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Abstract—Digital Twin (DT) is one of the key enabling
technologies for realizing the promise of Smart Manufacturing
(SM) and Industry 4.0 to improve production systems operation.
Driven by the generation and analysis of high volume data
coming from interconnected cyber and physical spaces, DTs
are real-time digital images of physical systems, processes or
products that help evaluate and improve business performance.
This paper proposes a novel DT architecture for the real-
time monitoring and evaluation of large-scale SM systems.
An application to a manufacturing flow-shop is presented to
illustrate the usefulness of the proposed methodology.

I. INTRODUCTION

Current trends in information and communication tech-
nologies gave rise to Cyber-Physical Systems (CPS) which
manage interconnected physical assets and computational
capabilities of a system. These transformative technologies
enable the possibilities promised by Smart Manufacturing
(SM) and industry 4.0, to track and use process data up and
down the supply chain. More effective autonomous smart
factories, with the ability for self-management and self-
optimization, can be achieved through the large interconnec-
tion of CPS. This class of systems are able to communicate,
perceive their environment, interpret information, and act on
the physical world [1]. Despite these prospects, modeling
and real-time control methods of CPS still face two main
challenges: (i) lack of models that can accurately replicate
the dynamics of physical systems while incorporating real-
time manufacturing data; and (¢¢) lack of real-time opti-
mization and control algorithms to generate effective on-line
production control actions based on real-time manufacturing
data and performance prediction [2]. We use Digital Twin
(DT) technology which bridges the physical and digital
worlds to handle the first challenge and provide a means
to address the second one. DT refers to a digital equivalent
of physical products, assets, processes or systems. It is
used for describing and modeling the corresponding physical
counterpart in a digital manner [3]. It combines modeling,
simulation, and emulation technologies with other analytics
to better understand aspects of current manufacturing op-
erations (e.g., health monitoring) or to predict aspects of
future behaviors of the manufacturing system (e.g., predictive
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maintenance) [4], [5]. The adoption of the Industrial Internet
of Things (IIoT) technologies has played an important role
in making DTs cost-effective to implement. IIoTs enable
ubiquitous connectivity that allows systems to report their
status, working conditions, and ambient environments to the
DTs so that the latter can remain in lock-step with their
physical counterparts. This capability allows the DTs to
provide an up-to-date representation of the SM system.

The main contribution of this paper is to introduce a
unified DT modeling framework for SM systems. The role
of the DT framework is to provide a real-time extensible
global view of a manufacturing system by deploying multiple
DTs at multiple levels of the automation pyramid of the
International Society of Automation ISA-95 [6]. The DT
framework is used within the Software-Defined Control (Fig.
1), where it operates with a set of applications and a decision
maker to monitor, control, predict, and re-configure (as
necessary) complex production processes. The DTs within
the framework are organized in a class structure to provide
capabilities that are important to the optimization of the man-
ufacturing environment; instances are stored in a DT pool
with a DT manager handling the communication between DT
instances and with the decision maker. Four classes that are
important to most manufacturing environments are defined.

The rest of this article is structured as follows. Section
II provides background on the research related to this work.
Section III introduces the DT platform providing details of its
components and how they are related. Section IV describes
four DT classes that are typically needed to build a real-time
global view of a given SM system. Section V demonstrates
the usefulness of the proposed approach through a case
study using a manufacturing flow-shop example. Section VI
summarizes the contributions of this paper and presents some
challenges related to the development of DTs.

II. BACKGROUND
A. Related Work

Digital modeling and simulation technologies have be-
come widely used in many engineering domains thanks to
the ubiquitous connectivity of devices and the amount of
data being moved between these devices or through the
cloud. DT-related methodology and technology are being
applied in different industrial fields and are showing great
potential. Industrial applications of DTs mainly focus on the
areas of product design, production, Prognostic and Health
Management (PHM), and human-machine interaction, where
DTs have shown superiority over traditional solutions [4],



[71, [8], [9], [10], [11], [12]. Tao et al. presented a DT-
based method for product design connecting the physical
and virtual products to improve product customization [8].
Schleich et al. highlighted a DT reference model that enables
quality evaluation to ensure that the required geometrical
features of the product are satisfied regardless of the presence
of geometrical part deviations [9]. The DT concept has been
introduced into the production floor to make manufacturing
systems more dependable and flexible. A DT conceptual
framework was developed in [10] for monitoring and opti-
mizing physical manufacturing workshops based on context
data. Bottani et al. developed a cyber-physical automated
guided vehicle DT to improve material handling operation
in Job-Shop manufacturing systems [11]. In the field of
PHM, DTs have been used to predict the time at which a
system will no longer operate as envisioned and meet the
desired performance. Tao et al. proposed a DT method that
depicts geometry, physics, and behavior of an equipment
to detect environment disturbances, potential faults in the
equipment and defects in the models [13]. A structural
modeling concept, the airframe DT, was proposed in [12] to
design, maintain, reduce uncertainty, and improve robustness
of airframes. Some studies have also investigated the connec-
tions between humans and DTs in production area. A DT
approach that enables the communication and coordination
of operators with the production system was proposed in
[14]. Such DTs facilitate the integration of humans in the
decision-making process for self-controlling systems.

Most of these approaches focus on using DTs to solve
a particular problem (e.g., equipment health monitoring,
product design, system design, quality evaluation). However,
a unified DT framework to be used in multiple coordi-
nated applications (PHM, scheduling/dispatching, rerouting,
self-organization and optimization, efc.) is still needed. In
this paper, we propose a unified DT platform that oper-
ates within a Software-Defined Control (SDC) framework
for flexible control reconfiguration of smart manufacturing
systems. The proposed DT platform uses historical and
real-time data to provide the SDC controller with a cen-
tralized view that is used to provide comprehensive DT
capabilities such as to predict and detect anomalies, monitor
equipment health, monitor production in real-time, optimize
scheduling/dispatching, improve the system self-organizing
and learning, and propose novel control plans.

There exist some commercial frameworks that use plant
simulation software to understand the impact of performed
actions or boundary conditions in production systems. Ulti-
mately these frameworks allow for more informed decision
making based on operations visualization. For the sake of
brevity, we consider Tecnomatix from Siemens, AutoMod
from Applied Materials, and Emulate3D from Rockwell
automation. These software solutions focus on simulating the
physical system and use that simulation to predict behavior,
whereas our approach subsumes their capabilities and ad-
dresses the more general problem of simulation/emulation
of a physical system or a process. Our solution does not
require the physical simulation of the system. Thus, solutions
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Fig. 1: Overview of the SDC framework.

provided by plant simulation software could be incorporated
into our DT framework, but cannot represent the entire scope
of DTs within this framework.

B. Software-Defined Control

The SDC is a framework that enables flexible control of
smart manufacturing systems [15], [16]. SDC employs a
global view of the SM system, including physical compo-
nents and cyber components to help improve manufacturing
productivity, efficiency, quality, and security. In building
this global view, the SDC consolidates data at the con-
trol, operations, and business levels to support operations
management with control reconfiguration recommendations.
The SDC consists of a set of centralized data management
infrastructures, a central controller, and a set of applications
(Fig. 1). The data management infrastructures are used to
store data consolidated from the plant floor, operations man-
agement, and business levels. The central controller, the key
piece of SDC, uses the consolidated data to generate a real-
time global view of the manufacturing system. Applications
such as anomaly detection, rerouting, planning, efc., use this
global view to support the central controller in its tasks.
The separation of the applications plane from the central
controller allows easier incorporation of third-party applica-
tions and algorithms without affecting the system design. The
information flow within the central controller is supported by
the SDC interfaces. A southbound interface is used for the
collection and transformation of plant floor data by means
of unified and standardized protocols (e.g., MTConnect and
OPC UA) prior to its use by the DTs and data analytics. A
northbound interface enables communication between SDC
applications and the central controller. An eastbound inter-
face is used for communications with the MES and the ERP,
and allows system administrators to configure and manage
the central controller. The central controller consists of a
decision maker, data services and a DT platform. The deci-
sion maker determines the recommendations to transmit to
the MES. Data services manage the information flow to and
within the central controller and offer two services: (i) the
data collection service used for requesting specific data to be
collected (from the plant floor) by the southbound interface,
and (%) the data processing service used for accessing data



to Northbound API Handler

. . A A A A
Digital Twin Manager v
e 2 2. !
i to Decision
H Digital Twin Importer |4—>| Digital Twin Coordinator |4—>| Simulation Manager | i( ----- Maker
1
ve—,,_—_—M—MM M M — M — MM M M M M m — ——_ e eeee-_ee—e—e e i
Pub-sub Channel
Topology DT Class Machine Asset DT Class Machine Process DT Class System Process DT Class Other DT Classes
1 1 1 1 1
1 1 1 1 1
Topology Machine Asset Machine Process System Process Other
™ DT Instance il DT Instance Hi DT Instance i DT Instance M DT Instance
Message Handler M ge Handler >|| Message Handler » M ge Handler » M ge Handler

Discrete Model

QN
Py
R

Topology Model

Digital Twin Pool

I
/e
(%

Machine Dynamics
Hybrid Model

Mathematical

Discrete Model
Model

Data Agent

Data Agent

to Data Services

Fig. 2: Overview of the DT platform inside the SDC. A DT class can have multiple DT instances deployed in the DT pool.

through the southbound interface and the database. The DT
platform hosts DTs of the system that are used to identify
the changing conditions and predict the effect of suggested
configurations before their deployment.

III. THE DIGITAL TWIN PLATFORM

The proposed DT platform provides the SDC framework
with the capability to construct aspects of a global view of
the SM system that could be used for multiple purposes (e.g.,
real-time monitoring, anomaly detection/prediction, real-time
optimization, etc.). The DT platform provides real-time
modeling of the manufacturing system at multiple levels of
the ISA-95 standard. Different model types are incorporated
into the DT platform. Models are built at the machine
and system levels considering the continuous, discrete, and
hybrid behaviors at each level. They also merge physics-
based and data-driven knowledge to improve analysis.

The architecture of the DT platform is shown in Fig. 2.
It mainly consists of a DT pool and a DT manager. The
DT pool hosts instances of different classes of DTs inter-
connected via a publish-subscribe (pub-sub) infrastructure’.
The DT manager manages the DT mission by handling
initialization of the DT pool, coordinating the pub-sub com-
munication across DT instances, handling the application
requests from the Northbound API Handler, and coordinating
the interaction with the decision maker.

A. Digital Twin Pool

As mentioned earlier, DTs are digital equivalents of phys-
ical products, assets, processes, and systems, which we refer
to as DT classes. A DT class can be instantiated multiple
times and be deployed in the DT platform as DT instances.
For example, the machine asset DT class can have multiple

IPublish-subscribe pattern is an effective communication paradigm where
publisher’s messages are distributed to the corresponding subscribers.

machine asset DT instances that are associated with each
machine in a SM system. In the context of SDC, the DT
instances are building blocks that enable an SDC user to
customize the functionality of the DT platform based on a
particular need for the SM system. We refer to the set of DT
instances deployed in the DT platform as the DT pool.

Each DT instance is composed of a mathematical model,
a data agent and a message handler, as shown in Figs. 2-3.

1) Mathematical Model: the mathematical model is the
core of a DT instance. It is an abstract representation (e.g.,
physics-based) that describes the behavior of the physical
asset or a process. Experimental data are used to validate
and continuously update the model for maximizing the ap-
plicability and value of the digital representation. These data
include data generated by the plant (through the data agent)
or the other DT instances (through the message handler).

2) Data Agent: each DT instance has a data agent that
connects it to the data services. It allows a DT instance to ac-
quire real-time (as well as historical) data via a standardized
interface. This interface also enables the flexibility to include
any plant data source from the data services if needed.

3) Message Handler: DT instances and the DT manager
are interconnected via a pub-sub infrastructure in the DT
pool. Depending on the intended goal, a DT instance can
work either individually or cooperatively (i.e., the function-
ality of a DT could depend on data generated by another
DT) to deliver the intended functionality. Each DT instance
is embedded with a message handler to process the messages
publishing to and/or subscribing from other DT instances.
Details regarding the pub-sub are discussed in Section III-C.

B. Digital Twin Manager

The DT manager coordinates the required interactions
between the DT instances and other SDC components,
i.e., the SDC applications and the decision maker. Tasks
handled by the DT manager include responding to requests



of information exchange between the DT instances (via the
pub-sub infrastructure) and with the other SDC components,
querying devices real-time status, and initiating simulation
tasks. The DT manager comprises (a) a DT importer, (b) a
DT coordinator and (c) a simulation manager.

1) Digital Twin Importer: a user of the DT platform
can customize the system by defining and/or initializing a
set of DT instances that provide a set of desired functions
for the SM system. Users can dynamically import/remove
a DT instance into/from the DT pool via the DT importer.
In addition, the DT class, provided functionality, and data
dependencies (topics to be published and subscribed) are
registered with the DT coordinator when a DT instance is
imported and initialized.

2) Digital Twin Coordinator: the DT coordinator is the
access point to the DTs at runtime. It handles data shar-
ing between the DTs and the requests sent by the SDC
applications and decision maker. Depending on the type of
requests, the DT coordinator routes the corresponding tasks
and data to the corresponding DTs. It acts as a message
broker (e.g., a ActiveMQ broker) that handles the pub-sub
data flow across the DT instances. A DT publishes data
whenever it determines that an update of the data is needed.
A DT can also register with the message broker to listen
to a set of data published by other DTs. By doing so, the
subscriber DT is guaranteed to be notified and obtain the
latest data whenever there is an update from a publisher DT.
In the case a new DT is imported, the latest data for its
subscribed topics are provided by the DT coordinator once
the new DT is verified and started.

3) Simulation Manager: in addition to the real-time mod-
eling capabilities, some DT classes also have simulation
capabilities that allow the corresponding DT instances to
predict the machine and system future states. By using a
technology such as Functional Mock-up Interface (FMI) [17],
it is possible to run simulations over multiple DT instances.
This capability is useful for validating a manufacturing
plan change, predicting manufacturing performance, evalu-
ating across different plant configurations, efc. A simulation
manger is used in the DT platform to manage the simulation
tasks requested by SDC applications or the decision maker.
On receiving a simulation request, the simulation manager
parses the request and distributes it to the corresponding DT
instances. Simulation results are collected by the simulation
manager afterwards and returned to the requester.

C. Publish-Subscribe Infrastructure

In the pub-sub infrastructure, a topic represents a type of
information for which data is generated by instances of one
or more DT classes. As in a conventional topic-based pub-
sub infrastructure, the data published for a topic (in the form
of messages) is distributed to the DT instances that subscribe
to it. A topic can be in any form depending on the design
and purpose of the publisher DT instance. It can be a single
value (e.g., a variable that represents system throughput), a
vector (e.g., a set of variables that models the dynamics of
a machine), or a complex structure (e.g., a series of nodes
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Fig. 3: Data flow between the publisher and subscriber DTs.

and edges modeling the plant’s layout). A DT instance can
publish to multiple topics and there can also be multiple DT
instances publishing to the same topic.

In the DT pool, the Extensible Markup Language (XML)
format is used to encapsulate data in a message published
to a topic. XML supports a validation scheme in which
a predefined XML schema that describes the structure of
an XML format can be used to validate the correctness of
the given XML data against such a format (i.e., whether
the XML data consists of correct type and the number of
elements and attributes) as depicted in Fig. 3. The XML
schema for a topic is provided to the DT coordinator by
the publisher DT instance that first successfully creates the
topic. The coordinator uses the schema to validate that a DT
instance is correctly registering for publishing to an existing
topic. It is also used when subscribing to the topic to check
if the schema matches its expectation.

D. Synchronization

1) Time Synchronization: time synchronization is vital to
having a precise time reference in the SDC framework. It
can be achieved by using a time synchronization protocol
such as Precision Time Protocol (PTP). PTP enables a time
accuracy in the sub-microsecond range in the DT manager,
DT instances and data services. Data shared in the SDC
framework is time-stamped so that it can be referred based
on the precise synchronized time.

2) Data Synchronization: in SDC, two aspects of data
synchronization are considered: (i) the synchronization be-
tween the DT models and the physical assets or processes
and (ii) the synchronization between DT instances.

In SDC, data services in the central controller allow
data collection and storage through a data management
infrastructure. A DT instance can utilize its data agent to
obtain the collected data from the data services, allowing
a DT instance to synchronize the implemented model with
its associated physical asset or process. Synchronization
between DT instances is ensured by the topic-based data
sharing mechanism in the pub-sub architecture. When new
data is generated and published by a DT instance, the
coordinator distributes it (wrapped in a topic-based message)
to the corresponding subscriber DT instances promptly. As a
result, the information for a topic across the associated DT
instances is consistent and the states of the DT models are
synchronized.

IV. DIGITAL TWIN FOR GLOBAL VIEW

As noted in Section III, different classes in the DT
platform can be supported depending on the needs of the



manufacturing environment. In this section we introduce four
classes of DTs that would often be used to construct a real-
time global view of a SM system in order to address com-
mon manufacturing issues such as throughput and quality
optimization, and reduction of cost and variability. Note that
a manufacturing system might include instances of other
DT classes depending on particular needs. The proposed DT
platform is flexible enough to allow including other DTs.

A. Topology Digital Twin

The topology DT is a representation of the physical layout
of the system in real-time?. Such a representation allows to
accurately and timely track the availability of machines and
transport systems and their connectivity. This can be used by
apps such as flexible rerouting to find the best routing paths
according to current system workload. The topology DT is a
directed graph where each node (vertex) is a component that
processes parts and each link (edge) is a physical path on
which parts can be transported from one node to another. For
instance, a conveyor that carries parts from a cell to another
is a path (edge) that links the two cells (nodes).

We divide the manufacturing equipment into nodes and
links. Each work station (e.g., milling/turning machine, as-
sembly/welding robot, quality inspection, buffer, efc.) in the
manufacturing system is a single node, whereas a possible
material flow between two nodes (e.g., conveyor, AGYV,
gantry) is represented by a directed link. Links could be
unidirectional or bidirectional.

Formally, we define the topology DT as a tuple T' =
(N, L, In, Out, A) where:

e NN is a finite set of nodes;

o L is a set of links that connect some of these nodes;

e In is the set of material flow inputs;

o Out is the set of material flow outputs;

The system may consist of unique or multiple material
flow inputs/outputs. In and Out are defined as nodes,
i.e., {In,Out} € N.

e« A: N x L* — N is a function that defines the flow
transitions, where L* denotes the set of all finite link
concatenations in L. An element [ € L* is a sequence of
links. The length of a sequence [ is given by the number
of its involved links. A sequence [ € L* consists of at
least 1 link.

The construction of the topology DT consists of first
enumerating the equipment of the system to verify the set
of nodes and links. Second, the interconnections between
the nodes and links are defined as flow transitions to depict
the relationships between the machines/stations and transport
systems. Eventually, corresponding plant floor data are syn-
chronized with the DT through the data agent to provide a
real-time replica of the physical layout.

2Real-time is used here to indicate that the DT representation is updated
with sufficient promptness so that appropriate decisions can be made based
on the assumption that the DT is an up-to-date representation of the system.
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Fig. 4: The discrete model in the machine asset DT.

B. Machine Asset Digital Twin

The machine asset DT is a generic discrete model that
provides access to the structure, behavior and working con-
ditions of an individual manufacturing unit. We define a
machine asset DT as a Finite State Machine (FSM) with
3 global states: Idle, Up, and Down. A machine could
have multiple Up and Down sub-states as shown in Fig.
4. Transitions between these states could be event-driven or
time-driven. Annotating edges, i.e., {«, 8,7, 0, ¢, (}, refer to
the occurrence of an event or the elapse of some time. It is
also possible to have transitions between states inside the Up
and Down superstates. More details could be found in [18].

To build a machine asset DT, the Subject Matter Expert
(SME) starts with verifying, from the states consolidated in
the generic model of Fig. 4, the set of states that a machine
has. Then, the transitions between these states are defined and
depicted in the model. Ultimately, the model is synchronized
with the machine data through the data agent to provide a
real-time replica of the physical machine.

C. Machine Process Digital Twin

The processing environment provided by the machine
(e.g., when operating on a part) is captured by the machine
process DT. For instance, Ordinary Differential Equations
(ODEs) are used for modeling the continuous variables of
interest, namely states, of the manufacturing unit in closed-
loop. The generic model of non-linear ODEs are given by

&= f(z,u,t) (D

where, € R" is the state vector and f(x,u,t) is the flow
dynamics of the state according to u € R, and time variable
t € [0,00). Initial conditions of the dynamics are given as
x(0) = &, which is updated using the data agent at the
time of initialization. Various dynamics can be lumped into
a system of ODEs and represented as Eq. 1 without loss
of generality. The DT is updated with data at a predefined
frequency, which results in difference equations given by

Tp41 = f(wkvukv k) (2)

where x;, € R” is the discrete state variable at time step
k € N, and u;, € R™ is the discrete control input at time step
k. The models of the manufacturing unit may be predefined
by an SME, or can be learned from the data streams. While
learning the model from data is a non-trivial task, parameters
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of a certain class of model can be identified using system
identification and machine learning techniques [19].

While continuous dynamics are often utilized in machine
process digital twins, discrete state-based models are often
used to model the processing capability as a unit of work and
then provide analysis so as to control or optimize the process
with discrete actions such as changing process parameters
each time a new part enters the machine. Model-based
Process Control (MPC), virtual metrology, virtual sensing,
sensor fusion, and model-based predictive maintenance are
common techniques used in this domain [20], [21], [22].

D. System Process Digital Twin

The system process DT models the material moving in
the SM system and provides insight on high-level process
information. The outcomes of the system process DT are the
system-level performance metrics such as system/cell cycle
time, Work-In-Process (WIP), quality, and throughput.

Formally, the system process DT is defined as a tuple P =
(T, W, loc, pos) where:

e T is the topology model defined in the topology DT.

« W is a set of unique identifiers for all materials that will

ever be seen in the system, i.e., W = {w;|i € N}.

e loc is a function, loc : W — N U L, that gives the

location of a material in the physical topology model.

e pos is a function, pos : W — N, that gives the actual

position of a material in the location indicated by the
function loc. For example, loc(w;) = By, pos(w;) = 2
indicates that the material w; is at the second slot in the
buffer B;.

Using run-time data from the factory floor over a period
of time via the data services, a series of discrete states and
their transitions can be constructed. By analyzing the part po-
sitions across multiple states, the system-level performance
metrics (e.g., throughput, WIP) in a given time span can be
estimated. Also, quality data for individual manufacturing
units are attributed to the yield of the individual units,
although additional considerations may be added.

V. IMPLEMENTATION AND EVALUATION
A. System description and DTs development

To illustrate the usefulness of the proposed DT framework,
we use the conceptual flow shop system example of Fig.
5 with real CNC data. The system is comprised of 3
CNC machines (cncy, cnes, and cneg). Each CNC can mill
different part features (f1, fo, and f3). Parts are transported
between the CNC machines and the downstream/upstream
buffers through a gantry system.

In, gantry) = cney;

A(cney, gantry) = In
cney, gantry) = cnca; A

A

A

(

(cnea, gantry) = cney
(cnes, gantry) = cnes
(Out, gantry) = cncs

cney, gantry) = cncs;
cnes, gantry) = Out;

The initial production plan is defined by the SME such that
parts are moved to cncy, cnce, and cncs to realize features
f1, f2, and f3, respectively. The following DTs are build for
the real-time monitoring and reconfiguration of the system.

Topology DT: an SME constructs the initial topology DT by
verifying the set of nodes and links in the system and their
interconnection. The SME verifies that L = {gantry} is the
only bidirectional link to move material between the nodes
N = {In,cncy,cnee, cnes, Out}. The flow transitions are
defined by:

The corresponding plant floor data are synchronized with
the DT through the data agent to provide a real-time replica
of the physical layout as shown in Fig. 6.

Gantry

578

Fig. 6: The topology DT with cnca omitted.

Machine Asset DTs: machine asset DTs are built to provide
insight on the context and behavior of individual manufac-
turing units in real-time. For instance, the machine asset
DT for cnc; is represented in Fig. 7. The cnc; has the
capability of processing part features f; (state “C'ycle_f1”),
fa (state “Cwycle_fs”), and f3 (state “Cycle_f3”). a part
that requires feature f; is detected and tool; is installed
(pf1 A tly), the machine starts its “C'ycle_f,” which takes
the cycle time 7(C4). After the elapse of 7(C1), the machine
ends its cycle (event “ec;”) and transitions to “Idle”. In a
similar way, the parts that require features f> and f3 go
to the states “Cycle_fo” with the cycle time 7(C2) and
“Cycle_fs” with 7(C3), respectively. If the corresponding
tool is not outfitted, a tool change is necessary to switch
between processing f1, fo, and f5. The setup times 7(S7),
7(S2), and 7(S3) are associated to the setup states “Setup;”,
“Setupy”, and “Setups”, respectively. If a fault (ft) is
detected, the machine goes to “Down” state. If the fault
is cleared and the reset button is pressed (—ft A reset),
the machine transitions to the “Idle” state. Cycle times and
setup times are estimated using historical data.

( Cycle_f1 ( Cycle_f3

t /;

" Down

= ft A reset

Fig. 7: Machine asset DT for cnc .
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Machine Process DT: the machine process DT in this
case study is tasked with modeling the spindle current of
a CNC. Spindle current provides insight into the equivalent
forces acting on the spindle. If there is excessive loading,
the tool may break and damage the part in process. To
identify the peaks in the spindle current and classify the
ones that could cause tool breakage, an adaptive limit based
anomaly detection scheme is implemented. Fig. 8 illustrates
the adaptive limit based anomaly detection for tool breakage
in cnce. An SME defines safety limits for the spindle
current peaks, using heuristics and historical spindle current
measurements available through the machine process DT. An
anomaly detection app uses the spindle current data from
the machine process DT and fits a fourth order polynomial
using weighted regularized least squares (dashed center-line
in Fig. 8). The inner limit signifies tool-wear for the spindle
tool and the outer limit is the safety limit for tool breakage.

B. Anomaly Detection and Control Reconfiguration

An SDC anomaly detection app identifies the spindle
current measurements that breach the inner limit (red markers
in Fig. 8), and signals an anomaly prior to an actual tool
breakage. Thus, a fault (“ft”) event is triggered. Conse-
quently, the cncy is omitted in the topology DT of Fig. 6
indicating that the machine is not available. In the machine
asset DT of cncsy, the cney transitions to the “Down” state.
This example illustrates the potential use of machine process
DT to monitor process parameters and machine health for
anomaly detection and performance monitoring.

As cnco is no longer available, the SDC decision maker
evaluates a cost function and feasibility constraints to re-
configure the manufacturing cell. An optimization module
inside the decision maker uses the data from DTs to for-
mulate and compute an optimization problem for optimal
reconfiguration decisions. Since all CNCs in the system are
capable of milling all three features, the possible number of
combinations of feature assignments for the remaining two
CNCs is 23 = 8. Let ¢p; = (u(f1), u(f2), u(f3)) denote a
possible assignment combination where p(f;) denotes which
CNC is assigned for the milling of a particular feature f;.
Additionally, let A\;(¢) € N denote the number of cnc;
assignments in the combination ¢;, and A; = {fili €
{1,2,3}} denote the corresponding features. Then a cost
function for the manufacturing time of each assignment in

the case study is given as:

3 .
> wken, Ti(Sk), i Ai(@) >1
J S )= . CfL e
() ;Zl:Tu(fl)( )+{0 otherwise

Additionally, define the quality function as the product of
the yields of the machines in a given combination ¢;.

3
JQ(¢j) = H Au(fi)>
=1

where q,,(,) € (0, 1] denotes the yield of the CNC assigned
for the feature f;. Combining the two objectives, an opti-
mization problem is formed as

min J(#j) = aodr(¢;) + a1(l — Jo(¢;)) (3)
s.t.: ¢@; € Traces(T) (3b)
JT(¢j) S Tmax (3C)
Jo(#;) > qmin (3d)

where, o, a1 are normalized weights on the time and qual-
ity, respectively, and are determined by the decision maker,
Tmaz denotes the maximum allowable processing time for
the manufacturing cell, ¢,,;, denotes the minimum allowable
yield for the manufacturing cell, and the constraint in Eq. 3b
denotes that each ¢; is a feasible assignment with respect
to the topology DT. The minimum quality and maximum
processing time constraints are added to ensure efficient
solutions, but based on the feasibility of the optimization
these constraints may be relaxed. Numerical values for the
cycle and setup times of cncy and cncs are given in Table 1.

TABLE 1. Cycle and setup times of cnci and cncs for the
reconfiguration example. All units are in seconds.

Machine | 7(S1) | 7(S2) | 7(S3) | 7(C1) | 7(C2) | 7(Cs)
cncey 7 10 14 320 307 410
cnes 7 10 14 332 310 384

The yield of cnc; is 0.95,0.94,0.96 for features f1, fo, f3
respectively. The yield of cncy is 0.99,0.98, 0.92 for features
f1, f2, f3 respectively. For the optimization in (3), the 8
solutions that satisfy the condition in constraint (3b) are
evaluated. The constraints are chosen as 7,,,, = 1070 sec
and ¢, = 0.8. The weights «; are normalized by the
maximum values of the functions Jr(¢;) and Jg(¢;) in the
implementation of the cost function. The problem is encoded
as a mixed integer linear program and solved using M atlab.

TABLE II. Results for the reconfiguration in the case study.

Type | o | Jr(¢7) | Jo(eF)
Best Yield | cnci,cnes,cne 1061 sec 0.89
Best Time | cnci,cnci,cnces 1028 sec 0.82

Mixed cne,enes,cnes 1038 sec 0.85

The type of solution, optimizer assignment ¢*, associated
time, and associated quality results evaluated by the opti-
mization are shown in Table II. The best yield solution uses
(g = 0,7 = 1), the best time solution uses (g = 1,1 =



0), and the mixed solution uses (g = 0.8, a3 = 0.2). Based
on the type of solution evaluated by the decision maker, a
reconfiguration is implemented in the system.

This case study shows how the DT platform uses multiple
DTs for machine failure prediction, rescheduling, and rec-
ommendation of new control reconfiguration actions. Using
a single DT would not be sufficient to address all these
purposes. A machine process DT, herein uses the spindle
current signature in real-time to monitor the tool health. An
SDC app uses the image provided by this DT to predict
tool breakage. The defective machine is then avoided and
a reconfiguration action is evaluated by the SDC decision
maker, which uses the feasible routes, machine availability,
and machine capability, to provide an optimal reconfiguration
of the system with respect to throughput and quality. The
machine process DT alone is incapable of providing all
this information, which requires cooperation with other DTs.
In summary, cooperation of multiple DTs within the DT
platform is needed to address multiple purposes, mainly real-
time monitoring, anomaly detection/prediction, and real-time
reconfiguration and optimization.

VI. DISCUSSION AND CONCLUSION

The proposed DT framework offers SDC users the flexi-
bility and agility to design, build, extend, and maintain DT
systems at a faster pace and to coordinate these systems
around factory-wide objectives to accommodate SM systems
with a variety of requirements. It helps improve quality and
throughput of the production while reducing waste in time
and resource. The end result is advancement in SM, DT
technology, and the manufacturing industry.

The overall DT platform is partitioned into individual DT
classes that allow to model the major components such as
physical topology, machine assets, machine processes, and
system processes in order to respond to several SM prob-
lems. DT instances of these classes are ultimately combined
under the coordination of the DT manager. The coordination
requires the DT platform to operate at a performance level
high enough so that reconfiguration decisions can be made
without the decision process time impacting the throughput
or quality of the system. On the other hand, the functionality
of some DTs rely on other neighboring DTs. Therefore, a
failure in a DT (e.g., a DT unexpectedly disconnected from
the pub-sub infrastructure) can result in a chain reaction and
lead to malfunction in the entire DT platform. To reduce
the likelihood of interruption, the SDC user may deploy
redundant DTs as backups or DTs and the SDC may employ
strategies to provide alternative solutions if a DT anywhere
in the decision chain is not available or does not provide
information. This allows the DT platform to guarantee the
availability and maintain the functionality at small or no cost.

In current design, simulations are performed independently
by individual DTs that support a simulation functionality.
However, this limits the capability of predicting the states
of the global view. In future work, we will improve the
simulation manager with a more comprehensive simulation
mechanism in which simulation can be carried out in a group

of DTs. This would also enhance the flexibility in the DT
platform to support more complex applications.
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