2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

Hands-on File Inclusion Vulnerablity and Proactive
Control For Secure Software Development

Hossain Shahriar!, Md Arabin Islam Talukder', Mohammad Rahman?, Hongmei Chi?,
Sheikh Ahamed* Fan Wu®
'Kennesaw State University, Marietta, GA, USA
’Florida International University, Miami, FL, USA
3 Florida A&M University, Tallahassee, FL, USA
“Marquettee University, Milwaukee, WI, USA
STuskegee University, Tuskegee, AL, USA

hshahria@kennesaw.edu, mtalukd 1 @students.kennesaw.edu, marahman@fiu.edu,
hongmei.chi@famu.edu, sheikh.ahamed@marquette.edu, fwu@tuskegee.edu

Abstract — Security vulnerabilities in an application open the
ways to security dangers and attacks, which can easily
jeopardize the system executing that application. Therefore, it
is important to develop vulnerability-free applications. The
best approach would be to counteract against potential
vulnerabilities during the coding with secure programming
practices. Software security proactive control education for
secure portable and web application advancement is of
enormous interests in the Information Technology (IT) fields.
In this paper, we proposed and developed innovative learning
modules for software security proactive control based on
several real world scenarios to broaden and promote proactive
control for secure software development in computing
education.

Keywords—Proactive security control, Local file inclusion,
Remote file inclusion

[. INTRODUCTION

The proactive controls are planned to furnish software
engineers with beginning mindfulness for building secure
programming. These controls can help software developers
secure application coding reliably and entirely by proactively
detecting and fixing potential vulnerabilities all through the
application’s development phase, as opposed to the patch-
and-fix uninvolved customary security executive approach.
The security threats to mobile and web applications are
growing explosively.

Developing secure software is essential and crucial for
Confidentiality, Integrity, and Availability of all software
applications, including mobile and web applications. Most
malicious attacks are being launched by exploiting the
vulnerabilities in applications, such as sensitive data leakage
via inadvertent or side channel, unsecured sensitive data
storage, and data transmission. Potential vulnerabilities in
an application should be identified and mitigated before its
uses. The best approach should be to address them during the
software development phase — identify them when
vulnerable codes are being written. However, most

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.10274

604

development teams often have little to no time for security
remediation, as they are usually tasked for the project
deadlines [8].

Even worse, many development professionals lack
awareness of the importance of security vulnerabilities and
the necessary security knowledge and skills to be applied at
the development stage. Most developers do not learn about
secure coding or cryptography in the school. They lack
critical core controls, and usually do coding in insecure
ways, leaving many security holes These vulnerabilities
open the doors to security attacks, which can be prevented
when there are being generated [1-2].

In this paper, we introduce learning resources developed
toward promoting hands-on proactive security control.
These resources can be easily integrated into computing
curriculum and enable developing secured applications
while reducing vulnerabilities and the number of exploits in
practice.

The paper is organized as follows. Section II describes
the learning module design principles. Section III discusses
a sample module on resource inclusion leading to security
exploits, particularly remote file inclusion and local file
inclusion. Section IV provides our initial evaluation results
from classroom. Finally, Section V concludes the paper.

II. LEARNING MODULE DESIGN

We propose to build the capacity on ProActive Control
for Software Security through two venues: (1) curriculum
development and enhancement with a collection of ten
transferrable learning modules with companions hands-on
labs on mobile and web software development which can be
integrated into existing undergraduate and graduate
computing classes that will be mapped to ISA KAs proposed
in CS curricula 2013 to enhance the student’s secure mobile
software development ability; [5] (2) The mobile and web
hands-on learning modules and labs are designed based on

IEEE
computer
psouety

the OWASP 2018 Top Ten Proactive Controls open source
project with 10 most important security techniques that
should be applied proactively at the early stages of software
development to ensure maximum effectiveness. The project
provides ten transferable learning modules including Security
Requirement Specification Control, Data Store and Database
Security Control, Data Communication Control, Input
validation Control, Output Decoding Control, Access
control, Logging Monitoring and Exception Handling
Control, Framework API Control, File Inclusion Control,
Session Control and Digital Identity Implementation [2-4].

The learning modules are designed to map to
Information Security Area (ISA) knowledge arcas (KAs) of
CS curricula 2013 [5] so that they can be easily “plugged”
into existing CS/IA courses. Hands-on labs will be
incorporated into these modules to challenge and engage
students with real-world problems and build skills in
developing secure mobile applications. All the hands-on labs
are real-world based to support authentic teaching and
learning.

I1I. SAMPLE MODULE - INPUT

VALIDATION - FILE INCLUSION

Each learning module consists of pre-lab, hands-on lab,
and post-lab. Each module has its learning outcome. We
present a sample module for file inclusion proactive control.
The learning objectives are the followings:

e To describe the ways of insecure vulnerable misuse case
related to LFI and RFI

e To exploit misuse cases related to LFI and RFI

e To apply basic defensive practice skills against LFI and
RFI attacks.

Pre-Lab
The pre-lab provides students a concept overview on the
vulnerability and consequence of such vulnerability. A file
inclusion attack is a type of attacking approach, which is to
utilize vulnerabilities that are most commonly found to affect
web applications that rely on a scripting runtime. This issue
is caused when an application builds a path to executable
code using an attacker-controlled variable in a way that
allows the attacker to control which file is executed at the
runtime. There are two types of inclusion Remote File
Inclusion (RFI) and Local File Inclusion (LFI). LFI is a
vector that involves uploading malicious files to servers via
web browsers. The consequences of a successful LFI attack
aim to exploit insecure local file upload functions that fail to
validate user-supplied/controlled input, where the
Perpetrators can then directly upload malware to a
compromised system, as opposed to retrieving it using a
tempered external referencing function from a remote
location.

RFI is an attack targeting vulnerabilities in web
applications that dynamically reference external scripts. The

A.

605

perpetrator’s goal is to exploit the referencing function in an
application to upload malware (e.g., backdoor shells) from a
remote URL located within a different domain. The
consequences of a successful RFI attack include information
theft, compromised servers and a site takeover that allows for
content modification [6-8].

B. Hands-on Lab Activity

The hands-on practice lab provides a insecure vulnerable
misuse case with file including based on a real world scinario
and a secure use case for prevention and protection.

1) Insecure Vulnerable Misuse Case

The misused case lab is designed based on a real world
scenario. Students will know the security flaw and damage of
such flaw by attackers. The step by step guidelines are
provided for students to practice without formal lectures or
huge preparation. The screenshots are also shown in this
hands-on lab-activity as how the insecure vulnerable misuse
can happen and how to protect it.

The PHP codes usually include functions are useful
when one file is required several times. So instead of writing
the code again and again, we can include the file inside many
other files using the include() function. If a file, such as
home.php is required to be called several times in other files
such as, /fi.php, that could be just included shown in Fig. 1 to
Fig. 4.

[fi.php

<Jphp
Spage=pages/hame.php’
if fisset_GET[page]))
{
if [fle_exists{ pages/’.5_GET[page])
Spage<pages/ 5 GET page)
}
I3
nbsp;- a href=Tpage=login.php":Loginz 2=
<Iphp
include (Spage);

Figure 1: Code in Ifi.php

login.php

<php

echo “Login page’;
home.php

<Iphp

echo Wellcome to home”;

Figure 2: Code in login.php & home.php

A legitimate link might look like this:
http://localhost/test/Ifi.php. After we input this in a browser,
we can see the webpage like this

<« Cc @

(@) localhost/test/If

Home - Login Wellcome to home

Figure 3: Regular address of a PHP web page

Then we click on “Home”, the address looks like this:

< c @

@ localhost/test/\fi.php?page=home.php
Home - Login Wellcome to home

Figure 4: Regular address of a PHP web page which contain
included file

< ¢ @

Home - Login This is the first test file

@ localhost/test/If.php?page=.././db

Figure 5 Traverse designated file

knock.txt

<Iphp
/4
Mame : KNOCK
HOW TO USE:
FOR RFI
Clear .txt extention and upload the script on a server and

preform RFI.

b
3
<body style="background-color:rgb(200,200,200);"
<form action="<php Slink = fisset{S_SERVER[HTTPS]) 2 *https” : *http") . ":/ /5_SERVER[HTTP_HOST]S_SERVER[REQUEST_URIT"; echo "[Stink}%>"
method="POST™>
<centers
<strongs
</brs
<h1 color="rgh(255, 0, 31)"<b=KNOCK</h1>
</brs
<h2 color="reh(255, 0, 31)"<h=SHELL+/bz </h2
COMMAND : <input type="text" name="cmd" value=""/»
<input type="submit” name="submit" value="CMD" /=
</brs</br>
</centers
<br 2
<strongs

<Iphp
fffisset(S_POST[emd)i
Scmd=5_POST["emd’];
Sautput = shell_exec(TSemd) 2:617);
echo Scmd."/br=","<pres". Soutput."/pres";
}
3
«/fonts
«strong>
</bodys

Figure 6 Code of Knock script file

However, if the application fails to sanitize included file
input variable in the code, and an attacker is able to provide

606

the following URL (also shown in Fig. 5 — Fig. 8),
http://localhost/test/Ifi.php?page=../../db, the application will
print down the contents of db file. If attackers gained
permissions, they would traverse and show files, which lists
system accounts, and user attributes. In this case, we can see
the content of db file.

If a hacker successfully uploads a malicious script file
named knock shown in Fig. 6, which can then traverse and
run the uploaded script file shown in Fig. 7 and Fig. 8.

« (] L] imnDe =
o
KNOCK
SHELL
CONBIAND- o
Figure 7: Hacker browses the uploaded script file
L L L thOe =
KNOCK
SHELL
e 1=
dir

Volume in drive D has oo label.
Voluse Secial Nusber is CEDO-2DBF

Directory of D:\xampp\htdocs\test

09/23/2018 11:32 M

09/23/2018 11:32 m

03/23/2018 07:13 B
09/15/2018 11:41 BM
09/16/2018 09:51 BM
05/23/2018 01:56 M
09/15/2018 08:02 M
08/15/2018 11:42

28 dbl
254 index.php

2,147 knock
254 111 php
308 LFi1, php

pages
09/16/2018 09:49 B

£
09/23/2018 10:40 BM 167 cfi.htal

Figure 8: Hacker runs malicious command on the shell-like
web page

Similarly RFI requires an attacker to provide a remote
URL address in the input filed (e.g.,
http://example.com/test/.php?pref=http://attacker.com/knoc
k), which if not sanitized properly, can be exploited by
running arbitrary script located on an attacker controlled
remote host. Now, as we have seen the examples, we can see
the major difference here. With LFI/ RFI, malicious script
files are loaded and executed in the context of the web
application then cause sensitive information leakage.

2) Secure Use Case

There are many solutions to prevent from file inclusion
attacks. The secure use case shows how to prevent LFI &
RFI. The key solutions are:

e Never use arbitrary input data in a literal file include request

e Use a filter to thoroughly scrub input parameters against
possible file inclusions

e Build a dynamic whitelist

Like all code injection attacks, LFI and RFI are results
of allowing unsecure data into a secure context. The best way
to prevent an RFT attack is to never use arbitrary input data in
a literal file include request. Taking the example from earlier,
a more secure way of implementing this demo is by using a
whitelist to prevent LFI and RFI shown in Fig 9 and Fig. 10.

fi.php

<Iphp
Spage=pages/home.php’;
if (isset(S_GET[page’))
[
switchi(S_GET[page])
[
case home":
case ‘login’ Spage=pages/.5_GET[page]; break;
}
}
I8
<a href=7page=hame.php":Home:/a- - Login«/a»
Iphp

include (Spage);

Figure 9 Revised code of Ifi.php

In this case, even upload the malicious script successfully, it
still can't be run.

& ¢ @

@ localhost/test/lfi1.php?page=../uploadsknock

Home - Login Wellcome to home

Figure 10: Preventing from the malicious script

C. Post Lab

The Post-lab focuses on vulnerability prevention and
countermeasures. It introduces the security strategy and
solution for such vulnerability. A secured version let Students
will have opportunities to add-on their own solutions in this
section to show their creativities and enhance their
knowledge and skills on this subject.

IV. EVALUATION

We conducted pre and post lab survey in two
undergraduate course sections (Ethical Hacking —1T4843)
having total 45 students (with response rate 93%). The course
covers fundamental concepts of using various tools of
performing enumeration, probing of computers, while

assessing threats imposed by deployed software operating on
the hosts. The prelab survey was conducted before releasing
the hands-on lab materials and the postlab was conducted
after completing the lab. Students were asked to complete
each labware module in two weeks. The surveys were
designed to assess the gain in understanding and apply the
security concepts. We have total 7 prelab questions as shown
below (Figure 11).

Q1: Have you been ever working on proactive control security based
software development?

Q2: Have you been ever educated on secure software development?
Q3: I learn better by hands-on lab work

Q4: I learn better by listening to lectures.

QS5: T learn better by personally doing or working through examples.
QO6: I learn better by reading the material on my own.

Q7: 1 learn better by having a learning/tutorial system that provides
feedback.

Figure 11: Prelab questionnaires

Figures 12 (Q1-Q2) and 13 (Q3-Q7) show the response
of the classes. We had 20 responses in both class sections.
Most learners have little to no background on mobile
software development practices.

80

60

20

o Il hly
Ql Q2

® Not quite ® Somewhat = Neutral = Yes B Extensively

Figure 12: Prelab survey response —Q1-Q2
Scale: [Not quite|, [Somewhat], [Neutral],[Yes],[Extensively];

100

80

60

40

20 I

o L N Mal s
Strongly Agree Neutral ~ Disagree Strongly
agree disagree

HQ3 mQ4 mQ5 Q6 mQ7

Figure 13: Prelab survey response —Q3-Q7
Scale: [Not quite|, [Somewhat], [Neutral],[Yes],[Extensively];

The set of postlab had five questionnaires to assess how
well the learners learned the module topics (Figure 14).

Q1: I like being able to work with this hands-on labware

Q2: The real world security threat and attacks in the labs help
me understand better on the importance of proactive security
control based learning.

Q3: The hands-on labs help me gain authentic learning and
working experience on proactive security control

Q4: The online lab tutorials help me work on student add-on
labs/assignments

Q5: The project helps me apply learned proactive security
control to develop secure applications

Figure 14: Postlab questionnaires

Figure 15 shows the survey response of the class. Most
students agreed that our developed resources enabled them
gaining authentic learning experience on proactive security
control. We also found that most learners agreed that the
labware was very effective in the learning of data protection
knowledge while developing secure mobile applications.

120
100
80
60
40

20

Strongly Neutral

agree

Agree Disagree Strongly

disagree

=Ql mQ2 mQ3 =Q4 mQ5

Figure 15: Postlab survey response (Q1-Q5)

V.RELATED WORK

Theisen et al. [10] reported the popularity of software
security education offering for both on campus and MOOC
students. They found in their student student's performance
for on campus software security courses are better than
MOOC students, which essentially reinforces that systematic
development of resources. Despite the goal of the work was
to compare performance of students between traditional
degree programs and open source online courses, it is
noticable that using massive amount of videos is of not
effective (used in MOOC learning modules).Thus,
developing hands-on practices are more effective towards
enforcing software security among programmers.

Walden and Frank [10] reported a course on secure
software development having 10 module in 2006, with the
goal of making it as a capstone course towards secure
software engineering. The described modules include
security requirements, design principles and patterns, risk
management, secure programming (data validation,
cryptography), code review and static analysis. The course
focused on the web application. Since many curriculums do
not have the opportunity to offer secure software
development capstone course, our proposed hands on
labware may be easily integrate into related computing

608

courses including non-security courses such as databases,
operating systems, web development and mobile application.

Peruma et al. [12] focused on labware devoted to android
security hands on practice for experiential learning. Their
labware is based on real world example apps having
vulnerabilities and providing examples of securing them such
as intents, xml, JavaScript, broadcast, data storage, protection
against the denial of service attacks. The PLASMA lab does
not focus on proactive security control based learning where
malicious inputs are used to demonstrate vulnerability
exploitation and securing applications with coding examples.
Our developed labware can also be applied to both web and
mobile applications.

The SEED security labs [13] a large collection of
labware, which relies on the availability of special virtual
machine. Though it got popularity and adopted in many
schools who has no option to develop resources on their own,
the labware falls short of practical mitigation of security bugs,
particularly visibly pointing the source code having
vulnerabilities.

VL CONCLUSION

The overall goal of this paper is to address the needs and
challenges of building capacity with proactive controls for
software security development and the lack of pedagogical
materials and real-world learning environment in secure
software development through effective, engaging, and
investigative approaches through real world oriented hands-
on labware. We proposed and developed two innovative
learning modules for software security proactive control
based on several real world scenarios to broaden and
promote proactive control for secure software development
in computing education. The initial evaluation find the
module effectively helped students learning security
proactive control better. Our effort will help students and
software developers know what should be considered or best
practices during mobile and web software development and
raise their overall security level for software development.
Students can learn from the misuse of vulnerability cases and
insecure mistakes of other organizations. Simultaneously,
such cases should be prevented by mitigation actions
described in secure protected use cases for building secure
software.

REFERENCES

[1] ProjectssfOWASP Mobile Security Project - Top Ten Mobile
Risks, 2019, Accessed from
www.owasp.org/index.php/OWASP_Mobile_Security Proje
ct.

[2] OWASP Top 10 Proactive Controls 2018, Accessed from

https://www.owasp.org/index.php/OWASP_Proactive_Controls

[3] http://www.hackingarticles.in/beginner-guide-file-inclusion-
attack-lfirfi/

[4] https://resources.infosecinstitute.com/php-lab-file-inclusion-
attacks/

[5] Computer Science Curricula 2013 Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science,
https://www.acm.org/binaries/content/assets/education/cs201
3_web_final.pdf

[6] File inclusion attacks,
https://resources.infosecinstitute.com/file-inclusion-
attacks/#gref

[7] P.S.Sadaphule, Priyanka Kamble, Sanika Mehre, Utkarsha
Dhande, , Rashmi Savant, Prevention of Website Attack
Based on Remote File Inclusion-A survey, International
Journal of Advance Engineering and Research Development,
Special Issue on Recent Trends in Data Engineering Volume
4, Dec.-2017

[8]S. Biswas, M. M. H. K. Sajal, T. Afrin, T. Bhuiyan and M. M.
Hassan, A Study on Remote Code Execution Vulnerability in
Web Applications, International Conference on Cyber
Security and Computer Science (ICONCS’18), 2018.

[9] E. Amorso, Recent Progress in Software Security, IEEE
Software, March 2018, pp. 11-13.

[10] C. Theisen, L. Williams, K. Oliver, and E. Murphy-Hill,
Software Security Education at Scale, Proc. of 2016
IEEE/ACM 38th IEEE International Conference on Software
Engineering Companion, Austin, TX, USA, pp.346-355.

[11] J. Walden and C. Frank, Secure Software Engineering
Teaching Modules, Proc. of InfoSecCD Conference,
September 2006, Kennesaw, GA, pp. 19-23.

[12] Anthony Peruma, Samuel A. Malachowsky and Daniel E.
Krutz. 2018. Providing an Experiential Cybersecurity Learning
Experience Through Mobile Security Labs. Proc. of
IEEE/ACM 1st International Workshop on Security Awareness
from Design to Deployment, May 27, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, pp. 51-54.

[13] Hands on labs for security Education,
http://www.cis.syr.edu/~wedu/seed/index.html

609

