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Abstract

Motivation: Evolutionary histories can change from one part of the genome to another. The potential for

discordance between the gene trees has motivated the development of summary methods that reconstruct

a species tree from an input collection of gene trees. ASTRAL is a widely used summary method and has

been able to scale to relatively large datasets. However, the size of genomic datasets is quickly growing.

Despite its relative efficiency, the current single-threaded implementation of ASTRAL is falling behind the

data growth trends is not able to analyze the largest available datasets in a reasonable time.

Results: ASTRAL uses dynamic programming and is not trivially parallel. In this paper, we introduce

ASTRAL-MP, the first version of ASTRAL that can exploit parallelism and also uses randomization

techniques to speed up some of its steps. Importantly, ASTRAL-MP can take advantage of not just

multiple CPU cores but also one or several GPUs. The ASTRAL-MP code scales very well with increasing

CPU cores, and its GPU version, implemented in OpenCL, can have up to 158X speedups compared to

ASTRAL-III. Using GPUs and multiple cores, ASTRAL-MP is able to analyze datasets with 10,000 species

or datasets with more than 100,000 genes in less than two days.

Availability: ASTRAL-MP is available at https://github.com/smirarab/ASTRAL/tree/MP-similarity

Contact: smirarab@ucsd.edu

1 Introduction

Genome-wide discordance is a defining feature of modern phylogenetic

studies (e.g., Pollard et al., 2006; Zwickl et al., 2014; Jarvis et al., 2014;

Wickett et al., 2014). A species tree represents the overall evolutionary

history of species while gene trees show the phylogeny specific to regions

of the genome (called loci or genes) (Maddison, 1997). Gene trees can

be discordant with each other and with the species tree (Degnan and

Rosenberg, 2009). Recent phylogenomic datasets include hundreds to

thousands of loci. Ignoring discordance and concatenating all loci can be

misleading (Kubatko and Degnan, 2007; Roch and Steel, 2014), and this

observation has motivated the search for efficient and statistically rigorous

methods of species tree estimation without concatenation. A ubiquitous

cause of discordance is incomplete lineage sorting (ILS), a process related

to coalescence histories of genealogies (Degnan and Rosenberg, 2009).

ILS is often modeled by the multi-species coalescent model (MSC)(Pamilo

and Nei, 1988; Rannala and Yang, 2003).

Several types of statistically consistent methods have been developed to

infer species trees in the presence of ILS (e.g., Chifman and Kubatko, 2014;

Bryant et al., 2012; Heled and Drummond, 2010; Liu, 2008). The most

scalable family of methods are summary methods, which first estimate

gene trees from the individual loci and then combine the gene trees to get

the species tree. Researchers have developed many statistically consistent

summary methods, including, STAR (Liu et al., 2009), GLASS (Mossel

and Roch, 2010), MP-EST (Liu et al., 2010), STELLS (Wu, 2012), Bucky-

quartets (Larget et al., 2010), DISTIQUE (Sayyari and Mirarab, 2016a),

NJst (Liu and Yu, 2011), and ASTRID (Vachaspati and Warnow, 2015).

ASTRAL (Mirarab et al., 2014) is a widely used summary method. It

has been used for many groups (e.g., Wickett et al., 2014; Tarver et al.,

2016; Arcila et al., 2017; Laumer et al., 2015; Mitchell et al., 2017; Blom

et al., 2016; Rouse et al., 2016; Hosner et al., 2015). ASTRAL seeks to

find the tree that shares the maximum number of induced quartet trees with

the input set. This problem can be solved using a dynamic programming

approach, an observation first made by Bryant and Steel (2001) and derived

independently by Mirarab et al. (2014). The dynamic programming solves

an NP-hard problem (Lafond and Scornavacca, 2018) but uses heuristics

to constrain the dynamic programming space. The original ASTRAL code

had O(n4k3) running time for n species and k gene trees. Newer versions

ASTRAL-II (Mirarab and Warnow, 2015), ASTRAL-III (Zhang et al.,

2018), and ASTRAL-multi-individual (Rabiee et al., 2019) have changed

the search space and the details of the dynamic programming. The current

version, ASTRAL-III runs in O((nk)1.73D) where D = O(nk) is the

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



✐

✐

“main” — 2019/3/12 — 13:58 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 Yin et al.

sum of degrees of all unique nodes in input trees. In practice, the running

time of ASTRAL-III tends to grow quadratically with n and k, though

the amount of gene tree discordance also matters (Zhang et al., 2018).

ASTRAL-III has been able to handle datasets with k = 1000 genes and

n = 5000 species given at most three days of running time.

Despite the progress on scalability, large datasets that push ASTRAL-

III to its limits are now available, and as new genomes get sequenced, more

datasets will test limits of ASTRAL-III. Moreover, the number of input

trees can also quickly grow. Even with only 48 bird species, ASTRAL-

III took 32 hours to analyze a dataset of 14,446 gene trees (Zhang et al.,

2018). Interestingly, several relationships remained unsolved even with

14,446 gene trees, an issue that may be solved by mining even more loci

from the genomes. Increasing the number of loci to 30,000 could take

about five days of running time, starting to make ASTRAL-III impractical.

Moreover, several hundreds of avian genomes will be available in the near

future. ASTRAL-III on 14,000 gene trees with 300 species will take close

to 50 days of running time, again making it impractical. Moreover, the

number of gene trees can increase many folds if we represent each locus

not with a single point estimate of the tree but with a distribution of trees.

In this paper, we introduce ASTRAL-MP, a new version of ASTRAL

that uses shared-memory CPU parallelism, GPU parallelism, AVX2

vectorization, and a new randomized algorithm to dramatically scale

ASTRAL-III. ASTRAL-MP has great speedups compared to ASTRAL-

III and shows perfect scaling (tested for up to 24 cores) on some datasets.

With GPUs, the speedups can be up to 158X compared to ASTRAL-III.

2 Methods

2.1 Background on ASTRAL

The input is a set G of unrooted gene trees labeled by the leaf-set S with

|S| = n and |G| = k. Each of the
(

n
4

)

selections of four leaves induces

an unrooted quartet tree in each of the k trees in G. The weighted quartet

score of a given tree T with respect to G is defined as the number of the

k
(

n
4

)

quartet trees induced by G that are identical topologically to the

quartet tree induced by T on the same quartet. The definition can be easily

extended to gene trees with missing data and multifurcations by simply

counting fully-resolved quartet trees present in a gene tree. ASTRAL finds

the species tree that maximizes this score using dynamic programming.

A tripartition of S corresponds to a node in a binary unrooted species

treeT . ASTRAL uses the fact that tripartitions can be scored with respect to

theG in isolation from the rest of the tripartitions inT . LetP = A1|A2|A3

be a tripartition and M = M1| . . . |Md be a d-partition of S, and let

Ij,i = |Aj ∩ Mi|. A species trees that includes P will have to share

some quartet trees with a gene tree that includes M ; call this quantity

QI(P,M). Mirarab and Warnow, 2015 showed how to compute QI in

Θ(d3) time and Zhang et al., 2018 derived a new form for QI:

1

2

d
∑

i=1

3
∑

j=1

(Ij,i

2

)

((Saj
−Iaj,i

)(Sbj
−Ibj,i)−Saj,bj

+Iaj,i
Ibj,i) (1)

where a = [2 1 1], b = [3 3 2], Sj =
∑d

1 Ij,i, andSj,k =
∑d

1 Ij,iIk,i.

With this, ASTRAL-III can computation QI in Θ(d). We further define

the weight of a tripartition, w(P ), as the total score of P :

w(P ) =
1

2

∑

g∈G

∑

P ′∈N (g)

QI(P, P ′) (2)

whereN (g) is the set of internal nodes in g, represented as d-partitions.

The ASTRAL dynamic programming starts from the set S and

recursively divides into two subsets that maximize the sum of the weights

below the current subset. If we consider all ways of partitioning a “cluster”

A ⊂ S into A′ and A \ A′, the problem is solved exactly in exponential

time. To obtain a polynomial time algorithm, we constrain the search. Let

X′ be a set of bipartitions, and define X = {A : A|S \ A ∈ X′} and

Y = {(C,D) : C ∈ X,D ∈ X,C ∩ D = ∅, C ∪ D ∈ X}. The

dynamic programming only considers (A′, A\A′) ∈ Y . Defining V (A)

as the score for an optimal subtree on the cluster A and setting V (A) = 0

for |A| = 1, the dynamic programming recursion is given by:

V (A) = max
(A′,A\A′)∈Y

V (A′)+V (A\A′)+w(A′|A\A′|S \A) (3)

The definition of X has changed from ASTRAL-I to ASTRAL-III.

All three versions include the set of bipartitions observed in (completed)

input gene trees. ASTRAL-II and ASTRAL-III further add to that set using

heuristics and ASTRAL-III ensures |X| = O(nk) (Zhang et al., 2018).

Depending on how gene trees are represented in memory, computing

tripartition weights using Equation 2 can be done in either Θ(nk) or

Θ(D) = O(nk) where D is the sum of degrees of all unique nodes in G.

Gene trees can be represented in memory condensely as an array ofΘ(kn)

numbers representing the post-order traversal of gene trees. Computing

w(P ) for a tripartition P = A1|A2|A3, will simplify to a postorder

traversal of all gene trees by iterating through the array representation of

G and keeping a stack for Ij,i values, which can be each computed inΘ(d)

(supplementary Algorithm S1). An alternative introduced in ASTRAL-III

is to use a polytree to represent G. The polytree overlays all gene trees on

top of each other into a DAG. In this polytree, nodes that appear identically

in multiple gene trees are represented only once and thus, the time to

traverse all nodes is reduced to O(D). However, the polytree is a more

complicated data-structure than the array and will take up more memory.

2.2 ASTRAL-MP: overview

To motivate steps taken to parallelize ASTRAL, we first profile ASTRAL-

III. We divide the total running time of ASTRAL into seven categories:

(i) Compute the similarity matrix between pairs of species. (ii) Compute

the greedy (i.e., extended majority) consensus of input trees. (iii) Process

polytomies of greedy consensus trees. (iv)During dynamic programming,

compute for every clusterA all ways of partitioning it (i.e., building the set

Y fromX). (v)Weight tripartitions using Eq. 2 (the theoretical bottleneck

of the dynamic programming). (vi) Once the tree is computed, compute

branch support and branch length (Sayyari and Mirarab, 2016b). (vii) All

other smaller steps are simply categorized together.

Consistent with theoretical expectations, in ASTRAL-III, depending

on the choice of the data, the bottleneck is computing weights, taking 75–

97% of the time (Fig. 1). However, the remaining part is significant, and

to avoid the curse of Amdahl’s law, we need to optimize these other parts

as well. For optimizing the cluster partitioning step (iv), we developed a

new randomized algorithm that improves its speed and we also parallelize

it using CPU multi-threading. For the dominant step, weight calculation,

we parallelize it using CPU vectorization, CPU multithreading, and GPU

multithreading. Weight calculation is the step that best avails itself to

limited memory and Single Instruction Multiple Data (SIMD) execution;

thus, we parallelize only the weight calculation in GPU. The remaining

steps are all parallelized in CPU, with varying levels of effectiveness. We

start by describing the new randomized algorithm for cluster partitioning

then describe our parallelization strategy.

2.3 Randomized cluster partitioning

2.3.1 Current method

The dynamic programming needs to implicitly build the set Y , which is

equivalent to finding all possible ways of partitioning a cluster A ∈ X to

A′ ∈ X and A \ A′ ∈ X . ASTRAL-III represent X as an array of sets

where each set contains all clusters of the same cardinality, and each cluster

is stored as a bitset. As the dynamic programming recursions progress, for
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Fig. 1. Profiling ASTRAL running time. The running time of ASTRAL is profiled and

divided into several steps (described in the text) shown both as percent of total time (a,b)

and the actual running time (c,d). We profile SV-1000 (a,c) and Avian (b,d) datasets which

have high n and k, respectively (see Table 1). The first bar shows ASTRAL-III, followed

by ASTRAL-MP given one CPU core, and then ASTRAL-MP with 2 to 24 cores. Weight

calculation is the dominant step with no parallelization both for ASTRAL-III and ASTRAL-

MP. For the avian dataset, even with 24 cores, weight calculation remains dominant. On the

SV dataset, after parallelization, the computation of the Greedy Consensus, which is the

only step that we have not effectively parallelized, takes the majority of the time. With >6

cores, processing polytomies and cluster partitioning steps take an increased portion of the

time, indicating that their parallelization is not as effective as weight calculations.

any cluster A, ASTRAL-III recursively builds a subset of X with clusters

contained in A: X↾A = {B : B ∈ X,B ⊂ A}. As the cardinality of

A reduces, so does the size of the X↾A. Once X↾A is computed, to find

all ways of partitioning A, we need to consider only A′, A \A′ ∈ X↾A;

for 1 ≤ i ≤ |A|/2, for all pairs of clusters (C,D) ∈ X↾A with |C| = i

and |D| = |A|− i, we test if the two clusters are disjoint; if they are, they

constitute a A′|A \A′ partition of A.

To summarize, for each clusterA, we need to compute the intersections

of all pairs of clusters that are subsets of A and have cardinalities that add

up to |A|. If for any cluster A′ ∈ X and A′ ⊂ A, we had a quick way to

test if A − A′ ∈ X , we could avoid these costly pairwise computations.

In ASTRAL-MP we devise an algorithm to achieve just that by using a

randomized representation of sets as hashed tuples. We next describe the

randomized algorithm and why it has an astronomically low probability

of collisions. At the end of an ASTRAL run, we check for the collisions,

and in the unlikely event that one has occurred, we simply rerun ASTRAL

with new randomization (this has never happened in our tests).

2.3.2 Cluster partitions using Abelian groups

Let each clusterA ⊂ S be represented as a vectora of lengthn (number of

species) of integers 0 and 1 where ai = 1 if and only if cluster A contains

the i-th taxon. For a pair of clustersB andC represented as vectorb and c,

B|C is a partition ofA if and only ifb+c = a. Defining an Abelian group

Z = (Zn,+)with elements being vectors of integers of lengthn and with

group operation + as vector addition operation. Let G be a finite Abelian

group with group operation +. In choosing G, we need to be careful to

keep the probability of collisions small; more specifically, we need G to

satisfy two conditions: log |G| = O(log |X|) and ǫ|H| ≥ |X|3 for a

small ǫ where H = {2g|g ∈ G}. To achieve these, we let G be the direct

(Cartesian) product of p cyclic groups of size 264 with an appropriate

choice of p (discussed later). Also, let g1, ..., gn be elements uniformly

and independently chosen from G (with replacement). Finally, we define

the function φ : Z → G as φ(a) =
∑n

i=1 aigi (ai is an integer).

It can be easily checked that φ is a homomorphism from Z to G. For

clusters A, B, and C in X represented by a,b, c ∈ {0, 1}n, if B|C

is a partitioning of A, then c = a − b and by homomorphism of φ, it

follows that φ(c) = φ(a)− φ(b). Thus, B|C is a partitioning of A only

if φ(c) = φ(a)− φ(b).

To find all partitions of A, we can go through all B ∈ X and check

if (φ(a) − φ(b)) ∈ {φ(x) : x ∈ X}. If so, we declare B|A − B

to be a valid partition of A that is fully present in X . This procedure is

guaranteed to find all valid partitions of A. However, it can, in principle,

also find invalid partitions of A; as we will show, the probability of such

events can be made arbitrarily low with appropriate definitions of G (here,

a large enough p, as we will see). Moreover, using our definition of G,

this check can be performed efficiently using simple additions on 64-bit

integers and the use of a hashed set to represent X .

For clusters A,B,C ∈ X represented by a,b, c, if B|C is not a

partition of A, then c 6= a−b; equivalently, for d = b+c−a, we have

d 6= 0. Note that d ∈ {−1, 0, 1, 2}n. We now consider three possible

cases and compute the probability of the eventφ(c) = φ(a)−φ(b)when

c 6= a− b, or equivalently φ(d) = 0 when d 6= 0.

Case 1: di = 1 for some i. Then,

P (φ(d) = 0) = P ((

i−1
∑

j=1

djgj) + gi + (

n
∑

j=i+1

djgj) = 0)

= P (gi = −

i−1
∑

j=1

djgj −

n
∑

j=i+1

djgj) =
1

|G|
≤

1

|H|

The last equality follows from the fact that gi is chosen uniformly at

random from G and is chosen independently from all gj , j 6= i values.

The inequality follows from the construction of H .

Case 2: di = −1 for some i. By similar logic, P (φ(d) = 0) ≤ 1
|H|

.

Case 3: d ∈ {0, 2}n and thus, di = 2 for some i. Then:

P (φ(d) = 0) = P (2gi = −
i−1
∑

j=1

djgj −
n
∑

j=i+1

djgj) =
1

|H|
≤

1

|H|

Therefore, by a union bound, the probability that there exist clusters

A,B,C ∈ X such that B|C is not a way of partitioning A and φ(c) =

φ(a) − φ(b) is no greater than |X|3 1
|H|

. Finally, recalling that ǫ|H| ≥

|X|3, the probability that the algorithm fails is no greater than:

|X|3
1

|H|
≤ |X|3

ǫ

|X|3
= ǫ

Choice of p . We implement G as an array of p unsigned 64-bit numbers.

The choice of p controls |G| = 264p; thus, |H| = 263p. Therefore, for a

given |X| and a desired upperbound for failure rate ǫ, we need to ensure

that 263p ≥ |X|3

ǫ
, equivalently, p ≥ 1

21
log2 |X|+

1
63

log2(
1
ǫ
).

The algorithm first stores φ(c) for each C ∈ X in a hash table and

then for each pair of A,B ∈ X checks whether there exists a C in the

hash table such that φ(c) = φ(a) − φ(b). Thus, we access the hash

table O(|X|2) times, and each requires O(p) 64-bit operations. The total

running time is O(|X|2p) = O(|X|2(log |X|+ log ( 1
ǫ
)).

In ASTRAL-III, |X| has been in the order of 103–105 even for the

large datasets we have tested (Zhang et al., 2018) and has never exceeded

5 × 106 even for n = 104. When |X| ≫ 106, ASTRAL-MP will

likely become too slow to be useful. Thus, in practice, it’s safe to assume

|X| ≤ 109 (note that we are allowing three orders of magnitude above

what we have seen in practice). Setting the probability of error ǫ = 10−10,

it can be checked that p = 2 is enough (Fig. S1). Thus, by default, we use

p = 2 integers (each 64-bit) to build G.
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Fig. 2. ASTRAL-MP program architecture. Producer and consumer threads both run the dynamic programming recursions. The producer, instead of computing weights, simply adds

the tripartitions to the “unweighted Tripartitions Queue”, whereas, the consumer, instead of computing weights, simply reads them from the “Results Queue”. The assigner thread reads

tripartitions, batches them up, and spawns short-lived threads. Each short-lived thread uses Equations 2 and 1 to compute weights and uses Algorithm 1 to add weights first to a priority

queue and then to the final queue, in a synchronized manner that guarantees that tripartitions are read by the consumer thread in the same order as produced by the producer thread. The

short-lived threads may compute weights using CPU (with vectorization) or by delegating computations to a GPU (or other devices that support OpenCL).

2.4 Parallelization

2.4.1 Weight calculation

We parallelize weight calculation using vectorization, multi-threaded

CPU, and GPU. The dynamic programming shown in Equation 3 needs to

compute the weight for every tripartition corresponding to each element of

Y . The weights of different tripartitions are independent, and therefore, we

can compute them separately and in parallel. Parallelizing the calculation

of weights over different tripartitions (as opposed to parallelizing the

calculation of a single weight over different gene trees) avails itself to

SIMD execution, which makes it suitable for vectorization and GPU.

CPU. We assign each thread a chunk of tripartitions to score. To have

enough weights to score in parallel, we need to change the code structure.

ASTRAL-III implements the dynamic programming recursively (as in

Eq. 3) and computes weights only when it encounters new tripartitions.

As a result, only a few tripartitions are examined in a single call of V (A),

resulting in only limited parallelism. To increase parallelism, we changed

the architecture so that the discovery of new tripartitions that need to be

weighted happens simultaneously with weight calculation. We achieve this

using several threads, including a producer of tripartitions, an “assigner”,

and a consumer of tripartitions (Fig. 2).

The producer and the consumer threads both run recursions of

Equation 3 in an identical order. However, the producer does not compute

weights; it simply computes cluster partitions and adds the resulting

tripartitions to an “unweighted tripartitions” queue. The “assigner”

thread reads from the unweighted tripartitions queue, builds batches of

tripartitions (default batch size: 10), and creates a new short-lived thread

for that batch of tripartitions. This short-lived thread computes the weights

using Equations 1 and 2, and adds w(P ) to a “results” queue (in two steps,

as we will see). The consumer also runs through the recursive Equation 3

but each time it needs a w(P ), it simply reads the value off of the results

queue, waiting on the queue if needed.

Note that producer and consumer threads need to run in exactly the

same order. Thus, calculated weights should be put in the final results queue

in the same order in which they are put in the ‘unweighted tripartitions”

queue. The assigner thread achieves this by attaching an ascending id to

each tripartition it reads from the unweighted tripartitions. The short-lived

threads send their results to a shared “results priority queue” which sorts

the computed tripartition weights by their ids and keeps track of the highest

id that has been scored. When the top of the priority queue matches the next

required id, results are moved from the priority queue to the final results

queue. Accesses to the result queues and the highest id are synchronized

using a lock. Algorithm 1 gives exact steps run by each short-lived thread.

Vectorization. When the processor supports AVX2, we further parallelize

by computing several weights simultaneously using vectorization. AVX2

allows four 64-bit integer operations per instruction cycle and sixteen 16-

bit integer operations per instruction cycle. Weight calculation consists

of two parts: computing intersection sizes (Ij,i) and computing the final

score using Equation 1. Intersections sizes are never more than n and thus

comfortably fit a 16-bit integer; however, weight scores are of the order

kn4 and require 64-bit. Since each 512-bit cache line can store 32 16-bit

integers, we process weights in batches of size 32 to fit one line. We use

16-bit integers to represent and compute intersection size and get 16-way

parallelism using AVX2. We then convert 16-bit integers to 64-bit integers

and compute tripartition scores using 64-bit integer operation and get 4-

way parallelism. We implemented the weight calculation using C, which

is invoked as a kernel from our Java code.

GPU parallelization. Parallelizing for GPU requires care because the

memory is limited, data transfer between CPU and GPU can be costly, and

GPU threads execute instructions in SIMD. The decoupled architecture

of ASTRAL-MP (Fig. 2) enables us to delegate the weight calculation

step to external devices such as GPU. To deal with the limited memory

available to each GPU thread, we opted to use the simple and compact

array representation of G instead of the polytree in the GPU kernel.

Due to the SIMD nature of GPU threads, the efficiency is higher

if threads avoid taking different paths in the control flow of the code.

For example, if there is a if, then, else condition, ideally, either

all threads should go through if or all threads should go through

else. Violating this will result in stalls and therefore delays. Our

existing architecture accounts for this difficulty. As mentioned earlier,

we parallelize weight calculation by simultaneously computing w(P )

functions for a collection of P tripartitions. The process for calculating

weights of several tripartitions follows an identical control path, only with

different data. Thus, our choice to parallelize by weights readily provides

us with data parallelism, appropriate for SIMD architectures.

We implemented an OpenCL kernel for calculating a set of w(P )

values using Equation 2. We used the JOCL package to connect the

GPU and CPU and to compile the OpenCL code for the given machine

dynamically (to ensure portability). Each GPU device has an associated

short-lived CPU thread, used to handle communication with the GPU,

and these threads correspond to the short-lived threads in Figure 2. The

assigner thread reserves some space on the main memory to keep i) gene

trees (represented as an array of numbers), ii) a queue per GPU device to

contain batches (default size213 = 8192) of tripartitions to be sent to GPU

for scoring, iii) a queue per GPU device to be filled with computed scores.

The CPU communicates with the GPU through buffers corresponding to
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Table 1. Datasets used to study ASTRAL-MP.

name original publication # species (n) # genes (k) type # generations contraction threshold # Reps.

SV Mirarab and Warnow (2015) 100, 200, 500, 1000 1000 simulated 2 × 106 fully resolved 10

avian Mirarab et al. (2014) 48 14446, 1000 real unknown (order: 107) full, 0%, 33%, 50%, 75% 1, 10

Insects Sayyari et al. (2017) 144 1478 real unknown fully resolved 1

For SV, some outlier replicates have fewer than 1000 genes because poorly resolved gene trees are removed. For avian, the full dataset is subsampled randomly

to create 10 inputs with 1000 gene trees.

these arrays (buffers are managed by OpenCL). The first two buffers are

read-only, while the last one is write-only. On the GPU, all the read-only

data reside in the global memory because due to their large size, they

could not fit other types of memory on the device, such as local or constant

memory. The short-lived thread, after invoking the GPU kernel, stalls and

waits for the results. The GPU executes the kernel on the entire batch of

tripartitions sent to it. When the GPU finishes, the CPU thread wakes up

and uses the third buffer to read the results into the main memory. This

whole process is in lieu of lines 2–4 of Algorithm 1; once the short-lived

thread wakes up, it runs through the rest of Algorithm 1, starting line 5.

2.4.2 Parallelizing other steps

Several other steps of ASTRAL are also parallelized for better scaling.

Beyond the following, other smaller steps are not parallelized.

Similarity Matrix. ASTRAL computes a similarity matrix by traversing

all gene trees, measuring the number of quartets that put each pair of taxa

together in that gene tree and adding up these numbers across gene trees.

This part of the code is simply parallelized by having each thread work

on a different gene tree, allocating a different matrix to each thread; in the

end, all matrices are combined.

Building set X . ASTRAL needs to iterate over all gene trees and add

their bipartitions to the set X . This step is trivially parallelized by letting

each thread work on a different gene tree. Then, ASTRAL-III heuristics

augment X using distance matrices and a series of greedy trees computed

from gene trees. The computation of the greedy consensus trees does not

avail itself to much parallelism. The processing of polytomies in the greedy

consensus is parallelized by assigning each polytomy to a different thread.

Algorithm 1 The procedure run by each short-lived thread to calculate

weights and to propagate results first to the priority queue and then to the

final queue. A is a list that contains r (tripartitions, id) pairs.

Global Variables:

resultsPQ: a priority queue sorted by id (ascending)

resultsQ, a queue of scores, read by the consumer of weights thread

currentID, id of the last score added to resultsQ

globalLock, a lock for the previous three global variables

1: procedure ProcessTripartitions(A)

2: R← array of size r

3: for 0 ≤ i < r do

4: R[i]← w(A[i].tripartition) ⊲ w is computed by Eq. 2

5: lock(globalLock)

6: for 0 ≤ i < r do

7: resultsPQ.add((w : R[i], id : A[i].id))

8: while currentID = resultsPQ.top().id do

9: resultsQ.add(resultsPQ.top().w)

10: resultsPQ.pop()

11: currentID ← currentID + 1

12: unlock(globalLock)

Cluster partitioning. Computing partitions of a cluster A (as described in

Section 2.3) is parallelized such that each thread computes all possible

partitions with a certain cardinality for the two subsets of the partition.

Scoring branches. Once the final tree is computed, we need to compute

localPP (Sayyari and Mirarab, 2016b) and branch length for all branches.

Luckily, localPP and branch length both can be computed independently

for all branches, allowing a trivial parallelization.

3 Results

3.1 Experimental setup

We compare the running time of ASTRAL-III (version 5.5.4) to ASTRAL-

MP (version 5.12.4) run with a varying number of CPU cores and GPUs.

Our results are expressed in terms of speedup compared to the runtime

of ASTRAL-III, but we also show speedup versus ASTRAL-MP with 1

core in the supplement. On each replicate of each model condition of each

dataset, we run ASTRAL-MP only once. However, for datasets that have

many replicates, we report average speedups over all replicates. We also

profile ASTRAL-MP and compare its quartet score to ASTRAL-III.

In testing the efficiency of ASTRAL-MP, we use several simulated and

real datasets (Table 1). The datasets range in the number of species (n)

between 48 to 1000 and have between 1000 and 14,446 gene trees (k).

The datasets also have varying levels of gene tree discordance (controlled

by the number of generations among other factors) though the amount of

discordance for real data is not known. The SV dataset is used because it

has four values of n going all the way to n = 1000 and the avian data is

chosen because it has a large number of gene trees. Also, on the avian data,

we run ASTRAL on fully resolved gene trees (denoted full) or gene trees

that have branches with support below a threshold (0–75%) contracted.

In all the results reported, we use the San Diego Supercomputer

Center’s CPU and GPU nodes. The CPUs are Intel Xeon E5, which have

24 cores clocked at 2.5GHz with 1.866 PFlops/s and 128 GB DRAM

with memory bandwidth of 120GB/s and 256-wide AVX2. The GPUs are

Nvidia K80, which consists of two Tesla GK210 GPUs, each with 2496

processor cores (560MHz) and 12GB of memory. The GPU nodes have

similar Intel CPUs with 24 cores, but a reduced 0.208 PFlop/s.

3.2 Quartet score

ASTRAL-MP is heavily re-engineered compared to ASTRAL-III. Also,

the current ASTRAL-MP code is not deterministic because building set

X involves random choices that can change based on thread execution

orders. Changes, however, are expected to be small. To ensure integrity of

results of ASTRAL-MP, we compared its quartet score to ASTRAL-III.

On our data, the two versions agreed in 90% of runs. In remaining cases,

the score improved or decreased by very small margins (Table S1).

3.3 Profiling parallelization

We profiled ASTRAL-MP with up to 24 cores (Fig. 1) on the SV dataset

with n = 1000, k = 1000) and avian dataset with n = 48, k = 14, 446.
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Comparing ASTRAL-MP given 1 CPU core with ASTRAL-III, we

observe that ASTRAL-MP is overall 3.32 and 4.41 times faster respectively

for SV (high-n) and avian (high-k) datasets. While in ASTRAL-III weight

calculation is always the obvious bottleneck, in ASTRAL-MP, due to

the use of the AVX2 vectorization, the time spent on weight calculation

dramatically decreases. In particular, on the SV dataset, weight calculation

goes from 97% of the total time in ASTRAL-III to 67% in ASTRAL-MP.

Due to the randomized cluster partitioning algorithm, the total time spent

in this step also reduces in ASTRAL-MP even though it takes an increased

share of the time. As we provide ASTRAL-MP with more cores, the most

successfully parallelized section, weight calculation, quickly shrinks in

the proportion of the total running time it takes (down to 16% for SV and

67% for avian given 24 cores). On the SV dataset, the computation of

greedy consensus trees grows to take up to 39% of the total, followed by

additions to X and cluster partitioning, each of which takes around 15%.

On the avian dataset, the only step that grows dramatically in its share of

running time is cluster resolution (which enjoys limited parallelism).

3.4 Speedups

3.4.1 CPU parallelization

Compared to ASTRAL-III, the new ASTRAL-MP is faster even when a

single CPU core and no GPUs are used. On the SV dataset, the speedup

was on average around 3.25X irrespective of n. On the avian dataset,

ASTRAL-MP was 4X faster when gene trees were fully resolved but

introducing polytomies reduced the speedup to 2X (for 75% contraction).

These speedups are mostly attributable to reductions in weighting time due

to AVX2 vectorization and in cluster partitioning (Fig. 1).

The running time of ASTRAL-MP scales well with increasing numbers

of CPU cores without a GPU but scaling depends on the dataset (Fig.3). On

the SV datasets, we find an speed increase of up to 23 times (compared to

ASTRAL-III) with 24 threads. The larger datasets with 200 species or more

benefit from parallelism more than the smallest dataset (n = 100). This

observation is consistent with the idea that large datasets provide increased

parallelism. For 100 taxa, no visible benefit is gained from using more than

12 cores. In contrast, with 1000 species, we continue to see speedups up to

24 cores, albeit at a slower rate beyond 16 cores. On the avian datasets, we

see a near perfect increase in speed with increased numbers of cores, even

for up to 24 cores (Figs.3 and S2). Moreover, the speedups remain near-

perfect even with multifurcating gene trees where low support branches

are contracted (0%–75%). When we subsample genes to k = 103, the

scaling deteriorates; on this lower-k dataset, we see little gains beyond 8

cores. We come back to this observation in the discussions.

3.4.2 GPU parallelization

We next test ASTRAL-MP using GPUs on our datasets with the largest n

and k. On the avian dataset with large k, a single GPU with one CPU core

results in more than 11X speedups compared to ASTRAL-MP without

GPU and a single CPU core (Table 2). On the SV dataset with n =1000

species, GPU improves the running time, but less substantially; here, using

a GPU and a single CPU core decreases the running time by 2X.

We also test the combination of multiple CPU cores and GPUs. Using

six CPU cores in addition to a single GPU is 122% faster than one CPU

core and a single GPU on the SV dataset. Further increasing the number

of CPU cores to 24 continues to improve the running time. On SV data,

we observe 20.9X speedup compared to ASTRAL-III with 24 cores and

a GPU (Tab. 2). On the Avian dataset, adding CPU cores to GPUs does

reduce running time. For example, going from one core to six improves

the speedups by 66% on this dataset. Overall, on avian, with 24 cores and

a single GPU, we obtain 113X improvement compared to ASTRAL-III.

When we allow ASTRAL to use all four GPUs on each node, we see

only minimal increases in the speed (Tab. 2) in the SV dataset with 1000
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Fig. 3. Speedup of ASTRAL-MP with CPU parallelization with respect to ASTRAL-III.

Dots show the average speedups over all replicates. (a) The SV dataset with 100-1000

species. ASTRAL-III took on average 1.5 minutes, 7 minutes, 40 minutes, and 4 hours,

respectively for 100, 200, 500, and 1000 species (10 replicates each). (b). The avian dataset

with various levels of contraction. ASTRAL-III took on average 22.5 hours, 34 hours, 40

hours, 17.5 hours, 7 hours, and 2.5 hours, with contraction levels respectively set to full,

0%, 20%, 33%, 50%, and 75% (1 replicate each). The “1K subsample” corresponds to

datasets (10 replicates) with random samples of 103 gene trees with no contraction. See

Fig S2 for speedups compared to ASTRAL-MP-1 core.

species. However, there is about a 1.4x increase in speed going from one

to four GPUs for the Avian dataset. These results are consistent with the

observation that after GPU parallelization, weight calculation is no longer

the bottleneck on the SV datasets. Since GPUs only parallelize weight

calculation, by Amdahl’s law, adding GPUs does not help. As shown in

Table 2, ASTRAL-MP with GPU parallelization does come close to limits

of speedup that can be achieved according to the Amdahl’s law. On the

Avian dataset, the weight calculation takes a larger fraction of the time,

thus adding more GPUs is effective in increasing the speed.

Finally, to see how GPU speedups vary across datasets, we analyze a

large number of datasets, with varying n and gene tree resolution. Across

all the datasets, the speedups with respect to ASTRAL-III obtained with a

single GPU and 24 CPU cores range between 7X and 116X (Tab. S2), but

in all but one dataset, the speedup is at least 18X. Thus, while the exact

speedup depends on the dataset, having a GPU and several CPU cores

speeds ASTRAL up by one to two orders of magnitude.

Beyond scaling, ASTRAL-MP substantially reduced the running time

compared to ASTRAL-III. On the largest SV dataset with 1000 species,

the running time of ASTRAL-III is 2–10 hours. However, on the same

dataset and using 24 CPU cores, ASTRAL-MP analyzed the dataset in 10
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Table 2. Speedup of ASTRAL-MP with GPU compared to ASTRAL-III and ASTRAL-MP run with 1 or the same number of CPU cores and no GPU.

over ASTRAL-III over ASTRAL-MP with 1 core no GPU over ASTRAL-MP with the same number of cores no GPU

1&1 6&1 24&1 24&4 1&1 6&1 24&1 24&4 1&1 6&1 24&1 24&4

SV, 1000 species 7.0 15.5 20.9 21.7 2.1 4.7 6.3 6.5 2.1 (2.3) 1.3 (1.6) 0.93 (1.2) 0.97 (1.2)

Avian, fully resolved 50.3 83.7 113 158 11.4 19.0 25.7 35.9 11.4 (14.8) 3.29 (7.6) 1.2 (3.07) 1.7 (3.07)

x&y in the header denotes running with x cores and y GPUs. Maximum possible speedup according to Amdahl’s law is given parenthetically.

minutes–1.5 hours. Using 24 cores and a GPU, we never needed more than

1 hour for this large dataset (n = k = 1000).

3.5 Limits of scalability

On our two main datasets, ASTRAL-MP with 24 cores and one or more

GPUs ran in under half an hour in every case. To further test the limits of

scalability of ASTRAL-MP, we also tested two additional datasets with

even higher n and k than our main datasets.

To test limits ofn, we used an existing simulated dataset (20 replicates)

with 104 species and 1000 gene trees, build using a similar procedure to

SV1000 dataset (Zhang et al., 2018). We used ASTRAL-MP with a single

GPU and 24 cores to analyze this dataset. Of the 20 replicates, 19 of them

finished within 48 hours that we allotted them. The running times ranged

between 5 hours and 32 hours with a mean running time of 11.2 hours.

To test limits of k, we used an insect transcriptomic dataset (Misof

et al., 2014; Sayyari et al., 2017) with 144 taxa and 1478 genes, each

with 100 bootstrapped gene trees (thus, a total k = 1478 × 100 =

147800). One may want to run ASTRAL on the collection of bootstrapped

gene trees; see prior work on pros and cons of this approach (Mirarab

et al., 2016, 2014). For this dataset, we estimate that ASTRAL-III would

need ≈ 180 days of running time. In contrast, ASTRAL-MP with four

GPUs and 24 cores was able to analyze all 147800 gene trees in 35 hours.

Interestingly, the resulting tree differed from the tree on 1478 best ML gene

trees previously reported (Sayyari et al., 2017) in only nine branches, of

which eight had low localPP support in the original tree (<0.85).

The results on both of these test cases demonstrate that analyses that

were not possible before are now possible with ASTRAL-MP. Both also

took close to two days of running time, and thus, give us ballpark estimates

of the limits of ASTRAL-MP.

4 Discussion

ASTRAL-MP had perfect speedups up to 24 cores on datasets with a

large number of gene trees. With GPUs, speedups ranged between 7X

and 158X depending on the dataset and the number of CPU cores paired

with GPU. Using several cores in addition to the GPU was very helpful as

GPU parallelization targets only the weight calculation kernel, which is

the majority of the running time without any parallelization but not after

GPU parallelization. Using several GPUs on datasets with a low number

of gene trees, however, does not confer additional benefits in our tests.

The scaling of ASTRAL-MP varied across datasets. The avian dataset,

which has fewer species than the SV datasets, had a better speedup. But

recall that the avian dataset has > 14 times as many genes as SV. As our

profiling results indicate (Fig. 1), the parallelization is the most efficient

for the weight calculation step and less so for other steps. The reason is that

the parallelization of weight calculation is synchronization-free (except for

the final ordering of results) and is parallelized both for CPU and GPU (in

addition to AVX2). In contrast, computing the similarity matrix, set X ,

or the cluster partitioning has less parallelism and more opportunities for

conflict, and also these steps are parallelized only for CPU. Thus, these

steps do not scale as well in our parallelization (Fig. 1). The most damaging

step is the greedy consensus computation, which is not parallelized in our

current implementation. However, Aberer et al. (2010) have developed

methods for building the greedy consensus in parallel, and similar methods

can be incorporated in future versions of ASTRAL-MP.

We expect the best speedups when the weight calculation step is

dominant. The total weight calculation time scales as O(k2.75) in the

worse case and roughly with k2 empirically (e.g., for typical datasets) as

shown by Zhang et al. (2018). Steps other than weight calculation, in

contrast, scale as O(k1.75) in the worse case and close to O(k) in

practice. Thus, other things equal, increasing k leads to weight calculation

becoming more dominant. In contrast, as n increases, the total weight

calculation time scales with O(n2.75) in the worst case and by roughly

O(n2) empirically. However, other steps, too, scale as O(n2). Thus,

the relative time of weight calculation slowly increases as n increases.

To summarize, weigh calculations become more dominant as k and n

increase, but this happens a lot faster with k. Thus, in general, we expect

to see the best scaling of ASTRAL-MP with datasets that have large k.

We observed this precise pattern on the avian dataset where reducing k

deteriorated scaling.

A main limitation is that the GPU kernel only implements the weight

calculation step. The other steps are not implemented in OpenCL mostly

because of their relatively complex code and high memory bandwidth.

Nevertheless, some of these other steps could perhaps be parallelized

in future for GPU. For example, the computation of all possible cluster

partitions may be doable in GPU. The challenge will be in doing so in a

fashion that is compatible with SIMD parallelism and with minimal GPU-

CPU communication. Moreover, the smaller steps that we have parallelized

for CPU could perhaps be parallelized with more efficiency. For example,

using blocking in the computation of the similarity matrix can reduce

cache misses. Finally, better algorithms (perhaps using randomization) for

computing greedy consensus trees could be developed.

Finally, we note that we were able to test ASTRAL-MP on K80

NVIDIA GPU nodes but not other GPU architectures. Whether similar

patterns of scaling will be observed with other GPU machines will need

further tests. Also, our OpenCL code can be used with devices other than

GPUs, such as the Intel MIC architecture, which we have not tested here.

5 Conclusion

We improved the scalability ASTRAL, a method for reconstructing

species trees from gene trees, using parallelization, randomization, and

vectorization. ASTRAL-MP, is able to speed up computations for up to

100 times given a GPU and 24 cores. ASTRAL-MP, was able handle

datasets with 10,000 species and 1,000 gene trees within 48 hours. Thus,

ASTRAL-MP can now analyze datasets that previous versions could not.
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