Human-Centric Programming in the Large -
Command Languages to Scalable Cyber Training

Prasun Dewan Blake Joyce Nirav Merchant
Department of Computer Science CyVerse Data Science Institute
University of North Carolina University of Arizona University of Arizona
Chapel Hill, USA Tucson, USA Tucson, USA
dewan@cs.unc.edu bjoyce3@cyverse.org nirav@email.arizona.edu

Abstract— Programming in the large allows composition of
processes executing code written using programming in the
small. Traditionally, systems supporting programming in the
large have included interpreters of OS command languages, but
today, with the emergence of collaborative “big data” science,
these systems also include cyberinfrastructures, which allow
computations to be carried out on remote machines in the
“cloud”. The rationale for these systems, even the traditional
command interpreters, is human-centric computing, as they are
designed to support quick, interactive development and execution
of process workflows. Some cyberinfrastructures extend this
human-centricity by also providing manipulation of
visualizations of these workflows. To further increase the human-
centricity of these systems, we have started a new project on
cyber training — instruction in the use of command languages and
visual components of cyberinfrastructures. Our objective is to
provide scalable remote awareness of trainees’ progress and
difficulties, as well as collaborative and automatic resolution of
their difficulties. Our current plan is to provide awareness based
on a subway workflow metaphor, allow a trainer to collaborate
with multiple trainees using a single instance of a command
interpreter, and combine research in process and interaction
workflows to support automatic help. These research directions
can be considered an application of the general principle of
integrating programming in the small and large

Keywords—Cyberinfrastructure, workflow,
recommender systems, visual programming

awareness,

I. INTRODUCTION

By programming in the small, we mean creation of a
program whose tasks are executed by a single operating system
process, possibly interacting with one or more humans.
Programming in the large is creation of a “program” or process
workflow whose tasks are performed by multiple OS processes,
again possibly interacting with one or more humans.
Programming in the large, then, relies on programming in the
small to create the code executed by the individual processes.

Such programming was first supported by the Unix
command interpreter, called the shell. In fact, process
composition is perhaps one of the most distinguishing features
of Unix, supporting a philosophy in which each application or
system program supports one function, and a multi-functional
program is created by composing two or more unmodified
existing programs. This principle has allowed operating system
functionality to be implemented more concisely in Unix than in
its predecessor, Multics. For example, a single “grep” program
can be composed with an “Is” or “ps” process to search a

978-1-5386-4235-1/18/$31.00 ©2018 IEEE

directory and process listing, respectively, for a string. Such
reuse has also been useful in application programming. For
this reason, command languages in successors of Unix have all
supported programming in the large.

II. HUMAN-CENTRICITY

Shell-based interactive command interpreters are sufficient
but not necessary for programming in the large. It is possible to
use, instead, Unix or some other API to programmatically
connect processes together using a language (such as C)
developed for programming in the small. Arguably, the
purpose of command-interpreters is to support programming
that is more human-centric — more interactive, collaborative,
easier to learn, and/or easier to use for the task at hand. A
similar argument can be made, using these characteristics of
human-centricity, to argue that traditional command languages
are more human-centric than traditional programming
languages, whether the latter are used for programming in the
small, or for programming in the large given a suitable API.

III. LARGE-SMALL COMMONALITIES

The different degrees of human-centricity in the two
programming granularities are both expected and surprising. If
the two approaches were equivalent, then there would have
been no need to support process composition in command
languages. What makes the differences surprising is the
argument that traditional programming and command
languages are fundamentally the same, with the main
difference being that they manipulate ephemeral (in-memory)
data (e.g. scalars and arrays) and persistent data (e.g. files and
directories), respectively. Heering and Klint [1] have in fact
designed a monolingual environment that integrates traditional
command, programming, and debugging languages. They have
argued that even if such an environment is not practical, an
integration exercise can enrich the individual languages. We
refer to this principle as the granularity integration principle.

IV. VISUAL PROGRAMMING IN THE LARGE

Both kinds of programming have evolved much since
Heering and Klint’s work — especially in increased human-
centricity through visual programming. Visual programming in
the small has, of course, received much attention in this
conference. Figure 1 and 2 illustrate the use of the CyVerse
cyberinfrastructure [2], originally called iPlant, to visually
manipulate process workflows.

Figure 1 demonstrates visual workflow composition. In
Figure 1(a), the user creates a linear process workflow from the
programs (FASTX) Trimmer, Clipper, and Quality Filter. In
Figure 1(a), the user adds Quality Filter to the pipeline, not by
typing its name, but by searching for it based on its name and
attributes. Figure 1(b) shows the current programs in the
pipeline, which can be edited by adding new programs, or by
deleting or reordering existing programs. In Figure 1(c), the
user connects the output of a previous program in the pipeline
to the input of Quality Filter by choosing the output source
from a menu that lists the potential options based on the
preceding programs in the pipeline. This form of programming
is akin to block-based programming in that in both cases, users
can list, select and edit predefined templates.

Figure 2 demonstrates the subway model for visual
workflow navigation, which, to the best of our knowledge,
does not have a counterpart in programming in the small. In
this model, programs in a predefined pipeline are visualized
using a subway metaphor. Each predefined pipeline is mapped
to a subway line and each program in the pipeline (e.g.
Sequence Trimmer) is associated with a subway stop.
Segments of the pipeline performing, together, some high-level
task (e.g. Assemble Sequence) are put on separate branches. A
user clicks on a stop to execute the associated program, and
view and manipulate its output, before going to the next stop.

The three forms of programming (in the large) presented
here, embody the general principle that a programming system
can be made more human-centric, not only through more
visualization, but also by making more decisions for the
developer, that is, providing more restrictive, and hence easier
to learn and use, specification mechanisms. Command
languages are more flexible than visual workflow composition,
which is, in turn, more flexible than visual workflow
navigation. In terms of ease of use and learnability, the reverse
order holds among these three programming abstractions.

V. SCALABLE CYBER-LEARNING

Ease of leaning, however, is still a major issue in all three
forms of programming in the large. A command language is
known to be difficult to learn and use. The visual alternatives,
on the other hand, are not standard, and ever evolving. Thus, it
is important to provide personalized and scalable training for
cyberinfrastructure abstractions. These two requirements are
apparently conflicting in that a there is a limit to the number of
trainees a trainer can help. A further complication is that truly
scalable training must, unlike the state of the art, be distributed.

We believe the granularity integration principle can be used
to significantly improve this situation. Research on
programming in the small has developed (a) awareness
techniques for monitoring the programming of a relatively
large number of novice programmers [3], and (b) automatic
recommendation of solutions to novice programmers [4].

We are developing analogs of these techniques for
cyberinfrastructures based on the following novel ideas: (1)
Distributed sticky notes: Support a distributed analog of sticky
notes [5] used in face-to-face instruction by trainees to indicate
difficulties to trainers. (2) Subway-based awareness: When
trainees are composing process workflows using command-

Funded in part by NSF grant OAC 1829752

languages or visual programming, create, for the trainers, a
visualization of the trainee progress using the subway model,
having each stop annotated with both summary and detailed
information about the progress and difficulties of the trainees.
(3) Shell-based awareness: Provide a trainer with shell
commands to retrieve information about the trainees’ progress,
which can be more detailed than subway-based awareness, and
can include, for instance, a representation of the history of
operations executed by the trainees using the shell or its visual
alternatives. (4) Multi-user training shell: Allow a trainer to
collaborate with multiple trainees using a single instance of a
command interpreter by injecting trainer commands into the
command histories of trainees. (5) Integration of process and
interaction workflow: Associate each process workflow to be
created in a cyber training exercise with an interaction
workflow — the kind used to constrain and define the work of
employees in a business or government organization — and use
this workflow to recommend next steps to those in difficulty.

CyVerse, being a production system, has an active training
program, targeted at both domain scientists and students, that
extends shell lessons provided by software carpentry [5]. Like
software-carpentry, it requires face-to-face interaction with
trainees. We propose to use our technical innovations to make
this personalized training program distributed and more
scalable, which will yield field data regarding their use. In
addition, our planned evaluation includes controlled
comparative lab studies

How these ideas may be fleshed out is a matter of research
and is likely to benefit from conversations with conference
attendees, who, in turn, would learn about the state of the art in
visual programming in the large, its relationship to visual
programming in the small, granularity integration, and our
thoughts on using this principle to advance cyber training.

& Refresh |qualtty filter & Manage Tools
Categories < Search results: 5 found for quality filter
) My Apps || Topic || Operation | HPC | SortBy: |Name =
a
;!, Biology
;‘_, Biomedical science) ‘M— FASTX quality filter
L comoutational bicloav E=sM
1 FASTX trimmer
b) i Select&O 2 FASTX clipper
3 FASTX quality filter

‘) Match Outputs to Inputs Output(s): fastx_clipper_out.fastq

a Step 3: FASTX quality filter
Ao = FASTQ data file: |Step 1: fastx_trimmer_out.fastg | v

Step 1: fastx_trimmer_out.fastq
Step 2: fastx_clipper_out.fastq

At least one input for Output(s):
each app must come

from an output of a

Fig. 1. Visually Creating a Workflow in Cyvese Discovery

905 &
S 8

=5 e

i
\ Pm]gcm)

(" pubic Y
\ Projects |

Annotate
a Genomic

Genomes
Using TARGOT

Key
® Run

Determine
Sequence
Relationships @ Running

Q View

Fig. 2. Manipulating a Predefined Workflow in CyVerse DNA Subway

REFERENCES

Heering, J. and P. Klint, Towards
Environments. ACM TOPLAS, 1985. 7(2).
Merchant, N., E. Lyons, S. Goff, M. Vaughn, D. Ware, D. Micklos, and
P. Antin, The iPlant collaborative: cyberinfrastructure for enabling data
to discovery for the life sciences. PLoS biology ce, 2011. 14(1).

Monolingual Programming

B3]

(4]
[5]

Guo, P.J. Codeopticon: Real-Time, One-To-Many Human Tutoring for
Computer Programming. in ACM Symposium on User Interface
Software and Technology (UIST). 2015.

Thomas W. Price, Y.D., Tiffany Barnes. Generating Data-driven Hints
for Open-ended Programming. in EDM. 2016.
Carpentry, S. Instructor Training. 2016;
http://swcarpentry.github.io/instructor-training.

Available from:

http://swcarpentry.github.io/instructor-training/

