Reinforcement Learning in Different Phases of Quantum Control
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The ability to prepare a physical system in a desired quantum state is central to many areas of physics
such as nuclear magnetic resonance, cold atoms, and quantum computing. Yet, preparing states quickly and
with high fidelity remains a formidable challenge. In this work, we implement cutting-edge reinforcement
learning (RL) techniques and show that their performance is comparable to optimal control methods in the
task of finding short, high-fidelity driving protocol from an initial to a target state in nonintegrable many-
body quantum systems of interacting qubits. RL methods learn about the underlying physical system solely
through a single scalar reward (the fidelity of the resulting state) calculated from numerical simulations of
the physical system. We further show that quantum-state manipulation viewed as an optimization problem
exhibits a spin-glass-like phase transition in the space of protocols as a function of the protocol duration.
Our RL-aided approach helps identify variational protocols with nearly optimal fidelity, even in the glassy
phase, where optimal state manipulation is exponentially hard. This study highlights the potential
usefulness of RL for applications in out-of-equilibrium quantum physics.
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I. INTRODUCTION

Reliable quantum-state manipulation is essential for
many areas of physics ranging from nuclear-magnetic-
resonance experiments [1] and cold atomic systems [2,3] to
trapped ions [4-6], quantum optics [7], superconducting
qubits [8], nitrogen-vacancy centers [9], and quantum
computing [10]. However, finding optimal control sequen-
ces in such experimental platforms presents a formidable
challenge due to our limited theoretical understanding of
nonequilibrium quantum systems and the intrinsic com-
plexity of simulating large quantum many-body systems.

For long protocol durations, adiabatic evolution can be
used to robustly reach target quantum states, provided
the change in the Hamiltonian is slow compared to the
minimum energy gap. Unfortunately, this assumption is
often violated in real-life applications. Typical experiments
often have stringent constraints on control parameters, such
as a maximum magnetic field strength or a maximal
switching frequency. Moreover, decoherence phenomena
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impose insurmountable time constraints beyond which
quantum information is lost irreversibly. For this reason,
many experimentally relevant systems are, in practice,
uncontrollable; i.e., there are no finite-duration protocols,
which prepare the desired state with unit fidelity. In fact,
in Anderson and many-body localized or periodically
driven systems, which are naturally away from equilibrium,
the adiabatic limit does not even exist [11,12]. This has
motivated numerous approaches to quantum-state control
[13-35]. Despite all advances, at present, surprisingly little
is known about how to successfully load a nonintegrable
interacting quantum system into a desired target state,
especially in short times, or even when this is feasible in the
first place [30,36-38].

In this paper, we adopt a radically different approach to
this problem based on machine learning (ML) [39-45]. ML
has recently been applied successfully to several problems
in equilibrium condensed matter physics [46,47], turbulent
dynamics [48,49], and experimental design [50,51], and
here we demonstrate that reinforcement learning (RL)
provides deep insights into nonequilibrium quantum
dynamics [52-57]. Specifically, we use a modified version
of the Watkins Q-learning algorithm [39] to teach a
computer agent to find driving protocols which prepare
a quantum system in a target state |y, ) starting from an
initial state |w;) by controlling a time-dependent field.
A far-reaching consequence of our study is the existence of
phase transitions in the quantum-control landscape of the
generic many-body quantum-control problem. The glassy
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nature of the prevalent phase implies that the optimal
protocol is exponentially difficult to find. However, as we
demonstrate, the optimal solution is unstable to local
perturbations. Instead, we discover classes of RL-motivated
stable suboptimal protocols [58], the performance of which
rival that of the optimal solution. Analyzing these sub-
optimal protocols, we construct a variational theory, which
demonstrates that the behavior of physical degrees of
freedom (d.o.f.) (which scale exponentially with the system
size L for ergodic models) in a nonintegrable many-body
quantum-spin chain can be effectively described by only a
few variables within the variational theory. We benchmark
the RL results using stochastic descent (SD) and compare
them to optimal control methods such as chopped random
basis (CRAB) [30] and (for simplicity) first-order gradient
ascent pulse engineering (GRAPE) [59] (without its quasi-
Newton extensions [15,60,61]); see discussion in the
Supplemental Material [62].

In stark contrast to most approaches to quantum optimal
control, RL is a model-free feedback-based method
which could allow for the discovery of controls even when
accurate models of the system are unknown or the
parameters in the model are uncertain. A potential advan-
tage of RL over traditional derivative-based optimal control
approaches is the fine balance between exploitation of
already obtained knowledge and exploration in uncharted
parts of the control landscape. Below the quantum speed
limit [63], exploration becomes vital and offers an alter-
native to the prevalent paradigm of multistarting local
gradient optimizers [64]. Unlike these methods, the RL
agent progressively learns to build a model of the opti-
mization landscape in such a way that the protocols it finds
are stable to sampling noise. In this regard, RL-based
approaches may be particularly well suited to work with
experimental data and do not require explicit knowledge of
local gradients of the control landscape [59,62]. This may
offer a considerable advantage in controlling realistic
systems where constructing a reliable effective model is
infeasible, for example, due to disorder or dislocations.

To manipulate the quantum system, our computer agent
constructs piecewise-constant protocols of duration 7' by
choosing a drive protocol strength h(f) at each time
t=jét, j={0,1,...,T/5t}, with St the time-step size.
In order to make the agent learn, it is given a reward
for every protocol it constructs—the fidelity F,(T) =
|(w.lw(T))|> for being in the target state after time T
following the protocol A (z) under unitary Schrodinger
evolution. The goal of the agent is to maximize the reward
in a series of attempts. Deprived of any knowledge about
the underlying physical model, the agent collects informa-
tion about already tried protocols based on which it con-
structs new, improved protocols through a sophisticated
biased sampling algorithm. In realistic applications, one
does not have access to infinite control fields; for this reason,
we restrict to fields h,(7) € [-4,4]; see Fig. 1(b). For
reasons relating to the simplicity and efficiency of the
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FIG. 1.

(a) Phase diagram of the quantum-state manipulation
problem for the qubit in Eq. (3) vs protocol duration 7, as
determined by the order parameter ¢(7') (red) and the maximum
possible achievable fidelity F,(7T) (blue) compared to the
variational fidelity F,(T) (black, dashed). Increasing the total
protocol time 7', we go from an overconstrained phase I, through
a glassy phase II, to a controllable phase III. (b) Left: The
infidelity landscape is shown schematically (green). Right: The
optimal bang-bang protocol found by the RL agent at the points
(i)—(iii) (red) and the variational protocol [62] (blue, dashed).

numerical simulations, throughout this work, we further
restrict the RL algorithm to the family of bang-bang
protocols [65]. An additional advantage of focusing on
bang-bang protocols is that this allows us to interpret the
control phase transitions we find using the language of
statistical mechanics [67].

II. REINFORCEMENT LEARNING

RL is a subfield of ML in which a computer agent learns
to perform and master a specific task by exerting a series of
actions in order to maximize a reward function as a result of
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interaction with its environment. Here, we use a modified
version of Watkins online, off-policy Q-learning algorithm
with linear function approximation and eligibility traces
[39] to teach our RL agent to find protocols of optimal
fidelity. Let us we briefly summarize the details of the
procedure. For a detailed description of the standard
Q-learning algorithm, we refer the reader to Ref. [39].

The fidelity optimization problem is defined as an
episodic, undiscounted reinforcement learning task. Each
episode takes a fixed number of steps Ny = T/6t, where T
is the total protocol duration, and &¢ the physical (protocol)
time step. We define the state S, action .4, and reward R
spaces, respectively, as

S={s=[h(0)]},

The state space S consists of all tuples [z, h,(7)] of time 7
and the corresponding magnetic field /4, (¢). Notice that
with this choice, no information about the physical quan-
tum state whatsoever is encoded in the RL state, and, hence,
the RL algorithm is model-free. Thus, the RL agent will be
able to learn circumventing the difficulties associated with
the theoretical notions in quantum physics. Including time ¢
to the state is not common in Q-learning, but it is required
here in order for the agent to be able to estimate how far
away it is from the episode’s end and adjust its actions
accordingly. Even though there is only one control field, the
space of available protocols grows exponentially with the
inverse step size 6t7!.

The action space A consists of all jumps &k, in the
protocol &, (t). Thus, protocols are constructed as piece-
wise-constant functions. We restrict the available actions of
the RL agent in every state s such that at all times the field
h.(t) is in the interval [—4,4]. We verify that RL also works
for quasicontinuous protocols with many different steps
oh, [62]. The bang-bang protocols discussed in the next
section and the quasicontinuous protocols used in the
Supplemental Material [62] are examples of the family
of protocol functions we allow in the simulation.

Last but not least, the reward space R is the space of all
real numbers in the interval [0, 1]. The rewards for the agent
are given only at the end of each episode according to

0,
) = {Fhm — (. (7))

This definition reflects the fact that we are not interested in
which quantum state the physical system is in during the
evolution; all that matters for our purpose is to maximize
the final fidelity.

An essential part of setting up the RL problem is to
define the environment with which the agent interacts
in order to learn. We choose the environment to consist
of the Schrodinger initial value problem together with the
target state

A={a=6h)}. R={rel0.1]}.

ift<T,

1
2 ift=T. (1)

Environment = {i0,|y(¢)) = H(1)|y(1)),
w(0)) = [wi). lw.)},

where H|[h,(t)] is the Hamiltonian (see Sec. III) whose time
dependence is defined through the magnetic field A (7)
which the agent is constructing during the episode via
online Q-learning updates for specific single-particle and
many-body examples.

Let us now briefly illustrate the protocol construction
algorithm: For instance, if we start in the initial RL state
so = (t =0, h, = —4) and take the action a = 5h, = 8, we
go to the next RL state s; = (61, +4). As a result of the
interaction with the environment, the initial quantum state
is evolved forward in time for one time step (from time
to =0 to time t; = ot) with the constant Hamiltonian
H[h, = 4]: |w(81)) = e~ H=49"y.) " After each step, we
compute the local reward according to Eq. (1) and update
the Q function, even though the instantaneous reward at
that step might be zero [the update will still be nontrivial in
the later episodes, since information is propagated back-
wards from the end of the episode; see Eq. (2)]. This
procedure is repeated until the end of the episode is reached
at t=T. In general, one can imagine this partially
observable Markov decision process as a state-action-
reward chain

So > dg > TI'g > 8§ > a; = r —>SZ—),...,—)SNT.

The above paragraph explains how to choose actions
according to some fixed policy z(a|s)—the probability of
taking the action a from the state s. Some RL algorithms
such as policy gradient directly optimize the policy.
Instead, Watkins Q-learning offers an alternative which
allows us to circumvent this. The central object in Q-learning
is the Q(s, a) function which is given by the expected total
return R = Z?/:To r; at the end of each episode, starting from a
fixed state s, taking the fixed action a, and acting optimally
afterwards. Clearly, if we have the optimal Q function Q,,
then the optimal policy is the deterministic policy
m.(als) =1, if a = argmax,Q(s,d’), and = (als)=0
for all other actions.

Hence, in Q-learning one looks directly for the optimal
Q function. It satisfies the Bellman optimality equation, the
solution of which cannot be obtained in a closed form for
complex many-body systems [68]. The underlying reason
for this can be traced back to the nonintegrability of the
dynamical many-body system, as a result of which the
solution of the Schrodinger equation cannot be written
down as a closed-form expression even for a fixed protocol,
and the situation is much more complicated when one
starts optimizing over a family of protocols. The usual
way of solving the Bellman equation numerically is
temporal difference learning, which results in the following
Q-learning update rule [39]
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O(si a;) < Q(s;, a;) +alr; + m(?-XQ(si-!—l’ a) = Q(s; a;)],
(2)

where the learning rate a € (0,1). Whenever a~ 1, the
convergence of the update rule (2) can be slowed down or
even precluded in cases where the Bellman error 6, = r; +
max,Q(s;.1,a) — Q(s;,a;) becomes significant. On the
contrary, @ ~ (0 corresponds to very slow learning. Thus,
the optimal value for the learning rate lies in between, and itis
determined empirically for the problem under consideration.

To allow for the efficient implementation of piecewise-
constant drives, i.e., bang-bang protocols with a large
number of bang modes (cf. Ref. [62]), we employ a linear
function approximation to the Q function using equally
spaced tilings along the entire range of /(1) € [—4,4] [39].
The variational parameters of the linear approximator are
found iteratively using gradient descent. This setup allows
the RL agent to generalize, i.e., gain information about the
fidelity of not yet encountered protocols.

We iterate the algorithm for 2 x 10* episodes. The
exploration-exploitation dilemma [39] requires a fair
amount of exploration in order to ensure that the agent
visits large parts of the RL state space which prevents it from
getting stuck in a local maximum of reward space from the
beginning. Too much exploration and the agent will not be
able to learn. On the other hand, no exploration whatsoever
guarantees that the agent will repeat deterministically a
given policy, though it will be unclear whether there exists a
better yet unseen one. In the longer run, we cannot preclude
the agent from ending up in a local maximum. In such cases,
we run the algorithm multiple times starting from a random
initial condition and postselect the outcome. Hence, the RL
solution is almost optimal in the sense that its fidelity is close
to the true global optimal fidelity. Unfortunately, the true
optimal fidelity for nonintegrable many-body systems is
unknown, and it is a definitive feature of glassy landscapes
(see Sec. V) that the true optimal is exponentially hard and,
therefore, also impractical to find [67].

We also verify that RL does not depend on the initial
condition chosen, provided the change is small. For
instance, if one chooses different initial and target states
which are both paramagnetic, then RL works with marginal
drops in fidelity, which depend parametrically on the
deviation from the initial and target states. If, however,
the target is, e.g., paramagnetic, and we choose an anti-
ferromagnetic initial state (i.e., the initial and target states
are chosen in two different phases of matter), then we
observe a drop in the found fidelity.

Because of the extremely large state space, we employ a
replay schedule to ensure that our RL algorithm can learn
from the high-fidelity protocols it encounters. Our replay
algorithm alternates between two different ways of training
the RL agent, which we call training stages: an “‘exploratory”
training stage where the RL agent exploits the current Q
function to explore, and a “replay” training stage where we

replay the best encountered protocol. This form of replay, to
the best of our knowledge, has not been used previously.
In the exploratory training stage, which lasts 40 episodes,
the agent takes actions according to a softmax probability
distribution based on the instantaneous values of the Q
function. In other words, at each time step, the RL agent looks
up the instantaneous values Q(s, :) corresponding to all
available actions and computes a probability for each action:
P(a) ~ exp|frLQO(s, a)]. This exploration scheme results in
random flips in the bangs of the protocol sequence, which is
essentially a variation on the instantaneous RL best solution.
Figure 2 shows that some of these variations lead to drastic
reduction in fidelity, which we relate to the glassy character
of the correlated control phase; see Sec. V.

The amount of exploration is set by fg;, with fg;, =0
corresponding to random actions and ffg;, = oo correspond-
ing to always taking greedy actions with respect to the

1.0
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FIG. 2. Learning curves of the RL agent for the problems from
Sec. IIl for L =1 at T = 2.4 (upper panel) (see Video 7 of
Supplemental Material [62]) and L = 10 at T = 3.0 (lower panel)
(see Video 8 of Supplemental Material [62]). The red dots show
the instantaneous reward (i.e., fidelity) at every episode, while the
blue line shows the cumulative episode average. The ramp-up of
the RL temperature fg; gradually suppresses exploration over
time which leads to a smoothly increasing average fidelity. The
time step is 6t = 0.05.
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current estimate of the Q function. Here, we use an external
“learning” temperature scale, the inverse of which, fg;, is
linearly ramped down as the number of episodes progresses.
In the replay training stage, which is also 40 episodes long,
we replay the best-encountered protocol up to the given
episode. Through this procedure, when the next exploratory
training stage begins again, the agent is biased to do
variations on top of the best-encountered protocol, effec-
tively improving it, until it reaches a reasonably good fidelity.
Two learning curves of the RL agent are shown in Fig. 2.
Notice the occurrence of suboptimal protocols even during
later episodes due to the stochasticity of the exploration
schedule. During every episode, the agent takes the best
action (with respect to its current knowledge or experience)
with a finite probability or else a random action is chosen.
This prevents the algorithm from immediately getting stuck
in a high-infidelity (i.e., a bad) minimum. To guarantee
convergence of the RL algorithm, the exploration proba-
bility is reduced as the number of episodes progresses
(cf. discussion above). Convergence of the RL algorithm
becomes manifest in Fig. 2, where after many episodes the
deviations from the good protocols decrease. In the end, the
agent learns the best-encountered protocol as a result of
using the replay schedule which speeds up learning (as can
be seen by the bad shots becoming rarer with increasing the
number
of episodes). We show only these learned protocols in
Fig. 1(b) and Fig. 3 of the Supplemental Material [62].

III. PHASES OF QUANTUM CONTROL

A. Single-qubit manipulation

To benchmark the application of RL to physics prob-
lems, consider first a two-level system described by

H[h(1)] = =8° = h(1)S", (3)

where S* are the spin-1/2 operators. This Hamiltonian
comprises both integrable many-body and noninteracting
translational invariant systems, such as the transverse-field
Ising model and graphene and topological insulators. The
initial |y;) and target |y, ) states are chosen as the ground
states of Eq. (3) at h, = —2 and h, = 2, respectively. We
verify that the applicability of RL does not depend on this
specific choice. Although there exists an analytical solution
to solve for the optimal protocol in this case [63], it does not
generalize to nonintegrable many-body systems. Thus,
studying this problem using RL serves a twofold purpose:
(i) We benchmark the protocols obtained by the RL agent
demonstrating that even though RL is a completely model-
free algorithm, it still finds the physically meaningful
solutions by constructing a minimalistic effective model
on the fly. The learning process is shown in Video 7 of
Supplemental Material [62]. (i) We reveal an important
novel perspective on the complexity of quantum-state
manipulation which, as we show below, generalizes to

many-particle systems. While experimental setups studying
single-qubit physics can readily apply multiple control
fields (e.g., also control fields in the y direction), in order to
test RL on a nontrivial problem with a known solution, we
restrict the discussion to a single control parameter.

For fixed total protocol duration T, the infidelity 4 ,(z) >
1,(T) = 1 — F,(T) represents a “potential landscape,” the
global minimum of which corresponds to the optimal
driving protocol. For bang-bang protocols, the problem
of finding the optimal protocol becomes equivalent to
finding the ground-state configuration of a classical Ising

model with complicated interactions [67]. We map out the

landscape of local infidelity minima {A%(z)}Y=4 using SD

starting from random bang-bang protocol configurations
[62]. To study the correlations between the infidelity
minima as a function of the total protocol duration T,
we define the correlator ¢(7) closely related to the
Edwards-Anderson order parameter for the existence of
spin-glass order [69,70] as

Nt
o) = 1o S Go) — R GonY. (4)
T4

where T, (1) = NZL S0 pa () is the sample-averaged

protocol. If the minima {A%(z)} =4 are all uncorrelated,

then 4,(t) = 0 and, thus, ¢(T) = 1. On the other hand, if
the infidelity landscape contains only one minimum, then
h,(t) = h.(t) and g(T) = 0. The behavior of ¢(T) and the
maximum fidelity F,(7) found using SD together with a
qualitative description of the corresponding infidelity land-
scapes are shown in Fig. 1.

The control problem for the constrained qubit exhibits
three distinct control phases as a function of the protocol
duration 7. If T is greater than the quantum speed limit
Tqsi, ~ 2.4, one can construct infinitely many protocols
which prepare the target state with unit fidelity, and the
problem is in the controllable phase III; cf. Fig. 1. The red
line in Fig. 1(b) (iii) shows an optimal protocol of unit
fidelity found by the agent whose Bloch sphere representa-
tion can be seen in Video 3 of Supplemental Material [62]. In
this phase, there is a proliferation of exactly degenerate,
uncorrelated global infidelity minima corresponding to
protocols of unit fidelity, and the optimization task is easy.

At T = Tqgy, the order parameter ¢(7') exhibits a non-
analyticity, and the system undergoes a continuous phase
transition to a correlated phase II. For times smaller than T'qg;,
but greater than 7', the degenerate minima of the infidelity
landscape recede to form a correlated landscape with many
nondegenerate local minima, as reflected by the finite value of
the order parameter 0 < ¢(7') < 1. As a consequence of this
correlated phase, there no longer exists a protocol to prepare
the target state with unit fidelity, since it is physically
impossible to reach the target state while obeying all con-
straints. The infidelity minimization problem is nonconvex,
and determining the best achievable (i.e., optimal) fidelity
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(aka the global minimum) becomes difficult. Figure 1(b)
(i) shows the best bang-bang protocol found by our computer
agent [see Video 2 of Supplemental Material [62] and
Ref. [62] for protocols with quasicontinuous actions]. This
protocol has a remarkable feature: Without any prior knowl-
edge about the intermediate quantum state or its Bloch sphere
representation, the model-free RL agent discovers that it is
advantageous to first bring the state to the equator—which is a
geodesic—and then effectively turns off the control field
h.(t) to enable the fastest possible precession about the z axis
[71]. After staying on the equator for as long as optimal, the
agent rotates as fast as it can to bring the state as close as
possible to the target, thus, optimizing the final fidelity for the
available protocol duration.

Decreasing the total protocol duration 7 further, we find
a second critical time 7. % 0.6. For T < T, ¢(T) = 0, and
the problem has a unique solution, suggesting that the
infidelity landscape is convex. This overconstrained phase
is labeled I in the phase diagram [Fig. 1(a)]. For T < T,
there exists a unique optimal protocol, even though the
achievable fidelity can be quite limited; see Fig. 1(b) and
Video 1 of Supplemental Material [62]. Since the state
precession speed towards the equator depends on the
maximum possible allowed field strength #,, it follows
that 7. — 0 for |h,| — oo.

1. Relation to counterdiabatic and fast-forward driving

Promising analytical approaches to state manipulation
have recently been proposed, known as shortcuts to adiaba-
ticity [21,22,27,29,33,72-76]. They include ideas such as
(1) fast-forward (FF) driving, which comprises a protocol that
excites the system during the evolution at the expense of
gaining speed before taking away all excitations and reaching
the target state with unit probability, and (ii) counterdiabatic
(CD) driving, which ensures transitionless dynamics by
turning on additional control fields. In general, any FF
protocol is related to a corresponding CD protocol. While
for complex many-body systems it is not possible to construct
the mapping between FF and CD, in general, the simplicity of
the single-qubit setup (3) allows us to use CD driving to find a
FF protocol [34]. For an unbounded control field 7, (¢), the FF
protocol at the quantum speed limit has three parts which can
be understood intuitively on the Bloch sphere: (i) an instanta-
neous o-function kick to bring the state to the equator, (i) an
intermediate stage where the control field is off, 4, () = 0,
which allows the state to precess along the equator, and (iii) a
complementary ¢ kick to bring the state from the equator
straight to the target [34]. Whenever the control field is
bounded |, | < 4, these & kicks are broadened and take extra
time, thus, increasing T gy . If the RL algorithm finds a unit-
fidelity protocol, it is by definition a FF one. Comparing FF
driving to the protocol found by our RL agent [cf. Fig. 1(b);
see, also, paragraphs above], we find indeed a remarkable
similarity between the RL and FF protocols.

B. Many-coupled qubits

The above results raise the natural question of how much
more difficult state manipulation is in more complex
quantum models. To this end, consider a closed chain of
L-coupled qubits, which can be experimentally realized
with superconducting qubits [8], cold atoms [77], and
trapped ions [6]:

L
Hlh(0)] = = D [S5,55 + 985 + h(0)S}]. (5)
=1

We set g =1 to avoid the antiferromagnet-to-paramagnet
phase transition and choose the paramagnetic ground states
of Eq. (5) at fields h, = —2 and h, = 2 for the initial and
target states, respectively. We verify that the conclusions we
draw below do not depend on the choice of initial and target
states, provided they both belong to the paramagnetic
phase. The details of the control field /() are the same
as in the single-qubit case, and we use the many-body
fidelity both as the reward and the measure of performance.
In this paper, we focus on L > 2. The two-qubit optimi-
zation problem is shown to exhibit an additional symmetry-
broken correlated phase; see Ref. [78].

Figure 3 shows the phase diagram of the coupled-qubits
model. First, notice that while the overconstrained-to-glassy
critical point 7', survives, the quantum-speed-limit critical
point Tggy, is (if existent at all) outside the short protocol
time range of interest. Thus, the glassy phase extends over to
long and probably infinite protocol durations, which offers
an alternative explanation for the difficulty of preparing
many-body states with high fidelity. The glassy properties of
this phase are analyzed extensively in Ref. [67]. Second,

1.0
0.8
0.6

0.4

0.0
00 05 10 15 20 25 30 35 4.0

FIG. 3. Phase diagram of the many-body quantum-state
manipulation problem. The order parameter (red) shows a kink
at the critical time 7. ~ 0.4 when a phase transition occurs from
an overconstrained phase (I) to a glassy phase (II). The best
fidelity F,(T) (blue) obtained using SD is compared to the
variational fidelity 7, (T') (dashed) and the 2D-variational fidelity
F2P(T) (dotted) [62].
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observe that even though unit fidelity is no longer achiev-
able, there exist nearly optimal protocols with extremely
high many-body fidelity [79] at short protocol durations.
This fact is striking because the Hilbert space of our system
grows exponentially with L, and we use only one control
field to manipulate exponentially many degrees of freedom
in a short time. Nonetheless, it has been demonstrated that
two states very close to each other in or of equal fidelity can
possess sufficiently different physical properties or be very
far in terms of physical resources [78,80-82]. Hence, one
should be cautious when using the fidelity as a measure for
preparing many-body states, and exploring other possible
reward functions for training RL agents is an interesting
avenue for future research.

Another remarkable characteristic of the optimal
solution is that for the system sizes L > 6 both ¢(7T)
and —L~'log F,(T) converge to their thermodynamic limit
values with no visible finite-size corrections [62]. This is
likely related to the Lieb-Robinson bound for information
propagation which suggests that information should spread
over approximately J7T = 4 sites for the longest protocol
durations considered.

IV. VARIATIONAL THEORY FOR NEARLY
OPTIMAL PROTOCOLS

An additional feature of the optimal bang-bang solution
found by the agent is that the entanglement entropy of the
half-system generated during the evolution always remains
small, satisfying an area law [62]. This implies that the
system likely follows the ground state of some local yet
a priori unknown effective Hamiltonian [83]. This emergent
behavior motivates us to use the best protocols found by ML
to construct simple variational protocols consisting of just a
few bangs. Let us now demonstrate how to construct
variational theories by giving specific examples which, to

Fu(D, T = 20) = (g, | oI H ] =i (Tt ) H[O] i3 Hll]

H[h,] = —5% — h,S*.

However, since the exact expression is rather cumber-
some, we choose not to show it explicitly. Optimizing the
variational fidelity at a fixed protocol duration 7, we solve
the corresponding transcendental equation to find the
extremal value ré{c)st and the corresponding optimal varia-
tional fidelity F,(T) shown in Figs. 4(b) and 4(c). For
times 7 < T., we find 7/ =T which corresponds to

#1) = 0, i.e., a single bang in the optimal protocol. The

overconstrained-to-correlated phase transition at 7, is
marked by a nonanalyticity at réleit(Tc) =T,.~0.618.
This is precisely the minimal time the agent can take to

bring the state to the equator of the Bloch sphere, and it

our surprise, capture the essence of the phase diagram of
quantum control both qualitatively and quantitatively.

A. Single qubit

By carefully studying the optimal driving protocols the RL
agent finds in the case of the single qubit, we find a few
important features. Focusing for the moment on bang-bang
protocols, in the overconstrained and correlated phases
(cf. Fig. 1(b) and Videos 1-3 of Supplemental Material
[62]), we recognize an interesting pattern: For T < T ., as we
explain in Sec. I1I, there is only one minimum in the infidelity
landscape, which dictates a particularly simple form for the
bang-bang protocol—a single jump at half the total protocol
duration 7'/2. On the other hand, for T, < T < Ty, there
appears a sequence of multiple bangs around 7'/2, which
grows with increasing the protocol duration 7. By looking at
the Bloch sphere representation (see Videos 1-3 of
Supplemental Material [62]), we identify this protocol
structure as an attempt to turn off the 4, field once the state
is rotated to the equator. This trick allows for the instantaneous
state to be moved in the direction of the target state in the
shortest possible distance (i.e., along a geodesic).

Hence, it is suggestive to try out a three-pulse protocol
as an ansatz for the optimal solution [see Fig. 4(a)]:
The first (positive) pulse of duration z(!) /2 brings the state
to the equator. Then, the 4, field is turned off for a time
#() = 7 — z(1) after which a negative pulse directs the state
off the equator towards the target state. Since the initial
value problem is time-reversal symmetric for our choice of
initial and target states, the duration of the third pulse must
be the same as that of the first one. We thus arrive at a
variational protocol parametrized by 7(!); see Fig. 4(a).

The optimal fidelity is thus approximated by the varia-
tional fidelity F,(z("), 7 — (1)) for the trial protocol
[Fig. 4(a)] and can be evaluated analytically in a straight-
forward manner:

Wi>|2’

(6)

depends on the value of the maximum magnetic field allowed
(here, h,,« = 4). Figure 4(d) shows that in the overcon-
strained phase, the fidelity is optimized at the boundary of the
variational domain, although F,(z(!), T —z()) is a highly
nonlinear function of z(!) and 7.

For T.<T <Tqs, the time 7(!) is kept fixed
(the equator being the only geodesic for a rotation along
the Z axis of the Bloch sphere), while the second pulse time
#1) grows linearly until the minimum time Tqg ~ 2.415 is
eventually reached. The minimum time is characterized by
a bifurcation in our effective variational theory, as the
corresponding variational infidelity landscape develops
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FIG. 4.

(a) Three-pulse variational protocol which allows us to capture the optimal protocol found by the computer in the

overconstrained and the glassy phases of the single-qubit problem. (b) Tfje; (green) with the nonanalytic points of the curve marked by
dashed vertical lines corresponding to 7. ~ 0.618 and Tog1, = 2.415. (c) Best fidelity obtained using SD (solid blue) and the variational
ansatz (dashed black). (d) The variational infidelity landscape with the minimum for each 7 slice designated by the dashed line which
shows the robustness of the variational ansatz against small perturbations.

two minima; see Figs. 4(b) and 4(d). Past that protocol
duration, our simplified ansatz is no longer valid, and
the system is in the controllable phase. Furthermore, a
sophisticated analytical argument based on optimal
control theory can give exact expressions for 7. and
Tqsi [63], in precise agreement with the values we
obtain. The Bloch sphere representation of the varia-
tional protocols in Fig. 1(b) (dashed blue lines) for the
single qubit are shown in Videos 4-6 of Supplemental
Material [62].

To summarize, for the single-qubit example, the varia-
tional fidelity F,(T) agrees nearly perfectly with the
optimal fidelity F,(T) obtained using SD and optimal
control; cf. Fig. 1(a). We further demonstrate that our
variational theory fully captures the physics of the two
critical points 7. and Tgp [62]. Interestingly, the varia-
tional solution for the single-qubit problem coincides with
the global minimum of the infidelity landscape all the way
up to the quantum speed limit [62].

B. Many-coupled qubits

Let us also discuss the variational theory for the many-
body system. Consider first the same one-parameter varia-
tional ansatz from Sec. IVA; see Fig. 5(a). Since the
variational family is one dimensional, we refer to this ansatz
as the 1D-variational theory. The dashed black line in
Fig. 5(c) shows the corresponding 1D-variational fidelity.
We see that once again this ansatz captures correctly the
critical point 7. separating the overconstrained and the
glassy phases. Nevertheless, a comparison with the optimal
fidelity [see Fig. 5(c)] reveals that this variational ansatz
breaks down in the glassy phase, although it rapidly con-
verges to the optimal fidelity with decreasing 7. Looking at

Fig. 5(b), we note that the value T,(Jgt, which maximizes the

variational fidelity, exhibits a few kinks. However, only the
kink at T = T, captures a physical transition of the original
control problem, while the others appear as artifacts of the
simplified variational theory, as can be seen by the regions of
agreement between the optimal and variational fidelities.
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FIG. 5. (a) Three-pulse variational protocol which allows us to capture the optimal protocol found by the computer in the

overconstrained phase but fails the glassy phase of the nonintegrable many-body problem. This ansatz captures the nonanalytic point at

T. ~ 0.4 but fails in the glassy phase. (b) The pulse durations rélell (green) and rlﬁlt (magenta) for highest-fidelity variational protocol of
length T of the type shown in (a). The fidelity of the variational protocols exhibits a physical nonanalyticity at 7', ~ 0.4 and unphysical
kinks outside the validity of the ansatz. (¢) 1D maximal variational fidelity (dashed back) compared to the best numerical protocol (solid
blue). (d) Five-pulse variational protocol which allows us to capture the optimal protocol found by the computer in the overconstrained

phase and parts of the glassy phase of the nonintegrable many-body problem. (e) The pulse durations réle)st (green) and r,(fc)s[ (magenta) for
the best variational protocol of length 7 of the type shown in (d). These variational protocols exhibit physical nonanalyticities at 7. =~ 0.4
and 7" ~ 2.5 (vertical dashed lines) (f) 2D maximal variational fidelity (dashed-dotted back) compared to the best numerical protocol

(solid blue).

Inspired by the structure of the protocols found by our RL.
agent once again (see Video 8 of Supplemental Material
[62]), we now extend the qubit variational protocol,
as shown in Fig. 5(d). In particular, we add two more
pulses to the protocol, retaining its symmetry structure:
h.(t) = —=h,(T —t), whose length is parametrized by a
second independent variational parameter 7(2) /2. Thus, the
pulse length where the field is set to vanish is now given by|

]—"%D(r(l),r@),T—r( ) |y |e—tTH max)

’_H [hmax] e_i(T_T(])

7 =T — 1) —7(), These pulses are reminiscent of spin-
echo protocols and appear to be important for entangling
and disentangling the state during the evolution. Notice that
this extended variational ansatz includes by definition the
simpler ansatz from the single-qubit problem discussed
above by setting 7(2) = 0.

Let us now turn on the second variational parameter 7!
and consider the full two-dimensional variational problem:

2)

) ) (1
2 )H[O] _’<_H[ hmax] e_lT)H[hmax] 2

ll/i>

El

L
Z C S5+ gS% + h,SY). (7)

For the maximum-fidelity variational protocol, we show
the best variational fidelity F7>° [Fig. 5(f)] and the corre-

sponding values of T&; and rﬁii [Fig. 5(e)]. There are two
important points here: (i) Fig. 5(f) shows that the 2D-
variational fidelity seemingly reproduces the optimal fidelity

on a much longer scale compared to the 1D-variational

ansatz, i.e., for all protocol durations 7 < 3.3. (ii) The 2D-

variational ansatz reduces to the 1D one in the overcon-

strained phase T < T .. In particular, both pulse lengths 7V

best
and flizt exhibit a nonanalyticity at 7 = T, but also at

T’ =~ 2.5. Interestingly, the 2D-variational ansatz captures the
optimal fidelity on both sides of 77, which suggests that there
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is likely yet another transition within the glassy phase, hence,
the different shading in the many-body phase diagram
(Fig. 3). Similar to the 1D-variational problem, here we also
find artifact transitions (nonanalytic behavior in Tg)ax outside
of the validity of the variational approximation).

In summary, in the many-body case, the same one-
parameter variational ansatz describes only the behavior in
the overconstrained phase [cf. Fig. 3 (dashed line)] up to
and including the critical point 7. but fails for 7 > T..
Nevertheless, a slightly modified two-parameter variational
ansatz motivated again by the solutions found by the ML
agent (see Video 8 of Supplemental Material [62]) appears
to be fully sufficient to capture the essential features of the
optimal protocol much deeper into the glassy phase, as
shown by the F3P(T) curve in Fig. 3. This many-body
variational theory features an additional pulse reminiscent
of spin echo, which appears to control and suppress the
generation of entanglement entropy during the drive [62].
Indeed, while the two-parameter ansatz is strictly better
than the single-parameter protocol for all 7 > T, the
difference between the two grows slowly as a function
of time. It is only at a later time, T = 1.3, that the effect of
the second pulse really kicks in, and we observe the largest
entanglement in the system for the optimal protocol.

Using RL, we identify nearly optimal control protocols
[58] which can be parametrized by a few d.o.f. Such simple
protocols have been proven to exist in weakly entangled
one-dimensional spin chains [38]. However, the proof of
the existence does not imply that these d.o.f. are easy to
identify. Initially, the RL agent is completely ignorant about
the problem and explores many different protocols while it
tries to learn the relevant features. In contrast, optimal
control methods, such as CRAB [30], usually have a much
more rigid framework, where the d.o.f. of the method are
fixed from the beginning. This restriction can limit the
performance of those methods below the quantum speed
limit [62,64].

One might wonder how the nearly optimal protocols
found using RL and SD correlate with the best variational
protocols. For the problem under consideration, averaging
parts of the set of bang-bang protocols, which contain
randomly generated local minima of the infidelity land-
scape {h¢ (t)}f:]ji‘ (see insets in Fig. 7) results in protocols
which resemble the continuous ones we find using
GRAPE. The variational solutions are indeed close to
these averaged solutions, although they are not exactly
the same, since the variational protocols are constrained to
take on three discrete values (positive, zero, and negative),
while the averaged protocols can take on any values in the
interval [—4, 4]. The RL agent cannot find these variational
solutions because we limit the actions space to having /,
take the minimum or maximum allowable value, and there
is no way to take an action where h, = 0.

We also show how by carefully studying the driving
protocols found by the RL agent, one can obtain ideas for

effective theories which capture the essence of the under-
lying physics. This approach is similar to using an effective
¢* theory to describe the physics of the Ising phase
transition. The key difference is that the present problem
is out of equilibrium, where no general theory of statistical
mechanics exists so far. We hope that an underlying pattern
between such effective theories can be revealed with time,
which might help shape the guiding principles of a theory
of statistical physics away from equilibrium.

V. GLASSY BEHAVIOR

It is quite surprising that the dynamics of a nonintegrable
many-body quantum system associated with the optimal
protocol is so efficiently captured by such a simple two-
parameter variational protocol, even in the regimes where
there is no obvious small parameter and where spin-spin
interactions play a significant role. Upon closer comparison
of the variational and the optimal fidelities, one can find
regions in the glassy phase where the simple variational
protocol outperforms the numerical “best” fidelity; cf. Fig. 3.

To better understand this behavior, we choose a grid of
N7 = 28 equally spaced time steps and compute all 228
bang-bang protocols and their fidelities. The corresponding
density of states (DOS) in fidelity space is shown in Fig. 6
for two choices of 7T in the overconstrained and glassy
phase. This approach allows us to unambiguously deter-
mine the ground state of the infidelity landscape (i.e., the
optimal protocol). Starting from this ground state, we then
construct all excitations generated by local in time flips of
the bangs of the optimal protocol. The fidelity of the “one-
flip” excitations is shown using red circles in Fig. 6. Notice
how in the glassy phase these 28 excitations have relatively
low fidelities compared to the ground state and are
surrounded by approximately 10° other states. This result
has profound consequences: As we are “cooling” down in
the glassy phase, searching for the optimal protocol and
coming from a state high up in the infidelity landscape, if

(@) o — ()

10t O “1-flip” excitations|
8 X “2-flip” excitations||
10?)
o T=20
107 ' :
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.8 -0.6 -0.4 -0.2 0

—-F —-F

FIG. 6. Density of states (protocols) in the overconstrained
phase at 7 = 0.4 (a) and the glassy phase at 7 = 2.0 (b) as a
function of the fidelity F. The red circles and the green crosses
show the fidelity of the “one-spin” flip and “two-spin” flip
excitation protocols above the absolute ground state (i.e., the
optimal protocol). The system size is L = 6 and each protocol has
Ny = 28 bangs.
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FIG.7. Fidelity traces of SD for 7 = 3.2, L = 6, and Ny = 200
as a function of the number of iterations of the algorithm for 103
random initial conditions. The traces are characterized by three
main attractors marked by the different colors. The termination of
each SD run is indicated by a colored circle. The relative
population of the different attractors is shown as a density
profile on the right-hand side. Insets (a)—(c): Averaged profile
of the protocols obtained for the red, blue, and green attractor,
respectively.

we miss one of the 28 elementary excitations, it becomes
virtually impossible to reach the global ground state, and the
situation becomes much worse if we increase the number of
steps Ny. On the contrary, in the overconstrained phase, the
smaller value of the DOS at the one-flip excitation (approx-
imately 10%) makes it easier to reach the ground state.

The green crosses in Fig. 6 show the fidelity of the “two-
flip” excitations. By the above argument, a two-flip
algorithm will not see the phase as a glass for T < 2.5,
yet it does so for 7 2 2.5 marked by the different shading in
Fig. 3. Correlated with this observation, we find a signature
of a transition also in the improved two-parameter varia-
tional theory in the glassy phase [see Sec. IV B and kinks at
T’ in Fig. 5(¢)]. In general, we expect the glassy phase to
exhibit a series of phase transitions reminiscent of the
random k-satisfiability (k-SAT) problems [84,85]. The
glassy nature of this correlated phase has been studied
in detail in Ref. [67] by mapping this optimal control
problem to an effective classical spin-energy function
which governs the control phase transitions.

In contrast to the single-qubit system, there are also
multiple attractors present in the glassy phase of the many-
body system (see Fig. 7). Each attractor has a typical
representative protocol (Fig. 7 insets). Even though intra-
attractor protocols share the same averaged profile, they can
nevertheless have a small mutual overlap comparable to the
overlap of interattractor protocols. This indicates that in
order to move in between protocols within an attractor,
highly nonlocal moves are necessary. For this reason,
GRAPE [59], an algorithm which performs global updates
on the protocol by computing exact gradients in the control

landscape, also performs very well on our optimization
problem. Similar to SD, in the glassy phase GRAPE cannot
escape local minima in the infidelity landscape, and,
therefore, the same three attractors are found with compa-
rable relative populations to SD, but intra-attractor fluctua-
tions are significantly suppressed due to GRAPE’s nonlocal
character.

VI. OUTLOOK AND DISCUSSION

In this work, we demonstrate the usefulness of Q-learning
to manipulate single-particle and many-body quantum
systems. Q-learning is only one of many reinforcement
learning algorithms, including the SARSA, policy gradient,
and actor critic methods, just to name a few. In the
Supplemental Material, we show that Q-learning’s perfor-
mance is comparable to many of the leading optimal control
algorithms [62]. It is interesting and desirable to compare
different RL algorithms among themselves on physical
quantum systems. An exciting future direction is to inves-
tigate which advantages deep learning offers in the context
of quantum control, and there exist recent studies exploring
deep RL in a physics [53,54,56].

Looking forward to controlling nonintegrable many-
body systems, an important question arises as to how
the computational cost of Q-learning scales with the system
size L. As we explain in Sec. II, the Q-learning algorithm
can be decomposed into a learning part and an “interaction
with the environment” part where all physics or dynamics
happens. The learning part does not know about the state of
the quantum system; it keeps track of only the value of the
magnetic field at a given time [z, h,(7)]. As a result of this
choice, for a single global drive, the learning part of the
algorithm is independent of the system size L since it
depends only on a single scalar reward: the fidelity of the
final state. The RL algorithm is instead computationally
limited by the size of the action and state spaces. As
currently implemented, this means that the RL algorithm is
limited to finding short protocols (since the state space
scales exponentially with the number of bangs). However,
it may be possible to circumvent this bottleneck by using
deep RL which uses neural networks to represent the Q
function.

One place where the system size implicitly enters the
computational costs of the RL protocol is through the
number of episodes needed to train the RL algorithm. At
every time step, one solves Schrodinger’s equation to
simulate the dynamics. The solver’s scaling with L depends
on how the time evolution is implemented: In spin-1/2
systems, for exact diagonalization (used here), the compu-
tational cost scales exponentially 2%/, while a more
sophisticated Krylov method alleviates this somewhat to
L?2 [86], and matrix product states scale only as L? (in the
worst case) [87]. Therefore, combining RL with existing
approximate techniques to evolve quantum states can lead

031086-11



AVIAAINLIN DUNUY €L ut.

L1L1O. INLYV. /N Oy VJ1VUOU (LUL10)

to a significant reduction of CPU time, provided applying
these techniques is justified by the underlying physics.

The present work demonstrates the suitability of RL for
manipulating or controlling quantum systems. Yet, it does
not explore how one can improve the Q-learning algorithm
and adjust it to the specific needs of quantum control. Let
us briefly list a few possible directions that the interested
reader may want to keep in mind: (i) Alternative definitions
of the RL state space (see Ref. [39]) may prove advanta-
geous, depending on the need of the problem setup, since
the RL state space defines the agent’s knowledge about the
physical system. For instance, if the RL agent is to be
coupled to an experiment, one cannot use the wave function
for this purpose, whereas wave functions may be accessible
in numerical simulations. We find that the choice of RL
state space influences the learning capabilities of the RL
agent. (ii) Another way to increase performance is to add
more controls. This increases only the possibility to reach a
higher fidelity, but it comes at a cost of a potential
slowdown due to a higher computational demand to explore
the increased RL state space. (iii) In addition, choosing a
suitable family of protocols and how to parametrize it may
also lead to increased performance in RL. We use bang-
bang protocols because of their computational simplicity,
yet the needs of a given problem may justify another
choice: The experimental realization of bang-bang proto-
cols is limited by the resolution with which a pulse can be
stabilized, which is set by the experimental apparatus.
Alternatively, the RL setup can be formulated to control the
size of some generalized Fourier coefficients, an idea
underlying the CRAB algorithm. (iv) On the algorithmic
side, one can also optimize the exploration and replay
schedules which control the learning efficiency with
increasing the number of training episodes and influence
the RL agent’s learning speed.

Reinforcement learning algorithms are versatile enough
and can be suitably combined with existing ones. For
instance, applying RL to complex problems with glassy
landscapes is likely to benefit from a pretraining stage.
Such a beneficial behavior has already been observed in the
context of deep RL [41,42]. For the purpose of pretraining,
in certain cases it may be advantageous to combine RL with
existing derivative-based optimal control methods, such as
GRAPE and CRAB, or even exhaustive search, so that one
starts the optimization from a reasonable “educated guess.”
In recent years, it was shown that derivative-based and
feedback-loop control methods can be efficiently combined
to boost performance [88]. Vice versa, RL’s exploration
schedule defined on a suitable abstract RL-state space may
prove a useful addition to improve on already existing
algorithms.

Using RL, we reveal the existence of control phase
transitions and show their universality in the sense that they
also affect the behavior of state-of-the-art optimal control
methods. The appearance of a glassy phase, which dominates

the many-body physics, in the space of protocols of the
quantum-state manipulation problem, could have far-
reaching consequences for efficiently manipulating systems
in condensed matter experiments. Quantum computing
relies heavily on our ability to prepare states with high
fidelity, yet finding high-efficiency state manipulation rou-
tines remains a difficult problem. Highly controllable quan-
tum emulators, such as ultracold atoms and ions, depend
almost entirely on the feasibility to reach the correct target
state before it can be studied. We demonstrate how a model-
free RL agent can provide valuable insights into constructing
variational theories which capture almost all relevant features
of the dynamics generated by the optimal protocol. Unlike
the optimal bang-bang protocol, the simpler variational
protocol is robust to small perturbations while giving
comparable fidelities. This implies the existence of nearly
optimal protocols, which do not suffer from the exponential
complexity of finding the global minimum of the entire
optimization landscape. Finally, in contrast with optimal
control methods such as stochastic gradient descent (SGD),
GRAPE, and CRAB that assume an exact model of the
physical system, the model-free nature of RL suggests that it
can be used to design protocols even when our knowledge of
the physical systems we wish to control is incomplete or our
system is noisy or disordered [89].

The existence of phase transitions in quantum-control
problems may have profound consequences beyond physi-
cal systems. We suspect that the glassy behavior observed
here maybe a generic feature of many control problems,
and it will be interesting to see if this is indeed the case. It is
our hope that given the close connections between optimal
control and RL, the physical interpretation of optimization
problems in terms of a glassy phase will help in developing
novel efficient algorithms and help spur new ideas in RL
and artificial intelligence.
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