suresh Raina, an Indian professional cricketer. We selected a
small social circle around him as the center of a star-shaped net-
work. We notice that he led his team to victory in an important
game on January 20-th3, which corresponds to a sharp increase
in the statistics. More results for this dataset can be found in
Appendix E.

We further perform sensitivity analysis using the Twitter data.
We identify 116 important real-life events. Some typical exam-
ples of such events are the release of a movie/album, winning
an award, and the Pulse Nightclub shooting. Next, we identify
the twitter handles associated with entities representing these
events. We randomly sample 50 followers from each of these
accounts and obtain a star topology graph centered around each
handle. We collect tweets of all users in all these networks for
a window of time before and after the real-life event. For each
network we compute the statistics. The AUC curves in Fig. 7
are obtained by varying the threshold. A threshold value is said
to correctly identify the true change point if the statistic value to
the right of the change point is greater than the threshold. This
demonstrates the good performance of our algorithm against
two baseline algorithms.

B. Memetracker Dataset

As a further illustration of our method, we also experiment
with the Memetracker4 dataset to detect changes in new blogs.
The dataset contains the information flows captured by hy-
perlinks between different sites with timestamps during nine
months. The dataset tracks short units of texts and short phrases,
called memes, that act as signatures of topic and event prop-
agation and diffuse over the web in mainstream media and

2http://www.cnn.com/2016/01/13/living/michelle-obama-dress-marigold-
narciso-rodriguez-feat/

3http://www.espncricinfo.com/syed-mushtaq-ali-trophy-2015-
16/content/story/963891.html

4http://www.memetracker.org/

TABLE III
SUMMARY INFORMATION FOR THE EXTRACTED INSTANCE FOR CHANGE-POINT

DETECTION FROM THE MEMETRACKER DATASET

real-world news n κ tm in tm a x

Obama elected president 80 11/04/08 11/02/08 11/05/08
Ceasefire in Israel 60 01/17/09 01/13/09 01/17/09
Olympics in Beijing 100 08/05/08 08/02/08 08/05/08

The keywords are highlighted in red.

Fig. 8. Illustration of the network topology for tracking Obama’s first presi-
dential announcement.

blogs [41]. The dataset was previously used in Hawkes pro-
cess models of social activity [18], [42].
We create three instances of change-point detection scenar-

ios from the Memetracker dataset using the following common
procedure. First, we identify a key word associated with a piece
of news occurring at κ. Second, we identify the top n web-
sites that have the most mentions of the selected key word in
a time window [tmin , tmax] around the news break time κ (i.e.,
κ ∈ [tmin , tmax]). Third, we extract all articles with time stamps
within [tmin , tmax] containing the keyword, and each article is
treated as an event in the point process. Fourth, we construct the
directed edges between the websites based on the reported link-
ing structure. These instances correspond to real-world news
whose occurrences are unexpected or uncertain and hence can
cause abrupt behavior changes in the blogs. The details of these
instances are shown in Table III.
The first piece of news corresponds to “Barack Obama was

elected as the 44th president of the United States5”. In this
example, we also plot the largest connected component of the
network, as shown in Fig. 8. It is notable that this subset includes
credible news agencies such as BBC, CNN, WSJ, Huffington
Post, and Guardian. As we show in Fig. 10(a), our algorithm can

5https://en.wikipedia.org/wiki/United_States_presidential_election,_2008
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Fig. 9. Exploratory results on twitter for the detected change points: (left) Mr. Robot wins the golden globe; (middle) first lady’s dress receiving attention; (right)
suresh raina leads his team to victory.

Fig. 10. Exploratory results on memetracker for the detected change points: (left) Obama wins the presidential election; (middle) israel announces a ceasefire;
(right) beijing Olympics start.

Fig. 11. Exploratory results on Twitter for the detected change points: (a)
Court hearing on martin shkreli; (b) Rihanna listens to ANTI; (c) Daughter
releases his new album.

successfully pinpoint a change right at the time that Obama was
elected. The second piece of news corresponds to “the ceasefire
in Israel-Palestine conflict back in 2009”. Our algorithm detects
a sharp change in the data, which is aligned closely with the
time right before the peak of the war and one day before Israel
announced a unilateral ceasefire during the Gaza War back in
20096. The third piece of news corresponds to “the summer

6http://news.bbc.co.uk/2/hi/middle_east/7835794.stm

Olympics game in Beijing”. Fig. 10(c) shows the evolution of
our statistics. The change point detected is 2-3 days before the
opening ceremony, when all the news websites started to talk
about the event.7

VIII. SUMMARY AND DISCUSSION

In this paper, we studied a set of likelihood ratio statistics for
detecting changes in a sequence of event data over networks. To
the best of our knowledge, our work is the first to study change-
point detection for network Hawkes processes. We adopted the
networkHawkes process for the event streams tomodel self- and
mutual- excitations between nodes in the network. We cast the
problem in a sequential change-point detection framework, and
we derived the likelihood ratios under several models. We also
presented an EM-like algorithm that can efficiently compute the
likelihood ratio statistics online. The distributed nature of the al-
gorithm enables it to be implemented on larger networks. Highly
accurate theoretical approximations for the false-alarm rate, i.e.,
the average run length (ARL), for our algorithms are derived.We
demonstrated the performance gain of our algorithms relative
to two baselines, which represent the current main approaches
to this problem. Finally, we also tested the performance of the
proposed method on synthetic and real data.
In future work, we will extend the preliminary results for de-

tecting the emergence of a community structure, i.e., a subset
of nodes with a larger influence on each other. Such a com-
munity structure can be captured by requiring the change in
the influence matrix to be low-rank [43]. To incorporate such a
structure in the detection statistic, we will use a nuclear norm
regularization term ℓt,k ,A ∗ − λ∥A∗ −A∥∗. Here, λ > 0 is the
regularization parameter, and ∥Z∥∗ is the nuclear norm of a ma-
trix Z, which is the sum of the absolute singular values of the
matrix. Efficient online computation of the detection statistic
may be achieved by extending the ADMM approach [43]. We

7https://en.wikipedia.org/wiki/2008_Summer_Olympics
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expect the nuclear norm regularization to lead to an additional
singular value thresholding step on the difference (A∗ −A).
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