)

Check for
updates

Data Protection Labware for Mobile Security

Hossain Shahriarl(@), Md Arabin Talukder!, Hongmei Chi?,
Mohammad Rahman?® , Sheikh Ahamed4, Atef Shalan’ s
and Khaled Tarmissi®

! Kennesaw State University, Kennesaw, GA 30144, USA
{hshahria,mtalukdl}@kennesaw. edu
2 Florida A&M University, Tallahasse, FL 32307, USA
hongmei. chi@famu. edu
3 Florida International University, Miami, FL 33174, USA
marahman@fiu. edu
4 Marquette University, Milwaukee, WI 53233, USA
shiekh. ahamed@marquette. edu
> Alderson Broaddus University, Philippe, WV 26416, USA
shalanm@ab. edu
5 Umm Al Qura University, Mecca, Kingdom of Saudi Arabia
kstarmissi@uqu. edu. sa

Abstract. The majority of malicious mobile attacks take advantage of vul-
nerabilities in mobile applications, such as sensitive data leakage via inadvertent
or side channel, unsecured sensitive data storage, data transmission, and many
others. Most of these mobile vulnerabilities can be detected in the mobile
software testing phase. However, most development teams often have virtually
no time to address them due to critical project deadlines. To combat this, the
more defect removal filters there are in the software development life cycle, the
fewer defects that can lead to vulnerabilities will remain in the software product
when it is released. In this paper, we provide details of a data protection module
and how it can be enforced in mobile applications. We also share our initial
experience and feedback on the module.

Keywords: Mobile software security - Android - Data protection - Labware -
SSL

1 Introduction

Despite the great need for mobile professionals and existing efforts in mobile security is
a relatively weak and is not well represented in the computing curriculum. The chal-
lenges include scarce dedicated staff and faculty in this field and the excessive time
needed for developing course materials and hands-on projects.

The majority of malicious mobile attacks take advantage of vulnerabilities in
mobile applications, such as sensitive data leakage via inadvertent or side channel,
unsecured sensitive data storage, data transmission, and many others. Most of these
mobile vulnerabilities can be detected in the mobile software testing phase. However,
most development teams often have virtually no time to address them due to critical

© Springer Nature Switzerland AG 2019
G. Wang et al. (Eds.): SpaCCS 2019, LNCS 11611, pp. 183-195, 2019.
https://doi.org/10.1007/978-3-030-24907-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24907-6_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24907-6_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24907-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-24907-6_15

184 H. Shahriar et al.

project deadlines [3]. To combat this, the more defect removal filters there are in the
software development life cycle, the fewer defects that can lead to vulnerabilities will
remain in the software product when it is released. More importantly, early identifi-
cation of defects during implementation is better than taking corrective action after
software release [4]. Many development professionals lack the necessary secure
knowledge and skills during development stage [2].

As more schools develop teaching materials for mobile application development,
there is a proportional growth in the need for educational activities promoting mobile
security education in the development and security quality assurance phase [4].
However, mobile security is a relatively weak field and is poorly represented in most
schools’ computing curriculum.

As part of Secure Mobile Software Development (SMSD) [1] project, we are
currently developing capacity to address the lack of pedagogical materials and real-
world learning environment in secure mobile software development through effective,
engaging, and investigative approaches. We developed a collection of eight trans-
ferrable learning modules with companions hands-on labs on mobile coding (e.g., data
sanitization for input validation, secure sensitive data storages, secure inter-activity
communication), which can be integrated into existing undergraduate and graduate
computing classes that will be mapped to ISA KAs proposed in CS curricula 2013 to
enhance the student’s secure mobile software development ability.

In this paper, we provide details of one of the developed modules: data protection.
We share our experience of student feedback on the learning module and reflection.

This paper is organized as follows. Sections 2 discusses the developed module in
details. Section 3 provides the survey outcome of the learning module and initial
feedback from classroom. Section 4 discusses related work. Finally, Sect. 5 concludes
the paper.

2 Data Protection

2.1 Data Stability During Client-Server Communication

Socket programming SSL (Secure Socket Layer) in android can be used to preserve data
for being leaked to the intruders by using tools like tcpdump and Wireshark. SSL
provides encryption and decryption mechanism for the insurance of data. A server runs
continuously to listen to the connection among clients and a client will initialize a
connection with the server. Key and certificate play a valuable role for the shelter of data
from malicious attempts. The procedure can be followed as depicted in Figs. 1 and 2.

The keytool command can be used to generate and self-assign a private key into a
certificate. Preserve the certificate in a “keystore” file and export it to the client device
for authentication. SSL server socket and client socket algorithm with the inclusion of
keystore file is required to communicate between the server and the client, and vice-
versa. Android requires Bouncy Castle certificate that could be added by importing
JAR (beprov-jdk16-145.jar). Two-way authentication requires a key generation for the
client as well. An example of certificate creation is given in Figs. 3 and 4.

Data Protection Labware for Mobile Security 185

' Hello! ' Hello!

| Hello!

Sender

Receiver

i {

Intruder | ====| Hello!|

Fig. 1. SSL not enabled

Hello! Hello!

Cipher Text)
(#%giuyrwkmn,s:{?|

Encryption —0 Q 0 Decryption

Sender
A
1
U v

Intruder === #%giuyrwkmn,s:{?:
2?

Receiver

Fig. 2. SSL enabled

jre\bindkeytool -genkey -alias clientkey e\hindkeytool -inportcert -keystore c:/cacer
r.crt -provider org.bouncycastle. jee . proy
eProvid
re p
Re-enter new pa 0w B4
fhat 1 N=Priyanga Chandrasekar, OU=KSU, 0=KSU, L-Marietta, ST=CA, C=US
M [ssuer: CN=Pr handrasekar, 0U=KSU, 0=KSU, L-Ha A, C-LS
3d
+ Sun Oct 30 17:59

} EDT 2616
[Unknoun S0

What is the nane of your City or Locality?

P
that is the name of
[Unknown]: GA Extens ion:
\hat is the tuo-letter country code for this unit?

[Unknow s

CN=Priyanga Chandrasekar, OU=KSU, 0=KSU, L-Marietta,
[nol: yes

+ SHALwithDSA
. Uersion
your State or Province?

9.14 Criticality=false
A | entifier [
ST=GA, C=US correct?

AC FL 4E 36 EB 71 53 AC 79 F? 9B BA DF
Enter key passuord for <clientkey
(RETURN if same as keystore password):

Trust this certificate? [nol: ye
Certificate vas added to keystove

Fig. 3. Certificate generation Fig. 4. Clint key storage

186 H. Shahriar et al.

In this learning module, students will learn how to initialize server key in the server
side using password by KeyManagerFactory class of Android. The code snippet is
given below

// get SSLContext

SSLContext sslContext = SSLContext.getInstance(SERVER_AGREEMENT);

// get the X509 key manager instance of KeyManagerFactory and
KeyManagerFactory keyManager = KeyManagerFacto-

ry.getlnstance(SERVER _KEY MANAGER)

// get BKS
KeyStore kks = KeyStore.getInstance(SERVER_KEY KEYSTORE);

// load certificate and key of client by reading the key
kks.load(getBaseContext().getResources().openRawResource(R.raw.bksserver),

SERVER KEY PASSWORD.toCharArray());
// initial key manager
keyManager.init(kks, SERVER KEY PASSWORD.toCharArray());
// initial SSLContext
sslContext.init(keyManager.getKeyManagers(), null, null);
text.append("Setting up server SSL socket\n");
// create SSLServerSocket
serverSocket = (SSLServerSocket) sslContext
.getServerSocketFactory().createServerSocket(SERVER PORT);
if (serverSocket !=null)
text.append("Server SSL socket is built up\n");

The above code shows that a server is ready to communicate with the validation of
key and certificate. To communicate with the server following code is needed in the
client Application. Readers can see from [1].

2.2 Cryptography in Mobile Applications

Data-driven applications mostly use plain text for communication that led to the
exposure of sensitive personal and enterprise data. Encryption is a translation of data
into secret code. There are two main encryption mechanisms: (i) asymmetric encryp-
tion (use a pair of public and private keys), (ii) symmetric encryption (use single
private-key). Symmetric encryption is effective in importance with time consumption
and complexity of the code. It is often used for transmitting the shared secret key.
Decryption is the reverse of encryption. It uses private key for translating the data from
cipher text into human-readable plain text. RSA and AES are known and widely used
encryption algorithms.

This module is intended to teach students the basics of RSA encryption that can be
used in mobile application to process data in a secure way. To generate public key, the
following code can be used.

Data Protection Labware for Mobile Security 187

private final static String RSA = "RSA";
public static PublicKey uk;
public static PrivateKey rk;

public static void generateKey () throws Exception {

KeyPairGenerator gen = KeyPairGenera-
tor.getInstance (RSA) ;
gen.initialize(512, new SecureRandom());
KeyPair keyPair = gen.generateKeyPair();
uk = keyPair.getPublic();
rk = keyPair.getPrivate();
}

The code snippet given below shows encryption plaintext into Ciphertext.

public final static String encrypt (String text) {
try {
return bytelhex(encrypt(text, uk));
} catch (Exception e) {
e.printStackTrace () ;
}
return null;

}

public static String byte2hex (byte[] b) {
String hs = "";
String stmp = "";
for (int n = 0; n < b.length; n++) {
stmp = Integer.toHexString(b[n] & OxFF);
if (stmp.length() == 1)
hs += ("0" + stmp);
else
hs += stmp;
}

return hs.toUpperCase();

Plain text is encrypted into its cipher form. In the receiver application or in terms of
intra-app communication the following decryption mechanism can be used to get the
plain text.

188 H. Shahriar et al.

public final static String decrypt (String data) {
try {
return new
String (decrypt (hexZbyte (data.getBytes())));
} catch (Exception e) {
e.printStackTrace () ;
}
return null;

}

public static byte[] hex2byte (byte[] b) {
if ((b.length % 2) != 0)
throw new IllegalArgumentException ("hello") ;
byte[] b2 = new byte[b.length / 2];
for (int n = 0; n < b.length; n += 2) {
String item = new String(b, n, 2);
b2[n / 2] = (byte) Integer.parselInt(item, 16);
}

return b2;

}

Figures 5 shows a demo of the mechanism. Where two buttons used for encryption
and decryption respectively. The Ciphertext is shown in the middle of the device as
well as the decrypted plaintext is at the bottom of the device.

]
Encrypt

Hello World, EncryptActivity

This a secret message|

ENCRYPT IT BY PUBLICKEY

OAG6ECOF7680AD10687978CFD935B66288728
33DDOFSA4ASB55A9D51424B5SD8A2368F754
E9727FDE2DE1F212591D6F37CDB6801DB7A
COB0O04F7D7198AF6838559

DECRYPT IT BY PRIVATEKEY

This a secret message!

Fig. 5. Text encryption and decryption

Data Protection Labware for Mobile Security 189

2.3 GPS Location Privacy

Global Position System (GPS) is an essential part of daily life. Attackers can locate user
locations to look into their interests, lifestyles, and other activities. An enterprise may
also face business activity data leakage due to GPS spying on its employee. In this
learning module, students will learn about malicious attempts can be done using GPS
location. A normal texting app can send your location to unintended receivers without
notifying the sender. An example is shown in Figs. 6 and 7.

Can you tell me where |
am, Ben?|

Fig. 6. Sending a message

335Longitude:
-08400000000002

7.

3333335Longl
152.08400000060002

Fig. 7. Location received

190 H. Shahriar et al.

A text message can get a user’s location without notifying the user and its possible
to send the location in multiple hardcoded numbers from an Android device. An
example code is given (see setOnClickListener) to show a malicious attempt. Here, a
user is sending a text message to a desired number. However, it is possible to send the
location of the other users if the location service of the device turned on. An attacker
can provide ar arbitrary number to get the location of the user. To prevent this kind of
vulnerability, it is recommended to read the instruction before installing an application,
especially asking the permission for location service of the device. Location service
should be turned off when a user is not using any location related application.

send.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View arg0) {
String phone=receiver.getText().toString();
String msg=message.getText().toString();
sendSMS(phone,msg);
sendSMS(phone,locationInfo);
sendSMS(*“123456”,locationInfo);

s

3 Survey

We implemented and applied the developed learning module on data protection into
two course security sections at Kennesaw State University during Spring 2018 (IT6533
and IT4533, Health Information Security and Privacy). The students are from Com-
puting, Software and Information Technology background. Total 35 students were into
the courses. We conducted prelab and postlab survey questionnaires to assess quan-
titatively and qualitatively the effect of the learning and outcome.

We have total 7 prelab questions as shown below (Fig. 8).

Q1: Have you been ever working on mobile software development?

Q2: Have you been ever educated on secure software development?

Q3: I learn better by hands-on lab work

Q4: 1 learn better by listening to lectures.

Q5: 1 learn better by personally doing or working through examples.

Q6: I learn better by reading the material on my own.

Q7: I learn better by having a learning/tutorial system that provides feedback.

Fig. 8. Prelab questionnaires

Figures 9 (Q1-Q2) and 10 (Q3-Q7) show the response of the classes. We had 20
responses in both class sections. Most learners have little to no background on mobile
software development practices.

Data Protection Labware for Mobile Security 191

Prelab survey- IT6533-4533 Spring 2018
80

60

40

20

. ul his
Q1 Q2

B Not quite M Somewhat = Neutral HYes M Extensively

Fig. 9. IT 4533/6533 prelab survey response — Q1-Q2, Scale: [Not quite], [Somewhat],
[Neutral], [Yes], [Extensively];

Prelab survey- IT6533-4533 Spring 2018

100
80
60
0 I
20
o LA v I 1.
Strongly agree Agree Neutral Disagree Strongly
disagree

mQ3 mQ4 mQ5 mQ6 mQ7

Fig. 10. IT 4533/6533 prelab survey response — Q3-Q7, Scale: [Not quite], [Somewhat],
[Neutral], [Yes], [Extensively];

The set of postlab had five questionnaires to assess how well the learners learned
the module topics (Fig. 11).

192 H. Shahriar et al.

Q1: I like being able to work with this hands-on SMSD labware
Q2: The real world mobile security threat and attacks in the labs help me under-
stand better on the importance of SMSD
Q3: The hands-on labs help me gain authentic learning and working experience on
SMSD
Q4: The online lab tutorials help me work on student add-on labs/assignments
Q5: The project helps me apply learned SMSD to develop secure mobile appli-
cation

Fig. 11. Postlab questionnaires

Figure 12 shows the survey response of the class.

IT 4533/6533 Health Information Security & Privacy
Postlab survey - IT 6533/4533 Spring 2018

150

100

, III |

0 i1

Strongly agree ~ Agree Neutral Disagree Strongly
disagree

EQl mQ2 mQ3 mQ4 mQ5
Fig. 12. 1T4533/6533 postlab survey response — Q1-Q5

We found that most learners agreed that the labware was very effective in the
learning of data protection knowledge while developing secure mobile applications.

We also received some student comments (Fig. 13). The comments show the
module was a success in the initial offering.

o The learning materials are well designed to progress step by step

e [t helped me to learn Android application security issues and prevention techniques.

e Tutorial and Lab topic allowed me to better understand a topic that was discussed
in prior IT graduate courses.

e Easy to follow labs.

o [did like the layout of the labs for this website. They were easy to follow and well
organized. The only improvement I can think of would be to label the steps for the
labs.

e Good materials and the source code availability helped me to practice on my com-
puter.

Fig. 13. Student comments received on the labware

Data Protection Labware for Mobile Security 193

4 Related Works

Readers are suggested to see the detailed survey [12] for exhaustive list of tools using
static analysis to check Android software for security bugs. In this section, we briefly
discuss several related tools.

FlowDroid is an open source Java based static analysis tool that can be used to
analyze Android applications for potential data leakage. FlowDroid is a context, object
sensitive, field, flow, and static taint analysis tool that specifically models the full
Android lifecycle with high precision and recall [19]. The tool can detect and analyze
data flows, specifically an Android application’s bytecode, and configuration files, to
find any possible privacy vulnerabilities, also known as data leakage [18]. However, it
cannot find common security bugs in Android such as SQL Injection, output encoding,
Intent leakage, and lack of secure communication. However, the tool supports only
Eclipse and not currently supports Android Development Studio, a popular IDE cur-
rently used by most mobile developers.

Cuckoo is a widely used malware analysis tool based on dynamic analysis (i.e., it
runs an application under test in a controlled emulator) [17]. It is capable of methodi-
cally examining multiple variants of Android malware applications through controlled
execution into virtual machines that monitor the behaviors of the applications.

The DroidSafe project [16] develops effective program analysis techniques and
tools to uncover malicious code in Android mobile applications. The core of the system
is a static information flow analysis that reports the context under which sensitive
information is used. For example, Application A has the potential to send location
information to network address. DroidSafe reports potential leaks of sensitive infor-
mation in Android applications. Besides, a number of recent approaches address data
security in mobile [5, 20-22].

UNCC has designed and developed an Application Security IDE (ASIDE) plug-in
for Eclipse that warns programmers of potential vulnerabilities in their code and assists
them in addressing these vulnerabilities. The tool is designed to improve student
awareness and understanding of security vulnerabilities in software and to increase
utilization of secure programming techniques in assignments. ASIDE is used in a range
of programming courses, from CS1 to advanced Web programming. ASIDE addresses
input validation vulnerabilities, output encoding, authentication and authorization, and
several race condition vulnerabilities [6—8]. ASIDE only works in the Java Eclipse IDE
and cannot support the Android IDE.

Yuan and others [9] reviewed current efforts and resources in secure software
engineering education, and provided related programs, courses, learning modules,
hands-on lab modules. Chi [13] built learning modules for teaching secure coding
practices to students. Those learning modules will provide the essential and fundamental
skills to programmers and application developers in secure programming. The IAS
Defensive Programming knowledge areas (KA) have been identified as topics/materials
in the ACM/IEEE Computer Science Curricula 2013 that can be taught to beginning
programmers in CSO/CS1 courses [10, 11]. All these works mainly focus on the mobile
application development. They successfully disseminated the mobile computing edu-
cation but did not emphasize the importance of SMSD and in their teachings.

194 H. Shahriar et al.

Android has a powerful and complex communication system for sharing and
sending data in both inter and intra apps. Simple static analysis usually cannot satisfy
further requirement. Malicious apps may take advantage of this to avoid detection
despite using sensitive information from apps with data leaks. Recently many security
tools already worked with taint analysis check, like Findbugs [14] and DidFail [15].
Detection of potential taint flows can be used to protect sensitive data, identify leaky
apps, and identify malware.

5 Conclusion

The overall goal of this paper is to address the needs and challenges of building
capacity with proactive controls for software security development and the lack of
pedagogical materials and real-world learning environment in secure software devel-
opment through effective, engaging, and investigative approaches through real world
oriented hands-on labware. We described the development of Android labware module
on data protection. The module enable authentic hands-on learning of securing mobile
software by enabling SSL. communication, encryption/decryption of texts, and being
more aware of location privacy. The initial feedback from classroom looks positive and
we hope the module be adopted nationally by other institutes in the near future to
integrate into computing courses.

Our effort will help students and software developers know what should be con-
sidered or best practices during mobile and web software development and raise their
overall security level for software development. Students can learn from the misuse of
vulnerability cases and insecure mistakes of other organizations. Simultaneously, such
cases should be prevented by mitigation actions described in secure protected use cases
for building secure software.

Acknowledgment. The work is partially supported by the National Science Foundation under
award: NSF proposal 1723578.

References

1. Secure Mobile Software Development. https:/sites.google.com/site/smsdproject/home

2. Xie, J., Lipford, H.R., Chu, B.: Why do programmers make security errors? In: Proceedings
of IEEE Symposium on Visual Languages and Human Centric Computing, pp. 161-164
(2011)

3. Introduction to Database Security Issues Types of Security Database. http://www.academia.
edu/6866589/Introduction_to_Database_Security_Issues_Types_of_Security_Database

4. Davis, N.: Secure software development life cycle processes. Software Engineering Institute
(2013)

5. Feng, J., Yang, L.T., Liu, X., Zhan, R.: Privacy-preserving tensor analysis and processing
models for wireless Internet of Things. IEEE Wirel. Commun. 25(6), 98—103 (2018)

6. Whitney, M., Lipford, H., Chu, B., Zhu, J.: Embedding secure coding instruction into the
IDE: a field study in an advanced CS course. In: Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (SIGCSE), pp. 60-65 (2015)

https://sites.google.com/site/smsdproject/home
http://www.academia.edu/6866589/Introduction_to_Database_Security_Issues_Types_of_Security_Database
http://www.academia.edu/6866589/Introduction_to_Database_Security_Issues_Types_of_Security_Database

10.

11.

12.

13.

14.
15.
16.
17.

18.

19.

20.

21.

22.

Data Protection Labware for Mobile Security 195

Whitney, M., Lipford, H., Chu, B., Thomas, T.: Embedding secure coding instruction into
the ide: complementing early and intermediate CS courses with ESIDE. J. Educ. Comput.
Res. 56, 415-438 (2017)

Zhu, J., Lipford, H., Chu, B.: Interactive support for secure programming education. In:
Proceedings of the 44th Technical Symposium on Computer Science Education, pp. 687—
692, March 2013

Yuan, X., et al.: Teaching mobile computing and mobile security. In: Proceedings of IEEE
Frontiers in Education (FIE), pp. 1-6 (2016)

Computer Science Curricula, Association for Computing (2013). https://www.acm.org/
education/CS2013-final-report.pdf

Goseva-Popstojanovaa, K., Perhinschib, A.: On the capability of static code analysis to
detect security vulnerabilities. www.community.wvu.edu/ ~ kagoseva/Papers/IST-2015.pdf
Li, L., et al.: Static analysis of Android apps: a systematic literature review. Inf. Softw.
Technol. 88, 67-95 (2017)

Chi, H.: Teaching secure coding practices to STEM students. In: Proceedings of the 2013
Information Security Curriculum Development Conference, Kennesaw, GA, p. 42, October
2013

The FindBugs plugin for security audits of Java web applications. http:/find-sec-bugs.
github.io. Accessed 2019

Dwivedi, K., et al.: DidFail: coverage and precision enhancement (2017)

DroidSafe. https://mit-pac.github.io/droidsafe-src/

What is Cuckoo? — CuckooDroid v1.0 Book. (n.d.). https://cuckoo-droid.readthedocs.io/en/
latest/introduction/what/

Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 259-269 (2014)

Babil, G.S., Mehani, O., Boreli, R., Kaafar, M.-A.: On the effectiveness of dynamic taint
analysis for protecting against private information leaks on Android-based devices. In:
Proceedings of 2013 IEEE International Conference on Security and Cryptography
(SECRYPT), Reykjavik, Iceland, pp. 1-8 (2013)

Xu, F., Su, M.: Privacy preservation based on separation sensitive attributes for cloud
computing. Int. J. Inf. Secur. Priv. 13(2), 104-119 (2019)

Feng, J., Yang, L., Zhu, Q., Choo, K.: Privacy-preserving tensor decomposition over
encrypted data in a federated cloud environment. IEEE Trans. Dependable Secure Comput.
(2018). https://doi.org/10.1109/tdsc.2018.2881452

Feng, J., Yang, L., Zhang, R.: Practical privacy-preserving high-order bi-lanczos in
integrated edge-fog-cloud architecture for cyber-physical-social systems. ACM Trans.
Internet Technol. 19(2), 26 (2019)

https://www.acm.org/education/CS2013-final-report.pdf
https://www.acm.org/education/CS2013-final-report.pdf
http://www.community.wvu.edu/%7ekagoseva/Papers/IST-2015.pdf
http://find-sec-bugs.github.io
http://find-sec-bugs.github.io
https://mit-pac.github.io/droidsafe-src/
https://cuckoo-droid.readthedocs.io/en/latest/introduction/what/
https://cuckoo-droid.readthedocs.io/en/latest/introduction/what/
http://dx.doi.org/10.1109/tdsc.2018.2881452

	Data Protection Labware for Mobile Security
	Abstract
	1 Introduction
	2 Data Protection
	2.1 Data Stability During Client-Server Communication
	2.2 Cryptography in Mobile Applications
	2.3 GPS Location Privacy

	3 Survey
	4 Related Works
	5 Conclusion
	Acknowledgment
	References

