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a b s t r a c t 

Covering elastic substrates with stiff biomimetic scales significantly alters the bending behavior via scales 

engagement. This engagement is the dominant source of nonlinearity in small deflection regime. As de- 

formation proceeds, an initially linear bending response gives way to progressive stiffening and thereafter 

a geometrically dictated ‘locked’ configuration. However, investigation of this system has been carried out 

until date using assumption of periodic engagement even after scales contact. This is true only under the 

most ideal loading conditions or if the scales are extremely dense akin to a continuum assumption on the 

scales. However, this is not true for a practical system where scales are more discrete and where load- 

ing can alter periodicity of engagement. We address this nonlinear problem for the first time in small 

deflection and rotation regime. Our combined modeling and numerical analysis show that relaxing peri- 

odicity better represents the geometry of discrete scales engagement and mechanics of the beam under 

general loading conditions and allows us to revisit the nonlinear behavior. We report significant differ- 

ences from predictions of periodic models in terms of predicting the behavior of scales after engagement. 

These include the difference in the angular displacement of scales, normal force magnitudes along the 

length, moment curvature relationship as well as a distinct nature of the locking behavior. Therefore, 

non-periodicity is an important yet unexplored feature of this problem, which leads to insights, absent 

in previous investigations. This opens way for developing the structure-property-architecture framework 

for design and optimization of these topologically leveraged solids. 

© 2019 Published by Elsevier Ltd. 
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1. Introduction 

Biological structures have inspired synthetic materials with un-

paralleled performances such as ultra-lightweight design ( Hadadi,

2017; Bai et al., 2016; Xiong et al., 2015; Kendall, 1975 ), tunable

elasticity ( Aydin et al., 2010; Bootsma et al., 2017; Haque et al.,

2010; Kolle et al., 2013; Studart, 2013 ), and negative poisson’s ra-

tio ( Baughman et al., 1998; Ikai, 2017; Lakes, 1987; 2017; Xu et al.,

2017 ). Among biological structures, scales had appeared in the ear-

liest stages of evolution of complex multicellular life ( Bruet et al.,

2008 ) and continued their existence in spite of millions of years

of evolutionary pressures. This has made scales a naturally high

performance material with hybrid and multiscale response to var-

ious loads ( Chen et al., 2010; Ikoma et al., 2003; Lin et al.,

2010; Vernerey and Barthelat, 2014; Wegst et al., 2015; Zhu et al.,

2013; Nelms et al., 2018; Szewciw et al., 2017 ). For instance, scale

covered organisms have inspired dermal armors fabricated using
∗ Corresponding author. 
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 soft substrate with plate-like ceramics embedded on the top

ayer ( Martini and Barthelat, 2016 ). This design showed that over-

apping of scales provides flexibility, damage tolerance, and more

mportantly resistance to puncture. Similarly, armadillo scales have

lso been used as a source of inspiration for designing flexible ar-

or fabricated using hexagonal glass plates placed on an elastomer

ubstrate ( Chintapalli et al., 2014 ). This type of synthetic armors

lso yielded a good resistance to puncture as well as flexibility. In

ddition, the development of flexible armor has also been imple-

ented on fabrics ( Martini and Barthelat, 2016; Lin, 2017 ). How-

ver, in addition to material response of the scales themselves, the

cales serve as topological modifications to the underlying sub-

trate. This ‘structural’ as opposed to the purely material aspect of

cales reveals an entirely different regime of response encompass-

ng interesting nonlinear behavior. In this case, typically scales are

ttached to a low dimensional flexible substrate such as a beam or

 plate. In such cases, in contrast to armor like ‘local’ loading, scale

rrangement influences global deformation behavior such as bend-

ng as the biomimetic scale beam shown in Fig. 1 (a). For such scaly

ubstrates, mechanical behavior depends critically on the kinemat-

cs of scale sliding. 

https://doi.org/10.1016/j.ijsolstr.2019.01.021
http://www.ScienceDirect.com
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Fig. 1. (a) A manual illustration of periodic engagement of scales as the underlying structure bends uniformly. (b) An illustration of non-periodic engagement of scales 

through the example of a cantilever scaly beam. The substrate and scales were printed using Polylactic Acid (PLA) and Vinylpolysiloxane (VPS), respectively. The dimensions 

of the fabricated substrate are 200 mm (length) × 25 mm (width) × 5 mm (height) while scale dimensions are 35 mm × 25 mm × 1 mm with inclination angle of 10 °. 
The spacing between scales is 10 mm. Inset: Schematic of deformation modes. 
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In this context, particularly, scaly structures subjected to a

ure bending moment have been intensively investigated due to

heir practical and theoretical importance in isolating kinematics

nd developing moment curvature relationships. For instance, in

ne of the earliest studies, the mechanism of deformation of a

sh scale structure (with the assumption of deformable scales)

as investigated where the authors demonstrated the strain-

tiffening response in the structure ( Vernerey and Barthelat, 2010 ).

urther work on deformable scales followed investigated stretch

nd buckling response of teleost fish structures ( Vernerey and

arthelat, 2014 ). To address the mechanics of two-dimensional

caly composite shells, a computational approach was pro-

osed ( Vernerey et al., 2014 ) to establish the relationship between

tructure and the mechanical response. The authors studied the

tructure under both bending and twisting types of loading.

hese studies clearly showed that stiffer scales at a low angle

re desirable for maximum performance. Taking this route and

implifying such a high contrast system (stiff scales and soft sub-

trates) with rigid scales helps isolate the role of scale kinematics

n the mechanical nonlinearity. This simplified assumption leads

o closed form analytical relationships connecting the kinematics

o the mechanics. In this context, the kinematics and mechanics

f a one-dimensional scaly beam, assuming rigid scales, have

een addressed ( Ghosh et al., 2014 ). In this work, the authors

ssumed frictionless self-contact between scales. Their results

evealed the existence of a three different regimes of mechanical

esponse - linear, non-linear, and locking phase. The effect of fric-

ion in sliding kinematics of scales has then been further studied

n Ghosh et al. (2016) . The study revealed that friction does not

lter the overall nature of behavior although it advanced the lock-

ng envelopes further. Further follow up studies which outlined

he envelopes of validitity of the analytical models for rigid scale

ystem were also carried out using extensive finite element (FE)

nalysis ( Ghosh et al., 2017 ). Furthermore, composite architecture

ith scales only embedded on the top layer of a soft substrate

imitating elasmoid fish scales) have been presented to account for

he deformation mechanism due to compressive loading ( Browning

t al., 2013; Rudykh and Boyce, 2014 ). In their work, the authors

ound that volume fraction of the embedded plate like scales has

 prime role in changing the stiffness of an elastomer structure. 

These prior investigations underscore the growing importance

f using scales as topological additives on substrates. In order to

ully develop the structure-property-architecture paradigm for this

lass of hybrid materials, models are of critical importance. This is

ecause they do not only reveal and quantify the mechanism of

onlinear behavior but also indispensable for design and optimiza-

ion of the architecture. Therefore, it is imperative that models ac-
urately reflect salient aspects of the system. Thus far, all models

ave relied on the assumption of preserving periodicity through-

ut scales engagement. This assumption allows the isolation of a

undamental representative volume element (RVE), after which pe-

iodic boundary conditions are applied and a global derivative is

ffected to obtain the mechanical behavior ( Vernerey and Barthe-

at, 2014; 2010; Ghosh et al., 2014; 2016 ). However, in any realistic

tructural application such post-engagement periodicity is seldom

bserved either at a global or local level beyond the simplest of the

oading cases such as pure bending (see Fig. 1 (a)). Periodicity of

ngagement can be broken by simply applying different boundary

nd loading conditions. For instance, a cantilevered beam would

ot exhibit periodicity associated with pure bending. This is ap-

roximately shown in the contrasting geometries post engagement

etween Fig. 1 (a) and (b). In fact, the density of scales needed to

aintain even local periodicity for such cases is considerable and

ypically not observed in real systems which have discrete scales

istribution. More importantly, an enormously dense scale system

egins to mask the tunable nonlinearity specific to scale sliding

ue to the material constriction effect between the scales ( Ghosh

t al., 2014; Browning et al., 2013 ). Last but not the least, even for

lobal periodicity, the number of scales in real structures are often

ot sufficient to justify a continuous distribution. 

In spite of these known limitations, existing models still rely on

eriodic frameworks which cannot be directly applied or even ex-

ended to the non-periodic cases such as the case of a cantilever

eam illustrated in Fig. 1 (b). Therefore, it is imperative that in-

estigation be based on more accurate models which could ad-

ress the lack of periodicity and discrete nature of the scales. This

ork presents a more general theory of stiff scale covered elas-

ic substrate to establish the kinematics and mechanics of a one-

imensional scaly beam using scale-by-scale interaction approach

bviating the need for global or local periodicity. The theory is first

pplied to structures that undergo a uniform bending which are

ompared with results in literature ( Ghosh et al., 2014 ). The model

s then validated using FE-based numerical studies to show the ac-

uracy of our theory. Kinematics and mechanics of non-uniform

ending structures will also be presented for the cases of simply

upported and cantilever beams. The analytical results show an ex-

ellent match with FE results which prove that no other mechani-

al assumptions are needed to explain previous discrepancies. 

. Materials and methods 

.1. Geometry 

The geometry of the system in the reference configuration

s illustrated in Fig. 2 . A periodic arrangement in the reference
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Fig. 2. The reference configuration of scaly biomimetic system, and a schematic 

diagram of two neighboring scales. The sample has the same dimensions as the 

one illustrated in Fig. 1 . 
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configuration is apparent. The underlying substrate is assumed to

be a uniform beam of length L . The length of the scale is assumed

to be l s = l + L s where l is the exposed part of the scale and L s is

the embedded part. The thickness of the scale is considered to be

D and the beam thickness is h . It is further assumed that D � l s and

h � L s , an assumption commonly made indicating thin scales are

confined to the top of the substrate. We denote the ratio of scale

length to separation as η = l/d where d is the distance between

the scales. The scales start with an initial scale angle θ0 measured

with respect to the beam centerline and rotates to an angle θ as

the engagement proceeds. 

2.2. Materials 

A typical scaly biomimetic system features scales which are

much stiffer than the underlying substrate. This study targets a

system which could be comprised of a silicone based substrate of

modulus E = 1 . 5 MPa and poisson’s ratio ν = 0 . 42 ( Gercek, 2007 )

and PLA plastic for scales with E = 2 . 86 GPa. Note that soft poly-

meric substrate material can exhibit nonlinear elasticity. However,

for the range of deformation considered in this paper, our uniaxial

lab tests (using MTS Insight®) indicated linear behavior for both

materials. Clearly the moduli are widely divergent for these mate-

rials which allows for treating the scales as rigid as long as locking

conditions are not realized ( Vernerey and Barthelat, 2014; Ghosh

et al., 2017 ). The strains are assumed to remain small and the beam

can be approximated by the Euler–Bernoulli assumptions. A further

un-stretchable constraint on the beam is imposed. 

2.3. Kinematics 

The periodicity after contact is typically a strong constraint and

will be readily violated via boundary and loading conditions for

a practical system. An example of this is the case of non-uniform

bending such as cantilever or distributed loading. Local periodicity,

however, could be maintained for very high density of scales but
Fig. 3. (a) A geometry of a beam with scales at the initial configuration. (b) A co
hat would transition this system to a more composite and coating

ype systems dictated by material constrictions ( Browning et al.,

013; Rudykh and Boyce, 2014 ). 

In order to address the breakdown of periodicity, a scale-by-

cale discrete approach is introduced in this work. It is assumed

hat in the reference configuration, the position of the i th scale on

he substrate is given by x i . A general material point on the sub-

trate in the reference flat state is denoted by x . This is shown in

ig. 3 (a). The current configuration of the scale is quantified by the

oordinates x L 
i 
, x R 

i 
which are the left and right ends of the scale as

hown in Fig. 3 (b). In the case of pure bending, the typical measure

f deformation is the curvature. However, for more general load-

ng case an alternative way to devise deformation is presented in

his paper using a shape function f ( x ) and its normalized amplitude

which determines the extent of load. Therefore, in the current

onfiguration, the material point now occupies a vertical position

 (x ) = γ f (x ) . In practice, γ is a unit less constant which depends

n the load, beam geometry and substrate material. In pure bend-

ng, moment causes a substrate to deform into an arc. In small de-

ection, this arc will follow the form y (x ) = κ(1 / 2 x 2 − Lx/ 2) with

he instantaneous curvature κ = M/EI where L is the length of the

eam, M is the bending moment, and EI is the flexural rigidity of

he beam ( Budynas et al., 2008 ). We non-dimensionalize the cur-

ature with the beam thickness to get γ = κh . On the other hand,

he deflection of a simply supported beam of flexural rigidity EI

nd uniform loading w 0 has the form y (x ) = 

w 0 
24 EI (2 Lx 3 − x 4 − L 3 x ) .

n this case, γ = 

w 0 h 
3 

24 EI . Finally a cantilever beam with point load p 0 
t the tip deforms according to the function y (x ) = 

p 0 
6 EI (x 3 − 3 Lx 2 )

hich makes γ = 

p 0 h 
2 

6 EI ( Budynas et al., 2008 ). 

With the assumption of unstretchability, a scale level geometry,

hown in Fig. 3 (b), emerges before engagement commences. From

his geometry, we can write for any scale, before engagement: 

x R i = x L i + l cos ( θ0 + ψ i ) , 

y R i = y L i + l sin ( θ0 + ψ i ) , 

an ( ψ i ) = γ f ′ 
(
x L i 

)
, and x L i ≡ x i (1)

here θ0 is the initial inclination angle of the i th scale and ψ i 

s the inclination angle of the beam at the base of the i th scale.

his geometry will undergo further change as engagement pro-

eeds. The scales engagement can be tracked using the distance

arameter �i of the right extremity of the scale to the subsequent

cale as shown in Fig. 3 (b). This distance parameter can be written

s ( Thomas and Finney, 1996 ): 

i = 

1 

l 

((
y L i +1 − y R i +1 

)(
x L i +1 − x R i 

)
−

(
x L i +1 − x R i +1 

)(
y L i +1 − y R i 

))
, 

i = 1 , ., N s − 1 (2)

here N s is the total number of scales. As �i becomes zero, en-

agement condition is met. 
nfiguration of the deformed beam and scale geometry before engagement. 
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Fig. 4. (a) A deformed beam and scale geometry at a general point of engagement. (b) A FBD of an individual scale. The dotted-adjacent scales are added for clarification. 
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To illustrate the effect of geometry change after engagement,

wo sequential scales i and i + 1 at a general point of engage-

ent is taken. This is shown in Fig. 4 (a). At this point, scale i is

ngaged with scale i + 1 . After engagement, the geometry is con-

trained. The kinematics is governed by Eq. (1) with θ0 replaced

ith θ i . Moreover, θ i and θi +1 are both unknown, which makes

he geometry statically indeterminate. To resolve this impasse, an

dditional constraining condition utilizing the normal reaction mo-

ent balance between scales after engagement would be required.

he scale rotation is modeled (similar to previous work Vernerey

nd Barthelat, 2010; Ghosh et al., 2014 ) as a linear torsional spring

hich rotates about a fixed point. The spring constant K B is known

o follow the analytical expression K B = C B ED 

2 (L s /D ) n where E is

he modulus of elasticity of the substrate and C B , n are constants

ith values 0.66,1.75, respectively ( Ghosh et al., 2014 ). However,

sing a new set of finite element (FE) simulations, C B was found

o a more accurate value of 0.86 to specifically account for small

nitial inclination angles θ0 < 10 °. In the case that i + 1 th scale is

tself not engaged to i + 2 th , there are four unknowns which are

i , θi +1 , x R 
i 
, and y R 

i 
. In order to obtain these unknowns, four con-

training conditions would be required. These conditions are: the

xed length of the scale due to rigidity, the vanishing distance pa-

ameter due to contact, and the moment balance at the base of

he i th and i + 1 th scale using the free body diagram illustrated in

ig. 3 (b). Thus, the following equations emerge: 

an ( θi + ψ i ) = 

y R 
i 

− γ f ( x i ) 

x R 
i 

− x i 
, (3) 

an ( θi +1 + ψ i +1 ) = 

y R 
i 

− γ f ( x i +1 ) 

x R 
i 

− x i +1 

, and (4) 

x R i − x i 
)2 + 

(
y R i − γ f ( x i ) 

)2 = l 2 . (5) 

The constraining condition using the balance of the moment at

he base of the scales is slightly more involved. For the case of en-

agement of only two scales, balancing the moment about points

 and B , Fig. 4 (b) yields 

 i = 

K B ( θi − θ0 ) 

l cos ( αi ) 
= 

K B ( θi +1 − θ0 ) 

r i 
. (6) 

here αi = θi +1 + ψ i +1 − θi − ψ i and r i = 

 (
x R 

i 
− x i +1 

)2 + 

(
y R 

i 
− γ f ( x i +1 ) 

)2 
with i = 1 : N s − 1 . The fourth

quation is now 

( θi − θ0 ) r i − l cos ( αi ) ( θi +1 − θ0 ) = 0 . (7) 
he four highly nonlinear Eqs. (3) through (5) and (7) must be

olved numerically to obtain θ i , θi +1 , x R 
i 
, and y R 

i 
. Now extending

his to a more general case of N e scales being engaged, the to-

al number of unknowns would be: N e scale angles, θ i , i = 1 : N e ,

 N e − 2 coordinates of the right end of the scales (x R 
i 
, y R 

i 
) , i = 1 :

 e − 1 . Note that the coordinate requirements is reduced by one

ecause the last scale undergoes no further engagements. This

eads to a total of 3 N e − 2 unknowns. The total number of equa-

ions include the N e − 1 equations which correspond to constraint

n the length of the scales and 2 N e − 2 which are based on the ge-

metry of engagement of each scales excluding the last one. This

ields a total of 3 N e − 3 equations. Finally, an additional equation is

enerated through the moment balance at the base at the last (far

ight) scale. Thus we now have a system of 3 N e − 2 unknowns and

s many equations. Thus, balancing the moment about points B

nd C , Fig. 4 (b), yields the following equation which can be utilized

or finding the normal force between any two consecutive scales

except the case when N e = 2 or i = 1 , for which Eq. (6) must be

sed): 

 i +1 = 

K B ( θi +1 − θ0 ) + N i r i 
l cos ( αi +1 ) 

= 

K B ( θi +2 − θ0 ) 

r i +1 

. (8) 

Following the general procedure mentioned above, we can cal-

ulate the positions of all scales using a numerical solver such as

vailable in commercial code MATLAB to maintain equilibrium at

very step of deformation of the underlying substrate. Note that

he angle of the right most scale will progressively decrease af-

er engagement until it reaches an approximately zero angle. Ac-

ordingly, θi +1 becomes known and the unknowns are only x R 
i 

,

 

R 
i 
, and θ i . The structure now becomes statically determinate.

qs. (3) through (5) can then be simplified to uniquely determine

he position of the i th scale. After simplification, Eqs. (3) through

5) yield the following quadratic equation: 

x R i − x i 
)2 + γ f (x i +1 ) + 

γ f ′ (x i +1 ) + tan (θi +1 ) 

1 − γ f ′ (x i +1 ) tan (θi +1 ) 
(x R i − x i ) 

−γ f (x i ) = l 2 (9) 

Eq. (9) has only one unknown x R 
i 

and gives the right

 −coordinate of the i th scale. From this equation, one can obtain

 

R 
i 

as 

 

R 
i = γ f (x i +1 ) + 

γ f ′ (x i +1 ) + tan (θi +1 ) 

1 − γ f ′ (x i +1 ) tan (θi +1 ) 
(x R i − x i ) (10)

nd finally θ i is calculated via Eq. (3) . Note that Eqs. (3) , (9) , and

10) are only utilized for finding the equilibrium configuration of
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Table 3 

The element types and their count utilized in ABAQUS to achieve a convergence in 

the results. 

Number of scales in the model Total number of elements used 

CPS8 CPS6M 

20 59,312 10,346 

40 59,997 19,198 
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the scales once the far right scale has reached an approximately

zero inclination angle. 

2.4. Mechanics 

To better understand the mechanics of a scaly structure, one

can envisage that the bending mode is a combination of sub-

strate bending and scales rotation. In other words, the structure

stores energy during bending mode via the deflection of the

beam and rotation of scales that is modeled as a linear torsional

spring as described above ( Vernerey and Barthelat, 2010; Ghosh

et al., 2014 ). Thereafter, the mechanics of these structures is

approached by employing the principle of minimization the total

potential energy. We can write the total potential energy as


 = �beam 

+ �scales H(−�i ) − W . Here �beam 

is the strain energy

of the underlying beam, �scales is the strain energy due to the

rotation of scales, and W is the work done by the applied load and

H is the Heaviside step function to track engagement. Since the

deflection of the beam follows the form y = γ f (x ) , the energetic

principle is equivalent to finding γ that minimizes the potential

energy through setting its first derivative to zero. This leads to the

following variational energetic equation 

d�beam 
dγ

+ 

d�scales 
dγ

H(−�i ) =
d W/d γ . In general, the deflection will be characterized by the fol-

lowing two steps. First, we adopt γ for the case of a virgin beam

under appropriate loading conditions ( Budynas et al., 2008 ). Once

γ is acquired, the second step becomes finding an equivalent load

that balances the increase in the energy due to scales interaction. 

For the case of uniform bending, the work done by an applied

moment M is ∫ κ0 Mdκ ′ while the total energy stored in the system
1 
2 EI κ2 L + 

∑ N e 
i =1 

1 
2 k B ( θ − θ0 ) 

2 
H(−�i ) . The moment-curvature rela-

tionship can be then expressed as: 

M = EIκ + 

1 

L 

N e ∑ 

i =1 

k B h ( θ − θ0 ) 
dθ

dγ
H ( −�i ) . (11)

Here d θ / d κ is numerically evaluated for all the rotation an-

gles of scales and their corresponding curvature. This relationship

is equivalent to the one derived in earlier studies ( Vernerey and

Barthelat, 2010; Ghosh et al., 2014 ). 

Non-uniform bending is illustrated through the examples of

simply supported and cantilevered beams. For the case of a sim-

ply supported beam subject to a uniform distributed load w 0 , the

work done can be written as W = ∫ L 0 w o y ( x ) dx. The amplitude γ

is 
w 0 h 

3 

24 EI and therefore the deflection of the midpoint of the virgin

beam can be expressed as y mid = 

5 w 0 L 
4 

384 EI ( Budynas et al., 2008 ). After

engagement, the midpoint deflection will have the same formula.

However, w will be replaced with w which is an equivalent load
0 

Table 1 

he material properties utilized for our substrate and scales in ABAQUS (Dassault 

ystems). 

Material Substrate Scales 

Young’s Modulus 1.5 MPa Rigid 

Poisson’s ratio 0.42 ( Gercek, 2007 ) Rigid 

i  

t  

C  

u  

T  

n

 

d  

Table 2 

The boundary and loading conditions utilized in ABAQUS for the three e

U refers to the displacement in a specified direction while the subscrip

Example Boundary conditions BCs 

Left edge Right edg

Uniform bending U x = 0 , U y = 0 U z = −0 . 4 rad U y = 0 U z
Simply supported beam U xmid = 0 U ymid = 0 U ymid = 0 

Cantilevered beam U x = 0 , U y = 0 U z = 0 
hat provides the same midpoint deflection of a virgin beam in-

luding the effect of scales interaction. The equivalent load can be

ritten as: 

 = w 0 + 

5 h 

3 

L 5 

N e ∑ 

i =1 

k B ( θ − θ0 ) 
dθ

dγ
. (12)

Similarly, the work done in a cantilever beam due to a point

oad p 0 applied at the tip is W = p 0 y (L ) . Therefore, the tip deflec-

ion is y tip = 

p 0 L 
3 

3 EI while γ = 

p 0 h 
2 

6 EI ( Budynas et al., 2008 ). The inter-

ction of scales will make p 0 increase in order to obtain an equiv-

lent deflection in the case of having un-scaly substrate. This load

s expressed in Eq. (13) , and it is the alternative to p 0 to find the

ip deflection after the interaction of scales begins. 

p = p 0 + 

h 

2 

2 L 3 

N e ∑ 

i =1 

k B ( θ − θ0 ) 
dθ

dγ
. (13)

t is worth noting that the concept presented here can be applied

o scaly structures with general types of loading and boundary

onditions. Furthermore, to verify the kinematics and mechanics

esults of the three examples illustrated in this paper, finite el-

ment (FE) simulations using a commercially available software

BAQUS (Dassault systemes) were carried out. For FE models,

n assembly of two parts was made- substrate and scales, both

f 2 D deformable shell type. Thereafter rigidity was imposed on

he scales obviating any need for material properties for scales.

hus, the model consists of a linear elastic substrate and embed-

ed rigid scales with isotropic material properties presented in

able 1 . A static linear step was used to match the corresponding

inematics of Euler-Bernoulli beam. The contact was employed via

elf-contact option through the entire geometry with frictionless

liding between every two neighboring scales along with node to

urface discretization method to prevent any penetration between

cales ( ABAQUS, 2012 ). The loading and boundary conditions for

ach case is presented in Table 2 . To obtain mesh convergence,

 global size parameter of 5 was used which was progressively

educed to 1 ( ABAQUS, 2012 ). This was sufficient for mesh

onvergence. In addition, the element used was in the family of

lane stress with quadratic geometric order. Due to the complex-

ty of top surface of our scaly beam, the area that are far from

he embedded part was meshed using the biquadratic element

PS8 ( ABAQUS, 2012 ) while the neighboring area was meshed

tilizing a triangular quadratic element CPS6M ( ABAQUS, 2012 ).

he total number of elements in the entire model based on the

umber of scales added to the substrate is presented in Table 3 . 

The reduction in error (for the case of uniform bending) when

eviating from the periodicity assumption is quantified through a
xamples presented in this paper to validate our model. Note that 

t xmid and ymid refer to the middle point of the edge. 

Loading 

e 

 

= 0 . 4 rad Through BCs 

Force per unit length applied to the bottom edge 

point load in Y-direction to the right edge 



H. Ali, H. Ebrahimi and R. Ghosh / International Journal of Solids and Structures 166 (2019) 22–31 27 

f  

p  

b  

m

3

3

 

i  

s  

o  

t  

u  

s  

g  

t  

a  

a  

T  

t  

s  

N  

t  

b  

f  

t  

a

3

 

m  

i  

s  

w  

i  

s  

ψ  

u  

t  

d  

w  

w  

g  

e  

t  

v  

t  

m  

p  

F

o

E

p

ormula ε = (M(κ) − M F E (κ)) / (M F E (κ)) . Where M FE ( κ) is the ap-

lied moment obtained from FE at the largest curvature during

ending while M ( κ) is the applied moment computed using the

odel and the one presented in Ghosh et al. (2014) . 

. Results and discussion 

.1. Deviation from periodic engagement in a scaly beam 

The regime where periodicity of scales engagement is preserved

s first studied to compare with previous analysis. This is only ob-

erved when a scaly beam is uniformly bent, which is the case

f applying a pure bending moment, and can be clearly seen in

he axial stress plots in the FE results shown in Fig. 5 (a). The fig-

re illustrates a uniform bending of a scaly beam consisting of 20

cales in which the instant of engagement occurs at the same an-

le of curvature ψ = ψ i . Additionally, the results in the stress con-

our matched the theoretical pure bending formula σxx = My/I for

 plain beam except the area near the bottom edge of scales where

n increase in the stress is expected due to stress concentration.

his high stress does not, however, change the global behavior of

he structure due to the lower volume fraction of the embedded

cales as had been previously presented ( Browning et al., 2013 ).

ote that beyond this limited case of uniform bending, it is clear

hat periodic engagement of scales is no longer valid as illustrated

y the non-uniformity of the axial stress contours. This is the case
ig. 5. (a) The initial engagement of scales, when the substrate uniformly deflects, with a

f the substrate are L = 10 0 0 mm, h = 50 mm while the scale dimensions are l = 250 m

 = 1.5 MPa and ν = 0.42. (b) The breakdown of periodic engagement of scales of a canti

eriodic engagement of scales via the example of a simply supported scaly beam loaded 
or non-uniform bending of the underlying substrate such as a can-

ilevered scaly beam, Fig. 5 (b), and the case of uniform loading on

 simply supported scaly beam, Fig. 5 (c). 

.2. Local behavior - scale response 

The previously developed analytical formulation of the kine-

atics can be used to study the scale angles for uniform bend-

ng. Such calculations reveal the extent of periodic engagement of

cales by tracking the motion of all the 20 scales in the structure

ith a total of 20 scales with overlap ratio η = 5 . The results are

llustrated in Fig. 6 (a) in which the angular displacement of the

cales θ is plotted versus the rotation of the underlying substrate

. The plots indicate same angles for all scales (horizontal line)

ntil engagement curvature is reached, after which scales begin

o change angles due to scale sliding. For this particular case, a

ifferent initial angle would only affect the point of engagement

hich is going to be a single simultaneous event. For this plot, this

ill cause the initial horizontal section (before the fan like diver-

ence) to either shorten (lower θ0 ) or lengthen (higher θ0 ). How-

ver, an important distinction arises from previous studies even for

his case. Here, the scales angles begin to differ from each other

iolating periodicity. The scales are numbered 1 − 20 starting from

he left side as shown in the inset. The scales on the left of the

id-point (scale number 10) increase in angle as expected from

revious periodic theory. However, scales on the right of this point
 contour plot of the vertical deflection of the beam at that instant. The dimensions 

m, D = 0.05 mm, and L s = 7 mm. The substrate was assigned modulus of elasticity 

lever scaly beam subject to a point load at the tip. (c) An illustration of the lack of 

uniformly. 
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Fig. 6. (a) The angular rotation of 20 scales embedded on the top layer of a sub- 

strate subject to a pure bending moment. (b) The solid lines depict the inclination 

angle of four randomly-selected scales from the 20 scales. The hollow circles are 

the analytical solution based on a periodic boundary condition (PBC) that assumes 

the angular rotation to be the same for all scales ( Ghosh et al., 2014 ), and the black 

dotted circles illustrate the FE results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) The angular displacement of three scales chosen from the same scaly 

beam with the imposition of simply supported boundary conditions. (b) The change 

in angle of three scales when the scaly beam was constrained to deflect as a can- 

tilever type beam. 
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begin to decrease in angle. The verification of these predictions is

carried out with FE simulations of an identical system for a few

select scales (in this case selected randomly as number 1,6,15, and

20) and depicted in Fig. 6 (b). The figure also compares this model

with periodicity assumption used in the literature. Clearly, the cur-

rent model shows an excellent match with the FE simulations for

the kinematics. 

Non-periodic engagement of scales was also observed when the

underlying substrate undergoes a non-constant curvature deforma-

tion. This makes periodicity impossible from the outset requiring

using the analytical formulation developed above. First, a simply

supported beam subject to a uniform loading w 0 is studied. In this

case, γ = 

w 0 h 
3 

24 EI since γ quantifies the amplitude of the deflection of

the beam and serves as proxy to curvature of previous plots. The

results shown in Fig. 7 (a) illustrates scale rotation angles with γ
for select scales 6,11, and 16 for brevity. The developed model once

again gives excellent match with FE results. Note that the scales

angles variation with deformation is not necessarily linear. Even

more interestingly, a symmetry in the loading and boundary condi-
ions did not lead to any symmetrical behavior in the scales kine-

atics. Clearly, the scale ‘handedness’, i.e. direction of inclination

f the scale played a crucial role in this symmetry breaking. Fur-

hermore, scales engagement begins in the positions that possess

igher curvature as the substrate continuously deforms. In the sim-

ly supported scaly beam, scales start engaging from the middle

nd then continue outwards from the center of the beam toward

he edges. Additionally, the results show that the angle of scales

laced near the right edge of the beam reduces until it touches

he subsequent scale and thereafter starts increasing. 

The other example presented to study scales angles of non-

niform bending is the deformation of a scaly cantilever type beam

ith a point load applied at the tip. The scales angles are plotted

ersus γ = 

P 0 h 
2 

6 EI , and the results are depicted in Fig. 7 (b). The fig-

re clearly shows the non-periodicity of scales engagement. The

symmetry in the structure provides an increase in the scales an-

les after the engagement with a subsequent scale. It is noticeable

hat a cantilever scaly beam requires a small θ0 in order for scales

o engage early unlike the case of a simply supported scaly beam.

owever, in this case the engagement will not be a single simul-

aneous event but a progressive one as more scales are engaged.
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Fig. 8. (a) The red dots represent the non-dimensionalized normal force between scales after engagement for two cases of κ/ κ lock when the beam experiences a uniform 

bending. The hollow circles are the results of the periodic boundary condition assumption (PBC) ( Ghosh et al., 2016 ) and the FE results are shown using the black dots. 

(b) The variation of the normalized normal force between scales after engagement of a simply supported beam with 20 scales. (c) Non-dimensional reaction force between 

scales for the case of a cantilever scaly beam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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 higher θ0 will lead to a later point of divergence like the pre-

ious cases. However for the current study, we have not studied

ubstantially higher θ0 since that will require much higher defor-

ation to engage making the substrate stretch, which is neglected

n the developed model. This seems to be the reason for the slight

eviation in the results when comparing with FE. This could be

n important factor for higher angle scales, although they are not

ypically considered to be as useful due to late engagement. 

These results also forces a re-discussion on the limits of nonlin-

arity i.e. locking behavior (bending rigidity sharply increases due

o transition from substrate to stiff scale bending) at which the

liding of the scales would eventually stop ( Vernerey and Barthelat,

010; Ghosh et al., 2014 ). For periodic engagement of rigid scales,

 relationship that relates the locking angle of the scale θ lock to the

ubstrate unit cell rotation ψ was derived earlier θlock + ψ lock / 2 =
/ 2 ( Ghosh et al., 2014 ). This formula was derived based on study-

ng the kinematics of a single RVE due to imposition of periodicity.

he periodicity of the geometry makes any further motion geomet-

ically impossible. The normal force (see Fig. 4 (b)) at this point is

ingular and same for all scales. However, in practical cases this

oint is never reached due to scale deformation or frictional ef-

ects even for minor coefficients of frictions ( Ghosh et al., 2016 ). In

he current problem, the lack of periodicity precludes a kinematic

ock. However, considering the critical importance of the normal

eaction force, locking could be reformulated on the basis of nor-

al reaction force. The normal force can be determined employing
qs. (6) and (8) and plotted for all embedded scales, Fig. 8 (a)–

c). Normal force will not be constant due to lack of periodicity. In

act, calculations in this paper reveals that the normal force which

as been previously assumed to be the same for all scales when

 scaly structure undergoes a uniform bending is not always true.

he normal force in the results is normalized by the product of

eight of the beam h and the spring constant K B . For the case

f uniform bending, the theory developed above revealed that the

on-dimensional normal force follows a parabolic shape, which in-

icates that the structure begins locking from the middle of the

eam. Fig. 8 (a), compares the normalized reaction forces utilizing

he developed theory ( Eqs. (6) and (8) ) and the previous work

ith FE for the cases of κ
κlock 

= 0.15 and 0.2 for pure bending. The

lock was calculated following the formula θlock + ψ lock / 2 = π/ 2 .

he figure also compares the constant normal reaction arising from

he periodicity assumption at any given curvature. However, in re-

lity this is not the case even for pure bending with maximum

ormal force in the middle which then decreases near the edges as

hown in FE simulations, Fig. 8 (a). This phenomenon is accurately

redicted by the currently developed theory. The periodic theory

lso over predicts the normal reaction, which is also corrected in

his work. However, for periodic contact, an ideal case for locking

s a kinematic limit although it is likely that the spike in normal

eaction in the middle of the mid prevents locking far earlier than

inematic prediction via deformation or friction (which would no

onger remain negligible). 
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Fig. 9. (a) A comparison of the non-dimensionalized moment-curvature relationship of a scaly beam with different η using the current method, a PBC: periodic boundary 

condition assumption previously presented in Ghosh et al. (2014) , and FE. (b) The stiffness gained in the deflection of a simply supported scaly beam for different η due to 

scales interaction. (c) The deviation in the tip deflection of a cantilever scaly beam from linearity due to the higher engagement ratio of scales. 
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The current model also demonstrated that locking for the case

of non-uniform bending of a simply supported beam subject to a

uniform loading begins at the middle of the structure and pro-

gresses thereafter. This is depicted in Fig. 8 (b), which illustrates the

normalized reaction force between the scales for the two deforma-

tion cases of γ = 3 . 12 e − 5 and 3 . 75 e − 5 underscoring the sharp

increase in normal reaction profile. 

On the contrary, the cantilever configuration where the load

and boundary condition are not symmetric will start locking near

the edge that is exposed to the highest curvature. The normal re-

action force between scales in the cantilever scaly beam is shown

in Fig. 8 (c) for two deformation cases of γ = 2 . 25 e − 4 and 2 . 5 e − 4

which indicates sharply rising normal reaction towards the built in

side. The presented theory demonstrated that locking would not

take place globally in the structure, but in a more gentle progres-

sive fashion starting from location determined by the curvature. 

3.3. Global behavior - load-displacement characteristics 

Turning to mechanics to calculate load-displacement like char-

acteristic, the developed model results in an excellent match be-

tween our results and those of FE simulations for all these cases.

In the next examples, the results of the mechanical behavior of

scaly beams have been normalized by the height of the beam.

Fig. 9 (a) depicts the non-dimensionalized moment-curvature rela-

tionship and illustrates how the overlap ratio plays a crucial role in

stiffening the structure. The results are plots of the moment curva-
ure for two cases of η = 5 and 10. The presented theory exhibits

n excellent match with the computational models, improving 17%

rror in Ghosh et al. (2014) to 1% here for η = 5 and 33% error to

% for η = 10 . This shows that simply allowing for non-periodicity

s sufficient to capture most of the deviations in small deformation

onlinear mechanics of these substrates. 

Additionally, the normalized mid-deflection of a simply sup-

orted scaly structure was plotted versus the solution ob-

ained from the linear theory of the deflection of beams Ȳ s =
 w 0 L 

4 / 384 EIh ( Budynas et al., 2008 ), and the results are shown

n Fig. 9 (b). Again, an addition in the stiffness of the underlying

ubstrate requires higher η, which can be increased by either in-

reasing l or decreasing d . Note that lowering d between scales

ay delay the engagement of scales unlike increasing l , a direct

onclusion from the vanishing distance parameter. The figure also

xhibits an excellent match with the results obtained from FE. 

For the cantilever beam, not much difference was found from

he plain beam for η = 5 in contrast to the simply supported beam.

his is because the curvature was not large enough to engage

ufficient number of scales. Therefore, for cantilever simulation,

= 10 was utilized to effect an appreciable stiffness gain, Fig. 9 (c)

here Ȳ C = p 0 L 
3 / 3 EIh ( Budynas et al., 2008 ). It is worth noting

hat even for the case of this higher η, not all embedded scales

as been engaged due to the low curvature near the tip of the

antilever scaly beam. The results shown in Fig. 9 (c) show an ex-

ellent match between our theoretical model and computational

esults. 
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. Conclusions 

Previous models in literature have always assumed periodic

ngagements of scales, which had resulted in appreciable deviation

rom fully resolved FE models. In addition, periodicity makes it

mpossible to track the local angular changes of the scales. The

revious models could not take into account the particular defor-

ation modes, which are inherently non-uniform such as those

resented in this paper. In such cases, local periodicity is often

n unphysical restriction on realistic macro length scales as evi-

enced by visual observations of the deformed structure and finite

lement simulations. These particular aspects have been addressed

y our model making it more accurate. This is a significant step

owards developing the structure-property-architecture framework 

or topologically leveraged solids such as these opening way to

etter integration with additive manufacturing and possible topol-

gy optimization. The model introduces a new and more accurate

ay to predict the mechanical properties of the scale covered sub-

trates. The analytical predictions for three test cases have been

erived and thoroughly validated with finite element calculations.

t was found that non-periodic post engagement behavior cannot

e neglected as the errors could be significant. In the same vein,

ncorporating periodicity eliminated most of the discrepancies of

he previous models completely thereby showing no further source

f inaccuracies in the previous models. Using non-periodic general

heory allows us to interpret locking more accurately since the

riginal formulation depends on a simultaneous, locked position. It

as found that locking in symmetric scaly structures begins at the

iddle of the structure and continues outward towards the edges.

n the other hand, for the case of non-symmetric scaly beams,

ocking starts near the edge that is exposed to the highest curva-

ure. Symmetric structures require less of an overlapping ratio than

on-symmetric structures in order to gain a noticeable stiffness.

his is important for a number of applications such as substrate

esign, soft robotic gripper, deployable structures etc. which would

xhibit complex non-periodic and discrete type mechanics. 
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