
Towards Automated Safety Vetting of PLC Code

in Real-World Plants

Mu Zhang∗, Chien-Ying Chen†, Bin-Chou Kao‡, Yassine Qamsane§, Yuru Shao¶, Yikai Lin¶,

Elaine Shi∗, Sibin Mohan†, Kira Barton§, James Moyne§ and Z. Morley Mao¶

∗Department of Computer Science, Cornell University
†Department of Computer Science, University of Illinois at Urbana-Champaign
‡Information Trust Institute, University of Illinois at Urbana-Champaign
§Department of Mechanical Engineering, University of Michigan

¶Department of Electrical Engineering and Computer Science, University of Michigan
∗mz496@cornell.edu, ∗elaine@cs.cornell.edu, †{cchen140,sibin}@illinois.edu, ‡ bkao2@illinois.edu,

§{yqamsane,bartonkl,moyne}@umich.edu, ¶{yurushao,yklin,zmao}@umich.edu

Abstract—Safety violations in programmable logic controllers
(PLCs), caused either by faults or attacks, have recently garnered
significant attention. However, prior efforts at PLC code vetting
suffer from many drawbacks. Static analyses and verification
cause significant false positives and cannot reveal specific runtime
contexts. Dynamic analyses and symbolic execution, on the other
hand, fail due to their inability to handle real-world PLC pro-
grams that are event-driven and timing sensitive. In this paper, we
propose VETPLC, a temporal context-aware, program analysis-
based approach to produce timed event sequences that can be
used for automatic safety vetting. To this end, we (a) perform static
program analysis to create timed event causality graphs in order
to understand causal relations among events in PLC code and (b)
mine temporal invariants from data traces collected in Industrial
Control System (ICS) testbeds to quantitatively gauge temporal
dependencies that are constrained by machine operations. Our
VETPLC prototype has been implemented in 15K lines of code.
We evaluate it on 10 real-world scenarios from two different
ICS settings. Our experiments show that VETPLC outperforms
state-of-the-art techniques and can generate event sequences that
can be used to automatically detect hidden safety violations.

I. INTRODUCTION

Industrial control systems (ICS) play an essential role in

modern society. In the new era of Industry 4.0 [12], comput-

erized control systems have become the backbone of crucial

infrastructures such as power grids, transportation as well as

manufacturing sectors. Compared to traditional ICS that were

constructed using fixed electronic circuits, programmable logic

controllers (PLC) have brought flexibility, configurability and

automation to these domains. However, this freedom has also

introduced complexity, and thus uncertainty, to safety-critical

physical plants. Unexpected logic errors may cause serious

problems such as fatal collisions or massive explosions. Re-

ports have shown that anomalous ICS behaviors have resulted

in loss of life on real-world factory floors [11], [19].

In addition, security problems are highly coupled with safety

issues in the ICS domain. In fact, physical damage is one

of the major goals for security breaches in ICS. Compared

to attacks targeting consumers or IT systems, that often aim

to make profits or steal data, cyberattacks on factory floors

are intended to sabotage physical infrastructures. Real-world

incidents, including Stuxnet [36], German Steel Mill Cyber At-

tack [49], Ukrainian Power Grid Attack [50], have shown that

although adversaries must first leverage security penetration

techniques to infiltrate the digital layers of modern plants, they

often attempt to manipulate critical safety parameters, such as

the frequency of nuclear centrifuges, and trigger benign but

faulty code, to cause serious damage. Hence, there is a need

for detecting situations where such safety violations can occur.

Due to the complexity of contemporary ICS, that involves

interactions between PLCs and various other machines, we

need automated mechanisms to find such problems.

While there exists work [24], [28], [30], [31], [42], [44],

[57], [58], [61], [63], [65] that aims to statically verify PLC

logic in a formal manner, such static analysis techniques

suffer from significant false positives since they are unable

to reason about runtime execution contexts. For instance, they

may detect potential problematic paths in the code that are

infeasible at runtime. In addition, the behavior of ICS is

strictly constrained by physical limits at runtime (e.g., velocity,

temperature, etc.) as well as changes to these properties.

To address these limitations, prior work [35], [39], [45],

[62] has explored the usage of dynamic simulations of runtime

behaviors to detect PLC safety violations. In addition, recent

work [43], [54] has enabled symbolic execution on PLC

code. Despite their apparent effectiveness in finding bugs

in independent PLC programs, these techniques are limited

because they overlook an important fact that a real-world

PLC is never working alone. On the contrary, it collaborates

with other programmable components on the factory floor,

such as robots, CNCs or even other PLCs, to carry out

certain tasks. Hence, PLC logic is not only triggered by

internal data inputs but also driven by external events due

to the coordination and communication among multiple units.

Unfortunately, the aforementioned work focuses mainly on the

testing or resolution of input values and not on the complete

event space of multiple collaborating components, and thus

cannot automatically exercise real-life PLC programs.

To address this problem, we propose VETPLC, a temporal

context-aware, program analysis-based system that automati-

cally constructs timed event sequences. These sequences can

then enable automated dynamic safety vetting of PLC code.

Although they are still lacking in the PLC context,

automated dynamic analysis and symbolic execution on

event-driven programs have been well-studied in the smart-

phone [27], [46], [55], [67] and web [51], [66] domains. To

model non-deterministic events, researchers have proposed to

automatically generate event sequences of different orders,

based upon program models [67] or testing [27], [46], [51],

[55], [66] – to drive program execution. Yet permutation of

events is insufficient to describe the conditions that lead to

safety violations in PLC code. The timings, at which events

are delivered, matter. This is because PLC events have implicit

temporal dependencies caused by both intrinsic durations and

external physical constraints. Our key observation is that

multiple event sequences of the same valid order may or

may not lead to safety violations due to the different timings

between events. Thus, generating timed event sequences is a

requisite step to successfully reveal safety issues in PLC code.

Thus, VETPLC complements the prior research on dynamic

analyses and symbolic execution that search merely the value

space in PLC code. It further introduces novel techniques to

explore the timed event space so as to effectively exercise and

examine PLC programs.

Specifically, (a) to uncover the order of triggering events,

we first perform static program analyses on controller code (of

the various interconnected units), including PLC and robot and

generate timed event causality graphs to represent the temporal

dependencies of cross-device events; (b) to quantitatively

model the timing of events, we analyze the controller code

to extract internal time limits, collect runtime data traces from

physical ICS systems and then leverage data mining to recover

temporal invariants; (c) combining this timing model with

causality graphs, we then create timed event sequences that can

serve as inputs for any dynamic PLC code analyses; to enable

automated safety vetting, we formally define and manually

craft safety specifications based upon expert knowledge and

conduct runtime verification on PLC execution traces.

It is worth noting that previous research has also sought

to create timed event sequences for testing event-driven real-

time programs. Event sequences have been produced from

either manually crafted specifications [48] or profiling program

execution time [52]. In contrast, we automatically extract event

ordering and timing using program analyses and data mining,

and further enable this technique in the new domain of PLCs

and broadly in the context of ICS.

To the best of our knowledge, we are the first to enable

timing-aware safety vetting on event-driven time-constrained

PLC code for real-world ICS, in particular, via extracting event

temporalities from program logic and physical environments.

We have implemented VETPLC in 15K lines of code –

7K lines of C++ and 8K lines of Java. To demonstrate the

efficacy of our approach, we apply it to 10 real-world scenarios

on two ICS testbeds that are of completely different physical

compositions: (i) the SMART [47] testbed is a scaled-down

yet fully functional automotive production line and (ii) the

Fischertechnik testbed replicates a consecutive part processing

facility controlled by multiple collaborative PLCs. Note that

the PLC programs under examination remain intact, and we

did not introduce vulnerable code into them. Experimental

results show that VETPLC outperforms the state-of-the-art

techniques and can effectively produce event sequences that

lead to deep and authentic safety bugs, which are already

hidden in real-world PLC code due to developers’ mistakes.

In summary, this paper makes the following contributions:

• We explore physical ICS testbeds to gain an important

insight: real-world controller code is event-driven and

timing-sensitive.

• We are the first to automate dynamic safety vetting of

real-world PLC code via the creation of timed event

sequences.

• We use custom static analyses, that address the specific

programming paradigms of PLCs, to extract causal rela-

tionships among events.

• To the best of our knowledge, this is the first work that

distills temporal dependencies in physical ICS testbeds.

• We have demonstrated the effectiveness of VETPLC on

two different types of real-world ICS testbeds: VETPLC

has found “organic” vulnerabilities in real-world testbeds.

II. BACKGROUND

Programmable Logic Controller. A programmable logic

controller [18] is the core control unit of a large number

of modern automation systems. It can be either used as a

separated master controller or integrated as a slave controller

to other machines such as CNCs. The basic functionality of

a PLC is to repeatedly generate control commands based on

input signals and internal control logic. On startup, a PLC is

running in an infinite loop where each iteration, called a scan

cycle, consists of three major phases. 1) Input: PLC reads

inputs from external events (e.g., sensors) and buffers them

in memory. 2) Computation: All variable values are fixed.

The PLC then invokes its logic program and calculates new

variable states based on the buffered inputs and their current

states. 3) Output: The PLC writes the computed new states

into output memory in order to start the next cycle.

PLC programming languages follow the international stan-

dard IEC 61131-3 [10]. It defines three graphical languages

and two textual languages. All of the languages share IEC

61131-3 common elements and can be translated between

each. In particular, the Structured Text (ST) is a high-level

textual language that syntactically resembles Pascal (Figure 2)

and thus is known for its understandability [20]. Notice,

however, although an ST program resembles those written in

other high-level languages, its dataflow is very different due

to the existence of scan cycles. Since PLC variables are kept

intact during the computation phase, value changes caused by

logic code do not become effective until the next cycle. In

effect, in any scan cycle, a PLC variable bears two “versions”:

the “current” version from the last cycle is effective at the

present time; the “new” version records all the changes in the

current round and eventually replaces the “current” one during

2

the output phase. As a result, 1) there exists no dataflow within

one scan cycle; 2) dataflow happens between two neighboring

cycles and the “current” value of a variable may be the result

of any assignment instructions in the last cycle.

Industrial Robot. An industrial robot is essential for per-

forming various actuations, such as assembly, pick-and-place,

packaging, etc. Robot programming languages of individual

vendors are proprietary but in general fall into two cate-

gories: high-level and low-level. High-level languages, such as

KAREL for FANUC robots or RAPID for ABB, are influenced

by the Pascal syntax. Low-level code is assembly-like, and is

developed through teach pendants which are handheld devices

directly connected to robots. Aside from common program

instructions (e.g., assignments, conditional or unconditional

jumps and function calls), these programs all employ special

motion instructions to guide physical movements and use wait

instructions to enable delays and control timings. While Robot

programs can be launched via a main function, in practice

they are triggered dynamically by input events. The mapping

between triggering signals and call targets is configured using

teach pendants. Without loss of generality, we hereafter ex-

plain robot inner-workings based upon pick-and-place robots

from FANUC that has the most industrial robots installed

worldwide [56]. Specifically, we focus on its teach pendant

(TP) language, depicted in Figure 8, which is the de facto

standard to program FANUC robots [1].

Cross-Device Communication. A PLC and a remote device

communicate via signals using industrial network protocols,

such as EtherNet/IP [8]. The remote device opens multiple

pins for inputs and outputs. For example, a FANUC robot can

enable 512 bits of digit inputs (DI) and 512 bits of digit outputs

(DO). On the PLC side, each remote pin is mapped as a base

address (i.e., IP address) plus an offset. Thus, PLC code can

control a remote device by directly accessing these mapped

I/O bits. The I/O mappings are automatically configured when

a remote device is added to an ICS environment supervised

by a PLC. Once its IP address is determined, the underlying

EtherNet/IP protocol takes the responsibility to recognize the

I/Os on this device and bind them to PLC variables.

III. PROBLEM STATEMENT & APPROACH OVERVIEW

A. Motivating Example

We motivate our problem using our SMART testbed [47],

depicted in Figure 1. This testbed represents a fully functional

assembly line that produces model cars. It consists of a gantry

crane, a circular conveyor belt, 2 pick-and-place robots, 3 CNC

(Computer Numerical Control) machines, and is controlled by

a PLC. Particularly, it is equipped with Allen Bradley PLC

from Rockwell Automation1 and FANUC robots2.

It is worth noting that the SMART testbed is a miniature

of real-world automotive manufacturing sectors. It has been

established and constantly upgraded for over 20 years, and has

been used for numerous projects over the decades. This testbed

1Leading PLC supplier in North America w/ 60% of the market share [17]
2The most popular industrial robots worldwide [1]

Fig. 1: SMART Testbed for Manufacturing Model Vehicles

was developed by engineers from Rockwell Automation, fac-

ulty and graduate students: the hardware components and the

way they connect precisely resemble those on real-world fac-

tory floors; a large body of controller code (e.g., robot motion,

CNC operation, RFID I/O, etc.) was directly borrowed from

industry practices [7]. The fidelity of this control system has

been verified through consistent collaboration with Rockwell

Automation.

Physical Compositions. The gantry system serves as the

entry and exit points of the testbed. It delivers empty pallets

to CNC machine #1 to start the manufacturing processes and,

eventually, it removes the produced parts from the conveyor.

The circular conveyor belt is always on and keeps moving

the pallets around the robots and CNCs. The robots and CNC

machines are organized into two cells to accomplish different

tasks (e.g., molding, flipping, etc.), where Cell 1 is comprised

of Robot #1 and CNC #1, and Cell 2 contains the rest.

Immediately in front of each cell are RFID transceivers that

can sense the presence of incoming pallets, empty or loaded,

because RFID tags are attached to both pallets and parts. The

RFID tag on a part maintains a numerical value indicating its

next manufacturing process. A pallet stopper is also installed

to every cell to block moving pallets. By default, the stopper

is always enabled to block any arriving pallets unless a signal

that indicates otherwise is received.

PLC and Robot Logics. Figure 2 and Figure 8 (in Ap-

pendix A) show in part the control logic of the PLC and

Robot #1 in Cell 1, respectively. The code snippets depict

how a processed part is passed from CNC to conveyor.

Since a raw part has been delivered by the gantry to the

CNC for processing, the PLC code (Figure 2) is now expecting

to receive the processed part and deliver it to the next cell

using an empty pallet. The coordination between PLC and

robot is realized through events. In order to receive and send

these signals, 6 input variables (Ln.3-7,52), 2 output variables

(Ln.8-9) and 4 internal variables (Ln.11-13,49) are declared.

In each scan cycle, the PLC first clears the output variables

during initialization (Ln.16-19) and then checks all the input

variables sequentially to update the outputs (Ln.21-44).

More concretely, Ln.21-23 first update the availability of

an empty pallet at Cell 1 (Pallet Arrival) by checking the

presence of a pallet (Pallet Sensor) and also the absence of

a part (NOT(Part Sensor)). If, however, an incoming pallet

is already loaded with a part (Ln.25-27), the PLC will send

a signal via Retract Stopper to retract the stopper and let

this pallet pass through. When an empty pallet has arrived at

3

1 PROGRAM CELL1

2 VAR

3 Pallet_Sensor AT %IX0.1 : BOOL;

4 Part_Sensor AT %IX0.2 : BOOL;

5 CNC_Part_Ready AT %IX0.3 : BOOL;

6 Robot_Ready AT %IX0.4 : BOOL; //DO[6]

7 Part_AtConveyor AT %IX0.5 : BOOL; //DO[2]

8 Retract_Stopper AT %QX0.1: BOOL;

9 Deliver_Part AT %QX0.2 : BOOL; //DI[0]

10

11 Pallet_Arrival AT %MX0.1 : BOOL;

12 Update_Part_Process AT %MX0.2 : BOOL;

13 Update_Complete AT %MX0.3 : BOOL;

14 END_VAR

15

16 Pallet_Arrival := false;

17 Retract_Stopper := false;

18 Deliver_Part := false;

19 Update_Part_Process := false;

20

21 IF Pallet_Sensor AND NOT(Part_Sensor) THEN

22 Pallet_Arrival := true;

23 END_IF;

24

25 IF Part_Sensor THEN

26 Retract_Stopper := true;

27 END_IF;

28

29 IF Pallet_Arrival AND CNC_Part_Ready AND Robot_Ready AND

NOT(Part_AtConveyor) THEN

30 Deliver_Part := true;

31 Update_Part_Process := true;

32 CNC_Part_Ready := false;

33 Robot_Ready := false;

34 END_IF;

35

36 IF Update_Part_Process THEN

37 //Call subroutine to update process No.

38 UPDATE_PART(2);

39 END_IF;

40

41 IF Update_Complete AND Part_AtConveyor THEN

42 Retract_Stopper := true;

43 Update_Complete := false;

44 END_IF;

45 END_PROGRAM

46

47 PROGRAM UPDATE_PART

48 VAR_INPUT

49 Part_Process AT %MD50 : DWORD;

50 END_VAR

51 VAR

52 RFID_IO_Complete AT %IX0.6 : BOOL;

53 Update_Complete AT %MX0.3 : BOOL;

54 END_VAR

55 //Perform 15-step I/O operations on RFID

56 ...

57 IF RFID_IO_Complete THEN

58 Update_Complete := true;

59 END_IF

60 END_PROGRAM

Fig. 2: PLC ST Code for Picking Up Processed Parts

Cell 1, the PLC code (Ln.29-34) will further check the Boolean

inputs, CNC Part Ready, Robot Ready and NOT(Part -

AtConveyor), to confirm the existence of a processed part,

availability of robot and clearance of parts on the conveyor,

respectively. If all the conditions are satisfied, the PLC will

then perform two actions: 1) requesting the robot to pass the

processed part to pallet and 2) updating the manufacturing

process number on the part. Two signals Deliver Part and

Update Part Process are thus enabled.

1)Deliver Part. Based upon configuration, the variable

Deliver Part is mapped to a digital input (DI[0]) on the

robot side. Being true, this signal triggers the robot program

in Figure 8 to execute. The robot code then operates the

robot arm, via a series of motion instructions such as linear

movement ‘‘L’’ or joint movement ‘‘J’’, in order to pick

up a part from the CNC machine (Figure 8 Ln.6-12) and pass

it to the conveyor (Figure 8 Ln.18-20). When the part has been

delivered to the conveyor, the robot turns on its output signal

DO[2] for 0.5 seconds to indicate the completion (Figure 8

Ln.22-24). This output is then mapped to Part AtConveyor

on the PLC. In the end, the robot returns to a safe zone.

2)Update Part Process. When this variable is true, a

subroutine UPDATE PART(int) is called to conduct a 15-

step I/O operation on the RFID attached to the part (Ln.36-

39). When this is done, the subroutine (Ln.47-60) will receive

a RFID IO Complete signal and then notify its caller by

setting the Boolean variable Update Complete.

To check whether the two actions are completed, PLC

constantly reads two response signals Part AtConveyor and

Update Complete. When both signals are true, PLC will

retract the stopper to transfer this loaded pallet (Ln.41-44).

Safety Violation and Root Cause. This code, in fact,

can lead to item overflow [9], which is a typical type of

safety issues on the factory floor. Fundamentally, it is caused

by mismatched expectations between the sender (robot) and

receiver (PLC) of event Part AtConveyor’s duration.

The signal Part AtConveyor has dual purposes. When

it is true, it indicates the robot has delivered a part to the

pallet, which can now leave the cell. When it is off, that

means the conveyor has been cleared to accept a new part,

and the robot can then move away from conveyor for another

delivery. However, in practice, the robot does not need to

stop at conveyor waiting for the pallet to leave. Although the

robot cannot pass the second part to the conveyor prior to the

departure of first one, the robot can, in fact, move towards the

CNC in advance to save time for the next delivery. For the

sake of saving time, the developers implemented a timeout in

the robot code and only allowed the event Part AtConveyor

(DO[2]) to last for 0.5 seconds (Figure 8 Ln.23-24), no matter

if the conveyor is cleared by then. As a result, the robot is

guaranteed to start handling another delivery 0.5 seconds after

the previous one.

Unfortunately, if the robot turns off Part AtConveyor

prematurely, the PLC may never see both Part AtConveyor

and Update Complete being set to true at the same time,

either due to an unexpectedly fast part delivery or slow RFID

update. This is also because PLC developers typically do not

buffer old signal values (in this case, Part AtConveyor

being “TRUE”) but rather always read data directly from their

origins, in order to avoid synchronization problem.

In fact, a real-world error has been reported from the

SMART testbed when the speed of robot is increased to

a certain extent, and thus Part AtConveyor ends even

before the update of process number is complete. Then,

there exists no window when both Update Complete and

Part AtConveyor are true (Figure 3b). In that case, even if

the pallet has already been loaded, it can never leave the cell.

This error can cause a serious safety issue since the con-

veyor will overflow due to the constantly arriving pallets.

4

program code, we collect runtime data traces of PLC

variables from physical ICS testbeds. We then examine

the traces to infer the occurrences of particular events and

conduct data mining to discover temporal event invariants.

(3) Automated Safety Vetting with Timed Event Se-

quences. Constrained by the generated timed event causal-

ity graphs, we perform event permutations to automati-

cally create timed event sequences. Then, we apply the

generated sequences to exercise PLC code for dynamic

analysis. To automatically identify safety problems, we

formalize and craft safety specifications according to ex-

pert knowledge so as to perform runtime verification.

IV. TIMED EVENT CAUSALITY GRAPH

A. Key Factors

A naı̈ve approach to deriving event sequences is to consider

every combination of events. For instance, prior work has

presented a baseline approach, ALLSEQS [27], that exhaus-

tively permutes all UI events to create triggering sequences

for testing Android apps. However, due to the massive pos-

sible permutations, such a solution can be prohibitively time

consuming. In fact, not all permutations are valid sequences

because the causal dependencies of PLC events are inherently

constrained by controller code. To reduce the search space, we

can extract such dependencies from program logics in the first

place. Particularly, we are interested in three causal factors.

• Control-Flow. We take into account intra-procedural,

inter-procedural and cross-device control flow dependen-

cies: 1) within a function, event variables evaluated in an

IF-Condition have direct causal impact on those defined

in its IF-Clause; 2) for function calls, we consider that

the callsite in the caller causes all the logic in the callee;

3) cross-device event exchanges via mapped I/O indicate

the causal relations between code on multiple controllers.

• Constants. The constant value of an event-related vari-

able in an IF-Condition can partially determine if the

IF-Clause becomes effective. Thus, the dataflow from

the constant assignment to the condition check of this

variable indicates that the former causes the latter.

• Event Duration. The causal effect of events may last

for a certain amount of time when subsequent states are

maintained. Machines with local memory can produce

events with permanent states. The PLC can also help pre-

serve the states of transient signals (i.e., sensor readings)

or its internal events. In the meantime, event senders can

also proactively terminate signals based upon timing.

In addition to these internal factors, the occurrences of

events are also affected by external timing constraints caused

by physical actions, such as robot motion and external I/O

operations. We will discuss this in Section V.

B. Formal Definition

To interpret the internal constraints on event ordering,

we extract the causal and temporal relations among events

from PLC and robot code to generate dependency graphs. In

particular, we describe the cross-device event dependencies

Fig. 5: The TECG of the Motivating Example

using Timed Event Causality Graphs (TECGs). At a high

level, a TECG is based upon the And-Or Graph [53] that can

illustrate the causalities among events and express their and/or

relationships. A formal definition is presented as follows.

Definition 1. A Timed Event Causality Graph is a directed

graph G = (V, E, α, β) over a set of events Σ and a set of

time durations T, where:

• The set of vertices V corresponds to the events in Σ;

• The set of edges E ⊆ V × V corresponds to the causal

dependencies between events, where the combination of all

immediate predecessors of a vertex can always cause this

successor event to happen. Specifically, if some of these

predecessor vertices form a conjunction, their outgoing edges

become compounded using an “arch”; if they form a disjunc-

tion, the corresponding edges are separated.

• The labeling function α : V → Σ associates nodes

with the labels of corresponding events, where each label is

comprised of 3 elements: event name, class and duration.

An event is named after the atomic proposition it affects.

For instance, if an event causes a==15 to be true, we name it

as “a==15”; if it causes Boolean c to be false, we refer to it as

“¬c”. We consider 6 classes of events, including input (P IN),

output (P OUT), local (P Local) events of PLC and those

of a remote device (R IN, R OUT, R Local). The event

duration is either Permanent (P), meaning it is always enabled

until turned off by PLC logic, or a finite amount of time.

• The labeling function β : E → T associates edges with

the labels of time intervals. These labels are concrete numbers

if we can retrieve the corresponding time intervals from ICS

testbeds; otherwise, they are “Indeterminate”.

C. TECG of Motivating Example

Figure 5 depicts the TECG of the motivating example. At

first, this automation system expects to receive events from

two sensors. The conjunction of a positive event, Pallet -

Sensor, and a negative one, ¬ Part Sensor, triggers the

PLC local event Pallet Arrival. Then, if all of the

4 events, Pallet Arrival, CNC Part Ready, Robot -

Ready and ¬ Part AtConveyor are received, the PLC will

signal the robot via an output event Deliver Part.

Hence, the conjunction of these four events leads to the

generation of Deliver Part, and such a causal dependency

is represented by the compounded edges from the former to the

latter. Further, Deliver Part is mapped to the robot event

6

DI[0], which causes the robot arm to function. Once its oper-

ation is completed, the robot turns on the output DO[2] and in

effect sends the event Part AtConveyor back to the PLC.

Thus, these events are connected due to cross-device control

dependencies. Since DO[2] (Part AtConveyor) terminates

in 0.5 seconds according to the robot code, its duration is

“0.5s” instead of “Permanent”.

In the meantime, when the conjunction of aforementioned 4

events is satisfied, another PLC local event Update Part -

Process will occur. This event causes a subroutine call, in

which PLC starts to update the process number encoded in the

RFID on the part. Once the update is done, the RFID replies

to the PLC with RFID IO Complete, which in turn triggers

Update Complete that the main routine expects.

By default, the time intervals of all edges are “Indeter-

minate”, and thus are not shown on this graph. We later

perform data mining on traces collected from ICS testbeds to

extract temporal invariants associated with certain edges, such

as Update Part Process
[3s,39.4s]
−−−−−−→ RFID IO Complete.

D. Graph Construction

To generate TECGs, we perform static analyses that are

tailored for the unique programming paradigms of PLC code.

a) Special Consideration for PLC Scan Cycles: Prior

work has paid special attentions to PLC’s dedicated data types,

such as Timers and Counters [54], and its preemptive thread

scheduling model [43]. In addition, we believe that it is also

crucial to take into account PLC’s scan cycles that cause

implicit, yet significant impact, to entry points and dataflow

of PLC code. Nevertheless, to the best of our knowledge, this

has never been seriously explored in prior work.

Entry Point Discovery. PLC code is event-driven and thus

all its event handlers are program entry points. In contrast to

typical event-driven programs that use dedicated constructs to

explicitly implement event handling mechanisms, event han-

dlers in PLC code are implicitly defined using IF-Conditions.

Because internal value changes in one scan cycle do not

become effective until the next one begins, the IF-Conditions

in PLC code can only be affected by external inputs received at

the beginning of a cycle. Therefore, in effect, they act as event

handlers to capture either new sensor readings or updates from

last cycle. Hence, an IF-Condition becomes the entry point of

its IF-Clause code as well as the subroutines called by the IF-

Clause. For IF-Clause code wrapped by nested IF-Conditions,

we consider the inner-most one to be its entry point.

Dataflow Analysis. The fact that variables are of fixed

value in every cycle also causes the dataflow to change. As

explained in Section II, the process of dataflow analysis for

PLC code is mainly to track data dependencies between scan

cycles. Further, due to the existence of asynchronous event

handlers, the analysis should compute data reachability from

any “define” in one cycle to any “use” in the next.

b) Graph Construction Algorithm: Our algorithm for

generating timed event causality graphs is illustrated in Algo-

rithm 1. This algorithm expects to receive three inputs, PLC,

REMOTE and IOMapping. They represent PLC code, a set of

remote controller code (e.g., robot code) and the I/O mappings

between PLC and remote devices, respectively. Its output is

a timed event causality graph, TECG, which is comprised of a

set of edges. The I/O mappings are automatically established

when remote devices are added to the PLC and thus can be

retrieved from PLC configurations.

During initialization, we set TECG to be an empty set.

Next, we transform all predicates in the IF-Conditions of

PLC code into disjunctive normal form (DNF) in order to

illustrate them using an And-Or graph. Thus, an original

predicate becomes a set of sub-predicates connected via “OR”

logic, while each sub-predicate is a conjunction of events

depicted as compounded edges. Further, we retrieve all the

entry points (i.e., IF-Conditions) EP of PLC code. Meanwhile,

we also link neighbors of nested IF-Conditions to show their

control relations. Then, we iterate over every event (i.e., atomic

proposition) pin in EP and seek its root causes, which are

events or event combinations that can always lead to pin.

We first aim to discover the root causes for pin within the

PLC code. To this end, we perform use-def chain analysis

to obtain the definition set DEF of pin and then look for

the entry point EP (again, IF-Conditions) of each definition

def in DEF. The events in EP thus have causal impact on

def and on pin. To ensure the positive causal dependency

between EP and pin, we also conduct constant analysis for

def . If def is a constant and its value can satisfy pin, we

can then determine that EP can cause pin to happen. Hence,

we call TECG.ADDCOMPOUNDEDGES() to link EP with pin
and handle the construction of compounded edges.

It is worth noting that since IF-Conditions in one scan cycle

can be affected by any code in the previous one (dataflow-

wise), our use-def chain and constant analyses will look for

definitions from everywhere in PLC code. Ideally, we can con-

sider an infinite chain of scan cycles and compute backward

dataflow exhaustively in an iterative fashion. However, such

computation is excessively expensive. Besides, the generated

dependencies can be extremely complex (e.g., conditional

dependencies) and therefore may not be easily applied to event

sequence generation. Thus, in practice, we take a conservative

approach and only look back for one previous cycle. As a

result, our analysis may miss some dependencies in specific

conditions. Nevertheless, while missing a dependency may

lead to invalid permutations of events, it does not result in the

exclusion of valid event sequences. Moreover, our evaluation

shows that, although conservative, our analysis can already

help remove a large number of invalid sequences.

Besides searching for intra-PLC causalities, we also seek

possible root causes of pin across devices. Our cross-device

analysis starts from Ln.13. It is performed on an on-demand

basis and only begins when pin is mapped to an output of

a remote device. If pin indeed exists in the IOMapping,

we retrieve its mapped counterpart rout and add an edge

(rout, pin) into TECG. Then, we search for the entry point

REP for rout in the code of remote controller (e.g., robot,

CNC, PLC). The entry point REP represents the trigger of

rout. If any input rin in REP can be mapped to a PLC output

7

Algorithm 1 Construction of Timed Event Causality Graph

1: procedure BUILDTECG(PLC,REMOTE, IOMapping)
2: TECG← ∅
3: TRANSFROMPREDICATESTODNF(PLC)
4: EP← GETANDLINKENTRYPOINTS(PLC)
5: for ∀pin ∈ EP do

6: DEF← USEDEFCHAIN(PLC, pin)
7: for ∀def ∈ DEF do

8: if ISCONST(def) ∧ ISSATISFIED(pin, def) then

9: EP ← GETENTRYPOINT(PLC, def)
10: TECG.ADDCOMPOUNDEDGES(EP, pin)
11: end if

12: end for

13: if IOMapping.EXISTS(pin) then

14: rout← IOMapping.GET(pin)
15: TECG← TECG ∪ (rout, pin)
16: REP ← GETENTRYPOINT(REMOTE, rout)
17: for ∀rin ∈ REP do

18: if IOMapping.EXISTS(rin) then

19: pout← IOMapping.GET(rin)
20: TECG← TECG ∪ (pout, rin)
21: EP ← GETENTRYPOINT(PLC, pout)
22: TECG.ADDCOMPOUNDEDGES(EP, pout)
23: end if

24: end for

25: end if

26: end for

27: ADDEVENTCLASSANDDURATION(TECG, PLC,REMOTE)
28: return TECG

29: end procedure

pout, the edge (pout, rin) will be added to TECG as well. We

then trace back from pout to find its entry point EP in PLC

code, and add compounded edges from EP to pout.
The last step for graph construction is to annotate vertices

with event classes and durations. Event classes can be explic-

itly obtained from the variable declarations in PLC/CNC code

or robot specifications. The durations of all events by default

are set to be “Permanent” (P). Only if we can infer the concrete

time duration of an event, will we safely update its label. To

this end, for each input event (i.e., atomic proposition), we

first discover the constant definitions that cause the proposition

to be true. Then, we discover all the negative redefinitions

that lead the proposition to be false. Next, we perform intra-

procedural reachability analysis from the definitions to those

redefinitions. If a reachable path is discovered, we further

examine every statement along the path to see if any time-

related instructions (i.e., wait) are present. If so, we extract

and accumulate their constant parameters as the duration of

this event. We do not handle variable parameters in this work.

The implementation is further explained in Appendix B.

V. DISCOVERY OF TEMPORAL CONTEXT

A. Data Collection

Collecting Data Instead of Events. Ideally, we hope to

directly collect event traces from ICS testbeds to identify their

temporal behavior. However, this requires instrumentation of

various distributed data sources, including sensors, robot I/O

modules, RFID, etc. and therefore is an extremely difficult and

tedious task. On the contrary, the data trace of PLC variables is

easier to obtain due to standardized communication protocols.

Yet it only preserves the runtime states of these variables but

does not record the events that cause the states to transition.

To bridge this gap, we intend to infer the presence of events

based upon value changes in data traces and thus manage to

approximate the collection of discrete physical events with the

retrieval of continuous data traces.

Interesting Properties. We are interested in three properties

of PLC variables: name, value and timestamp. Variable name

serves as the unique identifier of a variable; the instant value

of a variable reflects its current state and can be affected by

specific events; the timestamp is the system time when the

variable is being observed. Thus, we can define a data item d
in our observation as a triple: d = (var name, value, time).

Querying Realtime Data in Recurring Operations. We

collect both positive and negative data traces from running

testbeds. A positive instance begins with the arrival of empty

pallet and ends in the successful departure of a loaded pallet,

and thus contains all the interesting stages such as robot

delivery and RFID update. A negative instance does not lead to

the successful stage due to multiple reasons, such as arriving

pallet loaded with part, robot not ready, CNC not ready, etc.

For every instance, we keep logging all the variable values over

time in order to retrieve runtime data traces. Formally, a data

trace DT is a list of data item d: DT = {d0, d1, ..., dn}. In

practice, we run Cell-1 logic 20 times and collect 10 positive

and 10 negative instances, each of which takes approximately

25 minutes. Thus, our dataset consists of a set of data traces

and we refer to it as: DT = {DT0, DT1, ..., DTm}, where

m = 19. We obtained 1.2 GB data in 10 hours from our

testbed that runs logic code containing 35 variables.

It is noteworthy that, although limited, our dataset in

practice can already help reveal the necessary invariants for

detecting real-world safety problems. One possible solution to

increase the amount and diversity of data traces is to follow

a state-of-the-art technique (i.e., code mutation [33]) and

automatically produce a large quantity of positive and negative

data traces to cover a majority of normal and abnormal cases.

We leave the systematic trace construction as future work.

B. Mining Temporal Properties

Inferring Discrete Events from Data Traces. For each

data trace DTi in our dataset DT, we need to first infer

the existence of events. To this end, we first divide every

DTi into multiple sublists {DT v0

i , DT v1
i , ..., DT vk

i } where

items in an individual list share the same variable name. We

then iterate over each sublist. If we discover a difference

between values of two neighboring items d′l and d′l+1, we

record a new event e = (type, time), where the type is

denoted using the new state of this variable and the time is

the timestamp of d′l+1. For instance, if the value of variable

Deliver Part rises from 0 to 1 at time 33, then we identify

an event (Deliver Part, 33); if Part AtConveyor’s value

drops from 1 to 0 at time 60, then we find an event (¬

Part AtConveyor, 60). Eventually, we merge discovered

events from all sublists and thus convert a data trace DTi into

an event trace ETi = {e0, e1, ..., ep}. We therefore obtain

a dataset of event traces ET = {ET0, ET1, ..., ET19}. The

formal algorithm is presented as Algorithm 3 in Appendix C.

8

TABLE I: Mined Invariants
Event Pair Invariant

�(Deliver Part → ♦Part AtConveyor) [24.4s, 24.6s]

�(Update Part Process → ♦RFID IO Complete) [15s, 20s]

�(Update Part Process → ♦Update Complete) [15s, 20s]

Temporal Invariants for Events. Once we have generated

event traces, we would like to uncover constant time intervals

between events of different types. Such constants can reflect

the operation time of specific machines. However, in reality,

due to the variation in program paths and indeterminism of

mechanical, physical or chemical processes, the durations of

real-world machine operations are never constant. On the other

hand, due to physical and logical limits, machine actions are

bounded by time constraints. Hence, our goal is to identify

such “soft” invariants of event temporalities that fall into

specific ranges. We formally define temporal invariants using

Timed Propositional Temporal Logic (TPTL) [26]:

Definition 2. Let ǫa and ǫb be two event types. Then a

temporal invariant is a property that relates ǫa and ǫb in both

of the two following ways:

�tx.(ǫa → ♦ty.(ǫb∧ty−tx ≥ τlower)): In an event trace, if

an event instance of type ǫa occurs at time tx, then another of

ǫb eventually will happen in the same trace at a later time ty ,

while the time difference between ty and tx is at least τlower.

�tx.(ǫa → ♦ty.(ǫb∧ty−tx ≤ τupper)): In an event trace, if

an event instance of type ǫa occurs at time tx, then another of

ǫb eventually will happen in the same trace at a later time ty ,

while the time difference between ty and tx is at most τupper.

As a result, a temporal invariant describes not only the order

of two event types but also the lower and upper bounds of

their time difference. To extract these invariants, we follow the

approach in prior work (Synoptic [29] and Perfume [60]) to

perform qualitative and quantitative data mining consecutively.

However, unlike previous techniques that attempt to mine all

possible correlations between any two events, our mining is

selective and is guided by the generated TECG. Specifically,

we do not need to learn certain temporal relationships for a pair

of event types if they contradict the dependencies in the graph.

For example, in our motivating case, since we know the tem-

poral logic �(RFID IO Complete → ♦Update Complete)
holds, we do not further seek the possibility of whether

Update Complete is followed by RFID IO Complete.

For all the pairwise relationships of two event types, ǫa and

ǫb, that do not contradict those in TECG, we first check if their

qualitative temporality �(ǫa → ♦ǫb) holds. This is equivalent

to checking if:

Follows[ǫa][ǫb] = Occurrence[ǫa] (1)

where Follows[ǫa][ǫb] counts, in a trace, the number of type

ǫa events followed by at least one of the type ǫb events and

Occurrence[ǫa] counts the number of event instances of ǫa.

Once we have determined the “followed by” relationship

between two event types, we use the Perfume [60] algorithm

to perform quantitative mining and extract the lower and

upper bounds of time differences. In the end, we discovered

3 invariants for the motivational case as listed in Table I.

Speed Reconfiguration of Real-world Machines. The

mined bounds of “soft” invariants, τlower and τupper, reflect

the variation in program executions and production processes.

However, such bounds are still associated with pre-configured

speeds of physical machines, which often times do not reach

the specified hard limits. To further understand the possible

impact caused by speed reconfiguration, we need to consider

absolute time bounds for these machine operations.

Let job be the number of machine operations and vconf be

the pre-configured speed, then τlower ≤ job/vconf ≤ τupper.

To derive the absolute lower bound for the time cost tjob, we

consider the rated motor speed vrated and thus have: (τlower×
vconf)/vrated ≤ job/vrated ≤ tjob.

Meantime, since the minimum machine speed theoretically

can be 0, the absolute maximum time to complete a task is

infinity. However, in reality, for a high throughput, machines

are expected to finish jobs as quickly as possible. Thus, ideally,

machines always operate at their highest speeds. Nevertheless,

safety standards have been made to regulate the maximum

machine speed. For instance, the American National Standards

Institute (ANSI) has published ANSI RIA R15.06 [22] for

Robot and Robot System Safety which recommends that robot

speed should not exceed 10 in/sec (250 mm/sec) for safety-

critical operations. Such recommendations can be considered

as the lowest machine speeds that can guarantee efficient and

safe production. With this required safety speed, vsafe, we can

further obtain the practical upper bound of tjob:

(τlower×vconf)/vrated ≤ tjob ≤ (τupper×vconf)/vsafe (2)

Admittedly, to incorporate hardware limits, we need to un-

derstand the semantics of mined invariants in order to associate

this additional information to correct edges. We currently

address this problem using human knowledge and leave the

automatic inference of event semantics as future work. With

domain knowledge, we know the time for our robot to pass a

part equals the time difference between Delivery Part and

Part AtConveyor. Plus, our robot is running at 400mm/sec

on average and its rated speed is 3300mm/sec. Thus, we can

obtain an enhanced invariant for this event pair: [3s, 39.4s].

Enhancing TECG with Temporal Invariants. Extracted

temporal invariants are then provided to the TECG. Note

that they not only offer quantitative information to enhance

the existing temporal relations in the graph but may also

introduce new temporal dependencies. This is because the

code we analyze represents only a partial view of the entire

ICS environment and therefore does not contain all the event

relations. As a complement, mining runtime data traces offers

a holistic view of the plant and can further uncover implicit

dependencies hidden from controller code.

VI. SAFETY VETTING WITH TIMED EVENT SEQUENCES

A. Timed Event Sequences

Once we have constructed the TECG, we can generate event

sequences based upon this graph. The major challenge is how

to create event permutations that conform to the quantitative

dependencies illustrated by TECG. Generally speaking, to

encode the mined time range of an event (i.e., “soft” temporal

invariant) into a sequence, we discretize the continuous range

9

Algorithm 2 Generation of Timed Event Sequences

1: procedure BUILDTSEQS(TECGin, ρ)
2: Setevent ← GETEVENTSET(TECGin)
3: Set′event ← DISCRETIZE(Setevent, ρ)
4: SEQ← PERMUTE(Set′event)
5: for ∀SEQ ∈ SEQ do

6: for ∀ev ∈ SEQ do

7: Path← FINDALLSOLUTIONS(TECGin, ev)
8: if ∄path ∈ Path : path ⊆ SEQ.SUBSEQ(0, ev) then

9: SEQ← SEQ− SEQ

10: end if

11: end for

12: end for

13: return SEQ
14: end procedure

to multiple time slices and introduce a versioned event for

each slice to represent its possible occurrences. To reflect the

qualitative relations among events, we check every possible

permutation against the graph, so as to guarantee the prereq-

uisite for each event happens before its occurrence.

Our algorithm BUILDTSEQS is presented in Algorithm 2. It

takes two arguments. The first one is TECGin, a reduced version

of TECG, which preserves solely the nodes that are PLC inputs.

These input events are the necessary ones to exercise the PLC

code. The second argument ρ is the discretization parameter

that indicates the number of slices every time duration is

divided into. On startup, our algorithm first retrieves all the

events in the graph TECGin to generate an event set Setevent.

Next, for any event in Setevent, whose starting time is within

a certain range (i.e., its incoming edge is labeled with an

invariant), the range is discretized using ρ to create multiple

versioned events. We then replace the original event with a

set of versioned ones. For instance, since Part AtConveyor

is enabled 3 to 39.4 seconds after Deliver Part, it is

discretized to be a set {P ACT+3, P ACT+10, P ACT+18,

P ACT+25, P ACT+32, P ACT+39} when ρ is 5.

Hence, we extend Setevent to be a new set Set′event. Then,

we permute all the events in Set′event to create sequences.

Notice that in every permutation, only one versioned event

from the same set can be chosen. The result of this PERMUTE

is a set SEQ containing all candidate sequences. We further

check each candidate SEQ to see if it contradicts the causalities

indicated by TECGin, and if so, it will be discarded. To do so,

we iterate over each event ev in a sequence SEQ, and find all

the “solutions” for ev on its hosting and-or graph TECGin. A

solution for ev is a path, from ev to a top-level vertex, which

includes all of its prerequisites that are required to cause ev to

happen. If any solution path is covered by the subsequence

from the first element of SEQ to ev, we keep this candidate

SEQ. Otherwise, it is removed from SEQ. Finally, we output

the result SEQ as the generated timed event sequences.

For our motivating example, we can create a timed

sequence, 1:Pallet Sensor 2:¬ Part Sensor

3:CNC Part Ready 4:Robot Ready 5:¬ Part -

AtConveyor 6:Part AtConveyorT+10 7:RFID -

IO CompleteT+20, which can lead to the safety violation

due to premature termination of 6:Part AtConveyorT+10.

Detailed implementation can be found in Appendix D.

Selection of ρ. A naı̈ve way for discretizing a time range

is to merely consider its lower and upper bounds (i.e., ρ = 1).

Theoretically, it is sufficient to detect the possible presence of

timing-related safety violations. However, this is too coarse-

grained and can only tell if an error will occur when a machine

operates at its maximum or minimum speed. On the contrary, it

is in fact crucial to understand the range of machine speeds that

can lead to errors. Such contextual evidence can help security

investigators draw a better conclusion whether a logic error is

caused by attacks. For example, prior work [38] has correlated

the narrowness of an error trigger with its malice. Thus,

ideally, we expect to always select a larger ρ. However, the

increase in time slices also leads to the growth of total number

of permutations. To understand how to strike a balance, we

have an empirical study in the evaluation. Nevertheless, it

is noteworthy that, while a better ρ can provide informative

evidence with lower cost, the selection of ρ does not affect

whether we can detect a safety defect.

B. Safety Specification

The event sequences that we generate can facilitate auto-

mated path exploration for testing PLC code. However, the fact

that we can reach an unsafe state does not necessarily mean

we can automatically detect the problem. To enable automated

detection, we need to further specify certain safety rules and

programmatically verify them at runtime.

Prior work [54] has adopted linear temporal logic (LTL)

to formally define safety requirements for ICSs. However,

at runtime, it is hard to enforce an LTL-based rule which

requires an activity to be followed by another (e.g., overflow

avoidance), because the absence of a required event during

limited test time does not suggest its absence at a later

time. Although, in practice, these required actions must be

accomplished within a certain amount of time, LTL however

is not capable of describing such temporal relations in a

quantitative fashion. To address this limitation, we again use

TPTL [26] to quantitatively express safety specifications.

Definition 3. Let P be a set of atomic logical proposi-

tion symbols about the system {p1, p2, ...p|A|}, e.g., sensor

Pallet Sensor is on, and let Σ = 2A be a finite alphabet

composed of these propositions. Then, the set of TPTL-based

Safety Requirements is inductively defined by the grammar:

π := x+ c | c

φ := p|π1 ≤ π2|π1 ≡d π2|false|φ1 → φ2| © φ|φ1Uφ2|x.φ

The grammar of TPTL is further explained in Appendix E.

Table II demonstrates 5 typical classes of safety specifications,

which have been studied by previous academic work or

required by OSHA (Occupational Safety and Health Admin-

istration). We categorize the policies based on the root causes

of industrial hazards. First, a majority of safety incidents are

caused by dangerous machine-machine interactions, including

machine collision, machines facing overflow or underflow due

to upstream machines. Second, failure to separate humans

from life-threatening machines may result in fatal accidents.

Last but not least, individual machines, even without interac-

10

TABLE II: Categories of Safety Specifications
Typical Hazard Example Specification to Avoid Hazard Formal Definition References

Collision Whenever conveyor belt starts running, a robot arm cannot come down to pick up items. �(Conveyor Running → ¬♦Robot Pickup) TSV [54]

Overflow Once a pallet enters a cell, the stopper must be retracted within 30 seconds to release it. �tx.(Pallet → ♦ty.(Retract ∧ ty − tx ≤ 30s)) Motivating Example

Underflow When water purification starts, water level of tanks must not below L. �(Purify Start → ¬♦(water level ≤ L)) Chen et al. [33]

Non-Separation When the gate for robot is opened, robot must stop working. �(Gate Open → ¬♦Robot On) OSHA Instr. [59]

Danger Zone Upon start, the frequency of a motor in a nuclear centrifuge is between 807 and 1210 Hz. �(Start → �(807Hz ≤ speed ≤ 1210Hz)) Stuxnet Dossier [36]

tion with any other entities, can still result in critical damage

because they operate spatially or temporally in unsafe zones.

C. Trace-based Verification.

We carry out runtime verification based upon execution

traces of PLC code. Note that, while in our testbeds, all

controllers (i.e., for PLCs, robots, CNCs) can physically

operate and thus produce real events, in our simulations, we

only analyze PLC code while modeling and simulating the

inputs (i.e., events) from remote devices.

Particularly, we first run a PLC program repeatedly, while

each time we exercise the code using an individual event

sequence. To this end, we convert PLC ST programs into

C code using the MATIEC compiler [13] and then utilize a

PLC simulator [14] to execute the code. To produce execution

traces, we further instrument the generated C code to dump

all instructions and variable values that originated from PLC

code. In the end, we conduct runtime verification for TPTL

specifications on the traces. In theory, we can follow a prior

approach [32] to perform comprehensive interpretation and

translation of TPTL languages. However, since our safety

specifications are defined at a high level and usually straight-

forward, thus, in practice, our runtime monitor only focuses on

this small subset that we use to describe safety requirements.

VII. EVALUATION

A. Experimental Setup

To evaluate the effectiveness and efficiency of our approach,

we follow the methodology of previous studies [33], [43],

[54] to test VETPLC on different PLC programs. However,

in contrast to prior work that experimented on either synthe-

sized PLC code without necessary physical contexts [43] or

simple, isolated logic without machine interactions (e.g., traffic

lights) [54], we apply VETPLC to real-world PLC programs

that are tightly coupled with specific scenarios involving

interconnected physical devices. To further demonstrate the

generality of VETPLC, unlike Chen et al.’s work [33] that

focused on only one particular testbed, we hope to evaluate

our system on multiple scenarios for different ICS settings.

This, however, is a challenging task because it requires

a deep understanding of both physical and logical domains

of real-world control systems. Nevertheless, we developed 10

scenarios on two realistic testbeds, SMART and Fischertechnik,

that have completely different physical compositions. The

SMART testbed has been introduced in Section III. The Fis-

chertechnik testbed (Figure 10) is a miniature that emulates

consecutive processing of parts. It connects 4 cells and 2 push

rams using multiple conveyors and sensors, while each cell

consists of a PLC and a CNC machine. Interested readers can

refer to Appendix F to learn more details about this testbed.

Table III lists the 10 scenarios from these two testbeds.

We perform causality graph generation, invariant mining,

event sequence construction and safety vetting on them. Our

experiments have been conducted on a test machine equipped

with Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz and 16GB

of physical memory. The OS is Ubuntu 16.04.4 LTS (64bit).

B. Result Overview

To show the effectiveness of VETPLC, we would like to

carry out comparative experiments. Unfortunately, existing

work on PLC vetting, such as TSV [54] or SYMPLC [43],

cannot generate event sequences to automatically analyze real-

world event-driven PLC code. Nevertheless, these state-of-the-

art analyzers can always be enhanced to handle event-driven

code if they adopt ALLSEQS [27] to calculate all possible

event permutations. Therefore, we implement an ALLSEQS-

based baseline safety analyzer for the comparison purpose.

We apply VETPLC and the baseline analyzer to our 10

scenarios, and study 3 methods that create event sequences:

1) the baseline (ALLSEQS), 2) using VETPLC to generate

untimed event sequences (VETPLC-SEQS), and 3) applying

VETPLC to timed sequence generation. When creating timed

sequences, we select three different discretization parameters,

ρ = 2 (VETPLC-TSEQS-2), ρ = 5 (VETPLC-TSEQS-5) and

ρ = 10 (VETPLC-TSEQS-10). Figure 6 depicts the number of

sequences each method creates, while Table IV demonstrates

whether generated event sequences can lead to the discovery

of safety violations. Further, for safety-related errors triggered

by timed event sequences, the table also shows the ranges of

corresponding machine speeds that can cause the problem.

As shown in the table, pure ordering-based event per-

mutations, ALLSEQS and VETPLC-SEQS, cannot lead to

the hidden safety violations in timing-sensitive PLC code.

We do observe, from Figure 6, a dramatic decrease (up to

96%) of event permutations for VETPLC-SEQS (green curve)

compared to ALLSEQS (red curve). Although the decline of

possible event sequences results in much less analysis runtime

overhead, it does not affect whether a violation can be detected

in our cases. However, provided that a timing-insensitive safety

problem can be detected by ALLSEQS, VETPLC can achieve

it two orders of magnitude faster.

In contrast, all the timed event sequences can result in

safety problems. In fact, some of the error cases, such as

conveyor overflow and frozen robots, can in fact be observed

occasionally from our testbeds during daily work but cannot be

easily diagnosed manually. VETPLC not only helps uncover

their root causes but also finds other, previously unknown,

problems. Although the vulnerabilities detected in our work all

originate from human mistakes, it is also possible for insiders

to actively inject safety faults into PLC source code. Note

that, however, VETPLC can detect any safety violations in

11

TABLE III: Scenarios of Safety Violations
Scenario Name Testbed Description of Hazard Safety Specification to Avoid Hazard

1 Conveyor Overflow #1 SMART Motivating Example. See Section III �tx.(Pallet→ ♦ty .(Retract Stopper ∧ ty − tx ≤ 30s))
2 Robot in Danger Zone SMART Robot fails to return its safe zone. �tx.(¬Safe Zone→ ♦ty .(Safe Zone ∧ ty − tx ≤ 60s))
3 Conveyor Overflow #2 SMART Robot stops processing parts from conveyor due to signal conflicts. �tx.(Pallet→ ♦ty .(Retract Stopper ∧ ty − tx ≤ 30s))
4 Part-Gate Collision SMART A pallet collides with a closed gate. �(Pallet AtGate→ �Gate Open)
5 CNC Overflow SMART CNC stops processing parts from gantry due to missing signals. �tx.(Part In→ ♦ty .(Part Out ∧ ty − tx ≤ 5m))
6 Ram-Part Collision Fischer. A ram starts pushing when a part has not fully entered the ram. �(Part Entering→ ¬♦Ram Push)
7 CNC-Part Collision Fischer. A part is passed to CNC when a preceding part is not fully discharged. �(CNC Busy→ ¬♦Part Arrival)
8 Conveyor Overflow #3 Fischer. Parts are pushed to conveyor prematurely. �tx.(Part Arrival→ ♦ty .(Part Arrival ∧ ty − tx ≤ 6s))
9 Conveyor Underflow Fischer. A conveyor belt halts operation. �tx.(Part Arrival→ ♦ty .(Part Arrival ∧ ty − tx ≥ 8.5s))

10 Ram-Part Collision #2 Fischer. Ram1 pushes a part to unprepared Ram2. �(Part Entering→ �Ram Ready)

PLC source code, regardless of whether they are introduced

by developers or malicious logic injected by insiders.

In addition, we notice that a finer-grained time discretization

may lead to a more precise error-triggering (speed range) con-

straints. For instance, for Scenario #8, the sequences produced

by VETPLC-TSEQS-5 reveal that a push ram at speeds from

1714 to 2000 rpm can cause errors, while those of VETPLC-

TSEQS-2 only indicate that it malfunctions at the minimum

speed of 1714 rpm. Some cases, such as Scenario #7, may

include multiple machines with variable speeds, and thus we

compute the error-triggering ranges individually.

Nevertheless, the precision improvement of speed ranges

comes at a price. As we discretize time into more factions, the

amount of event sequences also grows significantly. Figure 6

illustrates that, compared to ALLSEQS, VETPLC-TSEQS-2,

VETPLC-TSEQS-5 and VETPLC-TSEQS-10 on average yield

38%, 93% and 226% of sequences, respectively. Nonetheless,

the increase of time fractions does not always lead to an

improvement of error ranges. The difference between TSEQS-

5 and TSEQS-10 is not as significant as that between TSEQS-2

and TSEQS-5. Yet the increase of permutations for TSEQS-10

is drastic. As a result, empirically, we can see that TSEQS-5

strikes a balance between efficiency and precision.

C. Case Study

We perform case studies on two scenarios. The study on

Scenario #2 is presented here while the study on Scenario #7

is elaborated in Appendix G.

Scenario Description. Scenario #2 depicts the interaction

among a PLC, a robot and a CNC in Cell 2. Here, the robot

carries a part into CNC cabinet, places it on CNC table and

moves out. It then pauses at a temporary position and waits for

further instructions from PLC. Normally, CNC senses a part’s

arrival from its table and notifies the PLC of the receipt. Then,

the PLC signals the robot, allowing it to return to its safe zone,

while the CNC begins to process the part.

Timed Event Causality Graph. Figure 7 illustrates the

TECG constructed from PLC, robot and CNC (slave PLC)

code. The causal relation between Deliver Part to CNC

and Part Delivered indicates the request and response

between PLC and robot. The duration of Part Present

extracted from CNC code is 1 second. However, the controller

code cannot reveal the implicit relation between PLC sending

a request to robot and CNC receiving a part, because the PLC

does not directly send commands to the CNC. Fortunately,

VETPLC can recover this dependency via invariant mining

and thus introduce a new edge Deliver Part to CNC →
Part AtTable, depicted by the bold line. Besides, data

mining also discovers the robot delivery time, corresponding

to Robot Start
[0.5s,6.6s]
−−−−−−→ Robot Standby.

Automated Safety Vetting. TECG helps reduce the amount

of possible event permutations from 13700 to 446. We further

obtain 2366, 8846 and 29246 timed sequences for TSEQS-

2, TSEQS-5, TSEQS-10, respectively. Using these timed se-

quences to exercise the PLC code, we discover a safety

violation that the robot, running at certain speeds, cannot

return to its safe zone. Particularly, TSEQS-5 can provide

a relatively precise error-triggering range [250 mm/sec, 959

mm/sec] with a relatively low time cost (8846 permutations).

Root Cause. This problem is caused by event timings and

thus is not revealed by ordering-based sequences. Since Part -

Present only lasts for 1 second, when PLC receives Part -

Delivered from the robot, the former event may have already

terminated. Then, PLC will not permit the robot to move back

due to missing necessary signals. Such a problem can only be

observed when the robot speed falls into the discovered range.

Security Implication. Our analysis results do not auto-

matically infer the intent of safety violations, but they do

serve as contextual evidence that can help investigators draw

correct conclusions. Prior work [38] has indicated that attacks

are likely to be triggered under very narrow conditions (e.g.,

logic bombs) to evade detection; Stuxnet [36] code injected by

insiders runs only when the target system operates between

807 Hz and 1210 Hz – a unique frequency range used for

nuclear centrifuges. Hence, if the vulnerabilities are injected

by insiders, VETPLC must find their narrow triggering ranges.

Otherwise, we must not provide a misleading result implying

the error can happen only when robot runs at very low speed

[250 mm/s, 465 mm/s] or its highest speed 3300 mm/s.

Instead, we must discover a precise error-trigger range, e.g.,

[250 mm/s, 959 mm/s] for robot speed.

D. Runtime Performance

It takes on average 203s to construct graphs for one

scenario. The computation time is acceptable because our

analyses are designed to be straightforward and real-world

PLC code is not very complex. The runtime of trace-based

verification is proportional to the number of testing sequences,

and thus is comparable to that of ALLSEQS, while each run

takes approximately 55 seconds.

VIII. DISCUSSION

Scalability. Our testbeds are smaller in size, but they

accurately represent certain plants that manufacture specific

products. For instance, a small-scale plant, such as an aircraft

seating factory consisting of 20 CNCs, often organizes its

12

REFERENCES

[1] “ABB RAPID Veteran, a few question about FANUC KAREL,”
https://www.robot-forum.com/robotforum/fanuc-robot-forum/abb-
rapid-veteran-a-few-question-about-fanuc-karel/.

[2] “Antlr,” http://www.antlr.org/.

[3] “Clang: a C language family frontend for LLVM,” https://clang.llvm.
org/.

[4] “Cloud9 - Automated Software Testing at Scale,” http://cloud9.epfl.ch/.

[5] “Conveyor Belts Optimisation,” https://www.standard-industrie.com/
en/wp-content/themes/standardindustrie/img/CONVEYOR BELT
OPTIMISATION.pdf.

[6] “Conveyors and Falling Item Prevention,” http://www.cisco-eagle.com/
blog/2015/08/20/conveyors-and-falling-item-prevention/.

[7] “Cooperation and Control: A Systems Perspective,” https:
//me.engin.umich.edu/news-events/news/cooperation-and-control-
systems-perspective.

[8] “Ethernet/ip,” https://en.wikipedia.org/wiki/EtherNet/IP.

[9] “Foundations For Conveyor Safety Book,” http://
martinengineerings3.s3.amazonaws.com/www.martin-eng.de/download/
FoundationsForConveyorSafetyBook.pdf.

[10] “IEC 61131-3,” https://en.wikipedia.org/wiki/IEC 61131-3.

[11] “Industrial Control Systems Killed Once And Will Again, Experts
Warn,” https://www.wired.com/2008/04/industrial-cont/.

[12] “Industry 4.0,” https://en.wikipedia.org/wiki/Industry 4.0.

[13] “MATIEC - IEC 61131-3 compiler,” https://bitbucket.org/mjsousa/
matiec.

[14] “MATIEC examples,” https://github.com/Felipeasg/matiec examples.

[15] “NuSMV: a new symbolic model checker,” http://nusmv.fbk.eu/.

[16] “OpenPLC Project,” http://www.openplcproject.com/.

[17] “PLC Manufacturer Rankings,” http://automationprimer.com/2013/10/
06/plc-manufacturer-rankings/.

[18] “Programmable Logic Controller,” https://en.wikipedia.org/wiki/
Programmable logic controller.

[19] “Robot kills worker at Volkswagen plant in Germany,”
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-
at-volkswagen-plant-in-germany.

[20] “Structured Text Tutorial to Expand Your PLC Programming Skills,”
http://www.plcacademy.com/structured-text-tutorial/.

[21] “UPPAAL Home,” http://www.uppaal.org/.

[22] “ANSI/RIA R15. 06: 2012 Safety Requirements for Industrial Robots
and Robot Systems,” Ann Arbor: Robotic Industries Association, 2012.

[23] M. Abrams and J. Weiss, “Malicious Control System Cyber Security
Attack Case Study – Maroochy Water Services, Australia,” https://www.
mitre.org/sites/default/files/pdf/08 1145.pdf.

[24] A. Aiken, M. Fähndrich, and Z. Su, “Detecting Races in Relay Ladder
Logic Programs,” in Tools and Algorithms for the Construction and

Analysis of Systems, 1998.

[25] M. R. Aliabadi, A. A. Kamath, J. Gascon-Samson, and K. Pattabiraman,
“ARTINALI: Dynamic Invariant Detection for Cyber-physical System
Security,” in Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering (ESEC/FSE 2017), Sep 2017.

[26] R. Alur and T. A. Henzinger, “A Really Temporal Logic,” J. ACM,
vol. 41, no. 1, Jan. 1994.

[27] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic
Testing of Smartphone Apps,” in Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering

(FSE ’12), 2012.

[28] B. Beckert, M. Ulbrich, B. Vogel-Heuser, and A. Weigl, “Regression
Verification for Programmable Logic Controller Software,” in Formal

Methods and Software Engineering, 2015.

[29] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging Existing Instrumentation to Automatically Infer Invariant-
constrained Models,” in Proceedings of the 19th ACM SIGSOFT Sym-

posium and the 13th European Conference on Foundations of Software

Engineering (ESEC/FSE ’11), Sep 2011.

[30] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: A Verification
Platform for Programmable Logic Controllers,” in Proceedings of the

27th IEEE/ACM International Conference on Automated Software En-

gineering (ASE 2012), Sep 2012.

[31] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the Automatic Verification of PLC Programs Written in
Instruction List,” in Proceedings of the IEEE International Conference

on Systems, Man and Cybernetics, Feb 2000.

[32] M. Chai and B.-H. Schlingloff, “A Rewriting based Monitoring Algo-
rithm for TPTL,” vol. 1032, pp. 61–72, Jan 2013.

[33] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from Mutants: Using Code
Mutation to Learn and Monitor Invariants of a Cyber-Physical System,”
in 2018 IEEE Symposium on Security and Privacy (Oakland’18), May
2018.

[34] L. Cheng, K. Tian, and D. D. Yao, “Orpheus: Enforcing Cyber-Physical
Execution Semantics to Defend Against Data-Oriented Attacks,” in Pro-

ceedings of the 33rd Annual Computer Security Applications Conference

(ACSAC 2017), Dec 2017.

[35] J. Dzinic and C. Yao, “Simulation-based Verification of PLC Programs
Master of Science Thesis in Production Engineering,” Master’s thesis,
Chalmers University of Technology, Sweden, 2013.

[36] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,”
https://www.symantec.com/content/en/us/enterprise/media/security
response/whitepapers/w32 stuxnet dossier.pdf.

[37] G. Fedorko, V. Molnar, D. Marasova, A. Grincova, M. Dovica, J. Zivcak,
T. Toth, and N. Husakova, “Failure Analysis of Belt Conveyor Damage
caused by the Falling Material. Part II: Application of Computer
Metrotomography,” Engineering Failure Analysis, vol. 34, pp. 431 –
442, 2013.

[38] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “TriggerScope: Towards Detecting Logic Bombs in Android
Applications,” in 2016 IEEE Symposium on Security and Privacy

(Oakland), May 2016.

[39] L. Garcia, S. Zonouz, D. Wei, and L. P. de Aguiar, “Detecting PLC
control corruption via on-device runtime verification,” in 2016 Resilience

Week (RWS), Aug 2016.

[40] A. Ginter, “The Top 20 Cyber Attacks Against Industrial Control
Systems,” https://ics-cert.us-cert.gov/sites/default/files/ICSJWG-
Archive/QNL DEC 17/Waterfall top-20-attacks-article-d2%20-
%20Article S508NC.pdf.

[41] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On Ladder Logic Bombs
in Industrial Control Systems,” in CyberICPS/SECPRE@ESORICS, Sep
2017.

[42] J. F. Groote, S. F. M. van Vlijmen, and J. W. C. Koorn, “The Safety
Guaranteeing System at Station Hoorn-Kersenboogerd,” in Computer

Assurance, 1995. COMPASS ’95. Systems Integrity, Software Safety and

Process Security. Proceedings of the Tenth Annual Conference on, Jun
1995.

[43] S. Guo, M. Wu, and C. Wang, “Symbolic Execution of Programmable
Logic Controller Code,” in Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE 2017), Sep 2017.

[44] R. Huuck, “Semantics and Analysis of Instruction List Programs,”
Electronic Notes in Theoretical Computer Science, vol. 115, pp. 3–18,
2005.

[45] H. Janicke, A. Nicholson, S. Webber, and A. Cau, “Runtime-Monitoring
for Industrial Control Systems,” Electronics, vol. 4, no. 4, pp. 995–1017,
dec 2015.

[46] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated Testing with
Targeted Event Sequence Generation,” in Proceedings of the 2013 In-

ternational Symposium on Software Testing and Analysis (ISSTA 2013),
Jul 2013.

[47] I. Kovalenko, M. Saez, K. Barton, and D. Tilbury, “SMART: A System-
Level Manufacturing and Automation Research Testbed,” Smart and

Sustainable Manufacturing Systems, vol. 1, no. 1, pp. 232–261, 2017.

[48] N. H. Lee and S. D. Cha, “Generating Test Sequences Using Symbolic
Execution for Event-Driven Real-Time Systems,” Microprocessors and

Microsystems, vol. 27, pp. 523–531, 2003.

[49] R. M. Lee, M. J. Assante, and T. Conway, “German Steel
Mill Cyber Attack,” https://ics.sans.org/media/ICS-CPPE-case-Study-2-
German-Steelworks Facility.pdf.

[50] R. Lee, M. Assante, and T. Conway, “Analysis of the Cyber Attack
on the Ukrainian Power Grid,” https://www.nerc.com/pa/CI/ESISAC/
Documents/E-ISAC SANS Ukraine DUC 18Mar2016.pdf.

[51] G. Li, E. Andreasen, and I. Ghosh, “SymJS: Automatic Symbolic
Testing of JavaScript Web Applications,” in Proceedings of the 22Nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE 2014), Nov 2014.

[52] K. S. Luckow, C. S. Păsăreanu, and B. Thomsen, “Symbolic Execution
and Timed Automata Model Checking for Timing Analysis of Java Real-
Time Systems,” EURASIP Journal on Embedded Systems, vol. 2015,
no. 1, Sep 2015.

14

[53] A. Martelli and U. Montanari, “Additive AND/OR Graphs,” in Proceed-

ings of the 3rd International Joint Conference on Artificial Intelligence

(IJCAI’73), Aug 1973.
[54] S. McLaughlin, S. Zonouz, D. Pohly, and P. McDaniel, “A Trusted

Safety Verifier for Process Controller Code,” in Proceedings of the 2014

Network and Distributed System Security Symposium (NDSS’14), Feb
2014.

[55] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing Android Apps Through Symbolic Execution,” SIGSOFT Softw.

Eng. Notes, vol. 37, no. 6, pp. 1–5, Nov. 2012.
[56] A. Montaqim, “Top 14 industrial robot companies and how many robots

they have around the world,” https://roboticsandautomationnews.com/
2015/07/21/top-8-industrial-robot-companies-and-how-many-robots-
they-have-around-the-world/812/.

[57] J. Nellen, E. Ábrahám, and B. Wolters, “A CEGAR Tool for the Reach-
ability Analysis of PLC-Controlled Plants Using Hybrid Automata,” in
Formalisms for Reuse and Systems Integration, 2015.

[58] J. Nellen, K. Driessen, M. Neuhäuβer, E. Ábrahám, and B. Wolters,
“Two CEGAR-based Approaches for the Safety Verification of PLC-
controlled Plants,” Information Systems Frontiers, vol. 18, no. 5, pp.
927–952, Oct. 2016.

[59] Occupational Safety and Health Administration, “OSHA Instruction
PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assess-
ment,” https://www.osha.gov/enforcement/directives/std-01-12-002.

[60] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschast-
nikh, and Y. Brun, “Behavioral Resource-aware Model Inference,”
in Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering (ASE ’14), Sep 2014.
[61] S. Ould Biha, “A Formal Semantics of PLC Programs in Coq,” in

Proceedings of the 2011 IEEE 35th Annual Computer Software and

Applications Conference (COMPSAC’11), Jul 2011.
[62] S. C. Park, C. M. Park, G.-N. Wang, J. Kwak, and S. Yeo, “PLCStu-

dio: Simulation based PLC code verification,” 2008 Winter Simulation

Conference, pp. 222–228, 2008.
[63] T. Park and P. I. Barton, “Formal Verification of Sequence Controllers,”

Computers & Chemical Engineering, vol. 23, no. 11, pp. 1783–1793,
2000.

[64] B. Perelman, “The Top 3 Threats to Industrial Control Systems,” https:
//www.securityweek.com/top-3-threats-industrial-control-systems.

[65] J.-M. Roussel and B. Denis, “Safety Properties Verification of Lad-
der Diagram Programs,” Journal Européen des Systèmes Automatisés

(JESA), vol. 36, no. 7, pp. pp. 905–917, Jun. 2002.
[66] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,

“A Symbolic Execution Framework for JavaScript,” in Proceedings of

the 2010 IEEE Symposium on Security and Privacy (Oakland’10), May
2010.

[67] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing Sensitive Data Transmission in Android for
Privacy Leakage Detection,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & Communications Security (CCS’13), Nov
2013.

[68] H. Zhang, D. D. Yao, N. Ramakrishnan, and Z. Zhang, “Causality
Reasoning About Network Events for Detecting Stealthy Malware
Activities,” Computers and Security, vol. 58, no. C, May 2016.

APPENDIX

A. Teach Pendant Code of FANUC Robot

Figure 8 presents the robot code implemented using teach

pendant language. This program is triggered by a PLC event

and can pass a part from CNC machine to conveyor.

B. Implementation of Static Analysis

We have implemented our static analyses in 7K lines of C++

code and 5K lines of Java code. Particularly, we convert PLC

ST code into C programs via MATIEC [13] compiler, and then

leverage Clang [3] to enable our analyses. To analyze teach

pendant programs in robot, we build a specific parser using

Antlr [2] and then perform control flow analysis on top of the

generated AST.

1 !Function only when receiving the signal

2 IF DI [0 : Deliver Part@PLC]=OFF, JMP LBL[3]
3 DO[6:Pickup_from_CNC1]=ON

4 DO[2:Part_AtConveyor@PLC]=OFF

5 CALL GO_HOME_AND_GET_VACUUM_GRIPPER

6 !Move to CNC1

7 J P[10:ROTARM] 80% FINE

8 L P[4:ROTARM2] 250mm/sec FINE

9 ...

10 !Pick up a part from CNC1

11 L P[9:CNCSIDE] 100mm/sec FINE

12 ...

13 LBL[1]

14 IF DI[7:Pickup_Confirmation]=ON, JMP LBL[2]

15 JMP LBL[1]

16 LBL[2]

17 WAIT .10(sec)

18 !Deposit part on conveyor

19 L P[10:ROTARM] 550mm/sec FINE

20 ...

21 !Notify that part was dropped on conveyor

22 DO[2 : Part AtConveyor@PLC]=ON
23 WAIT . 5 0 (s e c)
24 DO[2 : Part AtConveyor@PLC]=OFF
25 CALL RETURN_VACCUM_GRIPPER_AND_GO_HOME

26 DO[6:Pickup_from_CNC1]=OFF

27 LBL[3]

Fig. 8: Robot Teach Pendant Code for Delivering Parts

Note that the conversion from PLC to C code, using

MATIEC, follows a standardized (IEC 61131-3) mechanism.

We admit that some semantics, such as counters, timers, etc.

may not be very precisely translated to C code especially

because of the implicit effects caused by PLCs’ scan cycles.

Furthermore, different vendors may introduce unique features,

besides standard ones, that cannot be converted using existing

tools. To address these limitations, an alternative option is to

directly conduct analysis on native PLC code. We intend to

work on this as part of future work. However, we argue that our

graph construction methods are orthogonal to the underlying

program analysis. In fact, other (potentially advanced) analysis

techniques can be used to achieve our goal.

C. Algorithm to Infer Events From Data Traces.

Algorithm 3 depicts our algorithm to infer discrete events

from continuous data traces collected from physical ICS

testbeds.

D. Example of Event Sequence & Implementation

Motivating Example Figure 9 depicts how we apply a

generated event sequence to exercising PLC code of the

motivating example. In this chart, the x-axis represents time

(in seconds), which is ranging from Begin-of-Test (BOT) to

End-of-Test (EOT), and the y-axis denotes the list of events.

The effective duration of each event is illustrated as a thick

horizontal line, which begins with an empty circle and ends

with a filled circle or a cross. The filled circle means the event

is terminated by its sender, and the cross indicates it is disabled

due to PLC logic. The dotted part on a thick line represents the

possible range of starting point of an event. For instance, the

15

Fig. 11: A TECG of Case #7 (CNC-Part Collision)

are complete, the part is transferred to the conveyor in Cell 4

by Ram 2 and leaves the testbed.

It is possible to place multiple parts on the testbed at the

same time and process the parts sequentially. However, due

to physical limitations in the testbed (e.g., limited length for

the conveyor belt, long operation time for the rams and CNC

machines), restrictions should be taken into account when

developing the control logic.

G. Case Study on Scenario #7 CNC-Part Collision

Description. This case focuses on the section where a part

is processed by CNC 1 and to be transferred to CNC 2. Since

the testbed has a linear setup, the design and deployment of

the CNC machines are based upon an assumption: when a

CNC finishes an operation and is ready to discharge a part, its

successive CNC should also be ready to receive the part – this

avoids a downgrade in system throughput due to congestion in

the linear model. That is, in this case, CNC 2 is expected to be

ready (i.e., the preceding part has been discharged from CNC

2) when CNC 1 finishes a process and discharges a part. In a

normal manufacturing run, CNC 2 sends a signal to PLC when

a part is processed. PLC then activates Conveyor 3 to transfer

the part from CNC 2 to the next cell (Ram 2). Similarly, when

a part is processed by CNC 1, Conveyor 2 and 3 are activated

by PLC to transfer the part from CNC 1 to CNC 2.

A potential issue may occur in this linear setup when the

aforementioned assumption no longer holds due to changes in

time correlation between CNC machines. This could happen

either because of a worn-out component in a CNC that leads to

a longer CNC cycle time or a careless change in manufacturing

plan (e.g., an operator speeds up the conveyor with a desire

for higher production performance).

Safety Vetting. Using the proposed analysis method, we

first construct the TECG (as shown in Figure 11) by analyzing

the PLC and CNC code. In this case, the correlation between

the two CNC machines and PLC can be revealed in this step.

From this TECG, we can determine that the event CNC2 -

Process is followed by the event CNC2 Finished and

the event CNC1 Process is followed by the event CNC1 -

Finished. These event dependencies discovered from the

inter-device communication help reduce the number of possi-

ble permutations from 13700 to 898 (without taking time into

account). Then, we proceed to the temporal property mining

process that produces time correlation and temporal invariants

for the events. In this case, process times, TCNC1 Process and

TCNC2 Process, from both CNC machines are obtained, which

are associated to the time durations for Process Start →
Process End of both CNCs. With these time invariants being

considered, the number of permutations becomes 6442, 24358

and 79818 for VETPLC-TSEQS-2, VETPLC-TSEQS-5 and

VETPLC-TSEQS-10, respectively.

In this case, CNC 1 process time, TCNC1 Process, ranges

from 3 to 8 seconds and CNC 2 process time, TCNC2 Process,

ranges from 2 to 7 seconds. As mentioned above, anomalies

may occur when either CNC 2 takes longer to finish its task

or CNC 1 discharges a part earlier. Under either circumstance,

it is possible that the part discharged from CNC 1 arrives in

CNC 2 before the precedent part originally in CNC 2 fully

leaves the cell. As a result, the successive part may collide

with the preceding part as well as CNC 2 and cause safety

issues. This violates the safety specification, �(CNC Busy →
¬♦Part Arrival), that indicates that a part must not arrive

at a CNC when it is in a busy state. Through VETPLC-TSEQS

test processes, the system determines that this violation may

occur when CNC 1 is running at a speed from 3273 rpm

to 6000 rpm and CNC 2 is running at a speed from 1714

rpm to 2667 rpm with VETPLC-TSEQS-2. The same violation

can also be captured using VETPLC-TSEQS-5 and VETPLC-

TSEQS-10 with higher precision with respect to the error-

triggering speed ranges (see Table IV for details).

17

