
,

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

DroidPatrol: A Static Analysis Plugin For Secure Mobile

Software Development

Md Arabin Islam Talukder1, Hossain Shahriar1, Kai Qian1, Mohammad Rahman2, Sheikh Ahamed3 Fan Wu4, Emmanuel Agu5

1Kennesaw State University, Marietta, GA, USA
2Florida International University, Miami, FL, USA

3Marquette University, Milwaukee, WI, USA
4Tuskegee University, Tuskegee, AL, USA

5Worcester Polytechnic Institute, Worcester, MA, USA

mtalukd1@students.kennesaw.edu, {hshahria, kqian}@kennesaw.edu, marahman@fiu.edu

sheikh.ahamed@mu.edu, fwu@tuskegee.edu, emmanuel@wpi.edu

Abstract - While the number of mobile applications are

rapidly growing, these applications are often coming with

numerous security flaws due to the lack of appropriate coding

practices. Security issues must be addressed earlier in the

development lifecycle rather than fixing them after the

attacks because the damage might already be extensive. Early

elimination of possible security vulnerabilities will help us

increase the security of our software and mitigate or reduce

the potential damages through data losses or service

disruptions caused by malicious attacks. However, many

software developers lack necessary security knowledge and

skills required at the development stage, and Secure Mobile

Software Development (SMSD) is not yet well represented in

academia and industry. In this paper, we present a static

analysis-based security analysis approach through design and

implementation of a plugin for Android Development Studio,

namely DroidPatrol. The proposed plugins can support

developers by providing list of potential vulnerabilities early.

Keywords-Android, Secure software development,

Static analysis, Tainted data flow, SQL Injection.

I. INTRODUCTION

With the increased demands of mobile applications in

recent years, we have also witnessed numerous major cyber-

attacks, resulting in stolen personal credit card numbers,

leakage of classified information vital for national defense,

industrial espionage resulting in major financial losses, and

many more consequences. Hackers have managed to make

secure computing a more difficult task. Therefore, there is a

greater need for not only including the concept of

cybersecurity but also the secure software development in

the training of computer science, information technology,

and related field professionals. The rapid growth of mobile

computing also results in a shortage of professionals for

mobile software development, especially for Secure Mobile

Software Development (SMSD) professionals, and

insufficient tool support to develop secure mobile

applications [12, 13, 14].

If all or most of the possible vulnerabilities can be

addressed and fixed for a mobile software during its

development phase, the potential attack space will be

minimized. Many open source static Java code analysis

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00087

565

tools help developers to maintain and clean up the code

through the analysis performed without actually executing

the code such as Eclipse IDE [15], IntelliJ IDE [16], and

FindBugs Plugin [17]. These tools focus on finding

probable bugs such as inconsistencies, helping improve the

code structure, conform source code to guidelines, and

provide quick fixes. The security vulnerability checking is

not their major task.

Source code analysis tools, also referred to as Static

Application Security Testing (SAST) Tools, are designed to

analyze source code and to help to find security flaws with

a high confidence that what's found is indeed a flaw (readers

can see the survey [8] for list of exhaustive state-of-the art

tools). However, there is no tool that can just automatically

finds all flaws and can guarantee all detecting are positive

or never miss any potential flaws [18]. Currently, there is no

tool available that would allow mobile application

developers to analyze their project source code for detecting

security flaws within the development environment (e.g.,

Android Development Studio).

In this paper, we design and implement DroidPatrol, a

plugin to be integrated with the Android Development

Studio to perform tainted data flow-based static analysis.

DroidPatrol allows developers to specify a list of sources

and sinks and enable them to see the possible paths within

the source code and suggestion of corresponding fixes.

This paper is organized as follows. Section II discusses

related work. Section III provides overview of tainted data

flow analysis, followed by the design of DroidPatrol.

Finally, Section IV concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background on Static anlaysis

Static program analysis generally involves an

automated tool that takes as input the source code (or object

code in some cases) of a program, examines this code

without executing it, and yields results by checking the

code structure, the sequences of statements, and how

variable values are processed throughout the different

mailto:mtalukd1@students.kennesaw.edu
mailto:marahman@fiu.edu
mailto:sheikh.ahamed@mu.edu
mailto:sheikh.ahamed@mu.edu
mailto:emmanuel@wpi.edu

566

function calls. The main advantage of static analysis is that

all the code is analyzed [8]. This differs from dynamic

analysis where portions of code could only be executed

under some specific conditions that could never be met

during the analysis phase. A typical static analysis process

starts by representing the analyzed app code to some

abstract models (e.g., call graph, control-flow graph, or

UML class/sequence diagram) based on the purpose of

analysis.

A control-flow analysis is a technique to show how

hierarchical flow of control within a given program are

sequenced, making all possible execution paths of a

program analyzable [8]. A data-flow analysis [31] is a

technique to compute at every point in a program a set of

possible values. This set of values depends on the kind of

problem that has to be solved using data-flow analysis. The

analysis allows us to identity the set of definitions

reachable at every program point. A program usually starts

with a single entry point. A quick inspection of the main

entry method's code can list the method(s) that it calls.

Then, iterating this process on the code of the called

methods leads to the construction of a directed graph,

commonly known as the call graph in program analysis.

Our work relies on the call graph generated by Soot

analyzer [5], which is a popular tool also used by others.

B. Related work

Below, we discuss a number of commonly available

tools for static and dynamic analysis of android

applications. None of them allows developers to integrate

the tool in Android Development Studio to streamline the

identification of common Android Security bugs and fix

them early. Readers are suggested to see the detailed survey

[8] for other available tools for statically analyzing Android

Applications for security bug identification.

FlowDroid is an open source Java based static analysis

tool that can be used to analyze Android applications for

potential data leakage. FlowDroid is a context, object

sensitive, field, flow, and static taint analysis tool that

specifically models the full Android lifecycle with high

precision and recall [23]. The tool can detect and analyze

data flows, specifically an Android application's bytecode,

and configuration files, to find any possible privacy

vulnerabilities, also known as data leakage [24]. It is not

intended to analyze malware [19]. However, it cannot find

common security bugs in Android such as SQL Injection,

output encoding, Intent leakage, and lack of secure

communication.

Cuckoo is a widely used malware analysis tool based

on dynamic analysis (i.e., it runs an application under test

in a controlled emulator). It is capable of methodically

examining multiple variants of Android malware

applications through controlled execution into virtual

machines that monitor the behaviors of the applications

[21]. It comprises a host that is responsible for the sample

execution and the analysis in which the guests run. When

the host has to launch a new analysis, it chooses the guests

and uploads that sample as well as the other components

that are required by the guest to function [2O]. Once the

analysis has completed, the analyzer refers the results of the

analysis to the ResultServer, which in turn will implement

whichever processing modules are configured (the modules

used to populate the product of the analysis, the report) and

produce the report [22].

Yanick et al. [11] detected logic bombs in Android

applications using a number of static analysis tools,

including FlowDroid, Kirin, TriggerScope, and

DroidAPIMiner. A logic bomb is an unauthorized software

that changes the output of the Android application or does

applications actions that are not intended. Among the other

analysis tools, FlowDroid had the highest false positive

percentage, and second lowest false negative percentage.

The DroidSafe project [9] developed effective program

analysis techniques and tools to uncover malicious code in

Android mobile applications. The core of the system is a

static information flow analysis that reports the context

under which sensitive information is used. For example,

Application A has the potential to send location

information to network address. DroidSafe reports

potential leaks of sensitive information in Android

applications. It still suffers from imprecision due to 1)

unacceptable numbers of false positive alarms, and 2) the

use of unsound techniques that may leave errors uncovered.

Many other efforts have been made to enhance the

secure software development in recent years. Application

Security IDE (ASIDE) plug-in for Eclipse can warn

programmers of potential vulnerabilities in their code and

assists them in addressing these vulnerabilities. The tool is

designed to improve awareness and understanding of

security vulnerabilities and to increase utilization of secure

programming practices. ASIDE addresses input validation

vulnerabilities, output encoding, authentication and

authorization, and several race condition vulnerabilities [1-

3]. However, it cannot identify Android specific security

flaws. Further, ASIDE only works in the Java Eclipse IDE

and cannot support Android Development Studio.

Android has a complex communication system for

sharing and sending data in both inter and intra

applications. Simple static analysis usually cannot satisfy

further requirement. Malicious applications may take

advantage of built-in feature (e.g., Intent object broadcast

by victim applications can be intercepted by a malware

running on the same device) to avoid detection. Recently

many tools are developed to perform taint-based static

analysis checking, like Findbugs and DidFail [1O]. They

are not capable of detecting all known Android security

bugs based on OWASP guidelines [7]. Detection of

potential taint flows can be used to protect sensitive data,

identify leaky apps, and identify malware.

III. DROIDPATROL DESIGN AND IMPLEMENTATION

DroidPatrol (see Figure 1) is designed based on Soot [5]

and Jimple [4]. Soot is one of the most used static analyzers

for Java-based applications. Android application is based

on Java, so we used some basic concept and static analysis

library APIS of Soot. Apart from Soot, DroidPatrol

requires an input application file (e.g., app-debug.apk),

567

dependent libararies (e.g., android.jar) and a list of sources

and sinks (e.g., SourceAndSink.txt) file to perform the flow

analysis. It first decompiles the input apk file followed by

generating and analyzing call graphs (between method

definition and method call locations) to find out possible

data leakages.

A. Scope of DroidPatrol

Figure 1: Architecture of DroidPatrol

missing any (potentially dangerous) behaviors of

applications. This is especially significant due to a number
DroidPatrol plugin is intended to identify Android

security bugs based on the on most current OWASP 2O17

mobile top 1O mobile security risks [7] for the category of

SQL injection, unintended data leakage, insecure

communication, insecure data storage vulnerability

detectors. Table 1 shows examples of data flow leakage,

list of sources and sinks for extraneous functionality,

improper platform usage, insecure data storage, insecure

communication, and insecure authorization. DropidPatrol

can recognize SQL injection vulnerability and data leakage

in mobile applications, which may face the threat of

potential malicious code injection, and then issue a warning

on the code line. Following the provided options,

developers can enforce a new secure statement to replace

the unsecure statement. A built package can also be loaded

into the Android Studio IDE, which will result in parsing

Android java source code, identifying specific API calls,

warning potential vulnerabilities, recommending code

statements for replacement.

Table 1: Example of Detector, Sources and Sinks

Example of Flow

Detector

Source (example) Sink (example)

Extraneous

Functionality

Bundle class and Intent

class

Log class

Improper Platform

Usage

View class HTTP class

Insecure Data Storage SQLite database class,

Shared Preferences class

Rest API,

SmsManager class

Insecure

Communication

Intent, Bundle class Broadcast class

Insecure Authorization EditText class Backend Rest Api,

SmsManager class

For many Android security vulnerabilities and flaws on

the top 1O mobile risks by OWASP and other new

identified unlisted flaws we need to develop our own

customized detectors. A practical challenge in static

analysis is to control the rate of false alarms while not

of features of Android.

First, Android is an event-based system. The control

flow is driven by events from an application environment

that can trigger various method calls. How to capture all the

possible control flow paths in this open and reactive system

while not introducing too many spurious paths (false

alarms) is a significant challenge.

Second, the Android runtime consists of a large base of

library code that an app depends upon. The event-driven

nature makes a large portion of the control-flow involve the

Android library. While fully analyzing the whole library

code could improve the analysis' faithfulness, it may also

be prohibitively expensive (or imprecise).

Third, Android is a component-based system and

makes extensive use of inter-component communication

(ICC). For example, a component can send an Intent to

another component. The target of an Intent could be

specified explicitly in the Intent or be implicit and decided

at runtime. Both control and data can flow through the ICC

mechanism from one component to another. Capturing all

ICC flows accurately is a major challenge in static analysis.

Before we discuss our design (in section C) addressed these

challenges, we provide a working example of SQL

Injection detection using DroidPatrol in the next section.

B. An Example Application – Data Leak Detection with

DroidPatrol

SQL injection is a common security vulnerability in mobile

applications leading to data leakage. It works by adding

user supplied data to a query string which leads to the

alteration of SQL queries leading hackers to access to

unauthorized data and bypassing logins. SQL Injection is

usually used to attack Web Views or a web service.

However, it can also be used to attack Activities in Android

applications.

Consider the code segment in Figure 2. Here, a

SELECT query is formed with user provided user id (uid)

and password (pwd) variables in the method isValidUser().

568

The input is obtained from username and password text

boxes (which we mark as source) in the onCreate() method.

After the query runs, the output is the name and grade,

which are displayed by setting as text to textboxes (data

sink) in the isValidUser() method.

Figure 3: Source and sink definition

The tool provides us a list of dataflow where

information flow between sources and sinks are displayed

in the log output of the Android IDE (Figure 4).

Figure 2: Example of vulnerable code

Assume, user id is "jdoe", pwd is "secret". Then, the qry is

select * from users where password= 'jdoe' and pwd

='secret'. Since, the input is not filtered, an attacker can

exploit the application by providing malicious inputs for

uid value as ’ or 1=1 – , whereas pwd value as blank. The

qry would be select * from users where password='' or 1=1

-- 'and pwd=''. The -- symbol means comment by query

engine. Thus, the query is changed to select * from users

where password='' or 1=1. This query will be evaluated as

true and select all information (name and grade) from the

table users as opposed to one entry matching with the uid

and pwd. This way, an attacker can bypass authentication.

To determine the tainted data flow from every possible

point of a program, dataflow analysis can be used. Data

flow analysis works on a fixed abstraction and the

outcomes are often a) flat to symbolic over-approximation,

and b) do not show instance of traces defining paths from

the origin to sinks for a given vulnerability [6].

We first define the sources and the sinks (see Figure 3).

Source means location where input data may be obtained

from external inputs such as a user or database query. For

example, in Figure 3, the source is defined as database

Cursor object. This object allows a program to retrieve

data. Data obtained from source can be transferred to a third

party via SMS messaging. In Android, to send an SMS

message, SmsManager object can be used which

subsequently requires SEND_SMS permission to be listed

in the manifest file. Figure 2 shows both SmsManager class

and SEND_SMS permission listed in the sink list. A

developer can include other possible sources and sinks

based on secure programming practices and OWASP

guidelines. This allows the flexibility to not only detecting

new security bugs, but also reducing false positive warning.

Figure 4: A sample result from DroidPatrol analysis

We show an example of highlighted code segment in the

project source code when enabling the DroidPatrol.

Moving the cursor on the highlighted method calls provide

suggestions to fix the code for input validation before

reaching to the sinks. Figure 5 shows that DroidPatrol

detects code fragment related to data leak. It also shows the

summarized output of the data flow analysis. It provides a

list of possible sinks of the data then looks for possible

source for each sink.

Figure 5: A Sample screenshot of DroidPatrol plugin

highlighting vulnerable code

IV. CONCLUSIONS

Currently, there is no available plugins for Android

Development Studio that can be integrated for static data

public void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main);

username = findViewById(R.id.textView1); // source

password = findViewById(R.id.textView1); // source

}

public boolean isValidUser(){

uid = findViewById(R.id.editText1); //retrieving id

pwd = findViewById(R.id.editText2); //retrieving password

String qry = "select name, grade from users where user_id= '"

+ uid + "' and password = '" + pwd +"'";

SQLiteDatabase db;

...

Cursor c = db.rawQuery (qry, null);

name.setText(c.getString(columindex1)); //sink

grade.setText(c.getString(columnindex2)); //sink

return c.getCount() != O;

}

<android.database.Cursor: java.lang.String getString(int)> ->

SOURCE

<android.telephony.SmsManager: void

sendTextMessage(java.lang.String,java.lang.String,java.lang.String,a

ndroid.app.PendingIntent,android.app.PendingIntent)>

android.permission.SEND_SMS -> _SINK_

569

flow analysis. In this paper, we developed a plugin tool

named DroidPatrol. We plan to make the tool open source

for public use in the near future. The plugin can perform

tainted data flow analysis of application as developers

implement mobile applications and wish to detect various

security bugs leading to privacy and data leaks based on

OWASP guidelines. Our tool can highlight the code that

should be paid attention for removing bugs. The plugin is

lightweight as it integrates seamlessly with Android Studio

without intensively consuming more system resources.

V. ACKNOWLEDGEMENTS

The work is partially supported by the National Science

Foundation under award: NSF proposal 1723586, 1723578,

1636995, 1438858, and KSU OVPR Award 2O18-19. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] Michael Whitney, Heather Richter Lipford, Bill Chu, and
Jun Zhu. Embedding Secure Coding Instruction into the
IDE: A Field Study in an Advanced CS Course. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE '15), Minneapolis,
MN, USA, 2O15, pp. 6O-65

[2] Michael Whitney, Heather Richter Lipford, Bill Chu, and
Tyler Thomas. "Embedding Secure Coding Instruction into
the IDE: Complementing Early and Intermediate CS Courses
with ESIDE" In press, Journal of Educational Computing
Research, 2O17

[3] J. Xie, H. Lipford, B. Chu, Evaluating interactive support for
secure programming, Proceeding of SIGCHI Conference on
Human Factors in Computing Systems, Austin, TX, 2O12,
pp. 27O7-2716.

[4] P. Pominville, Using Jimple Parse, March 2OO,
https://www.sable.mcgill.ca/soot/tutorial/jimpleParser/inde
x.html

[5] Soot Java Optimization Framework, Accessed from
http://sable.github.io/soot/

[6] Katerina Goseva-Popstojanovaa, Andrei Perhinschib, On the
capability of static code analysis to detect security
vulnerabilities, community.wvu.edu/-kagoseva/Papers/IST-
2O15.pdf

[7] Projects/OWASP Mobile Security Project - Top Ten Mobile
Risks,
https://www.owasp.org/index.php/Projects/OWASP_Mobil
e_Security_Project_-_Top_Ten_Mobile_Risks

[8] Li Li, Tegawend'e F. Bissyand'e, Mike Papadakis, Siegfried
Rasthofer, Alexandre Bartela, Damien Octeauc, Jacques
Kleina, Yves Le Traona, "Static Analysis of Android Apps:
A Systematic Literature Review", Information and Software
Technology, Volume 88, August 2O17, Pages 67-95.

[9] DroidSafe, https://mit-pac.github.io/droidsafe-src/

[1O] Karan Dwivedi Hongli Yin Pranav Bagree Xiaoxiao Tang
Lori Flynn William Klieber William SnavelyDidFail:
Coverage and Precision Enhancement

[11] Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E.,
Kruegel, C., & Vigna, G. (2O16). TriggerScope: Towards
Detecting Logic Bombs in Android Applications. 2O16 IEEE
Symposium on Security and Privacy (SP).
doi:1O.11O9/sp.2O16.3O

[12] Hossain Shahriar, Kai Qian, Md Arabin Islam Talukder,
Nidhibahen Patel and Dan Lo, Mobile Software Security
Risk Assessment with Program Analysis, Proc. of the 23rd

IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), Taipei, Taiwan, December 2O18, 2 pp.

[13] Kai Qian, Dan Lo, Hossain Shahriar, Lei Li, Fan Wu, Prabir
Bhattacharya, Learning database security with hands-on
mobile labs, Proc. of IEEE Frontiers in Education
Conference (FIE), Oct 2O17, pp. 1-6.

[14] Kai Qian, Hossain Shahriar, Fan Wu, Lixin Tao, Prabir
Bhattacharya, Labware for Secure Mobile Software
Development (SMSD) Education, Proceedings of the 2O17
ACM Conference on Innovation and Technology in
Computer Science Education, March 2O17, pp. 375-375.

[15] Eclipse IDE, https://www.eclipse.org/ide/

[16] IntelliJ IDEA, https://www.jetbrains.com/idea/

[17] FindBugs in Java Programs, http://findbugs.sourceforge.net/

[18] Hossain Shahriar et al., Mitigating program security
vulnerabilities: Approaches and challenges, ACM
Computing Surveys (CSUR), Vol. 44, Issue 3, Article 11,
June 2O12.

[19] Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E.,
Kruegel, C., & Vigna, G. (2O16). TriggerScope: Towards
Detecting Logic Bombs in Android Applications. 2O16 IEEE
Symposium on Security and Privacy (SP).
doi:1O.11O9/sp.2O16.3O

[2O] Underwood, K., & Locasto, M. E. (2O16). In Search of
Shotgun Parsers in Android Applications. 2O16 IEEE
Security and Privacy Workshops (SPW), 14O-155.
doi:1O.11O9/spw.2O16.41

[21] What is Cuckoo? - CuckooDroid v1.O Book. (n.d.).
Retrieved from https://cuckoo-
droid.readthedocs.io/en/latest/introduction/what/

[22] Installation - CuckooDroid v1.O Book. (n.d.). Retrieved
from https://cuckoo-
droid.readthedocs.io/en/latest/installation/

[23] Golam Sarwar Babil ; Olivier Mehani ; Roksana Boreli ;
Mohamed-Ali Kaafar. (2O13). On the effectiveness of
dynamic taint analysis for protecting against private
information leaks on Android-based devices. 2013
International Conference on Security and Cryptography
(SECRYPT) (pp. 1-8). Reykjavik, Iceland: IEEE.

[24] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Mcdaniel, P. (2O13). FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design
and Implementation - PLDI 14, 259-269.
doi:1O.1145/2594291.2594299

http://www.sable.mcgill.ca/soot/tutorial/jimpleParser/inde
http://sable.github.io/soot/
http://www.owasp.org/index.php/Projects/OWASP_Mobil
http://www.eclipse.org/ide/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://findbugs.sourceforge.net/

