2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC)

Mobile Software Security with Dynamic Analysis

Hossain Shahriar', Kai Qian?, Md Arabin Islam Talukder', Dan Lo?, Nidhibahen Patel?
'Department of Information Technology
2Department of Computer Science
Kennesaw State University, USA
{hshahria, kqian, dlo2} @kennesaw.edu
{mtalukdl, npate154} @students.kennesaw.edu

Abstract- The majority of malicious mobile attacks take
advantage of vulnerabilities in mobile software (applications),
such as sensitive data leakage, unsecured sensitive data storage,
data transmission, and many others. Most of these
vulnerabilities can be detected by analyzing the mobile software.
In this paper, we describe a tainted dataflow approach to detect
mobile software security vulnerability, particularly, SQL
Injection.

Keywords: Mobile software, Android security, SQL Injectionn,
Tainted data flow analysis.

L INTRODUCTION

With increasing demands of mobile applications in recent
years, there is proportional growth in security threats to these
mobile devices. A report from Trendmicro suggests that
mobile ransomware increased by 415% in 2017 [2]. Hackers
have managed to make secure computing a more difficult
task.

The majority of malicious mobile attacks take advantage
of vulnerabilities in mobile applications, such as sensitive
data leakage via inadvertent or side channel, unsecured
sensitive data storage, data transmission, and many others.
Most of these vulnerabilities can be detected during
development phase. However, most development teams often
have virtually no time to address them due to critical project
deadlines [3]. To combat this, the more defect removal filters
there are in the software development life cycle, the fewer
defects that can lead to vulnerabilities will remain in the
software product when it is released. More importantly, early
detection of defects enables the organization to take
corrective action early in the software development life cycle
[4].

The vulnerability assessment considers the potential
impact and loss (confidentiality, integrity, availability)
exploiting the weakness from a successful attack.
Vulnerability assessment can be performed by analyzing
code for the presence of data flows or API calls that may
represent security risks and could be exploited with malicious
inputs. Analysis detects flaws in the code early in the process,
weaknesses can be fixed before hackers detect and exploit
them [5]. In this paper, we apply tainted dataflow approach
to detect SQL Injection vulnerability.

2473-3105/18/$31.00 ©2018 IEEE
DOI 10.1109/PRDC.2018.00039

223

IL

SQL injection is a common vulnerability in mobile
applications [5]. It works by adding user supplied data to a
query string which leads to the alteration of SQL queries
leading hackers to access to unauthorized data and bypassing
logins. SQL Injection is usually used to attack Web Views or
a web service, but it can also be used to attack Activities in
Android applications.

SQL INJECTION

Consider the code segment in Figure 1. Here, a SELECT
query is formed with user provided user id (uid) and
password (pwd) variables in the method isValidUser(). The
input is obtained from username and password text boxes
(which we mark as source) in the onCreate() method. After
the query runs, the output is the name and grade, which are
displayed by setting as text to textboxes (data sink) in the
isValidUser() method.

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main);
username = findViewBylId(R.id.textView1); //data source
password = findViewById(R.id.textView1); //data source
}

public boolean isValidUser() {

uid = findViewByld(R.id.editTextl); //retrieving user provided id
pwd = findViewByld(R.id.editText2); //retrieving user provided
password

String qry = "select name, grade from users where user_id=""+ uid +
and password ="'+ pwd +"";
SQLiteDatabase db;

Cursor ¢ = db.rawQuery (qry, null);
name.setText(c.getString(columindex1)); //data sink
grade.setText(c.getString(columnindex2)); //data sink
return c.getCount() != 0;

Figure 1: Example of vulnerable code

Assume, user id is “jdoe”, pwd is “secret”. Then, the gry is
select * from users where password= ‘jdoe’ and pwd
=’secret’. Since, the input is not filtered, an attacker can
exploit the application by providing malicious inputs for uid
value as ’ or 1=1 —, whereas pwd value as blank. The qry
would be select * from users where password="" or 1=1 --
’and pwd="". The -- symbol means comment by query
engine. Thus, the actual query gets changed to select * from

IEEE
(@ computer

soclety

users where password="or 1=1. This query will be evaluated
as true and select all information from users table as opposed
to one entry matching with uid and pwd. This way, an
attacker can bypass authentication.

II1.

To determine the destination of tainted data from every
possible point of a program, dataflow analysis can be used.
Data flow analysis works on a fixed abstraction and the
outcomes are often a) flat to symbolic over-approximation,
and b) do not show instance of traces defining paths from the
origin to sinks for a given vulnerability [6].

TAINTED DATA FLOW ANALYSIS FOR SQL INJECTION

We applied the Flowdroid tool [1] to detect SQL Injection (as
shown in Figure 1). We first define the sources and the sinks
(Figure 2). Source means location where input data may be
obtained. For example, edit text field could be a data source.
To use it as a source, we declare the base class name of
“findViewByld(int)” method which is “android.view.View”
class. We need to declare the use of the source in the
application. Here, in this example, the source and sink both
have been used in the Activity class. Sink is the final
destination of the data. In this example, we used source to
find out the data from the database then finally set the data in
a Textview, which is the sink of the data. Figure 2 shows the
way of declaration of source and sink in a text file. Here, both
source and sink have been used in the Activity class.

<android.app.Activity: android.view.View
findViewByld(int)> -> SINK

<android.app.Activity: android.view.View
findViewByld(int)> -> SOURCE _

Figure 2: Source and sink definition

The tool provides us a list of dataflow where information
leakage happens in command line (Figure 3).

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - The
sink $r2 = virtualinvoke $r@.<sqlinjection.sqliexample.sqlinjectiond717 MainActi
vity: android.view.View findViewById(int)>(2131165304) in method <sqlinjection.s
qliexample.sqlinjectiond717 MainActivity: void onCreate(android.os.Bundle)> was
called with values from the following sources:

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - - $r

2 = virtualinvoke $r0.<sqlinjection.sqliexample.sqlinjectiond717 MainActivity: a
ndroid.view.View findViewById(int)>(2131165232) in method <sqlinjection.sqliexam
ple.sqlinjectiond717.MainActivity: void onCreate(android.os.Bundle)>

[main] INFO soot.jimple.infoflow.android.SetupApplication$InPlaceInfoflow - Data
flow solver took 0.349459 seconds. Maximum memory consumption: 94.541576 MB
[main] INFO soot.jimple.infoflow.android.SetupApplication - Found 1 leaks
Arabins-MacBook-Pro:FlowDroid-2.6.1 arabin$ I

Figure 3: A screenshot of the Fowdroid output

We also receive an xml output file that highlights the source
and the sinks (Figure 4).

224

<?xml version="1.0" encoding="UTF-8"?>
<DataFlowResults FileFormatVersion="101">
<Results>
<Result>
<Sink Statement="$r2 = virtualinvoke
$r0.<sqlinjection.sqliexample.sqlinjection0717.MainActivity:
android.view.View findViewBylId(int)>(2131165304)"
Method="&It;sqlinjection.sqliexample.sqlinjection0717.MainActivity:
void onCreate(android.os.Bundle)>">
<AccessPath Value="$r0"
Type="sqlinjection.sqliexample.sqlinjection0717.MainActivity"
TaintSubFields="true">
<Fields>
<Field
Value="<sqlinjection.sqliexample.sqlinjection0717.MainActivity:
android.widget.EditText input>"
Type="android.widget.EditText"></Field>
</Fields>
</AccessPath>
</Sink>
<Sources>
<Source Statement="$r2 = virtualinvoke
$r0.<sqlinjection.sqliexample.sqlinjection0717.MainActivity:
android.view.View findViewByld(int)>(2131165232)"
Method="<sqlinjection.sqliexample.sqlinjection0717.MainActivity:
void onCreate(android.os.Bundle)>">
<AccessPath Value="$r2" Type="android.view.View"
TaintSubFields="true">
</AccessPath>
</Source>
</Sources>
</Result>
</Results>
</DataFlowResults>
Figure 4: XML output from Flowdroid between source and sink

Figure 4 shows the output of the data flow analysis by
Flowdroid. It provides a list of possible sinks of the data then
looks for possible source for each sink. In the xml file, we
can see that the sink and source present in the source code
(Figure 1) were found.

ACKNOWLEDGEMENT

The work is partially supported by the National Science
Foundation Award: proposal# 1723578.

REFERENCES

[1] FlowDroid, https:/github.com/secure-software-engineering/FlowDroid

2] Mobile Threat Landscape, 2017, Accessed from
https://www.trendmicro.com/vinfo/us/security/research-and-
analysis/threat-reports/roundup/2017-mobile-threat-landscape

[3] Introduction to Database Security Issues Types of Security Database,
Accessed from
http://www.academia.edu/6866589/Introduction_to_Database_Security
_Issues_Types_of Security Database

[4] N. Davis, Secure Software Development Life Cycle Processes. Software
Engineering Institute, 2013.

[5] Mobile Security, Accessed from
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

[6] A. Fehnker, R. Huuck, W. Rodiger, Model checking dataflow for
malicious input, Proceeding of the Workshop on Embedded Systems
Security, Article No. 4, Taipei, Taiwan, October 2011.

