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Abstract—Graph change-point detection problems have wide
applications in graphical data types, such as social networks and
sensor networks. Given a sequence of random graphs with fixed
vertices and changing edges, we are interested in detecting a
change that causes a shift in the distribution of a subgraph.
We present two graph scanning statistics that can detect local
changes in the distribution of edges in a subset of the graph. The
first statistic assumes a parametric model, i.e., the observations
on the edges are Gaussian random variables, and the change
shifts the mean of a subgraph. We derive the scan statistic and
present a theoretical approximation to the false alarm rate, which
is verified to be accuracy numerically. The second statistic adopts
a nonparametric approach based on k-Nearest Neighbors (k-
NN). We demonstrate the efficiency of our detection statistics
for ambient noise imaging, using a real dataset records real-time
seismic signals around the Old Faithful Geyser in the Yellowstone
National Park.

I. INTRODUCTION

Change-point detection is a fundamental problem in social
networks [1], sensor networks, and power networks. In this
paper, we use graph scanning techniques [2], [3] to study
the question of how to detect a change in the distribution
of the graphs. In particular, we are interested in detecting
a local change in the graph. This means, when the change
happens, only a subset of the graph, or a subgraph, of known
size is affected by the change and has a different distribution.
The observed change in distribution for the graphs are caused
by a local change, while the distribution for the rest of the
graph remains the same. The problem of local change-point
detection is challenging in that, first, we do not know whether
there is a change, and second, if there is a change at some
unknown time, it is not clear which subgraph contains the
change.

A motivating application of our study is monitoring ambient
noises in seismic sensor networks. In ambient noise imaging,
because the signals are weak, it is difficult to observe any
signal using observations from a single sensor. Fortunately,
when we construct the pair-wise cross-correlation between
the sensors, there will be coherent signals between affected
sensors who observe changes in the subsurface structures.
Specifically, at the time of the change, the cross-correlation

function between the sensors affected by the change will
have a significant peak. Between the affected sensors and the
unaffected sensors, and among the unaffected sensors, such
a waveform of the cross-correlation function does not exist.
Therefore, this problem, mathematically, becomes detecting a
local change in a sequence of graphs.

In this paper, we present two approaches for constructing
scan statistics to detect a local change in a sequence of
graphs, the parametric and the non-parametric approach. For
the parametric approach, we assume Gaussian graphs and
apply a scan statistic based on counting the maximum number
of edges in a subgraph of fixed size. We derive an accurate
theoretical approximation to the false alarm rate of the scan
statistic based on selective inference [4], which can be used
to set the threshold for the false alarm rate without large scale
simulation. For the non-parametric approach, the scan statistic
is constructed using similarity measures on the subgraphs and
k-Nearest Neighbors (k-NN). We demonstrate the efficiency
of the non-parametric approach on real data for the seismic
sensor network in Yellowstone [5].

This paper is related to works in change-point detection,
graph scan statistics, and community detection. Graph scan
statistic for the stochastic block model, which counts the
maximum number of edges in the subgraphs of an Erods-
Renyi graph, has been considered in [6]. A likelihood ratio
test for detecting communities in the Erdos-Renyi graph is
studied in [7]. A non-parametric graph scan statistic based on
k-NN is discussed in [8] and [9].

II. PROBLEM FORMULATION

Suppose we observe a sequence of undirected graphs
G1, . . . , GN , where N is the time horizon. For t = 1, . . . , N ,
let Gt = {V,Et}, with V and Et being the set of vertices
and the set of edges respectively. Let V i be a size-m subset
of the nodes V , i = 1, . . . , d, where d =

(
N
m

)
if all possible

subsets are considered. In networks, usually d � (
N
m

)
. Let

Si = {V i, Ei} be the subgraph containing V i and the edges
between them, which change over time. Denote S as the set
of all possible subgraphs, then S = {Si, . . . , Sd}. Assume a
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change-point happening at an unknown time τ and the change
is contained in the graph S∗ = {V ∗, E∗}, such that before
and after τ , the distribution of the edges in E∗ are different.
At time t, denote Si(t) = {V i, Ei

t} ⊂ Gt. When there
is a change, we assume E∗

1 , . . . , E
∗
τ−1 are i.i.d. distributed

according to some distribution P , and E∗
τ . . . , E

∗
T are i.i.d.

distributed according to another distribution Q. The problem
of detecting a local change becomes the following hypothesis
testing problem.

H0 : Ei
t ∼ P, t = 1, . . . , N, ∀ Si ∈ S;

H1 : Ei
t ∼ Q, t ≥ τ, Si = S∗,

Ei
t ∼ P, otherwise.

(1)

Ei
t is also the adjacency matrix of the subgraph Si at time t.

The hypothesis testing problem is illustrated in Fig. 1.

Fig. 1: Graphs prior to the change-point in time τ follow the
distribution P , and graphs after time τ follow the distribution Q. We
are particularly interested in detecting the local change in a subgraph
(showed in highlight).

Assuming that the change happens at τ , at each time t,
for each subgraph Si, we form a test statistic R(t, τ, Si).
The change is detected when the test statistic exceeds a given
threshold γ. Let w be a small sliding window, the test scheme
can be formulated as

T = inf{t : max
t−w<τ<t

max
Si∈S

R(t, τ, Si) > γ}. (2)

We are further interested in knowing which subgraph causes
the change in the graph structure. The test statistic R(t, τ, Si)
is useful in localizing the change, as the subgraph S∗ that
maximizes R(t, τ, Si) is the subgraph containing the change,

S∗ = arg max
Si∈S

R(t, τ, Si).

We present two possible approaches to this problem based
on scan statistic in the next sections, a parametric approach
and a non-parametric approach. Moreover, we will study real
data for this problem in the numerical example section.

III. PARAMETRIC APPROACH

First, we consider a parametric approach to form the scan
statistic R(t, τ, Si) in (2) by introducing a probability model
to the sequence of graphs. In particular, we assume that
the entries of the adjacency matrices are Gaussian random
variables. Before the change, the edges have smaller means
(e.g., zero mean) to represent that there is no significant
correlation between the sensors. After the change, a subset

of the nodes, i.e. sensors containing the change, will have
higher means on the edges between them. For any subgraph
Si ∈ S , at time t, let Wu,v(t) denote the probability of the
edge formation between the vertices u and v, where u, v ∈ V i,
then Ei

t = {Wu,v(t) : u, v ∈ V i}. In this case, in the
hypothesis testing problem (1), P represents N (μ0, σ

2
0), and

Q represents N (μ1, σ
2
0), where μ0, μ1, σ

2
0 are constants, and

μ1 > μ0. We can re-write (1) as

H0 : Wu,v(t) ∼ N (μ0, σ
2
0), t = 1, . . . , N, ∀ u, v ∈ V ;

H1 : Wu,v(t) ∼ N (μ1, σ
2
0), t ≥ τ, μ1 > μ0, u, v ∈ S∗,

Wu,v(t) ∼ N (μ0, σ
2
0), otherwise.

In this section, we first set aside the time dimension and
focus on detecting the subgraph S∗ affected by the change.
Once we formulate the subgraph detection scheme, we can
repeatedly apply the test to the sequence of graphs as a
Shewhart chart procedure.

Now we present the construction of the scan statistic in
the parametric setting. Let xi denote the number of edges in
a subgraph Si with m vertices. Then xi follows a Gaussian
distribution with mean μxi

and covariance Σxi
.

xi =
∑

u,v∈Si

Wu,v ∼ N (μi,Σi).

Under the null hypothesis,

μi =
m(m− 1)

2
μ0, Σi =

m(m− 1)

2
σ2
0 .

A change is detected when the maximum number of edges in
a subgraph exceeds a pre-specified threshold γ, i.e.

max
Si∈S

xi > γ.

We estimate the false alarm rate: P0{maxSi∈S xi > γ}.
Recall |S| = d. So the false alarm rate can also be written as

P0{ max
i=1,...,d

xi > γ}. (3)

A. Determining the Threshold by Controlling the False-alarm

We observe that (3) is the tail probability of the maximum
of a series of correlated Gaussian random variables. In this
section, we transform the false alarm rate formula using Bayes
rule, and then apply the idea of selective inference [4] to
estimate the probability.

Notice that we can decompose the event in (3) as the union
of polyhedrons:{

max
i=1,...,d

xi > γ

}
=

⋃
i=1,...,d

{xi > γ, xi ≥ xj , j �= i}

�
⋃

i=1,...,d

{Aix ≥ b},

where x = [x1, . . . , xd]
N ∈ R

d, b = [γ, 0, . . . , 0]N ∈ R
d,
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and Ai = APi. Here,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

. . .
1 0 0 · · · −1

⎞
⎟⎟⎟⎟⎟⎠

∈ R
d×d,

and Pi is the permutation matrix swapping the 1st and the ith

entry of x. Similar decomposition appears in [10]. Thus,

P0{ max
i=1,...,d

xi > γ} =
β

α
, (4)

where

α = P0{x1 > γ
∣∣ max
i=1,...,d

xi > γ}

= P0

{
x1 > γ

∣∣ ⋃
i=1,...,d

{−Aix ≤ −b}
}
,

β = P0{x1 > γ}
= 1− Φ

(
γ;

m(m− 1)

2
μ0,

m(m− 1)

2
σ2
0

)
,

where Φ is the CDF of the standard normal distribution, and
α can be evaluated using selective inference as Theorem 5.3
in [4]. Our result is summarized in Lemma 1.

Lemma 1. Let FB
μ,σ2 denote the CDF of a normal random

variable with mean μ and variance σ2 truncated to the set
B, and let x ∼ N(μ,Σ). Then

μ =
m(m− 1)

2
μ0 d,

Σ(i,i) =
m(m− 1)

2
σ2
0 ,

Σ(i,i′) =
li,i′(li,i′ − 1)

2
σ2
0 , i �= i′,

where d is the d-dimensional vector of all 1’s, and li,i′ is
the number of overlapping nodes between two subgraphs Si

and Si′ . Then we have the following conclusion.

F
⋃

i[V−
i (z),V+

i (z)]

ηNμ,ηNΣη
(ηNx)|

⋃
i=1,...,d

{−Aix ≤ −b} ∼ Unif(0, 1)

with the specification η = [1, 0, . . . , 0]N ∈ R
d, and the set

boundaries

V−
i (z) ≡ max

j:(Aic)j>0

bj − (Aiz)j
(Aic)j

,

V+
i (z) ≡ min

j:(Aic)j<0

bj − (Aiz)j
(Aic)j

,

where

c ≡ Ση(ηNΣη)−1 = ΣηΣ−1
1,1 = aΣ(:,1),

z ≡ (Id − cηN )x = x− cηNx = x− aΣ(:,1)x1,

a =
2

k(k − 1)σ2
0

.

For i �= i′,

Aic = APic = a

(
Σ(i,1)

Σ(i,1) − Σ(i′,1)

)
,

Aiz = APiz =

(
xi − aΣ(i,1)xi(

xi − aΣ(i,1)xi

)− (
xi′ − aΣ(i′,1)xi

)) ,

b−Aiz =

(
γ − (

xi − aΣ(i,1)xi

)
(
xi′ − aΣ(i′,1)xi

)− (
xi − aΣ(i,1)xi

)) .

Therefore, we can estimate the false alarm rate using
Lemma 1 and (4) and set the threshold γ accordingly. The
performance of the estimation is presented in the next section.

B. Verification of Numerical Accuracy

In this section, we conduct a numerical experiment to verify
the numerical accuracy of our estimation of the false alarm
rate. Assuming standard normal distribution under the null
hypothesis, we generate α according to Lemma 1 and compute
the false alarm rate based on (4). The resulting false alarm rate
curve by changing the threshold γ is plotted in Fig. 2. The
result is based on 500 experiments, and the standard error,
which is small, is shown as the shaded area in the plot.

Fig. 2: Simulated false alarm rate for the detection statistic by (4).

We also compare the theoretically estimated γ from using
formula (4) with the simulated γ in Table I. The two γ’s are
quite close in this case, showing good approximation of the
theoretical result.

Probability Theory γ Simulated γ
0.2 13.34 14.43
0.15 14.77 14.68
0.1 16.00 15.93

TABLE I: N = 50,m = 5, d = 2, 118, 760

IV. NON-PARAMETRIC APPROACH BASED ON SIMILARITY

In this section, we describe a non-parametric detection
statistic based on the similarity measure between subgraphs at
different time. The idea is to compare the subgraphs formed
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with the same set of nodes occurring before and after time t
to check for their graph structure similarity. If the graph struc-
tures are similar, they are likely from the same distribution,
and if if the dissimilarity is large enough, we declare a change-
point at t. For i = 1, . . . , d, at time t = 1, . . . , N , we check the
similarity between Si(1), . . . , Si(t−1) and Si(t), . . . , Si(N).
For simplicity, denote an arbitrary subgraph Si as S in the rest
of the analysis.

We use a k-NN based change-point detection statistic intro-
duced by [8], [9], which is developed from the two-sample test
statistic in [11] and [12]. At time t, the sequence of subgraphs
can be divided into two groups, those happening before t:
S(1), . . . , S(t − 1), and those at or after t: S(t), . . . , S(N).
We use bn,n′(t), 1 ≤ n, n′ ≤ N , to indicate whether the
subgraphs at time n and n′ are in the same group or not
when the separator is at time t.

bn,n′(t) = I
(
(n ≤ t, n′ > t) or (n > t, n′ ≤ t)

)
,

where I(·) is the indicator function. Then bn,n′(t) = 1 if at
time t, S(n) and S(n′) belong to different groups. Define
the similarity between S(n) and S(n′) as dn,n′ . Assume the
neighbors are unique. Let

A
(r)
n,n′(S(n

′)) = I(S(n′) is the rth nearest neighbor of S(n)),

A+
n,n′(S(n

′)) =
k∑

r=1

A
(r)
n,n′(S(n

′)),

Then A+
n,n′(S(n′)) = 1 means that S(n′) is among the k-NN

of S(n). Define the test statistic as

R(t, τ, S) =
N∑

n=1

N∑
n′=1

(A+
n,n′S(n

′) +A+
n′,nS(n))bn,n′(t).

We now treat the subgraphs S(t)’s as nodes, and form a k-
NN graph in which an edge forms between any nodes and
their closest k neighbors. Then R(t, τ, S) represents twice the
number of edges connecting nodes in the two groups separated
by t. H0 is rejected when R(t, τ, S) is significantly smaller
than its expectation under the permutation null distribution.
When R(t, τ, S) is small, it means that the number of edges
connecting the two groups in the k-NN graph is small, and
the two samples are likely from different distributions. If
R(t, τ, S) is large, it implies that the samples are well-mixed
and are likely to be from the same distribution.

It is shown in [11] and [12] that the standardized test
statistic

R(t, τ, S)− E[R(t, τ, S)]√
V ar(R(t, τ, S)

converges to the standard normal distribution under H0 when
t

N−t → λ ∈ (0,∞) for multivariate data. The mean and

variance for the statistics are

E[R(t, τ, S)] =
4kt(N − t)

N − 1
,

V ar(R(t, τ, S)) =
4kt(N − t)

N − 1

(
h
(
t, (N − t)

)
( 1

N

N∑
n,n′=1

A+
n,n′A

+
n′,n + k − 2k2

N − 1

)

+
(
1− h(t,N − t)

)
+

( 1

N

N∑
n,n′,n′′=1

A+
n′,nA

+
n′′,n − k2

))
,

where h(t,N − t) = 4(t−1)(N−t−1)
(N−2)(N−3) .

Define the test statistic

R′(t, τ, S) = −R(t, τ, S)− E[R(t, τ, S)]√
V ar(R(t, τ, S)

.

Suppose the change occurs at time τ , then R′(t, τ, S) will
be large when t is close to τ (note the negative sign in the
standardization). The testing procedure can be written as

T (t, τ, S) = inf{t : max
Si∈S

max
n0≤t≤N−n0

R′(t, τ, Si) > γ}, (5)

where 1 < n0 < N .

V. REAL-DATA EXAMPLE

In this section, we demonstrate how the proposed detection
statistics could be used in solving the local change-point de-
tection problem in a seismic sensor networks using real data.
We first check whether there is a change in the graphs, and
then narrow down the change to a subgraph. For simplicity,
we only apply the nonparametric approach.

A. Description of the Dataset
The seismic sensor network that we study is illustrated in

Fig. 3. It shows the physical location of the sensors measuring
signals around the Old Faithful Geyser in the Yellowstone
National Park. There are 18 sensors in the network, and edge
information is contained in the pair-wise cross-correlation
function between the sensors. The cross-correlation function
is then transformed to a value called peak lag time, which
is shown on the y-axis in Fig. 3. We observe a sequence of
101 graphs on this network over time, one at each “stage”,
ranging from stage −50 to 50 (shown as the x-axis). The
nodes, or sensors, in the networks remain the same, while the
edge value fluctuates as the peak lag time among the sensors
changes. At stage 0, the geyser erupts, and the distribution of
the peak lag time among the sensors affected by the eruption
changes. Our goal is to detect the change in the sequence of
the graphs at stage 0 and find the sensors responsible for the
change. We have data on 11 stations: 001, 002, 003, 005, 006,
008, 009, 010, 014, 015, 016, and the peak lag time on 10
pairs of the stations. For the other 45 pairs without data, we
assume that no edge forms between the sensors.
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Fig. 3: Peak lag time in the seismic sensor network which measures
the geyser activity in the Yellowstone National Park.

B. Change-point Detection

First we detect whether there is a change-point in the
sequence of graphs. Two types of graphs are considered, the
unweighted graph and the weighted graph.

1) Unweighted Graph: Denote the mean peak lag time (red
points in Fig. 3) of a pair of sensors u, v at time t as yu,v(t).
Assume that an edge forms between u, v at time t if yu,v(t)
is greater than the average ȳu,v , that is, yu,v(t) > ȳu,v , where
ȳu,v = 1

101

∑101
t=1 yu,v(t). We use the Weisfeiler-Lehman edge

graph kernel [13] to measure the closeness of the graphs and
find the k-NN as described in the non-parametric section. The
test statistic −R(t, τ, S) is plotted in Fig. 4, and it peaks at
stage 0, corresponding to the true change-point.g , p g g p

Fig. 4: Test statistic for: (Left) unweighted graph, (Right) weighted
graph.

2) Weighted Graph: To construct weighted graphs, at each
time t, we use the peak lag time between the two stations
u, v as the “weight” on the edge between the nodes. The
test statistic −R(t, τ, S) is plotted in Fig. 4. Comparing with
the previous experiment on unweighted graphs, we find that
although both methods successfully identifies the change-point
at stage 0, there are also two other local maxima for the
weighted graph, which may interfere with the detection.

C. Determining the Change Location

We are further interested in finding the location within the
graph where the change happens. In other words, we identify
a subset of m nodes that contribute to the overall change in

the graphs. Ideally, the data on those nodes would be sufficient
for the overall change detection. In this example, we assume
m = 3 by observing Fig. 3. We have data for 11 nodes, and
therefore

(
11
3

)
= 165 possible subsets of nodes. However,

recall that only 10 edges are available. So in reality, only
56 subsets are considered. Given each subset of nodes, we
preserve the edge information among the 3 nodes, and set the
weight on other edges to 0. For each subset, we repeat the
steps in the last example on weighted graphs as if the graphs
only contain 3 nodes in the subset. Following the testing
procedure in (5), we find that the subgraph maximizing the
test statistic is formed by nodes 001, 008, and 009.
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