Authentic Learning Secure Software Development
(SSD) in Computing Education

Kai Qian', Dan Lo',Reza Parizi®
' Computer Science Department
2 Software Engineering and Game Design
Kennesaw State University
Kennesaw, GA, USA
kqian,dlo2,rparizil @kennesaw.edu

Emmanuel Agu
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA, USA
emmanuel@wpi.edu

Abstract—As mobile computing is now becoming more and
more popular, the security threats to mobile applications are
also growing explosively. Mobile app flaws and security defects
could open doors for hackers to break into them and access
sensitive information. Most vulnerabilities should be addressed
in the early stage of mobile software development. However,
many software development professionals lack awareness of the
importance of security vulnerability and the necessary security
knowledge and skills at the development stage. The
combination of the prevalence of mobile devices and the rapid
growth of mobile threats has resulted in a shortage of secure
software development professionals. Many schools offer mobile
app development courses in computing curriculum; however,
secure software development is not yet well represented in most
schools' computing curriculum. This paper addresses the needs
of authentic and active pedagogical learning materials for SSD
and challenges of building Secure Software Development (SSD)
capacity through effective, engaging, and investigative
approaches. In this paper, we present an innovative authentic
and active SSD learning approach through a collection of
transferrable learning modules with hands-on companion labs
based on the Open Web Application Security Project (OWASP)
recommendations. The preliminary feedback from students is
positive. Students have gained hands-on real world SSD
learning experiences with Android mobile platform and also
greatly promoted self-efficacy and confidence in their mobile
SSD learning.

Keywords-Mobile; Security; Computer science; learning.

1. INTRODUCTION

We have seen numerous major cyber-attacks, resulting in
stolen personal credit card numbers, leakages of classified
information, banking and financial losses, and many other
malicious damages. The insecure software leaves security
holes for the attacks. The hackers have managed to make
secure software computing a more difficult task. This has
resulted in the need for not only the concepts of

The work is partially supported by the U.S. National Science Foundation
under awards: 1723586, 1723578, 1723555, 1636995, 1623724, and U.S.
Department of Homeland Security Scientific Leadership Award grant
number: 2012-ST-062-000055.

978-1-5386-1174-6/18/$31.00 ©2018 IEEE

Fan Wu
Computer Science Department
Tuskegee University
Tuskegee, AL, USA
fwu@tuskegee.edu

Bei-Tseng Chu
Department of Software and Information Systems
University of North Carolina at Charlotte
Charlotte, NC, USA
billchu@uncc.edu

cybersecurity, but also for the SSD in the computing
education [8].

More and more higher education institutions have
realized the importance for computer science and software
engineering students to be exposed to the mobile software
design and development. Unfortunately, despite the great
need for mobile professionals and existing efforts in mobile
software development education, secure mobile software
development is a relatively weak area and is not well
represented in most schools' computing curriculum. The
challenges in teaching the principles and practices of secure
software development include: scarce learning materials and
hands-on practice labs; dedicated staff and faculty in this
field; the teaching formats and setting in a dedicated course
or integration into multiple relevant courses.

Security flaws and defects could open doors for hackers
to break into the app, access sensitive information, and
conduct all kinds of malicious attacking. Most
vulnerabilities should be addressed and fixed in the early
stage of software development phase. If all the mobile apps
are secure or have less security flaws and vulnerabilities, the
security threat risks will be greatly reduced. All computer
users, managers, and developers agree that software and
systems need to be "more secure". Such efforts require
support from both the education and training communities to
improve software assurance, particularly in writing secure
code. More and more people realized that the ability to write
secure code should be as fundamental to a CS undergraduate
as basic literacy from beginning, rather than adding it
afterwards [9].

To achieve broader SSD education, we aim to develop
Android-based portable and easy-to-adopt SSD learning
modules on foundational SSD topics, which can not only be
applied to mobile SSD, but also to all kinds of SSD.

The Authentic Learning approach is to create an
authentic and active learning environment that encourages

all students in learning concepts with practices for mobile
SSD. This approach provides students with hands-on
laboratory practice on real-world secure mobile app
development. The Authentic Learning project consists of
multiple learning modules, covering all major vulnerabilities
for mobile software development. Each topic consists of a
series of progressive sub-lab activities: a pre-lab, lab, and
student add-on post-lab activities.

The developed modules can easily be integrated into
many courses in CS and IT curricula as a learning module
with lab practice or used in a dedicated mobile security
course. The laboratories can be carried out anywhere and
anytime by students in the classroom or out of the
classroom.

The selected labs have been implemented in various
computing courses, such as mobile app development,
networking, database, and other security related courses
such as “Mobile Security” to enhance the security learning
in the discipline. The preliminary results from student
performance evaluations and their feedback showed that this
approach can increase their learning confidence for the state-
of the art technology and promote their self-efficacy. Many
students showed their creativity with their new findings and
new solutions to protect mobile devices and mobile apps.
Students appreciated the hands-on learning experiences.
Also, all labs are affordable and can easily be adopted with
the open source Android Studio IDE and Android mobile
devices, such as smartphones and tablets.

The selected labs have been implemented in various
computing courses, such as mobile app development,
networking, database, and other security relevant courses
such as “mobile security” to enhance security learning in the
discipline. The preliminary results from student performance
evaluations and their feedback showed that this approach
can increase their learning confidence in the state-of the art
technology and promote their self-efficacy. Many students
showed their creativity with their new findings and new
solutions to protect mobile devices and mobile apps.
Students appreciated the hands-on learning experiences.
Also, all labs are affordable and can easily be adopted
using the open source Android Studio IDE and Android
mobile devices, such as smartphones and tablets.

The rest of the paper is organized as follows: Section II
describes our related work. Section III describes the
pedagogical strategies for learning SSD. Section IV
describes how we design the learning module. Section V
presents sample SSD modules. Module implementations and
students feedback are presented in Section VI, following by
a conclusion of our work in section VII.

II. RELATED WORK

Many efforts have been made to enhance the secure software
development education in recent years. However, these
efforts focus primarily on desktop and server environments
and provide no hands-on experience with real world security

vulnerability problems on mobile platforms. University of
North Carolina at Charlotte (UNCC) has designed and
developed an Application Security IDE (ASIDE) plug-in for
Eclipse that alert programmers of potential vulnerabilities in
their Java code, assist them in addressing these
vulnerabilities, and improve their awareness and
understanding of security vulnerabilities in software [1-3].
ASIDE only works in the Java Eclipse IDE and cannot
support the Android IDE. Many computing instructors and
professors have integrated mobile application developments
into their curriculums. Some teaching and learning modules
for secure coding practices were developed to enhance the
essential skills of application developers in secure
programming [4-6]. Some security topics/materials in the
Information Assurance and Security (IAS)/Defensive
Programming Knowledge Area (KA) mapped to the
ACM/IEEE Computer Science Curricula 2013 are taught in
CS0/CS1 courses [7].

Recently, NSF has supported a number of research
projects for mobile security research for education [13-16]
which mainly focus on the mobile threat analysis, rather than
the effective learning approach for SSD.

Authentic active learning can engage and situate
students in learning contexts where they encounter activities
on real world problems, which students are likely to face in
their real world career. The common authentic learning
components are authentic contexts, authentic activities,
multiple roles and perspectives, collaboration, opportunities
for reflection, opportunities for articulation, coaching and
scaffolding, authentic assessment. These components form
the basis for teachers to plan and design learning
environments [10-20].

In recent years, many institutions have offered courses
in mobile application development [18]. These courses
focused on mobile application APIs, but not on secure
programming. They offered no insight into the security
vulnerability of mobile software applications. In contrast,
our Authentic Learning project is designed to broaden SSD
education with a set of real world-based innovative SSD
learning modules, which will promote students to analyze
and penetrate the real vulnerability and find the solutions to
fix the security flaws. All Authentic Learning modules are
portable, modular, and integratable, and easy-to-adopt with a
hands-on learning environment. Some Authentic Learning
modules have been introduced in [25,26].

III. AUTHENTIC PEDAGOGICAL STRATEGIES FOR LEARNING
SSD

We developed an authentic learning environment for SSD
with open source Android platform. The aim of this project
is to investigate the potential student learning benefits
(learning engagement and effectiveness) with authentic
pedagogical activities in SSD education.

To implement the SSD authentic learning for mobile
security, this work employs the following strategies

» authentic contexts reflect the knowledge in real-
world mobile software vulnerability and hands-on
experience.

e authentic activities are based
investigation and recommendation.

« multiple roles and perspectives are provided for the
SSD knowledge of attacks and defense.

* opportunities for reflection involving concepts and
practice in SSD.

» coaching students by the teacher in a dedicated web
site.

e authentic assessment reflects the countermeasure
solutions to software security vulnerability with
hands-on experience.

on OWASP

The goal of our Authentic Learning project is to
engaging students critical thinking in a real scenario in
which they can understand better about the SSD concepts
and enhance their problem-solving capability.

Each activity requires students to read a paragraph
describing the study, predict the results, perform the
appropriate calculations, and then evaluate the results in
light of their predictions.

The Authentic Learning project focuses on student-
centered learning, where students participate in group
discussions on the concepts, risk analysis, and solutions.
Each module designs each case from both of the attack and
defense perspectives so that students can gain more insights
and can design better defense solutions via the experience
with actual attacks. In a group, some students play a role of
attackers, and some other students play a role of defenders
for a specific problem and exchange the roles later to find
the best solution against the vulnerability. Authentic
Learning project also emphasizes the learning environment
connected the abstract security concepts to real-world
mobile security cases so that students can better understand
the concepts and can work more actively and effectively
with facts and realistic problems. Each module infuses
hands-on practices in such a way that they can be performed
on mobile devices directly [21-23].

Authentic Learning project also encourages students to
identify for themselves the mobile software security
vulnerability issues and provides students with opportunity
of reflection in action so that they can actively make
connections to their existing knowledge, and to explore
concepts in a new context with particular strategies for
problem solving [24].

IV. LEARNING MODULE DESIGN

All the learning modules are Android Java platform based
which can be easily integrated into any computing courses in
computing curriculum or used for a dedicated SSD course.

The SSD learning modules are organized in the following
categories as show in table I:

TABLE I. THE SSD LEARNING MODULES

MO | Getting started

M1 | Data Sanitization for input validation

M2 | Data Sanitization for output encoding

M3 | SQL Injections

M4 | Data protection

M5 | Secure Inter-process communication (IPC) and
Inter-Application Communication(IAC)

M6 | Secure mobile database

M7 | Unintended Data Leakage

M8 | Access Control

Each module discusses specific mobile malware attacks
and demonstrates instances of real-world Android malware,
the defense strategies, and instructs on practicing defense
solutions.

Real world examples of vulnerable code example is
discussed to demonstrate the security weakness or unsecure
coding patterns in the development of different Android app
components, including Activity, Intent, Service, Content
Provider, and Broadcast Receiver. The learning modules
also discuss the best practices for improving the security of
the Android app coding, such as reducing intent
vulnerability for unintended intent receipt and intent
spoofing.

The Getting Started module (MO) helps to setup the
learning environment (Android Studio) and starts with a first
Hello Android app for the beginners.

The Data Sanitization modules (M1 and M2) explore
security flaws without input validation and output decoding
and demonstrate validation strategies such as regular
expression filtering for white and black list approaches.

The SQL Injection module (M3) focuses on Android
SQL injection patterns and a prevention strategy with
parameterized query.

The Data Protection module (M4) discusses how to
utilize Android’s built-in cryptography mechanisms to
protect the data stored on the device (database storage,
shared memory, shared preferences, internal and external
storage) and data in transit in the course of network
communications (e.g., SSL).

The Unintended Data leakage module (MS5)
demonstrates the leakage of private data from mobile
devices and communications (e.g., location information,
clipboard cache, logging and usage patterns). The Access
Control module focuses on the Android permission model,
including its signature-level permission for intra and inter
application communication.

Working on the Android software with practical
experiences for the secure mobile programming will
increase students’ learning interest because students will be
able to see their applications running in real time. This
provides students with a sense of accomplishment and
realworld relevance, which will promote their programming
confidence and self-efficacy.

Portable and modular designed SSD learning labs are
easy to be adopted and integrated into lower division
computing courses, such as lower division Java computer
programming courses, and upper division computing
courses, such as mobile app development, database,
networking, information security, and others.

Programmers need not only to learn the specific ability
of writing secure code, but also the knowledge of the
principle behind the skills such as Input Validation and
Output Encoding. We developed one learning module for
each secure programming principle based on the OWASP
top mobile vulnerabilities [17]. Each module consists of a
series of progressive sub-labs: a pre-lab, hands-on lab
activities, and a student add-on post-lab. Many secure
mobile software development principles can be applied to
all kinds of software development and an overview of each
of them is presented in the corresponding pre-lab. Its related
mobile specific secure programming skills, such as SMS,
GPS data, mobile data sync, and possible flaws in the
mobile programming for intent and content provider are
covered in the hands-on lab activities. The learning modules
are designed in a such way that they can not only be used for
SSD, but also be used for general secure software
development education. Selected student work is posted in
the post-lab to show student’s creative achievement and
learning outcomes through pre-lab and post-lab study and
practice.

The pre-lab presents learning objectives, concept
overview on the subject, fundamental background
knowledge on the subject, ethics issues, and targeting
courses.

In the hands-on lab activity, students will not only learn
how to avoid and fix the known flaws and mitigate such
security risks (practical aspect) through hands-on practice,
but also identify the root cause (theoretical aspect) of their
formation. The students will get a good understanding of the
mobile security risks and vulnerabilities and get the secure
programming skills to avoid such vulnerabilities as well.
The lab is designed to engage and motivate students in
building mobile apps on their own mobile devices, and it
will boost their positive emotions through mastery-building
experiences.

The post-add-on lab activity provides opportunity for
students to show their new findings and new creativity works
based on previous existing work, and students will work on
their own to analyze and assess new mobile vulnerability
and risks in the subject and develop and integrate defensive

tools for risk prevention and mitigation. These post-labs can
help students to build self-efficacy by observing a successful
task from their peers and strengthen their confidence and
promote their critical thinking and creativity and assess their
learning as well.

Its mobile specific secure programming skills for SMS,
GPS data, mobile data sync, and possible intent and content
provider flaws in the mobile programming are covered in the
hands-on lab activities. The learning modules are designed
in a way that they can not only be used for mobile SSD, but
also be used for general secure software development
education.

Our experience shows that teaching “Secure
Programming” helps students not only gain significant
knowledge of secure programming principles, but also to
understand the risks of insecure programming and to master
the skills of risk mitigation. There is no better way to learn
secure design and programming concepts than actually
seeing the flaws and its security consequences through real
code. We are developing eight hands-on mobile SSD
learning modules with the secure programming concepts and
practice guidance to identify the security flaws.

Each module is organized in the following sections:

e Overview
* Learning Objectives
* Ethics
e Targeting Courses
o Activities
o Pre-Lab Activities
o Lab Activities
o Post-Lab Activities
Review questions and answers
Assignments
Projects

Each module consists of Pre-Lab Activities (Overview,
Learning Objectives, Ethics issues, Targeting Courses),
Hands-on Lab Activities, and Post-Lab Activities (Student
add-on labs, Review questions and answers, Assignments,
and Projects. In the hands-on lab activities, students will not
only learn how to avoid and fix known flaws and mitigate
such security risk (practical aspect), but also identify the
root cause (theoretical aspect) of their formation. The
student learning outcomes expect that they will get a good
understanding of the risks and vulnerabilities and form basic
ideas of secure programming to reduce such vulnerabilities.

V. SAMPLE SSD LEARNING MODULE LABS

In this section, we illustrate the SSD learning modules and
labs with brief descriptions on selected subjects to show how
they are organized and implemented.

A. Intent Spoofing SSD Learning Module

We illustrate the SSD learning modules with the brief
descriptions on intent spoofing vulnerability. Intent is a

very important component for support intra-app and inter-
app communication in Android application development,
but it may result in security disasters when it is misused. The
intent spoofing learning module is a sub module in the inter-
app vulnerability leaning module (M5) where Unintended
intent receipt (interception) is another sub module.

1) Lab learning objective:
By completing this lab, students will be able to

= To wunderstand the fundamental
intent spoofing vulnerability

= To grasp the basic knowledge and skills of secure
software development against intent spoofing.

concepts of

2) Pre-lab: Overview

Here is the brief overview for the intent spoofing sub
module.

The intentis the main communication mechanism
between Android components such as activity, service, and
broadcast receiver. Intent can be used to start activities and
services, bind to services, and convey notify and pass data to
broadcast receivers.

There two types of intent: Explicit intents have its
explicit recipient and Implicit intents does not name its
explicit recipient, and it will notify an appropriate
component based on the specification of the intent.

Intent spoofingis an attack where a malicious
application induces or injects undesired behavior to a
component via implicit intent which only expects to receive
intents from other components within the same app. By
default, a component only receives intents from other
components in the same application, but it can also accept
intents from other apps if the android:exported attribute is
set in the manifest XML.

In other words, if your application uses an exported
component, a malicious application can send an intent to it,
which is an intent spoofing attack.

Misused and overused implicit intent will result in
intent spoofing, which may cause DoS and phishing attacks.

Exporting attribute allows all applications to send intents to
that component, which even opens a door for explicit intent.

An Android developer should not let any component expose
to other applications which makes program itself vulnerable
to attacks. Typically, a broadcast receiver is vulnerable to
broadcast injection, in which the receiving component
thought the malicious broadcast coming from another app is
what it expects within the same app. Activities and services
may also be vulnerable to fake spoofing activation or
binding attacks.

Intent/Data

O

Malicious
App

[ntent Spoofing

Fig.1. Intent Spoofing

The Fig. 1 above shows the concept of intent spoofing
where compl and comp2 are two Android components
(Activity, Service, BroadCastReceiver) in same application
appl. The comp2 expects to get intent from Comp1 in Appl
but instead it gets a malicious injection via an implicit intent
sent by the malicious app due to comp2’s exposure.

3) Lab activities:

Students practice the hands-on labs via exploring the intent
spoofing flaws in IPC communication with broadcast
receiver and think of solution to secure the program to
prevent it in the future.

The victim’s manifest may be defined as follows:
TABLE II. THE VICTIM’S MANIFEST FILE

<receiver android:name="MyBroadCastReceiver" android:enabled="true"
android:exported="true">

<intent-filter>
<action android:name="com.example.MyBroadcast"/>
</intent-filter>

</receiver>

An intent spoofing attacker may attack the victim with
spoofing injection as follows:

TABLE III. AN INTENT SPOOFING WITH INJECTION

public void onClick(View v) {
Intent intent = new Intent();
intent.putExtra("number", 1);
intent.addFlags(Intent. FLAG_INCLUDE_STOPPED_PACKAGES);

intent.setComponent(new
ComponentName("example.com.broadcastreceiver”,"example.com.broadca
streceiver.MyBroadCastReceiver"));

intent.setAction("com.example.MyBroadcast");

sendBroadcast(intent);

'You are attacked by intent
spocfing

Fig. 2. BroadCastReceiver Intent Spoofing

The Fig. 2 shows that a BroadcastReceiver app has a filter
that can receive intent either from external apps(in this case
IntentSender is an external app) or internal components.
When BroadcastReceiver receives an intent from an internal
component, the normal action will show "Hello", otherwise,
it shows "You are attacked by intent spoofing” spoofing
injection message through intent spoofing.

B. Secure Inter-Process Communication (IPC)
1) Learning objectives

e Learn Android core programming component
Activity and intent
e Learn the intent vulnerability and its
countermeasures
2) Pre-lab: Overview
An Intent object is a messaging object is used to
signal/activate other components, such as activities, services,
and broadcast receivers. E.g., an activity B can register with
intent A’s explicit intent so that the bound activity B will be
notified and activated when the event fires. An explicit
intent tells Android system to run a specific component such
as Activity B.

TABLE VI. EXAMPLE OF AN INTENT OBJECT

TABLE VI. EXAMPLE OF AN ANDROID MANIFEST FILE

<activity android:name="ActivityB">
<intent-filter>
<action android:name="thisAction"/>
<category android:name="thisCategory"/>
</intent-filter>

</activity>

Intent intent = new Intent(ActivityA.this, ActivityB.class);
startActivity(intent);

An implicit intent tells Android system to select an
activity (ActivityB), in this case, that can do these things that
are specified with desired action and category in the intent
filter in a manifest.

TABLE V. EXAMPLE OF AN IMPLICIT INTENT OBJECT

Intent intent = new Intent();
intent.addAction("thisAction");
intent.addCategory("thisCategory");
startActivity(intent);

3) Intent Security

Unsecured code may allow malicious apps to intercept
intents to steal sensitive information or attack. A malicious
Activity such as phishing is launched instead of the right
one.

An implicit intent is sent to the Android OS system,
which will select a best matched component, such as
Activity B, based on action and category requirement. Any
activity can have multiple intent filters to tell the system that
what kind of implicit intents they would accept described by
action name, category, etc. An intent can also contain data.
This will leave a hole for a malicious activity or app to
compete with benign activities to hack data. Because
implicit intents do not name a specific target component,
instead just declare a general action to perform, which
allows a component from another app to handle it.

If the hacker application has one activity with the same
action name and other characters, it might get the
information. Because if the intent matches an intent filter,
the system starts that component and delivers the Intent
object. If multiple intent filters are compatible, the system
displays a dialog so the user can pick which app to use. Ifa
hacker app becomes default that would result in security
threats as shown in Fig.3. You can add as many categories
as possible to the intent to prevent the intent from having
unintended consequences. In addition, a malware could
register a higher priority intent filter and beat others to get
sensitive data sent instead.

|
Benign |
Activity | |

Intent Filter
Intent is intercepted by
,} Intent maliciousactivity
J/ (Deta and dats Is hacked

r—-————————"————=—— A
: Malware Activity |

I
L Hacker App |

Fig. 3. Vulnerability with implicit intent

Explicit intent is always recommended. If you do need
to pass sensitive data with intent, you need to validate the
right recipient. Also, secure data by setting permissions for
IPC between apps and apply necessary encryption. If your
app does not need to talk to other apps, set the
android:exported attribute to false in the component's
manifest element, such as for the <service> element.

4) Lab Activities
This lab demonstrates how a hacker gets the data sent
by an activity with implicit intent. E.g., the
username/password is typed, and an intent object is
somehow intercepted by a malware activity shown in Fig. 4.
Code vulnerability Code vulnerability

Username:admin

admin
Password:adminpwd

adminpwd@

You are attacked!

Fig. 4. A malware activity intercepted intent and extracted sensitive
information

TABLE VIL. SOURCE CODE OF SETACTION()

Intent intent = new Intent();
intent.putExtra("username", name);
intent.putExtra("password", password);
intent.setAction("edu.spsu.SendIntent. LoginActivity");
intent.addCategory(Intent. CATEGORY_DEFAULT);
startActivity(intent);

Instead of using setAction() to reach implicit intent, we
will use setClassName() for explicit intent:

TABLE VIII. SOURCE CODE OF SETCLASSNAME()

Intent intent = new Intent();

intent.putExtra("username", name);

intent.putExtra("password", password);

intent.setClassName("edu.spsu.SendIntent",
"edu.spsu.SendIntent.LoginActivity");

startActivity(intent);

Since the explicit intent will go straightly to the activity
we want and ignore the intent filters, the hack app will never
intercept it.

VI. IMPLEMENTATION AND STUDENT FEEDBACK

We have implemented selected labs in various computing
courses such as Database, Mobile App Development,

Wireless Networking, and other security relevant courses,
such as special topics on “Mobile App & Security,” to
enhance the security learning in the discipline. The
preliminary results from student performance evaluations
and their feedback showed that this approach increased their
learning confidence in the state-of-the-art technology and
promoted their self-efficacy. Many students showed their
creativity with their new findings and new solutions to
protect mobile devices and mobile apps. Students
appreciated the hands-on learning experiences. Also, all
labs can easily be adopted with the open source Android
Studio IDE, Android smartphones, and tablets. In Fall 2017,
we conducted a quantitative survey in four classes at
Kennesaw State University (KSU) and Tuskegee University
(TU), and in Spring 2018, we conducted a quantitative
survey in four different classes at KSU, TU, and Worcester
Polytechnic Institute (WPI). About 130 students participated
in the survey, and the overall response from students was
overwhelmingly positive.

The survey has the following questions as show in table
IX:

TABLE IX. SURVEY QUESTIONS

Q1 | I like being able to work on Android App
development with this hands-on labware.

Q2 | The real world mobile security threat and attacks
in the labs help me understand SSD.

Q3 | The hands-on labs help me gain authentic
learning and working experience on SSD.

Q4 | The online lab tutorials help me work on student
add-on labs/assignments.

Q5 | The project helps me apply learned SSD to
develop secure mobile application.

In the “Introduction to Database” class in Fall 2017, 15
students participated in the survey and the survey result is
shown in Fig. 5 in the scale of: [Agree], [Neutral],

[Disagree]):
15
10
0 = i =
Q1 Q2 Q3 Q4 Qs

W Agree Neutral mDisagree

Fig. 5. Survey result of Introduction to Database (Fall 2017)

Some qualitative student responses to the survey:

The hands-on portion of this course made it easier to
understand the material and put it into practice. If not for
the hands-on labs and assignments where I was able to
create mobile apps myself, I do not think I would have done
very well in the class.

Working with Android Studio and using online tutorials
really assisted in helping me understand the majority of the
material, without feeling lost or confused throughout the
semester.

The lab is very clear. Through the lab, I learn about the
android. It gives me what I need for the future.

1 enjoyed this experience as a whole and liked the
development process

1 enjoyed working with Android Studio as I haven’t worked
before

1 liked what it taught me.

VII. CONCLUSION

This paper presented a hands-on SSD learning approach to
immerse students with secure software development learning
experience. Some of the selected learning modules are being
implemented in the CS Database, CS Mobile App
Development, CS Mobile Security, and IT Wireless Security
classes. The preliminary feedback from students was very
positive. Students have gained hands-on real world
experiences on SSD and mobile security with Android
mobile devices, which also greatly promoted students’ self-
efficacy and confidence in their mobile security learning.

ACKNOWLEDGMENT

The work is partially supported by the U.S. National Science
Foundation under awards: NSF proposal 1723586, 1723578,
1723555, 1636995, 1623724, and U.S. Department of
Homeland Security Scientific Leadership Award grant
number: 2012-ST-062-000055. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation and Department
of Homeland Security.

REFERENCE

[1] Heather Richter Lipford, Bei-Tseng Chu, Supporting Secure
Programming Education in the IDE,
http://grantome.com/grant/NSF/DUE-1044745

[2] Jing Xie, Heather Richter Lipford, Bei-tseng Chu, Evaluating
interactive support for secure programming. Proceeding CHI '12
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2012: 2707-2716

[3] Xiaohong Yuan, Kenneth Williams, Huiming Yu, Bei-tseng Chu,
Audrey Rorrer, Li Yang, Kathy Winters, Joseph M. Kizza,
Developing Faculty Expertise in Information Assurance through
Case Studies and Hands-On Experiences. HICSS 2014: 4938-4945

[4] Xiaohong Yuan, Li Yang, Bilan Jones, Huiming Yu, Bei-Tseng,
Secure Software Engineering Education: Knowledge Area,
Curriculum and Resources, Journal of Cybersecurity Education,
Research and Practice, Volume 2016 Number 1

[51 Hongmei Chi, Edward L. Jones, John Brown, Teaching Secure
Coding Practices to STEM Students, Proceedings of the 2013 on

InfoSecCD '13: Information Security Curriculum Development
Conference

[6] Edward Agama, Hongmei Chi, A framework for teaching secure
coding practices to STEM students with mobile devices, ACM SE
2014

[71 Kenneth A. Williams, Xiaohong Yuan, Huiming Yu, Kelvin Bryant,
Teaching secure coding for beginning programmers, Journal of
Computing Sciences in Colleges archive, Volume 29 Issue 5, May
2014 Pages 91-99

[8] Kalyan Mondal, Introducing Secure Coding Concepts in Engineering
Programming, Middle Atlantic Section Proceedings ASEE, Spring
2013

[9] Matt Bishop, Deborah Frincke, Teaching Secure Programming, [EEE
Security & Privacy. Volume: 3, Issue: 5, 54 - 56, 2005

[10] Diana L. Burley, Matt Bishop, Final Report, Summit on Education
in Secure Software, Support for this work was provided through the
National Science Foundation Directorates of Computer and
Information Science, and Engineering and of Education and Human
Resources under Award #1039564, 2011

[11] Kara Nance, Brian Hay, Matt Bishop, Coding Education: Are We
Making Progress? Proceedings of the 16th Colloquium for
Information Systems Security Education, 2012

[12] Matt Bishop, Elizabeth Hawthorne, Kara Nance, Blair Taylor,
Teaching secure coding: the myths and the realities, Proceeding of
the 44th ACM technical symposium on Computer science education,
2013

[13] REU Site: Research on Security of Mobile Devices and Wireless
Networks,
https://www.nsf.gov/awardsearch/showAward? AWD_ID=1559652

[14] EDU: Collaborative: Enhancing Pervasive and Mobile Computing
Security Education with Research Integration,
https://nsf.gov/awardsearch/showAward?AWD_ID=1419280&Histo
rical Awards=false

[15] Collaborative Project: Capacity Building in Mobile Security Through
Curriculum and Faculty Development,
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1241651&
Historical Awards=false

[16] EDU: Deploying and Evaluating Secure Programming Education in
the IDE,
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1523041&
Historical Awards=false

[17] OWASP Mobile Security Project:
https://www.owasp.org/index.php/OWASP_Mobile_Security_Projec
t

[18] Jeremy Andrus, Jason Nieh, Teaching Operating Systems Using
Android, Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2012), 2012 (Best Paper
Award)

[19] Jan Herrington, Jessica Mantei, Anthony Herrington, Ian Olney and
Brian Ferry, New technologies, new pedagogies: Mobile
technologies and new ways of teaching and learning, Proceedings
ascilite Melbourne, 2008.
http://www.ascilite.org.au/conferences/melbourne08/procs/herringto
n-a.pdf

[20] Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and
the culture of learning. Educational Researcher, 18(1), 32-42.

[21] Anderson LW, Krathwohl DR, editors. A taxonomy for learning,
teaching and assessing: a revision of Bloom’s Taxonomy of
educational objectives: complete edition. Longman; New York, NY:
2001.

[22] Bloom BS, editor. Taxonomy of educational objectives, handbook 1:
the cognitive domain. Longman; New York, NY: 1956.

[23] Carlson A. Innovative Teaching Showcase. Center for Instructional
Innovation & Assessment, Western Washington University;
Bellingham, WA: 2001. Authentic learning: what does it really
mean? . 2001-02,
pandora.cii.wwu.edu/showcase2001/authentic_learning.htm,
Accessed 11/2017

[24] Jordon K. March, Kyle C. Jensen, Nathan T. Porter, and Donald P.

Breakwell, Authentic Active Learning Activities Demonstrating the [26] Kai Qian, Dan Lo, Hossain Shahriar, Lei Li, Fan Wu, Prabir

Use of Serial Dilutions and Plate Counts, J Microbiol Biol Educ. Bhattacharya. Learning Database Security with Hands-on Mobile
2011; 12(2): 152-156. Labs, Proceedings of the 2017 IEEE Frontiers in Education
[25] Kai Qian, Hossain Shahriar, Fan Wu, Lixin Tao, Prabir Bhattacharya. Conference (FIE), 2017.

Labware for Secure Mobile Software Development (SMSD)
Education, Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education - ITiCSE '17, 2017.

