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Covering elastic substrates with stiff biomimetic scales significantly alters the bending behavior via scales
engagement. This engagement is the dominant source of nonlinearity in small deflection regime. As de-
formation proceeds, an initially linear bending response gives way to progressive stiffening and thereafter
a geometrically dictated ‘locked’ configuration. However, investigation of this system has been carried out

Keywords: until date using assumption of periodic engagement even after scales contact. This is true only under the
Biomimetic most ideal loading conditions or if the scales are extremely dense akin to a continuum assumption on the
Nonlinear elasticity scales. However, this is not true for a practical system where scales are more discrete and where load-
Fish scales ing can alter periodicity of engagement. We address this nonlinear problem for the first time in small
Locking deflection and rotation regime. Our combined modeling and numerical analysis show that relaxing peri-

odicity better represents the geometry of discrete scales engagement and mechanics of the beam under
general loading conditions and allows us to revisit the nonlinear behavior. We report significant differ-
ences from predictions of periodic models in terms of predicting the behavior of scales after engagement.
These include the difference in the angular displacement of scales, normal force magnitudes along the
length, moment curvature relationship as well as a distinct nature of the locking behavior. Therefore,
non-periodicity is an important yet unexplored feature of this problem, which leads to insights, absent
in previous investigations. This opens way for developing the structure-property-architecture framework

for design and optimization of these topologically leveraged solids.

© 2019 Published by Elsevier Ltd.

1. Introduction

Biological structures have inspired synthetic materials with un-
paralleled performances such as ultra-lightweight design (Hadadi,
2017; Bai et al., 2016; Xiong et al., 2015; Kendall, 1975), tunable
elasticity (Aydin et al., 2010; Bootsma et al., 2017; Haque et al.,
2010; Kolle et al., 2013; Studart, 2013), and negative poisson’s ra-
tio (Baughman et al., 1998; Ikai, 2017; Lakes, 1987; 2017; Xu et al.,
2017). Among biological structures, scales had appeared in the ear-
liest stages of evolution of complex multicellular life (Bruet et al.,
2008) and continued their existence in spite of millions of years
of evolutionary pressures. This has made scales a naturally high
performance material with hybrid and multiscale response to var-
ious loads (Chen et al, 2010; Ikoma et al., 2003; Lin et al,
2010; Vernerey and Barthelat, 2014; Wegst et al., 2015; Zhu et al.,
2013; Nelms et al., 2018; Szewciw et al., 2017). For instance, scale
covered organisms have inspired dermal armors fabricated using
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a soft substrate with plate-like ceramics embedded on the top
layer (Martini and Barthelat, 2016). This design showed that over-
lapping of scales provides flexibility, damage tolerance, and more
importantly resistance to puncture. Similarly, armadillo scales have
also been used as a source of inspiration for designing flexible ar-
mor fabricated using hexagonal glass plates placed on an elastomer
substrate (Chintapalli et al., 2014). This type of synthetic armors
also yielded a good resistance to puncture as well as flexibility. In
addition, the development of flexible armor has also been imple-
mented on fabrics (Martini and Barthelat, 2016; Lin, 2017). How-
ever, in addition to material response of the scales themselves, the
scales serve as topological modifications to the underlying sub-
strate. This ‘structural’ as opposed to the purely material aspect of
scales reveals an entirely different regime of response encompass-
ing interesting nonlinear behavior. In this case, typically scales are
attached to a low dimensional flexible substrate such as a beam or
a plate. In such cases, in contrast to armor like ‘local’ loading, scale
arrangement influences global deformation behavior such as bend-
ing as the biomimetic scale beam shown in Fig. 1(a). For such scaly
substrates, mechanical behavior depends critically on the kinemat-
ics of scale sliding.
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Fig. 1. (a) A manual illustration of periodic engagement of scales as the underlying structure bends uniformly. (b) An illustration of non-periodic engagement of scales
through the example of a cantilever scaly beam. The substrate and scales were printed using Polylactic Acid (PLA) and Vinylpolysiloxane (VPS), respectively. The dimensions
of the fabricated substrate are 200 mm (length) x 25 mm (width) x 5 mm (height) while scale dimensions are 35 mm x 25 mm x 1 mm with inclination angle of 10°.

The spacing between scales is 10 mm. Inset: Schematic of deformation modes.

In this context, particularly, scaly structures subjected to a
pure bending moment have been intensively investigated due to
their practical and theoretical importance in isolating kinematics
and developing moment curvature relationships. For instance, in
one of the earliest studies, the mechanism of deformation of a
fish scale structure (with the assumption of deformable scales)
was investigated where the authors demonstrated the strain-
stiffening response in the structure (Vernerey and Barthelat, 2010).
Further work on deformable scales followed investigated stretch
and buckling response of teleost fish structures (Vernerey and
Barthelat, 2014). To address the mechanics of two-dimensional
scaly composite shells, a computational approach was pro-
posed (Vernerey et al., 2014) to establish the relationship between
structure and the mechanical response. The authors studied the
structure under both bending and twisting types of loading.
These studies clearly showed that stiffer scales at a low angle
are desirable for maximum performance. Taking this route and
simplifying such a high contrast system (stiff scales and soft sub-
strates) with rigid scales helps isolate the role of scale kinematics
on the mechanical nonlinearity. This simplified assumption leads
to closed form analytical relationships connecting the kinematics
to the mechanics. In this context, the kinematics and mechanics
of a one-dimensional scaly beam, assuming rigid scales, have
been addressed (Ghosh et al., 2014). In this work, the authors
assumed frictionless self-contact between scales. Their results
revealed the existence of a three different regimes of mechanical
response - linear, non-linear, and locking phase. The effect of fric-
tion in sliding kinematics of scales has then been further studied
in Ghosh et al. (2016). The study revealed that friction does not
alter the overall nature of behavior although it advanced the lock-
ing envelopes further. Further follow up studies which outlined
the envelopes of validitity of the analytical models for rigid scale
system were also carried out using extensive finite element (FE)
analysis (Ghosh et al., 2017). Furthermore, composite architecture
with scales only embedded on the top layer of a soft substrate
(imitating elasmoid fish scales) have been presented to account for
the deformation mechanism due to compressive loading (Browning
et al, 2013; Rudykh and Boyce, 2014). In their work, the authors
found that volume fraction of the embedded plate like scales has
a prime role in changing the stiffness of an elastomer structure.

These prior investigations underscore the growing importance
of using scales as topological additives on substrates. In order to
fully develop the structure-property-architecture paradigm for this
class of hybrid materials, models are of critical importance. This is
because they do not only reveal and quantify the mechanism of
nonlinear behavior but also indispensable for design and optimiza-
tion of the architecture. Therefore, it is imperative that models ac-

curately reflect salient aspects of the system. Thus far, all models
have relied on the assumption of preserving periodicity through-
out scales engagement. This assumption allows the isolation of a
fundamental representative volume element (RVE), after which pe-
riodic boundary conditions are applied and a global derivative is
affected to obtain the mechanical behavior (Vernerey and Barthe-
lat, 2014; 2010; Ghosh et al., 2014; 2016). However, in any realistic
structural application such post-engagement periodicity is seldom
observed either at a global or local level beyond the simplest of the
loading cases such as pure bending (see Fig. 1(a)). Periodicity of
engagement can be broken by simply applying different boundary
and loading conditions. For instance, a cantilevered beam would
not exhibit periodicity associated with pure bending. This is ap-
proximately shown in the contrasting geometries post engagement
between Fig. 1(a) and (b). In fact, the density of scales needed to
maintain even local periodicity for such cases is considerable and
typically not observed in real systems which have discrete scales
distribution. More importantly, an enormously dense scale system
begins to mask the tunable nonlinearity specific to scale sliding
due to the material constriction effect between the scales (Ghosh
et al.,, 2014; Browning et al., 2013). Last but not the least, even for
global periodicity, the number of scales in real structures are often
not sufficient to justify a continuous distribution.

In spite of these known limitations, existing models still rely on
periodic frameworks which cannot be directly applied or even ex-
tended to the non-periodic cases such as the case of a cantilever
beam illustrated in Fig. 1(b). Therefore, it is imperative that in-
vestigation be based on more accurate models which could ad-
dress the lack of periodicity and discrete nature of the scales. This
work presents a more general theory of stiff scale covered elas-
tic substrate to establish the kinematics and mechanics of a one-
dimensional scaly beam using scale-by-scale interaction approach
obviating the need for global or local periodicity. The theory is first
applied to structures that undergo a uniform bending which are
compared with results in literature (Ghosh et al., 2014). The model
is then validated using FE-based numerical studies to show the ac-
curacy of our theory. Kinematics and mechanics of non-uniform
bending structures will also be presented for the cases of simply
supported and cantilever beams. The analytical results show an ex-
cellent match with FE results which prove that no other mechani-
cal assumptions are needed to explain previous discrepancies.

2. Materials and methods
2.1. Geometry

The geometry of the system in the reference configuration
is illustrated in Fig. 2. A periodic arrangement in the reference
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Fig. 2. The reference configuration of scaly biomimetic system, and a schematic
diagram of two neighboring scales. The sample has the same dimensions as the
one illustrated in Fig. 1.

configuration is apparent. The underlying substrate is assumed to
be a uniform beam of length L. The length of the scale is assumed
to be Iy =1+ Ls where [ is the exposed part of the scale and L is
the embedded part. The thickness of the scale is considered to be
D and the beam thickness is h. It is further assumed that D « I and
h> L, an assumption commonly made indicating thin scales are
confined to the top of the substrate. We denote the ratio of scale
length to separation as 1 =1[/d where d is the distance between
the scales. The scales start with an initial scale angle 6, measured
with respect to the beam centerline and rotates to an angle 6 as
the engagement proceeds.

2.2. Materials

A typical scaly biomimetic system features scales which are
much stiffer than the underlying substrate. This study targets a
system which could be comprised of a silicone based substrate of
modulus E = 1.5 MPa and poisson’s ratio v = 0.42 (Gercek, 2007)
and PLA plastic for scales with E = 2.86 GPa. Note that soft poly-
meric substrate material can exhibit nonlinear elasticity. However,
for the range of deformation considered in this paper, our uniaxial
lab tests (using MTS Insight®) indicated linear behavior for both
materials. Clearly the moduli are widely divergent for these mate-
rials which allows for treating the scales as rigid as long as locking
conditions are not realized (Vernerey and Barthelat, 2014; Ghosh
et al., 2017). The strains are assumed to remain small and the beam
can be approximated by the Euler-Bernoulli assumptions. A further
un-stretchable constraint on the beam is imposed.

2.3. Kinematics

The periodicity after contact is typically a strong constraint and
will be readily violated via boundary and loading conditions for
a practical system. An example of this is the case of non-uniform
bending such as cantilever or distributed loading. Local periodicity,
however, could be maintained for very high density of scales but
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that would transition this system to a more composite and coating
type systems dictated by material constrictions (Browning et al.,
2013; Rudykh and Boyce, 2014).

In order to address the breakdown of periodicity, a scale-by-
scale discrete approach is introduced in this work. It is assumed
that in the reference configuration, the position of the ith scale on
the substrate is given by x;. A general material point on the sub-
strate in the reference flat state is denoted by x. This is shown in
Fig. 3(a). The current configuration of the scale is quantified by the
coordinates xiL, xf which are the left and right ends of the scale as
shown in Fig. 3(b). In the case of pure bending, the typical measure
of deformation is the curvature. However, for more general load-
ing case an alternative way to devise deformation is presented in
this paper using a shape function f(x) and its normalized amplitude
y which determines the extent of load. Therefore, in the current
configuration, the material point now occupies a vertical position
y(x) = y f(x). In practice, y is a unit less constant which depends
on the load, beam geometry and substrate material. In pure bend-
ing, moment causes a substrate to deform into an arc. In small de-
flection, this arc will follow the form y(x) = k (1/2x% — Lx/2) with
the instantaneous curvature x = M/EI where L is the length of the
beam, M is the bending moment, and EI is the flexural rigidity of
the beam (Budynas et al.,, 2008). We non-dimensionalize the cur-
vature with the beam thickness to get y = «h. On the other hand,
the deflection of a simply supported beam of flexural rigidity EI
and uniform loading wp has the form y(x) = 5% (2Lx> — x* — [3x).

In this case, y = "5’2—5. Finally a cantilever beam with point load pg
at the tip deforms according to the function y(x) = £ (x> — 3Lx?)
which makes y = %O—Eh,z (Budynas et al., 2008).

With the assumption of unstretchability, a scale level geometry,
shown in Fig. 3(b), emerges before engagement commences. From
this geometry, we can write for any scale, before engagement:

Xk = x4 1cos (60 + ¥y),
YR = yk 4 Isin (6o + ¥),
tan (¥) = y f'(xf). and x; =xi W

where 6 is the initial inclination angle of the ith scale and ;
is the inclination angle of the beam at the base of the ith scale.
This geometry will undergo further change as engagement pro-
ceeds. The scales engagement can be tracked using the distance
parameter A; of the right extremity of the scale to the subsequent
scale as shown in Fig. 3(b). This distance parameter can be written
as (Thomas and Finney, 1996):

1
Aj= 7((3’%“ = Yf) (% = xF) = (xby = x8) (V= 90))-
i=1,.,N—1 (2)

where N is the total number of scales. As A; becomes zero, en-
gagement condition is met.
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Fig. 3. (a) A geometry of a beam with scales at the initial configuration. (b) A configuration of the deformed beam and scale geometry before engagement.
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Fig. 4. (a) A deformed beam and scale geometry at a general point of engagement. (b) A FBD of an individual scale. The dotted-adjacent scales are added for clarification.

To illustrate the effect of geometry change after engagement,
two sequential scales i and i+ 1 at a general point of engage-
ment is taken. This is shown in Fig. 4(a). At this point, scale i is
engaged with scale i+ 1. After engagement, the geometry is con-
strained. The kinematics is governed by Eq. (1) with 6, replaced
with 6;. Moreover, 6; and 6;; are both unknown, which makes
the geometry statically indeterminate. To resolve this impasse, an
additional constraining condition utilizing the normal reaction mo-
ment balance between scales after engagement would be required.
The scale rotation is modeled (similar to previous work Vernerey
and Barthelat, 2010; Ghosh et al., 2014) as a linear torsional spring
which rotates about a fixed point. The spring constant Kz is known
to follow the analytical expression Kz = CgED?(Ls/D)" where E is
the modulus of elasticity of the substrate and Cg, n are constants
with values 0.66,1.75, respectively (Ghosh et al., 2014). However,
using a new set of finite element (FE) simulations, Cz was found
to a more accurate value of 0.86 to specifically account for small
initial inclination angles 6 < 10°. In the case that i+ 1th scale is
itself not engaged to i+ 2th, there are four unknowns which are
0i, Oii1, xf, and yf. In order to obtain these unknowns, four con-
straining conditions would be required. These conditions are: the
fixed length of the scale due to rigidity, the vanishing distance pa-
rameter due to contact, and the moment balance at the base of
the ith and i + 1th scale using the free body diagram illustrated in
Fig. 3(b). Thus, the following equations emerge:

yE—y f(x)
tan (6; + ¥;) = W, (3)
R _ .
T @
(=) + (= v f)' =12 (5)

The constraining condition using the balance of the moment at
the base of the scales is slightly more involved. For the case of en-
gagement of only two scales, balancing the moment about points
A and B, Fig. 4(b) yields

. Kg(6; — 6p) _ Kg(6i41 — 6p)
"7 lcos (o) r; ’

(6)

where o = 9,‘+] + wi-f—l —60; — ¥ and Ti=

\/(Xf - xm)2 + (- )/f(x,»ﬂ))2 with i=1:N;—1. The fourth
equation is now

(6; — Bo)r; — L cos (o) (Bi1 — Bp) = 0. (7)
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The four highly nonlinear Egs. (3) through (5) and (7) must be
solved numerically to obtain 6;, 6;,, xf, and yf. Now extending
this to a more general case of N, scales being engaged, the to-
tal number of unknowns would be: N, scale angles, 0;, i=1:N,,
2N, — 2 coordinates of the right end of the scales (xR yF), i=1:
Ne — 1. Note that the coordinate requirements is reduced by one
because the last scale undergoes no further engagements. This
leads to a total of 3N, — 2 unknowns. The total number of equa-
tions include the N, — 1 equations which correspond to constraint
on the length of the scales and 2N, — 2 which are based on the ge-
ometry of engagement of each scales excluding the last one. This
yields a total of 3N, — 3 equations. Finally, an additional equation is
generated through the moment balance at the base at the last (far
right) scale. Thus we now have a system of 3N, — 2 unknowns and
as many equations. Thus, balancing the moment about points B
and C, Fig. 4(b), yields the following equation which can be utilized
for finding the normal force between any two consecutive scales
(except the case when N, =2 or i =1, for which Eq. (6) must be
used):

Noos — Kp (91‘+1 — 90) + N,-r,- _ Kg (9i+2 — 90)
i+1 = - .

I cos (etiy1) Tit1

(8)

Following the general procedure mentioned above, we can cal-
culate the positions of all scales using a numerical solver such as
available in commercial code MATLAB to maintain equilibrium at
every step of deformation of the underlying substrate. Note that
the angle of the right most scale will progressively decrease af-
ter engagement until it reaches an approximately zero angle. Ac-
cordingly, 6;,; becomes known and the unknowns are only xl’?,
yf, and 6;. The structure now becomes statically determinate.
Egs. (3) through (5) can then be simplified to uniquely determine
the position of the ith scale. After simplification, Eqs. (3) through
(5) yield the following quadratic equation:

Y (i) +tani) g
— Y (xip1) tan(Biy1) (xi — i)
-y fx) =1 o

Eq. (9) has only one unknown xf and gives the right
x—coordinate of the ith scale. From this equation, one can obtain
R
¥ as

(xf _Xi)z +y i) + 5

Y ' Kig1) +tan(Biy1)
1y f'(Xip1) tan(By1)
and finally 0; is calculated via Eq. (3). Note that Egs. (3), (9), and
(10) are only utilized for finding the equilibrium configuration of

yW=yfxi) + (xF —x)) (10)
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the scales once the far right scale has reached an approximately
zero inclination angle.

2.4. Mechanics

To better understand the mechanics of a scaly structure, one
can envisage that the bending mode is a combination of sub-
strate bending and scales rotation. In other words, the structure
stores energy during bending mode via the deflection of the
beam and rotation of scales that is modeled as a linear torsional
spring as described above (Vernerey and Barthelat, 2010; Ghosh
et al, 2014). Thereafter, the mechanics of these structures is
approached by employing the principle of minimization the total
potential energy. We can write the total potential energy as
IT = Qpeam + QLscaresH(—A;) —W. Here Qpeqn is the strain energy
of the underlying beam, .. is the strain energy due to the
rotation of scales, and W is the work done by the applied load and
H is the Heaviside step function to track engagement. Since the
deflection of the beam follows the form y = y f(x), the energetic
principle is equivalent to finding y that minimizes the potential
energy through setting its first derivative to zero. This leads to the
following variational energetic equation % + d%i;‘”“H(—Ai) =
dW/dy. In general, the deflection will be characterized by the fol-
lowing two steps. First, we adopt y for the case of a virgin beam
under appropriate loading conditions (Budynas et al., 2008). Once
y is acquired, the second step becomes finding an equivalent load
that balances the increase in the energy due to scales interaction.

For the case of uniform bending, the work done by an applied
moment M is f§ Mdk’ while the total energy stored in the system
JEIPL + YN Lkp(0 —09)*H(-A;). The moment-curvature rela-
tionship can be then expressed as:

1 dé

M:EIK+Z;th(0—90)W H(=A)). (11)

Here df/dk is numerically evaluated for all the rotation an-
gles of scales and their corresponding curvature. This relationship
is equivalent to the one derived in earlier studies (Vernerey and
Barthelat, 2010; Ghosh et al., 2014).

Non-uniform bending is illustrated through the examples of
simply supported and cantilevered beams. For the case of a sim-
ply supported beam subject to a uniform distributed load wy, the
work done can be written as W = f%) Wwoy(x)dx. The amplitude y
is "5’2—5 and therefore the deflection of the midpoint of the virgin
beam can be expressed as ¥,y = % (Budynas et al., 2008). After
engagement, the midpoint deflection will have the same formula.
However, wg will be replaced with w which is an equivalent load

Table 1
The material properties utilized for our substrate and scales in ABAQUS (Dassault
Systems).

Material Substrate Scales
Young’s Modulus 1.5MPa Rigid
Poisson’s ratio 0.42 (Gercek, 2007) Rigid

Table 2

Table 3
The element types and their count utilized in ABAQUS to achieve a convergence in
the results.

Number of scales in the model Total number of elements used

CPS8 CPS6M
20 59,312 10,346
40 59,997 19,198

that provides the same midpoint deflection of a virgin beam in-
cluding the effect of scales interaction. The equivalent load can be
written as:

5h3 do
w:wo+L—sl§kB(9—90)W. (12)

Similarly, the work done in a cantilever beam due to a point
load po applied at the tip is W = poy(L). Therefore, the tip deflec-
tion is y;p = %0—5 while y = % (Budynas et al., 2008). The inter-
action of scales will make pg increase in order to obtain an equiv-
alent deflection in the case of having un-scaly substrate. This load
is expressed in Eq. (13), and it is the alternative to pg to find the
tip deflection after the interaction of scales begins.

h? Qe do
P=Po+ﬁ§k3(9—eo)ﬁ- (13)

It is worth noting that the concept presented here can be applied
to scaly structures with general types of loading and boundary
conditions. Furthermore, to verify the kinematics and mechanics
results of the three examples illustrated in this paper, finite el-
ement (FE) simulations using a commercially available software
ABAQUS (Dassault systemes) were carried out. For FE models,
an assembly of two parts was made- substrate and scales, both
of 2D deformable shell type. Thereafter rigidity was imposed on
the scales obviating any need for material properties for scales.
Thus, the model consists of a linear elastic substrate and embed-
ded rigid scales with isotropic material properties presented in
Table 1. A static linear step was used to match the corresponding
kinematics of Euler-Bernoulli beam. The contact was employed via
self-contact option through the entire geometry with frictionless
sliding between every two neighboring scales along with node to
surface discretization method to prevent any penetration between
scales (ABAQUS, 2012). The loading and boundary conditions for
each case is presented in Table 2. To obtain mesh convergence,
a global size parameter of 5 was used which was progressively
reduced to 1 (ABAQUS, 2012). This was sufficient for mesh
convergence. In addition, the element used was in the family of
plane stress with quadratic geometric order. Due to the complex-
ity of top surface of our scaly beam, the area that are far from
the embedded part was meshed using the biquadratic element
CPS8 (ABAQUS, 2012) while the neighboring area was meshed
utilizing a triangular quadratic element CPS6M (ABAQUS, 2012).
The total number of elements in the entire model based on the
number of scales added to the substrate is presented in Table 3.
The reduction in error (for the case of uniform bending) when
deviating from the periodicity assumption is quantified through a

The boundary and loading conditions utilized in ABAQUS for the three examples presented in this paper to validate our model. Note that
U refers to the displacement in a specified direction while the subscript xmid and ymid refer to the middle point of the edge.

Example Boundary conditions BCs

Loading

Left edge

Right edge

Uniform bending
Simply supported beam
Cantilevered beam

=0, Uy =0 U, = —0.4 rad
Uxmid =0 Uymid =0
Ug=0,U=0U,=0

Uy=0U,=04rad
Uymid =0

Through BCs
Force per unit length applied to the bottom edge
point load in Y-direction to the right edge
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formula € = (M(x) — Mpg(k))/(Mpg(k)). Where Mgg(k) is the ap-
plied moment obtained from FE at the largest curvature during
bending while M(k) is the applied moment computed using the
model and the one presented in Ghosh et al. (2014).

3. Results and discussion
3.1. Deviation from periodic engagement in a scaly beam

The regime where periodicity of scales engagement is preserved
is first studied to compare with previous analysis. This is only ob-
served when a scaly beam is uniformly bent, which is the case
of applying a pure bending moment, and can be clearly seen in
the axial stress plots in the FE results shown in Fig. 5(a). The fig-
ure illustrates a uniform bending of a scaly beam consisting of 20
scales in which the instant of engagement occurs at the same an-
gle of curvature ¥ = ;. Additionally, the results in the stress con-
tour matched the theoretical pure bending formula oxx = My/I for
a plain beam except the area near the bottom edge of scales where
an increase in the stress is expected due to stress concentration.
This high stress does not, however, change the global behavior of
the structure due to the lower volume fraction of the embedded
scales as had been previously presented (Browning et al., 2013).
Note that beyond this limited case of uniform bending, it is clear
that periodic engagement of scales is no longer valid as illustrated
by the non-uniformity of the axial stress contours. This is the case

(b)

27

for non-uniform bending of the underlying substrate such as a can-
tilevered scaly beam, Fig. 5(b), and the case of uniform loading on
a simply supported scaly beam, Fig. 5(c).

3.2. Local behavior - scale response

The previously developed analytical formulation of the kine-
matics can be used to study the scale angles for uniform bend-
ing. Such calculations reveal the extent of periodic engagement of
scales by tracking the motion of all the 20 scales in the structure
with a total of 20 scales with overlap ratio n = 5. The results are
illustrated in Fig. 6(a) in which the angular displacement of the
scales 6 is plotted versus the rotation of the underlying substrate
Y. The plots indicate same angles for all scales (horizontal line)
until engagement curvature is reached, after which scales begin
to change angles due to scale sliding. For this particular case, a
different initial angle would only affect the point of engagement
which is going to be a single simultaneous event. For this plot, this
will cause the initial horizontal section (before the fan like diver-
gence) to either shorten (lower 6,) or lengthen (higher 6). How-
ever, an important distinction arises from previous studies even for
this case. Here, the scales angles begin to differ from each other
violating periodicity. The scales are numbered 1 — 20 starting from
the left side as shown in the inset. The scales on the left of the
mid-point (scale number 10) increase in angle as expected from
previous periodic theory. However, scales on the right of this point

(©)

Fig. 5. (a) The initial engagement of scales, when the substrate uniformly deflects, with a contour plot of the vertical deflection of the beam at that instant. The dimensions
of the substrate are L = 1000 mm, h = 50 mm while the scale dimensions are | = 250 mm, D = 0.05mm, and Ly = 7mm. The substrate was assigned modulus of elasticity
E = 1.5MPa and v = 0.42. (b) The breakdown of periodic engagement of scales of a cantilever scaly beam subject to a point load at the tip. (c) An illustration of the lack of
periodic engagement of scales via the example of a simply supported scaly beam loaded uniformly.
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Fig. 6. (a) The angular rotation of 20 scales embedded on the top layer of a sub-
strate subject to a pure bending moment. (b) The solid lines depict the inclination
angle of four randomly-selected scales from the 20 scales. The hollow circles are
the analytical solution based on a periodic boundary condition (PBC) that assumes
the angular rotation to be the same for all scales (Ghosh et al., 2014), and the black
dotted circles illustrate the FE results.

begin to decrease in angle. The verification of these predictions is
carried out with FE simulations of an identical system for a few
select scales (in this case selected randomly as number 1,6,15, and
20) and depicted in Fig. 6(b). The figure also compares this model
with periodicity assumption used in the literature. Clearly, the cur-
rent model shows an excellent match with the FE simulations for
the kinematics.

Non-periodic engagement of scales was also observed when the
underlying substrate undergoes a non-constant curvature deforma-
tion. This makes periodicity impossible from the outset requiring
using the analytical formulation developed above. First, a simply
supported beam subject to a uniform loading wy is studied. In this
case, y = ‘g’g—gj since y quantifies the amplitude of the deflection of
the beam and serves as proxy to curvature of previous plots. The
results shown in Fig. 7(a) illustrates scale rotation angles with y
for select scales 6,11, and 16 for brevity. The developed model once
again gives excellent match with FE results. Note that the scales
angles variation with deformation is not necessarily linear. Even
more interestingly, a symmetry in the loading and boundary condi-
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Fig. 7. (a) The angular displacement of three scales chosen from the same scaly
beam with the imposition of simply supported boundary conditions. (b) The change
in angle of three scales when the scaly beam was constrained to deflect as a can-
tilever type beam.

tions did not lead to any symmetrical behavior in the scales kine-
matics. Clearly, the scale ‘handedness’, i.e. direction of inclination
of the scale played a crucial role in this symmetry breaking. Fur-
thermore, scales engagement begins in the positions that possess
higher curvature as the substrate continuously deforms. In the sim-
ply supported scaly beam, scales start engaging from the middle
and then continue outwards from the center of the beam toward
the edges. Additionally, the results show that the angle of scales
placed near the right edge of the beam reduces until it touches
the subsequent scale and thereafter starts increasing.

The other example presented to study scales angles of non-
uniform bending is the deformation of a scaly cantilever type beam
with a point load applied at the tip. The scales angles are plotted
versus y = %, and the results are depicted in Fig. 7(b). The fig-
ure clearly shows the non-periodicity of scales engagement. The
asymmetry in the structure provides an increase in the scales an-
gles after the engagement with a subsequent scale. It is noticeable
that a cantilever scaly beam requires a small 6 in order for scales
to engage early unlike the case of a simply supported scaly beam.
However, in this case the engagement will not be a single simul-
taneous event but a progressive one as more scales are engaged.
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Fig. 8. (a) The red dots represent the non-dimensionalized normal force between scales after engagement for two cases of « [k when the beam experiences a uniform
bending. The hollow circles are the results of the periodic boundary condition assumption (PBC) (Ghosh et al., 2016) and the FE results are shown using the black dots.
(b) The variation of the normalized normal force between scales after engagement of a simply supported beam with 20 scales. (¢) Non-dimensional reaction force between
scales for the case of a cantilever scaly beam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A higher 0, will lead to a later point of divergence like the pre-
vious cases. However for the current study, we have not studied
substantially higher 6 since that will require much higher defor-
mation to engage making the substrate stretch, which is neglected
in the developed model. This seems to be the reason for the slight
deviation in the results when comparing with FE. This could be
an important factor for higher angle scales, although they are not
typically considered to be as useful due to late engagement.

These results also forces a re-discussion on the limits of nonlin-
earity i.e. locking behavior (bending rigidity sharply increases due
to transition from substrate to stiff scale bending) at which the
sliding of the scales would eventually stop (Vernerey and Barthelat,
2010; Ghosh et al.,, 2014). For periodic engagement of rigid scales,
a relationship that relates the locking angle of the scale 6,y to the
substrate unit cell rotation ¥ was derived earlier Gy, + V¥jck/2 =
/2 (Ghosh et al., 2014). This formula was derived based on study-
ing the kinematics of a single RVE due to imposition of periodicity.
The periodicity of the geometry makes any further motion geomet-
rically impossible. The normal force (see Fig. 4(b)) at this point is
singular and same for all scales. However, in practical cases this
point is never reached due to scale deformation or frictional ef-
fects even for minor coefficients of frictions (Ghosh et al., 2016). In
the current problem, the lack of periodicity precludes a kinematic
lock. However, considering the critical importance of the normal
reaction force, locking could be reformulated on the basis of nor-
mal reaction force. The normal force can be determined employing

Egs. (6) and (8) and plotted for all embedded scales, Fig. 8(a)-
(c). Normal force will not be constant due to lack of periodicity. In
fact, calculations in this paper reveals that the normal force which
has been previously assumed to be the same for all scales when
a scaly structure undergoes a uniform bending is not always true.
The normal force in the results is normalized by the product of
height of the beam h and the spring constant Kz. For the case
of uniform bending, the theory developed above revealed that the
non-dimensional normal force follows a parabolic shape, which in-
dicates that the structure begins locking from the middle of the
beam. Fig. 8(a), compares the normalized reaction forces utilizing
the developed theory (Egs. (6) and (8)) and the previous work
with FE for the cases of ﬁ = 0.15 and 0.2 for pure bending. The
Kok Was calculated following the formula 6y + Vioek/2 = /2.
The figure also compares the constant normal reaction arising from
the periodicity assumption at any given curvature. However, in re-
ality this is not the case even for pure bending with maximum
normal force in the middle which then decreases near the edges as
shown in FE simulations, Fig. 8(a). This phenomenon is accurately
predicted by the currently developed theory. The periodic theory
also over predicts the normal reaction, which is also corrected in
this work. However, for periodic contact, an ideal case for locking
is a kinematic limit although it is likely that the spike in normal
reaction in the middle of the mid prevents locking far earlier than
kinematic prediction via deformation or friction (which would no
longer remain negligible).
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Fig. 9. (a) A comparison of the non-dimensionalized moment-curvature relationship of a scaly beam with different n using the current method, a PBC: periodic boundary
condition assumption previously presented in Ghosh et al. (2014), and FE. (b) The stiffness gained in the deflection of a simply supported scaly beam for different  due to
scales interaction. (c) The deviation in the tip deflection of a cantilever scaly beam from linearity due to the higher engagement ratio of scales.

The current model also demonstrated that locking for the case
of non-uniform bending of a simply supported beam subject to a
uniform loading begins at the middle of the structure and pro-
gresses thereafter. This is depicted in Fig. 8(b), which illustrates the
normalized reaction force between the scales for the two deforma-
tion cases of ¥ =3.12e — 5 and 3.75e — 5 underscoring the sharp
increase in normal reaction profile.

On the contrary, the cantilever configuration where the load
and boundary condition are not symmetric will start locking near
the edge that is exposed to the highest curvature. The normal re-
action force between scales in the cantilever scaly beam is shown
in Fig. 8(c) for two deformation cases of y = 2.25e — 4 and 2.5e — 4
which indicates sharply rising normal reaction towards the built in
side. The presented theory demonstrated that locking would not
take place globally in the structure, but in a more gentle progres-
sive fashion starting from location determined by the curvature.

3.3. Global behavior - load-displacement characteristics

Turning to mechanics to calculate load-displacement like char-
acteristic, the developed model results in an excellent match be-
tween our results and those of FE simulations for all these cases.
In the next examples, the results of the mechanical behavior of
scaly beams have been normalized by the height of the beam.
Fig. 9(a) depicts the non-dimensionalized moment-curvature rela-
tionship and illustrates how the overlap ratio plays a crucial role in
stiffening the structure. The results are plots of the moment curva-

ture for two cases of n =5 and 10. The presented theory exhibits
an excellent match with the computational models, improving 17%
error in Ghosh et al. (2014) to 1% here for n =5 and 33% error to
1% for n = 10. This shows that simply allowing for non-periodicity
is sufficient to capture most of the deviations in small deformation
nonlinear mechanics of these substrates.

Additionally, the normalized mid-deflection of a simply sup-
ported scaly structure was plotted versus the solution ob-
tained from the linear theory of the deflection of beams Y; =
5wol4/384EIh (Budynas et al., 2008), and the results are shown
in Fig. 9(b). Again, an addition in the stiffness of the underlying
substrate requires higher 5, which can be increased by either in-
creasing | or decreasing d. Note that lowering d between scales
may delay the engagement of scales unlike increasing I, a direct
conclusion from the vanishing distance parameter. The figure also
exhibits an excellent match with the results obtained from FE.

For the cantilever beam, not much difference was found from
the plain beam for n = 5 in contrast to the simply supported beam.
This is because the curvature was not large enough to engage
sufficient number of scales. Therefore, for cantilever simulation,
n = 10 was utilized to effect an appreciable stiffness gain, Fig. 9(c)
where Y = pgL3/3EIh (Budynas et al, 2008). It is worth noting
that even for the case of this higher n, not all embedded scales
has been engaged due to the low curvature near the tip of the
cantilever scaly beam. The results shown in Fig. 9(c) show an ex-
cellent match between our theoretical model and computational
results.



H. Ali, H. Ebrahimi and R. Ghosh/International Journal of Solids and Structures 166 (2019) 22-31 31

4. Conclusions

Previous models in literature have always assumed periodic
engagements of scales, which had resulted in appreciable deviation
from fully resolved FE models. In addition, periodicity makes it
impossible to track the local angular changes of the scales. The
previous models could not take into account the particular defor-
mation modes, which are inherently non-uniform such as those
presented in this paper. In such cases, local periodicity is often
an unphysical restriction on realistic macro length scales as evi-
denced by visual observations of the deformed structure and finite
element simulations. These particular aspects have been addressed
by our model making it more accurate. This is a significant step
towards developing the structure-property-architecture framework
for topologically leveraged solids such as these opening way to
better integration with additive manufacturing and possible topol-
ogy optimization. The model introduces a new and more accurate
way to predict the mechanical properties of the scale covered sub-
strates. The analytical predictions for three test cases have been
derived and thoroughly validated with finite element calculations.
It was found that non-periodic post engagement behavior cannot
be neglected as the errors could be significant. In the same vein,
incorporating periodicity eliminated most of the discrepancies of
the previous models completely thereby showing no further source
of inaccuracies in the previous models. Using non-periodic general
theory allows us to interpret locking more accurately since the
original formulation depends on a simultaneous, locked position. It
was found that locking in symmetric scaly structures begins at the
middle of the structure and continues outward towards the edges.
On the other hand, for the case of non-symmetric scaly beams,
locking starts near the edge that is exposed to the highest curva-
ture. Symmetric structures require less of an overlapping ratio than
non-symmetric structures in order to gain a noticeable stiffness.
This is important for a number of applications such as substrate
design, soft robotic gripper, deployable structures etc. which would
exhibit complex non-periodic and discrete type mechanics.
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