
STATISTICAL RANK SELECTION FOR INCOMPLETE LOW-RANK MATRICES

Rui Zhang, Alexander Shapiro, Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA

ABSTRACT

We consider the problem of determining the rank in the low-
rank matrix completion. We propose a statistical model for
noisy observation. It is important for many existing algo-
rithms and sometimes has practical meanings. We construct a
test statistics for the low rank approximation problem. Under
this model, we derive the distribution of the test statistics. By
applying the test statistics, we propose a sequential rank test
procedure to determine the rank with statistical inference. In
the numerical section, we illustrate our theoretical results and
give examples of our proposed rank test procedure.

Index Terms— Rank selection, matrix completion, sta-
tistical inference

1. INTRODUCTION

Matrix completion is of great interest in machine learning,
data mining, mathematics and signal processing. It studies
a problem to recover the entire matrix from limiting sam-
ples. A well-known example in the field of recommenda-
tion system is the Netflix Problem [1], which uses the sparse
ratings to predict user’s like of the entire set of movies and
make proper recommendations. In signal processing, one ap-
plication of matrix completion is Sensor Network Localiza-
tion [2, 3], which aims to infer the positions of all sensors
from a few sensors, of which position is known.

Rank selection is an important part in matrix completion.
From the angle of optimization, in the problem which there is
noise in the observation, matrix completion need to be done
with the tradeoff between the fitness and the rank of the ma-
trix. A proper rank needs to guarantee the goodness of fit and
avoid overfitting [3, 4]. From the angle of algorithm, in many
existing algorithms, they need to specified the rank first [5,6],
such as alternating minimization which factorized the matrix
into two low-rank matrix and minimize them alternatively.
From the angle of practice, rank represent different practical
meanings. For the recommendation systems, the rank of low-
rank matrix is the number of the latent factors that affect the
rating patterns [7]. For the source detection problem, the rank
is close related to the number of sources [8, 9]. Therefore,
knowing the rank is significant in low-rank matrix comple-
tion.

Though the rank selection is important, the study of it is
limited compared with the massive study of matrix comple-
tion. A common technique is to apply SVD and see whether
there is outstanding structures [10]. However, when the sin-
gular values are close, there is no clear way of thresholding.

Our main contribution in this paper is to give a statistical
way to do the inference of rank selection. With our assumed
model for the noisy observation and the well-posedness con-
dition [11], we are able to construct a test statistics for low-
rank matrix approximation problem. We prove that the test
statistics follows a noncentral χ2 distribution. Then, with this
statistics, we propose a sequential testing procedure to test the
true ranks for the low-rank matrix completion. To the best of
our knowledge, this is the first paper to present a rigorous sta-
tistical procedure to test the true rank of a matrix, given noisy
observations for a subset of its entries.

2. PROBLEM SET-UP

Consider the problem of recovering an n1 × n2 data matrix
of low rank when observing a small number m of its entries,
which are denoted as Mij , (i, j) ∈ Ω. We assume that n1 ≥
2 and n2 ≥ 2. Here Ω ⊂ {1, ..., n1} × {1, ..., n2} is the
observation index set of cardinality m.

Consider the following low rank matrix approxima-
tion(least square) problem:

min
Y ∈Mr

∑
(i,j)∈Ω

(Mij − Yij)2
, (1)

where

Mr :=
{
Y ∈ Rn1×n2 : rank(Y ) = r

}
(2)

In this paper, the question aim to address is how to deter-
mine the rank r. To proceed we assume the following model
with noisy and possibly biased observations of a subset of
matrix entries. There is a (population) value Y ∗ of n1 × n2

matrix of rank r < R(n1, n2,m) [11] and Mij are viewed
as observed (estimated) values of Y ∗ij , (i, j) ∈ Ω, based on a
sample of size N .

The observed values are modeled as

Mij = Y ∗ij +N−1/2∆ij + εij , (i, j) ∈ Ω, (3)
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where Y ∗ ∈ Mr and ∆ij are some (deterministic) numbers.
The random errors εij are assumed to be independent of each
other and such thatN1/2εij converge in distribution to normal
with mean zero and variance σ2

ij , (i, j) ∈ Ω. The additional
terms N−1/2∆ij in (3) represent a possible deviation of pop-
ulation values from the “true” model and are often referred to
as the population drift or a sequence of local alternatives (we
can refer to [12] for a historical overview of invention of the
local alternatives setting). This is a reasonably realistic model
motivated by many real applications.

3. STATISTICAL TEST PROCEDURE

Consider the following weighted least squares test statistic

TN (r) := N min
Y ∈Mr

∑
(i,j)∈Ω

wij (Mij − Yij)2
, (4)

wherewij := 1/σ̂2
ij with σ̂2

ij being consistent estimates of σ2
ij

(i.e., σ̂2
ij converge in probability to σ2

ij as N → ∞). Recall
that the well-posedness condition [11] is sufficient for local
identifiability of Y ∗. The following asymptotic results can
be compared with similar results in the analysis of covariance
structures (cf., [13]).

Proposition 3.1 (Asymptotic properties of test statistic).
Consider the noisy observation model (3). Suppose that the
model is globally identifiable at Y ∗ ∈ Mr and Y ∗ is well-
posed for minimum rank matrix completion problem [11].
Then as N →∞, the test statistic TN (r) converges in distri-
bution to noncentral χ2 distribution with degrees of freedom
dfr = m− r(n1 + n2 − r) and the noncentrality parameter

δr = min
H∈TMr (Y ∗)

∑
(i,j)∈Ω

σ−2
ij (∆ij −Hij)

2
, (5)

where TMr
(Y ) is the tangent space toMr at Y ∈Mr.

Remark 3.1. The above asymptotic results are formulated in
terms of the “sample size N” suggesting that the observed
values are estimated from some data. That is, the given val-
ues M̄ij , (i, j) ∈ Ω, are obtained by averaging i.i.d. data
points M `

ij , ` = 1, ..., N . In that case asymptotic normal-
ity of N1/2εij can be justified by application of the Cen-
tral Limit Theorem, and the corresponding variances σ2

ij can
be estimated from the data in the usual way σ̂2

ij = (N −
1)−1

∑N
`=1(M `

ij − M̄ij)
2.

Remark 3.2. For given index set Ω and observed (estimated)
values Mij , (i, j) ∈ Ω, the statistic TN (r) can be used for
testing the (null) hypothesis that the “true” rank is r (i.e. Y ∗ ∈
Mr). That is the null hypothesis is rejected if TN (r) is large
enough on the scale of the χ2 distribution with the respec-
tive dfr degrees of freedom. In other words, our procedure

chooses the smallest r, such that TN (r) ≤ qr,1−α, where
qr,1−α is the 1 − α quantile of χ2 distribution with degrees
of freedom dfr. The role of values ∆ij in the model is to
suggest that the “true” model is true only approximately, and
the corresponding noncentrality parameter δr gives an indica-
tion of the deviation from the exact rank r model. In practice,
if ∆ij is known, we can subtract it from the observation and
then apply the rank test. If σij is unknown and we have repet-
itive observations, we can estimate σ2

ij as shown in remark
3.1.

The asymptotics of the test statistic TN (r) depends on r
and also on the cardinalitym of the index set Ω. Suppose now
that more observations become available at additional entries
of the matrix. That is we are testing now the model with a
larger index set Ω′, of cardinality m′, such that Ω ⊂ Ω′.
In order to emphasize that the test statistic also depends on
the corresponding index set we add the index set in the re-
spective notations. Note that if Y ∗ is a solution of rank r for
both sets Ω and Ω′ and the model is globally (locally) identi-
fiable (or the well-posedness condition holds [11]) at Y ∗ for
the set Ω, then the model is globally (locally) identifiable(or
the well-posedness condition holds) at Y ∗ for the set Ω′. The
following result can be proved in the same way as Theorem
3.1 (cf., [13]).

Proposition 3.2. Consider index sets Ω ⊂ Ω′ of cardinality
m = |Ω| and m′ = |Ω′|, and the noisy observation model
(3). Suppose that the model is globally identifiable at Y ∗ ∈
Mr and well-posedness condition [11] holds at Y ∗ for the
smaller model (and hence for both models). Then the statistic
TN (r,Ω′)−TN (r,Ω) converges in distribution to noncentral
χ2 with dfr,Ω′ − dfr,Ω = m′ − m degrees of freedom and
the noncentrality parameter δr,Ω′ − δr,Ω, and TN (r,Ω′) −
TN (r,Ω) is asymptotically independent of TN (r,Ω).

Corollary 3.1. Suppose N = 1, ∆ij = 0 and εij
i.i.d.∼

N (0, σ2). Consider a sequence of index set Ω0 ⊃ Ω1 ⊃
Ω2 ⊃ · · · ⊃ ΩK , |Ωk−1| − |Ωk| = L, ∀k = 1 · · ·K. The
conditions in proposition 3.2 hold. Let

Xi = min
Y ∈Mr

∑
(i,j)∈Ωi

(Mij − Yij)2
,

Zi = (Xi−1 −Xi)/L.

Apply the result in proposition 3.2 and Delta method, we
can conclude that

√
K(Z̄ − σ2) converge in distribution to

N (0, 2σ4/L)

Remark 3.3. In practise, the common situation is that we
don’t have repetitive observations. Then, we can assume
∆ij = 0 and the random errors are identically independent
distributed. Then by applying corollary 3.1, with proper K
and L, σ2 can be estimated by Z̄. Since it is only true when
Y ∗ ∈ Mr, we can use this in rank selection. More detail is
shown in next section.
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4. NUMERICAL EXPERIMENTS

We present some numerical experiments to illustrate our the-
ory1. In this section, without further notification, nuclear
norm minimization is solved by TFOCS [14] in Matlab and
LRMA problem is solved by ’SoftImpute’ [6](regularization
parameter equals to 0) in R.

4.1. Testing for true rank

Asymptotic distribution of test statistic. In Section 3 (see (3)),
we show that the asymptotical distribution of the test statistic
for the “true” rank is χ2 distribution, which we will verify nu-
merically here. We generate the true matrix Y ∗, an n1 × n2

matrix of rank r∗, by uniformly generated an n1 × r∗ matrix
V , an n2×r∗ matrixW , and an r∗×r∗ diagonal matrixD and
setting Y ∗ = Ṽ DW̃>, where Ṽ and W̃ are orthonormaliza-
tion of V , W , respectively. We sample Ω uniformly random,
where |Ω| = m. In all the simulation Ω is sampled until well-
posedness condition holds. The noisy and repeated observa-
tion matrices are generated by M (k)

ij = Y ∗ij + ε
(k)
ij , (i, j) ∈ Ω,

where ε(k)
ij ∼ N (0, σ2N−1). In computing the test statis-

tic T (k)
N (r) (4), the least square approximation is solved by a

soft-threshholded SVD solver. The algorithm stops when ei-
ther relative change in the Frobenius norm between two suc-
cessive estimates, is less than some tolerance, denoted as tol
or the number of iterations reaches the maximum, denoted as
it.

Figure 1 shows the Q-Q plot of {T (k)
N (r)}200

k=1 against the
corresponding χ2 distribution. In this experiment, n1 = 40,
n2 = 50, r∗ = 11, m = 1000, σ = 5, N = 400 and Ω
is sampled until well-posedness condition is satisfied. The
parameters tol = 10−20 and it = 50000. From the result,
we can see TN (r) follows the central χ2 distribution with a
degree of freedom dfr = m− r(n1 + n2 − r) = 131, which
is consistent with proposition 3.1.
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Fig. 1: Q-Q plot of TN (r) against quantiles of χ2 distribution with
degree of freedom 131: the observation matrix M is generated 200
times. T (k)

N (r) is computed as equation 4.

1More discussions can be found in a supplementary material at
https://www2.isye.gatech.edu/∼yxie77/Experiment.pdf.

Table 1: sequential rank test(σ2 is known).

rank p-value rank p-value
2 0.00 7 0.00
3 0.00 8 0.00
4 0.00 9 0.94
5 0.00 10 0.69
6 0.00 11 0.41

Test for true rank. When σ2 is known or there are repeti-
tive observations, as discussed in Section 3, we can determine
the true rank r∗ by sequential χ2 tests. That is, for r ranging
from 1 to dR(n1, n2,m)e, we solve the least square approx-
imations and compute TN (r). According to TN (r) we can
determine which rank can be accepted for a predefined sig-
nificant level. Table 1 shows a result of sequential rank test
on a simulated data set with known σ2. In this experiment,
n1 = 40, n2 = 50, r∗ = 9, m = 1000, σ = 5, N = 100. The
true rank 9, is the first one accepted for 0.05 significant level.

When σ2 is unknown and there is no repetitive observa-
tions, we can apply corollary 3.1 to estimate it as mentioned
in remark 3.3. Recall that corollary 3.1 holds only when we
do the estimation on the true rank (i.e. r = r∗). When r < r∗,
Z̄ largely overestimates the σ2 and decreases hugely as r in-
creases because part of the signal is treated as noise. When
r > r∗, Z̄ underestimates σ2 and decreases slowly as r in-
creases because part of noise is treated as signal. Therefore,
we can select the first rank that σ̂2 is stable. Table 2 shows
a result of estimating σ2 for each rank r. In this experiment,
n1 = n2 = 100, r∗ = 6, m = 8000, σ = 10, N = 1. For
each rank r ranging from 1 to 10, we estimate σ2 by Z̄ with
K = 20 and L = 300. Our procedure chooses the true rank
6. Note that in this case, p-value can not be trusted since we
don’t have consistent estimate of σ2 when r 6= r∗.

Figure 2 shows the comparison of rank selection between
our sequential rank test (with known σ2), nuclear norm min-
imization and the method suggested in [15] (we refer it as
ME method in the following). Since the nuclear norm min-
imization and ME method can’t give us the exact rank, we
choose the rank by thresholding the percentage of the singu-
lar value of the recovered matrix in this two methods, i.e. r̂ =
argminr

∑r
i=1 λ(i)/

∑min(n1,n2)
i=1 λ(i) > b, where b is some

threshold. In this experiment, n1 = 100, n2 = 1000, σ = 5,
N = 50 and the sampling probability p = 0.3. For each true
rank, we generate 100 instances of (Y ∗,Ω,M), complete the
rank selection with these three methods and compute the me-
dian of the error of estimated rank of each method. For the
sequential rank test, we choose the first rank accepted with
0.05 significant level. For nuclear norm minimization and
ME method, we choose the threshold that gives us the best
results for these two methods. It shows that selection by se-
quential χ2 test outperforms the other two methods.

2914



Table 2: sequential rank test(σ2 is unknown)

rank p-value σ̂2(= Z̄) rank p-value σ̂2(= Z̄)

1 0.82 34995.5 5 0.84 5050.63
2 0.86 26751.3 6 0.43 97.7
3 0.92 18719.6 7 0.76 96.6
4 0.62 11231.8 8 0.96 96.7
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Fig. 2: Comparison of rank selection between sequential χ2 test,
nuclear norm minimization and ME method, sampling probability
p=0.3. For each true rank, we compute the median of rank error for
100 experiments. Threshold bnm = 0.25, bME = 0.13 for nuclear
norm minimization and ME method, respectively.

4.2. Application: Source identification.

In recent years, matrix completion is used in source identi-
fication and localization [8, 9]. In this problem, limited data
of a field generated by the source is collected. Then, matrix
completion is used to recover the entire filed and identify the
source, from the sparse samples. To solve this problem, the
very first step is to know the number of sources. The gen-
eral assumption is that the energy decays as the distance from
the source increases (i.e. unimodal structure). With this as-
sumption, the true rank of the matrix is closely related to the
number of sources.
We simulate an energy field generate by two sources, and the
energy of each location x ∈ R2 is:

g(x) =
‖x− µ2‖fµ1,σ1

(x) + ‖x− µ1‖fµ2,σ2
(x)

‖x− µ1‖2 + ‖x− µ2‖2
,

where fµ,σ is PDF of N (µ, σ2) . Then, the observation ma-
trix: M(x) = g̃(x) + εx, ∀x ∈ Ω, where g̃(x) = g(x)

maxx g(x)

and εx is random error. In figure 3(a), it is the standardized
energy field, g̃(x), where the white spots are the sources. With
sampling probability p = 0.22, the singular value of M is
shown in figure 3(b) and there is only one outstanding sin-
gular value. Table 3 is the result of rank test, we can see it
identify the rank as 2 which is the same as the number of
sources.

4.3. Application: Delay matrix completion

Suppose we have a network of sensors distributed around the
source(s) of signal. Each sensor detects the signals with dif-
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Fig. 3: (a) Size of energy field is 100 ∗ 100, µ1 = (10, 50), µ2 =
(70, 40), σ1 = σ2 = 10. (b) From singular value, we can’t clearly
identify whether the rank should be larger than 1. εx ∼ N (0, 0.04).

Table 3: p-value for sequential rank test of observed energy field.

rank p-value rank p-value
1 0.00 4 1.00
2 0.15 5 1.00
3 0.98 6 1.00

ferent delays due to the difference of the locations. Denote the
signal detected by ith sensor as xi(t) and the signal from the
jth source as sj(t), then xi(t) =

∑J
j=1 sj(t− τ

j
i ), where τ ji

is the delay for jth signal detected by ith sensor and J is the
number of sources. A delay matrix M is defined as: Mij =
argmaxsxi(s)?xj(s), where ? denotes cross-correlation [16].
The rank of M is related to the number of sources, e.g. when
J = 1 the rank of M is 2.
In this experiment, we perform our rank selection procedure
on a real dataset collected from 130 sensors around Old Faith-
ful geyser in Yellowstone National Park [17]. M ∈ R130×130

and |Ω| = 15359. We estimate σ2 by Z̄ with L = 140 and
K = 50. The result is shown in table 4. The estimates of
σ2 is stable when r = 4, which suggests there might be more
than one source of the signal.

Table 4: sequential rank test for delay matrix(σ2 is unknown)

rank p-value σ̂2(= Z̄) rank p-value σ̂2(= Z̄)

1 0.03 0.70 6 1.00 0.19
2 1.00 0.66 7 1.00 0.18
3 1.00 0.49 8 1.00 0.18
4 1.00 0.20 9 1.00 0.17
5 1.00 0.20 10 1.00 0.16

5. CONCLUSION

In this paper, we propose a general statistical model for noisy
observations in matrix completion problem. With this model,
a test statistics can be computed and used to do the statistical
inference of rank selection. Numerical experiments illustrate
our theoretical results and show the strength of proposed rank
selection procedure in the real-world data.
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