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Abstract— Digital Twin (DT) is one of the key enabling
technologies for realizing the promise of Smart Manufacturing
(SM) and Industry 4.0 to improve production systems operation.
Driven by the generation and analysis of high volume data
coming from interconnected cyber and physical spaces, DTs
are real-time digital images of physical systems, processes or
products that help evaluate and improve business performance.
This paper proposes a novel DT architecture for the real-
time monitoring and evaluation of large-scale SM systems.
An application to a manufacturing flow-shop is presented to
illustrate the usefulness of the proposed methodology.

I. INTRODUCTION

Current trends in information and communication tech-

nologies gave rise to Cyber-Physical Systems (CPS) which

manage interconnected physical assets and computational

capabilities of a system. These transformative technologies

enable the possibilities promised by Smart Manufacturing

(SM) and industry 4.0, to track and use process data up and

down the supply chain. More effective autonomous smart

factories, with the ability for self-management and self-

optimization, can be achieved through the large interconnec-

tion of CPS. This class of systems are able to communicate,

perceive their environment, interpret information, and act on

the physical world [1]. Despite these prospects, modeling

and real-time control methods of CPS still face two main

challenges: (i) lack of models that can accurately replicate

the dynamics of physical systems while incorporating real-

time manufacturing data; and (ii) lack of real-time opti-

mization and control algorithms to generate effective on-line

production control actions based on real-time manufacturing

data and performance prediction [2]. We use Digital Twin

(DT) technology which bridges the physical and digital

worlds to handle the first challenge and provide a means

to address the second one. DT refers to a digital equivalent

of physical products, assets, processes or systems. It is

used for describing and modeling the corresponding physical

counterpart in a digital manner [3]. It combines modeling,

simulation, and emulation technologies with other analytics

to better understand aspects of current manufacturing op-

erations (e.g., health monitoring) or to predict aspects of

future behaviors of the manufacturing system (e.g., predictive
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maintenance) [4], [5]. The adoption of the Industrial Internet

of Things (IIoT) technologies has played an important role

in making DTs cost-effective to implement. IIoTs enable

ubiquitous connectivity that allows systems to report their

status, working conditions, and ambient environments to the

DTs so that the latter can remain in lock-step with their

physical counterparts. This capability allows the DTs to

provide an up-to-date representation of the SM system.

The main contribution of this paper is to introduce a

unified DT modeling framework for SM systems. The role

of the DT framework is to provide a real-time extensible

global view of a manufacturing system by deploying multiple

DTs at multiple levels of the automation pyramid of the

International Society of Automation ISA–95 [6]. The DT

framework is used within the Software-Defined Control (Fig.

1), where it operates with a set of applications and a decision

maker to monitor, control, predict, and re-configure (as

necessary) complex production processes. The DTs within

the framework are organized in a class structure to provide

capabilities that are important to the optimization of the man-

ufacturing environment; instances are stored in a DT pool

with a DT manager handling the communication between DT

instances and with the decision maker. Four classes that are

important to most manufacturing environments are defined.

The rest of this article is structured as follows. Section

II provides background on the research related to this work.

Section III introduces the DT platform providing details of its

components and how they are related. Section IV describes

four DT classes that are typically needed to build a real-time

global view of a given SM system. Section V demonstrates

the usefulness of the proposed approach through a case

study using a manufacturing flow-shop example. Section VI

summarizes the contributions of this paper and presents some

challenges related to the development of DTs.

II. BACKGROUND

A. Related Work

Digital modeling and simulation technologies have be-

come widely used in many engineering domains thanks to

the ubiquitous connectivity of devices and the amount of

data being moved between these devices or through the

cloud. DT-related methodology and technology are being

applied in different industrial fields and are showing great

potential. Industrial applications of DTs mainly focus on the

areas of product design, production, Prognostic and Health

Management (PHM), and human-machine interaction, where

DTs have shown superiority over traditional solutions [4],









manufacturing environment. In this section we introduce four

classes of DTs that would often be used to construct a real-

time global view of a SM system in order to address com-

mon manufacturing issues such as throughput and quality

optimization, and reduction of cost and variability. Note that

a manufacturing system might include instances of other

DT classes depending on particular needs. The proposed DT

platform is flexible enough to allow including other DTs.

A. Topology Digital Twin

The topology DT is a representation of the physical layout

of the system in real-time2. Such a representation allows to

accurately and timely track the availability of machines and

transport systems and their connectivity. This can be used by

apps such as flexible rerouting to find the best routing paths

according to current system workload. The topology DT is a

directed graph where each node (vertex) is a component that

processes parts and each link (edge) is a physical path on

which parts can be transported from one node to another. For

instance, a conveyor that carries parts from a cell to another

is a path (edge) that links the two cells (nodes).

We divide the manufacturing equipment into nodes and

links. Each work station (e.g., milling/turning machine, as-

sembly/welding robot, quality inspection, buffer, etc.) in the

manufacturing system is a single node, whereas a possible

material flow between two nodes (e.g., conveyor, AGV,

gantry) is represented by a directed link. Links could be

unidirectional or bidirectional.

Formally, we define the topology DT as a tuple T =
(N,L, In,Out,∆) where:

• N is a finite set of nodes;

• L is a set of links that connect some of these nodes;

• In is the set of material flow inputs;

• Out is the set of material flow outputs;

The system may consist of unique or multiple material

flow inputs/outputs. In and Out are defined as nodes,

i.e., {In,Out} ∈ N .

• ∆ : N × L∗ → N is a function that defines the flow

transitions, where L∗ denotes the set of all finite link

concatenations in L. An element l ∈ L∗ is a sequence of

links. The length of a sequence l is given by the number

of its involved links. A sequence l ∈ L∗ consists of at

least 1 link.

The construction of the topology DT consists of first

enumerating the equipment of the system to verify the set

of nodes and links. Second, the interconnections between

the nodes and links are defined as flow transitions to depict

the relationships between the machines/stations and transport

systems. Eventually, corresponding plant floor data are syn-

chronized with the DT through the data agent to provide a

real-time replica of the physical layout.

2Real-time is used here to indicate that the DT representation is updated
with sufficient promptness so that appropriate decisions can be made based
on the assumption that the DT is an up-to-date representation of the system.
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Fig. 4: The discrete model in the machine asset DT.

B. Machine Asset Digital Twin

The machine asset DT is a generic discrete model that

provides access to the structure, behavior and working con-

ditions of an individual manufacturing unit. We define a

machine asset DT as a Finite State Machine (FSM) with

3 global states: Idle, Up, and Down. A machine could

have multiple Up and Down sub-states as shown in Fig.

4. Transitions between these states could be event-driven or

time-driven. Annotating edges, i.e., {α, β, γ, δ, ε, ζ}, refer to

the occurrence of an event or the elapse of some time. It is

also possible to have transitions between states inside the Up

and Down superstates. More details could be found in [18].

To build a machine asset DT, the Subject Matter Expert

(SME) starts with verifying, from the states consolidated in

the generic model of Fig. 4, the set of states that a machine

has. Then, the transitions between these states are defined and

depicted in the model. Ultimately, the model is synchronized

with the machine data through the data agent to provide a

real-time replica of the physical machine.

C. Machine Process Digital Twin

The processing environment provided by the machine

(e.g., when operating on a part) is captured by the machine

process DT. For instance, Ordinary Differential Equations

(ODEs) are used for modeling the continuous variables of

interest, namely states, of the manufacturing unit in closed-

loop. The generic model of non-linear ODEs are given by

ẋ = f(x,u, t) (1)

where, x ∈ R
n is the state vector and f(x,u, t) is the flow

dynamics of the state according to u ∈ R
m, and time variable

t ∈ [0,∞). Initial conditions of the dynamics are given as

x(0) = x̄, which is updated using the data agent at the

time of initialization. Various dynamics can be lumped into

a system of ODEs and represented as Eq. 1 without loss

of generality. The DT is updated with data at a predefined

frequency, which results in difference equations given by

xk+1 = f(xk,uk, k) (2)

where xk ∈ R
n is the discrete state variable at time step

k ∈ N, and uk ∈ R
m is the discrete control input at time step

k. The models of the manufacturing unit may be predefined

by an SME, or can be learned from the data streams. While

learning the model from data is a non-trivial task, parameters





Fig. 8: Anomaly detection on the cnc2 using the machine process
DT. Dashed center line is a fitted curve on the measured spindle
current. Anomalous peak spindle current measurement are shown
with red marked points.

Machine Process DT: the machine process DT in this

case study is tasked with modeling the spindle current of

a CNC. Spindle current provides insight into the equivalent

forces acting on the spindle. If there is excessive loading,

the tool may break and damage the part in process. To

identify the peaks in the spindle current and classify the

ones that could cause tool breakage, an adaptive limit based

anomaly detection scheme is implemented. Fig. 8 illustrates

the adaptive limit based anomaly detection for tool breakage

in cnc2. An SME defines safety limits for the spindle

current peaks, using heuristics and historical spindle current

measurements available through the machine process DT. An

anomaly detection app uses the spindle current data from

the machine process DT and fits a fourth order polynomial

using weighted regularized least squares (dashed center-line

in Fig. 8). The inner limit signifies tool-wear for the spindle

tool and the outer limit is the safety limit for tool breakage.

B. Anomaly Detection and Control Reconfiguration

An SDC anomaly detection app identifies the spindle

current measurements that breach the inner limit (red markers

in Fig. 8), and signals an anomaly prior to an actual tool

breakage. Thus, a fault (“ft”) event is triggered. Conse-

quently, the cnc2 is omitted in the topology DT of Fig. 6

indicating that the machine is not available. In the machine

asset DT of cnc2, the cnc2 transitions to the “Down” state.

This example illustrates the potential use of machine process

DT to monitor process parameters and machine health for

anomaly detection and performance monitoring.

As cnc2 is no longer available, the SDC decision maker

evaluates a cost function and feasibility constraints to re-

configure the manufacturing cell. An optimization module

inside the decision maker uses the data from DTs to for-

mulate and compute an optimization problem for optimal

reconfiguration decisions. Since all CNCs in the system are

capable of milling all three features, the possible number of

combinations of feature assignments for the remaining two

CNCs is 23 = 8. Let φj = (µ(f1), µ(f2), µ(f3)) denote a

possible assignment combination where µ(fi) denotes which

CNC is assigned for the milling of a particular feature fi.

Additionally, let λi(φ) ∈ N denote the number of cnci
assignments in the combination φj , and Λi = {fi|i ∈
{1, 2, 3}} denote the corresponding features. Then a cost

function for the manufacturing time of each assignment in

the case study is given as:

JT (φj)=

3
∑

i=1

τµ(fi)(Ci) +

{

∑

∀k∈Λi
τi(Sk), if λi(φ) > 1

0 otherwise

Additionally, define the quality function as the product of

the yields of the machines in a given combination φj .

JQ(φj) =

3
∏

i=1

qµ(fi),

where qµ(fi) ∈ (0, 1] denotes the yield of the CNC assigned

for the feature fi. Combining the two objectives, an opti-

mization problem is formed as

min
φ

J(φj) = α0JT (φj) + α1(1− JQ(φj)) (3a)

s.t. : φj ∈ Traces(T ) (3b)

JT (φj) ≤ τmax (3c)

JQ(φj) ≥ qmin (3d)

where, α0, α1 are normalized weights on the time and qual-

ity, respectively, and are determined by the decision maker,

τmax denotes the maximum allowable processing time for

the manufacturing cell, qmin denotes the minimum allowable

yield for the manufacturing cell, and the constraint in Eq. 3b

denotes that each φj is a feasible assignment with respect

to the topology DT. The minimum quality and maximum

processing time constraints are added to ensure efficient

solutions, but based on the feasibility of the optimization

these constraints may be relaxed. Numerical values for the

cycle and setup times of cnc1 and cnc3 are given in Table I.

TABLE I. Cycle and setup times of cnc1 and cnc3 for the
reconfiguration example. All units are in seconds.

Machine τ(S1) τ(S2) τ(S3) τ(C1) τ(C2) τ(C3)

cnc1 7 10 14 320 307 410
cnc2 7 10 14 332 310 384

The yield of cnc1 is 0.95, 0.94, 0.96 for features f1, f2, f3
respectively. The yield of cnc2 is 0.99, 0.98, 0.92 for features

f1, f2, f3 respectively. For the optimization in (3), the 8
solutions that satisfy the condition in constraint (3b) are

evaluated. The constraints are chosen as τmax = 1070 sec

and qmin = 0.8. The weights αi are normalized by the

maximum values of the functions JT (φj) and JQ(φj) in the

implementation of the cost function. The problem is encoded

as a mixed integer linear program and solved using Matlab.

TABLE II. Results for the reconfiguration in the case study.

Type φ∗ JT (φ∗

j ) JQ(φ∗

j )

Best Yield cnc1,cnc3,cnc1 1061 sec 0.89
Best Time cnc1,cnc1,cnc3 1028 sec 0.82

Mixed cnc1,cnc3,cnc3 1038 sec 0.85

The type of solution, optimizer assignment φ∗, associated

time, and associated quality results evaluated by the opti-

mization are shown in Table II. The best yield solution uses

(α0 = 0, α1 = 1), the best time solution uses (α0 = 1, α1 =



0), and the mixed solution uses (α0 = 0.8, α1 = 0.2). Based

on the type of solution evaluated by the decision maker, a

reconfiguration is implemented in the system.

This case study shows how the DT platform uses multiple

DTs for machine failure prediction, rescheduling, and rec-

ommendation of new control reconfiguration actions. Using

a single DT would not be sufficient to address all these

purposes. A machine process DT, herein uses the spindle

current signature in real-time to monitor the tool health. An

SDC app uses the image provided by this DT to predict

tool breakage. The defective machine is then avoided and

a reconfiguration action is evaluated by the SDC decision

maker, which uses the feasible routes, machine availability,

and machine capability, to provide an optimal reconfiguration

of the system with respect to throughput and quality. The

machine process DT alone is incapable of providing all

this information, which requires cooperation with other DTs.

In summary, cooperation of multiple DTs within the DT

platform is needed to address multiple purposes, mainly real-

time monitoring, anomaly detection/prediction, and real-time

reconfiguration and optimization.

VI. DISCUSSION AND CONCLUSION

The proposed DT framework offers SDC users the flexi-

bility and agility to design, build, extend, and maintain DT

systems at a faster pace and to coordinate these systems

around factory-wide objectives to accommodate SM systems

with a variety of requirements. It helps improve quality and

throughput of the production while reducing waste in time

and resource. The end result is advancement in SM, DT

technology, and the manufacturing industry.

The overall DT platform is partitioned into individual DT

classes that allow to model the major components such as

physical topology, machine assets, machine processes, and

system processes in order to respond to several SM prob-

lems. DT instances of these classes are ultimately combined

under the coordination of the DT manager. The coordination

requires the DT platform to operate at a performance level

high enough so that reconfiguration decisions can be made

without the decision process time impacting the throughput

or quality of the system. On the other hand, the functionality

of some DTs rely on other neighboring DTs. Therefore, a

failure in a DT (e.g., a DT unexpectedly disconnected from

the pub-sub infrastructure) can result in a chain reaction and

lead to malfunction in the entire DT platform. To reduce

the likelihood of interruption, the SDC user may deploy

redundant DTs as backups or DTs and the SDC may employ

strategies to provide alternative solutions if a DT anywhere

in the decision chain is not available or does not provide

information. This allows the DT platform to guarantee the

availability and maintain the functionality at small or no cost.

In current design, simulations are performed independently

by individual DTs that support a simulation functionality.

However, this limits the capability of predicting the states

of the global view. In future work, we will improve the

simulation manager with a more comprehensive simulation

mechanism in which simulation can be carried out in a group

of DTs. This would also enhance the flexibility in the DT

platform to support more complex applications.
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