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Abstract: We discuss a lubrication approximation model of the interface between
two immiscible fluids in a Hele-Shaw cell, derived in Constantin et al. (Phys Rev E
47(6):4169–4181, 1993) and widely studied since. The model consists of a single one
dimensional evolution equation for the thickness 2h = 2h(x, t) of a thin neck of fluid,

∂t h + ∂x (h ∂3x h) = 0 ,

for x ∈ (−1, 1) and t ≥ 0. The boundary conditions fix the neck height and the pressure
jump:

h(±1, t) = 1, ∂2x h(±1, t) = P > 0.

We prove that starting from smooth and positive h, as long as h(x, t) > 0, for x ∈
[−1, 1], t ∈ [0, T ], no singularity can arise in the solution up to time T . As a con-
sequence, we prove for any P > 2 and any smooth and positive initial datum that the
solution pinches off in either finite or infinite time, i.e., inf [−1,1]×[0,T∗) h = 0, for some
T∗ ∈ (0,∞]. These facts have been long anticipated on the basis of numerical and
theoretical studies.

1. Introduction

In the Hele-Shaw problem, two immiscible viscous fluids are placed in a narrow gap be-
tween two plates. Neglecting variations transversal to the plates, the problem is modeled
by two dimensional incompressible and irrotational hydrodynamical equations. In the
presence of surface tension, boundary conditions connect themean curvature of the inter-
face separating the two fluids to the pressure jump. The fluids form characteristic patterns
[ST58]. The zero surface tension limit has been associated in the physical literature to
Laplacian growth [KMWZ04], integrable systems [MWWZ00], and to diffusion-limited
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aggregation [WS81,Vic84,Hal00]. A dimension reduction, using lubrication approxi-
mation, leads to degenerate fourth order parabolic equations in one space dimension.
The original derivations are related to wetting, thin films, and the triple junction between
two fluids and a solid substrate (see [DG85,SH88,ODB97,BEI+09] and [ED74,Gre78,
Hoc81]). Some of the mathematical papers related to the spreading of thin films and
bubbles are [BF90,BP96,BP98,GO03,GKO08,BW02,Knu15,KM15,GIM17].

Our focus in this paper is on singularity formation. In this context, a one dimen-
sional model for topology change in a Hele-Shaw set-up was discussed in [CDG+93].
The equation describes the evolution of the thickness h of a thin neck of fluid. The
paper [CDG+93] derives the evolution equation of h using lubrication approximation,
describes its variational dissipative structure and its steady states, and discusses the pos-
sibility of reaching zero thickness in finite or infinite time. This singularity formationwas
investigated theoretically and numerically in quite a number of studies. In [DGKZ93]
a first numerical evidence of finite time pinch off was obtained. Systematic expansions
and numerical results for a wider range of problems indicated finite time pinch off and
velocity singularities in [GPS93]. A family of equations was considered in [BBDK94],
numerical results supporting selfsimilar behavior were obtained, and finite or infinite
time pinch off was asserted. In [ED94] numerical studies and physical arguments com-
pared lubrication approximation equations to careful experiments of drop formation
([CR80,CM80,PSS90]). In [CBEN99] experiment and scaling near equal viscosities
are accompanied by studies of the dependence of the breaking rate and shape of the
drop on the viscosity ratio. A comprehensive survey of selfsimilar behaviors is given
in [EF08], including a discussion of the pinch off scenarios presented on the basis of
numerical evidence in [ABB96].

In spite of the remarkable success of the dramatically reduced model obtained by lu-
brication approximation (see (1.1)–(1.2) below) to quantitatively describe experimental
reality, as evidenced by numerical studies and theoretical investigations, the finite time
pinch off has yet to be rigorously proved. In this paper, we prove an old conjecture of one
of us, recorded in [ED94], that as long as h > 0 no singularity can arise from smooth and
positive initial data (see Theorem 1.1 below). We also prove that indeed, as suggested
in [CDG+93] and in [BBDK94], global in time behavior leads to pinch off, just as finite
time singularities do (see Theorem 1.7 below). To the best of our knowledge, this is the
first rigorous proof for the emergence of a pinching singularity in the one dimensional
Hele-Shaw model of [CDG+93].

The equation we study ([CDG+93])

∂t h(x, t) + ∂x (h ∂3x h)(x, t) = 0, (x, t) ∈ (−1, 1) × (0,∞), (1.1)

is supplemented with boundary conditions

h(±1, t) = 1, t > 0,

∂2x h(±1, t) = P, t > 0.
(1.2)

Here, P > 0 is the pressure of the less viscous fluid and h ≥ 0 is half of the width of the
thin neck. The equation has a steady solution hP , given by (1.8) below, which is unique
in a class of relatively smooth solutions (see Proposition A.2). This steady solution has
a neck singularity if P > 2 (a segment where it is identically zero). The main result of
the paper is to prove convergence to this solution in finite or infinite time. In order to do
so we start by obtaining a strong enough local existence result. We exploit further the
structure of the equation to pass to limit of infinite time, and prove that the limits have
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to be formed from pieces of parabolas and straight lines where they do not vanish. Then
we prove that the only possible valid limit there is hP .

We denote I = (−1, 1) and for any T ∈ (0,∞], we define

X (T ) =
{
f ∈ L∞([0, T ]; H3(I )

) : ∂3x f ∈ L2([0, T ]; H2(I )
)}

endowed with its natural norm. When T is finite, by interpolation X (T ) is equivalent to
the space

L∞([0, T ]; H3(I )
) ∩ L2([0, T ]; H5(I )

)
.

Theorem 1.1 (Local existence of strong solutions and continuation criterion). Let h0 ∈
H3(I ) satisfy the boundary conditions (1.2) with P > 0, and assume h0,m := inf I h0 >

0. There exists a positive finite time T , depending only on P, ‖h0‖H3(I ) and h0,m, such
that problem (1.1)–(1.2) with initial data h0 has a unique solution h ∈ X (T ) with
inf I×[0,T ] h > 0.

Moreover, there exists an increasing function F : R+ × R
+ → R

+ depending only
on P such that

‖h‖X (T ) ≤ F
( 1

inf I×[0,T ] h
, ‖h0‖H3

)
. (1.3)

Therefore, h blows up in the sense that it leaves the space X (T ) at a finite time T ∗ if
and only if

inf
x∈I h(t, x) ↘ 0 as t ↗ T ∗. (1.4)

Furthermore, if we denote

D(h(t)) =
∫

I
h |∂3x h|2(x, t)dx (1.5)

then ∫ T

0
D(h(t))dt ≤ C(‖h0‖H3(I ) + 1) (1.6)

for some C > 0 depending only on P, and

D(h(t)) = D(h(0)) +
∫ t

0

( ∫

I
∂t h|∂3x h|2(x, s)dxds − 2

∫

I
|∂x∂t h|2(x, s)dx

)
ds (1.7)

for a.e. t ∈ [0, T ].
Remark 1.2. We observe that the right-hand side of (1.3) does not explicitly depend on
T . This fact is used in the proof of Theorem 1.7 because it permits unique continuation
of the solution uniformly in time as long as h is bounded below.

The problem (1.1)–(1.2) has the energy

E(h(t)) = 1

2

∫

I
|∂xh(x, t)|2dx + P

∫

I
h(x, t)dx
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which dissipates according to

d

dt
E(h(t)) = −D(h(t)) = −

∫

I
h(x, t)|∂3x h(x, t)|2dx ≤ 0

(see the proof of (2.11) below).
Define the steady solution hP by

hP (x) = P

2
(x2 − 1) + 1, P ∈ (0, 2], (1.8a)

hP (x) =
{

P
2 (|x | − xP )2, xP ≤ |x | ≤ 1,
0, |x | < xP ,

P > 2, (1.8b)

where xP = 1−
√

2
P for P > 2. The energy dissipation rate D(h) vanishes for h = hP .

When P ∈ (0, 2], hP is a smooth, nonnegative solution of (1.1)–(1.2). When P > 2,
hP ∈ W 2,∞(I ) and has a jump of its second derivative at ±xP . In the second case, hP
is a weak solution in the sense of the following definition.

Definition 1.3 (Weak solution).We say that a nonnegative functionh ∈ L2([0, T ]; H2(I ))
is aweak solution of (1.1)–(1.2) on [0, T ] if there exists δ > 0 such that fora.e. t ∈ [0, T ],
h(t) ∈ C2([−1,−1 + δ]) ∩ C2([1 − δ, 1]), h(t) verifies the boundary conditions (1.2),
and ∫ T

0

∫

I
h∂tϕdxdt −

∫ T

0

∫

I

(
h∂2x h − 1

2
|∂xh|2)∂2xϕdxdt = 0 (1.9)

for all ϕ ∈ C∞
0 (I × (0, T )).

The preceding definition is based on the identity

∂x (h∂3x h) = ∂2x
(
h∂2x h − 1

2
|∂xh|2). (1.10)

Remark 1.4 (Global weak solutions). We prove in Theorem A.1 of the appendix that for
any nonnegative H1 data that is smooth near ±1 and satisfies the boundary condition
(1.2), there exists a global weak solution to (1.1)–(1.2). Related results for different
boundary conditions can be found in [BF90,BP96,BP98].

The next proposition implies that hP has the least energy among all weak solutions.

Proposition 1.5 (Energy minimizer). For any nonegative function h ∈ H1(I ) taking
value 1 at ±1 we have E(h) ≥ E(hP ). Moreover, E(h) = E(hP ) if and only if h = hP .

In order to prove the finite or infinite time pinch off, we show that a sequence of
functions with bounded energy E and vanishing energy dissipation rate D converges
weakly to the energy minimizer h p.

Theorem 1.6 (Relaxation to energy minimizer). Let (hn) be sequence of nonnegative
H3(I ) functions satisfying (1.2). Assume that (hn) is uniformly bounded in H1(I ) and
D(hn) → 0. Then we have hn ⇀ hP in H1(I ) and hn → hP in H3

loc({x : hP (x) > 0}).
When P ∈ (0, 2), hn → hP in H3(I ).

As a corollary of Theorems 1.1 and 1.6 we have the main result of this paper:
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Theorem 1.7 (Stability for P < 2 and pinch off for P > 2).

Part 1. If P ∈ (0, 2), then hP is asymptotically stable in H1(I ). More precisely, there ex-
ist δ, c,C > 0 depending only on P such that the following holds. If h0 ∈ H3(I ) satisfies
inf I h0 > 0 and ‖h0 − hP‖H1 ≤ δ then h ∈ X (T ) for any T > 0, inf I×R+ h ≥ c and

‖h(t) − hP‖H1(I ) ≤ C‖h0 − hP‖H1(I ) exp(−ct) ∀t > 0.

Moreover, h(t) → hP in H3(I ) as t → ∞.

Part 2. If P ≥ 2, then starting from any positive h0 ∈ H3(I ), the solution h of (1.1)–
(1.2), constructed in Theorem 1.1, pinches off at either finite or infinite time. In the latter
case, by Theorem 1.6, h(tn) ⇀ hP in H1(I ) and h(tn) → hP in H3

loc({x : hP (x) > 0})
for some tn → ∞.

Remark 1.8. When P > 2, if h is global in X , the bound (1.3) blows up since h is
pinched at infinite time. In particular, the bound for h in L∞([0, T ]; H3(I )) blows up
as T → ∞. Nevertheless, along an unbounded sequence of times, h converges to hP in
H3
loc({x : hP (x) > 0}).

Remark 1.9. Assume that h is a positive smooth solution of (1.1)–(1.2) on [0, T ∗), T ∗ ∈
(0,∞), and that minx∈I h(x, T ∗) = 0. Let xm(t) be a position of the minimum of h in x
at time t and denote hm(t) = h(xm(t), t). Since (∂xh)(xm(t), t) = 0, it is easy to see that

d

dt
ln hm(t) = −(∂4x h)(xm(t), t) ∀t ∈ [0, T ∗).

This implies
∫ T ∗

0
(∂4x h)(xm(t), t)dt = ∞.

We also remark that in the derivation of model (1.1) (see [CDG+93]), the speed of the
flow is given by v = ∂3x h, and hence

∫ T ∗

0
(∂xv)(xm(t), t)dt = ∞.

This is one kind of singularity occurring when h touches 0 in finite time.

Throughout this paper,F(·, ..., ·) denotes nonnegative functionswhich are increasing
in each argument. F may change from line to line unless it is enumerated.

2. A Linear Problem

Let T be a positive real number and let g be a positive function satisfying

g ∈ L∞([0, T ]; H2(I )), ∂t g ∈ L1([0, T ]; L∞(I )). (2.1)

We study in this section the linear problem⎧⎪⎨
⎪⎩

∂t h(x, t) + ∂x (g∂3x h)(x, t) = 0, (x, t) ∈ I × (0, T ),

h(±1, t) = 1, ∂2x h(±1, t) = P, t > 0,
h(x, t) = h0(x), t = 0.

(2.2)

We prove the following well-posedness result.
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Theorem 2.1 (Strong solution for the linear problem). For every h0 ∈ H3(I ) satisfying
the boundary conditions (1.2), there exists a unique solution h ∈ X (T ) to problem (2.2).
Moreover, denoting

cT = inf
(x,t)∈I×[0,T ] g(x, t) > 0,

then h obeys the bounds

‖h‖X (T ) ≤ F
( 1

cT
, ‖g‖L∞([0,T ];H2(I )), ‖∂t g‖L1([0,T ];L∞(I )), ‖h0‖H3

)
, (2.3)

‖h‖L∞([0,T ];H1(I )) ≤ C(1 + ‖h0‖H1(I )), (2.4)
∫ T

0

∫

I
g |∂3x h|2 dxdt ≤ C

(
1 + ‖h0‖2H1(I )

)
. (2.5)

Here, F and C depend only on P. Furthermore, denoting w = g ∂3x h we have that

∫

I

w2(x, t)

g(x, t)
dx =

∫

I

w2(x, 0)

g(x, 0)
dx +

∫ t

0

∫

I

∂t g

g2
w2(x, s)dxds

−2
∫ t

0

∫

I
|∂2xw|2(x, s)dxds, (2.6)

∥∥∥∥
w√
g
(·, t)

∥∥∥∥
L2(I )

≤
∥∥∥∥

w√
g
(·, 0)

∥∥∥∥
L2(I )

+
1

2

∫ t

0

∥∥∥∥∥
∂t g

g
3
2

(·, s)
∥∥∥∥∥
L2(I )

‖w(·, s)‖L∞(I )ds,

(2.7)

and
∫ t

0
‖∂2xw(·, s)‖2L2ds ≤ 1

2

∥∥∥∥
w√
g
(·, 0)

∥∥∥∥
2

L2(I )

+
1

2

∫ t

0

∥∥∥∥∥
∂t g

g
3
2

(·, s)
∥∥∥∥∥
L2(I )

∥∥∥∥
w√
g
(·, s)

∥∥∥∥
L2(I )

‖w(·, s)‖L∞(I )ds (2.8)

hold for a.e. t ∈ [0, T ].
The remainder of this section contains the proof of Theorem 2.1. Let (gn) a sequence

of C∞([0, T ] × I ) functions such that gn(x, t) ≥ cT /2 and

gn → g ∈ L∞([0, T ]; H2(I )), ∂t g
n → ∂t g ∈ L1([0, T ]; L∞(I )). (2.9)

Let hn0 be a sequence ofC
∞(I ) functions satisfying (1.2) and converging to h0 in H3(I ).

By the classical parabolic theory (see Theorem 6.2 [LM72]), there exists for each n a
unique solution hn ∈ C∞(I ) to the problem (2.2) with g replaced by gn and h0 replaced
by hn0. We prove a closed a priori estimate for hn in X (T ), a contraction estimate in
H1(I ), and then pass to the limit n → ∞ to obtain the existence and uniqueness of a
h ∈ X (T ) solving (2.2). To this end, we set

un = hn − P

2
(x2 − 1) − 1.
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Then,

∂t u
n = −∂x (g

n ∂3x u
n) on [0, T ], un|t=0 = hn0 − P

2
(x2 − 1) − 1, (2.10)

and

un(±1, ·) = 0, unxx (±1, ·) = 0.

Throughout Sects. 2.1, 2.2 and 2.3 we write un = u, hn = h, hn0 = h0 and gn = g to
simplify notation.

2.1. H1 energy. We first claim that h satisfies

d

dt

∫

I
(
1

2
|∂xh|2 + Ph) = −

∫

I
g|∂3x h|2 ≤ 0. (2.11)

Indeed, we have

d

dt

∫

I

1

2
|∂xh|2 =

∫

I
∂t∂xh∂xh = ∂t h∂xh|1−1 −

∫

I
∂t h∂2x h

=
∫

I
∂x (g∂

3
x h)∂2x h = −

∫

I
g|∂3x h|2 + Pg∂3x h|1−1,

and

d

dt

∫

I
Ph = −P

∫

I
∂x (g∂

3
x h) = −Pg∂3x h|1−1,

where we use the fact that ∂t h(±1, ·) = 0 (because h(±1, ·) = 1). This proves (2.11).
Next, multiplying (2.10) by −∂2x u, then integrating by parts we get

−
∫

I
∂t u∂2x u =

∫

I
∂x (g∂

3
x u)∂2x u = g∂3x u∂2x u|1−1 −

∫

I
g|∂3x u| = −

∫

I
g|∂3x u|2.

But

−
∫

I
∂t u∂2x u = −∂t u∂xu|1−1 +

∫

I
∂t∂xu∂xu = 1

2

d

dt

∫

I
|∂xu|2

noticing that ∂t u(±1, ·) = 0 (because u(±1, ·) = 0). Denoting

E1 = ‖∂xu‖L2(I ), D1 = ‖√g∂3x u‖L2(I ),

we obtain
1

2

d

dt
E2
1 + D2

1 = 0, (2.12)

and hence
1

2
E1(T )2 + ‖D1‖2L2([0,T ]) = 1

2
E1(0)

2. (2.13)

In particular, (2.13) and the definition of u gives

‖∂xu‖L2(I ) ≤ ‖∂xu(0)‖L2(I )≤ ‖∂xh0‖L2(I ) + P. (2.14)
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Since u(±1, t) = 0, the Poincaré inequality also gives

‖u‖L2(I ) ≤ C‖∂xu‖L2(I ) ≤ C(1 + ‖h0‖H1(I )) (2.15)

which implies together with (2.14) and the definition of u that

‖h‖L∞([0,T ];H1(I )) ≤ C(1 + ‖h0‖H1(I )) (2.16)

where C only depends on P .
Moreover, by (2.13) we obtain

∫ T

0

∫

I
g |∂3x h|2dxdt ≤ C

(
1 + ‖h0‖2H1(I )

)
, (2.17)

and by the positivity of g,

‖∂3x h‖L2([0,T ];L2(I )) ≤ C√
cT

(
1 + ‖h0‖H1(I )

)
(2.18)

where cT is as in the statement of the theorem.

2.2. H2 energy. We multiply (2.10) by ∂4x u and integrate. On one hand,
∫

I
∂t u∂4x u = ∂t u∂3x u|1−1 −

∫

I
∂t∂xu∂3x u = −

∫

I
∂t∂xu∂3x u

= −∂t∂xu∂2x u|1−1 +
∫

I
∂t∂

2
x u∂2x u = 1

2

d

dt

∫

I
|∂2x u|2.

On the other hand,

−
∫

I
∂x (g∂

3
x u)∂4x u = −

∫

I
g|∂4x u|2 −

∫

I
∂x g∂

3
x u∂4x u.

Denoting

E2 = ‖∂2x u‖L2(I ), D2 = ‖√g∂4x u‖L2(I ),

it follows that

1

2

d

dt
E2
2 + D2

2 = −
∫

I
∂x g∂

3
x u∂4x u

≤ 1

cT
‖∂x g‖L∞(I×[0,T ])D1D2 ≤ 1

2c2T
‖∂x g‖2L∞(I×[0,T ])D

2
1 +

1

2
D2
2 .

In view of (2.13), this yields

E2
2(T ) +

∫ T

0
D2
2dt ≤ E2

2(0) +
1

c20
‖∂x g‖2L∞(I×[0,T ])

∫ T

0
D2
1dt

≤ E2
2(0) +

1

2c20
‖∂x g‖2L∞(I×[0,T ])E

2
1(0),
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and consequently,

‖∂2x h‖L∞([0,T ];L2(I )) +
√
cT ‖∂4x h‖L2([0,T ];L2(I ))

≤ C(1 + ‖h0‖H2) +
1

cT
‖∂x g‖L∞(I×[0,T ])(‖h0‖H1(I ) + C). (2.19)

This, together with (2.16) implies

‖h‖L∞([0,T ];H2(I )) +
√
cT ‖∂4x h‖L2([0,T ];L2(I ))

≤ C(1 + ‖h0‖H2) +
1

cT
‖∂x g‖L∞(I×[0,T ])(‖h0‖H1(I ) + C). (2.20)

2.3. H3 energy. A direct L2 estimate for ∂3x u would make high order boundary terms
appear (up to order 5) which are not given by the boundary conditions. Instead, we
exploit further the structure of the equation. Setting w = g ∂3x h, we have ∂t h = −∂xw,
and thus ∂xw(±1) = ∂3xw(±1) = 0 in view of (1.2). From the identity

∂tw = ∂t g∂
3
x h + g∂3x ∂t h = ∂t g

g
w − g∂4xw

we conclude

1

2

d

dt

∫

I

w2

g
=

∫

I
∂tw

w

g
− 1

2

∫

I

∂t g

g2
w2 =

∫

I

∂t g

g2
w2 −

∫

I
w∂4xw − 1

2

∫

I

∂t g

g2
w2

= 1

2

∫

I

∂t g

g2
w2 −

∫

I
w∂4xw.

(2.21)
Integrating by parts twice and using the boundary conditions for w gives

∫

I
w∂4xw =

∫

I
|∂2xw|2,

which yields
∫

I

w2(x, t)

g(x, t)
dx =

∫

I

w2(x, 0)

g(x, 0)
dx +

∫ t

0

∫

I

∂t g

g2
w2(x, s)dxds

−2
∫ t

0

∫

I
|∂2xw|2(x, s)dxds, (2.22)

1

2

d

dt
‖ w√

g
‖2L2 + ‖∂2xw‖2L2 ≤ 1

2
‖∂t g

g
3
2

‖L2‖ w√
g
‖L2‖w‖L∞ (2.23)

and
1

2

d

dt
‖ w√

g
‖2L2 + ‖∂2xw‖2L2 ≤ 1

2
‖∂t g

g
‖L∞‖ w√

g
‖2L2 . (2.24)

By (2.24) and Grönwall’s lemma,

‖ w√
g
‖L∞([0,T ];L2) + ‖∂2xw‖L2([0,T ];L2) ≤ ‖ w0√

g0
‖L2 exp

(
2

∫ T

0
‖∂t g

g
‖L∞ds

)
. (2.25)
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Moreover, since

∂2xw = ∂2x g∂
3
x h + 2∂x g∂

4
x h + g∂5x h

and
‖∂3x h‖L∞(I ) ≤ C‖∂4x h‖L2(I ), (2.26)

which follows from Poincaré-Wirtinger’s inequality and the fact that
∫

I
∂3x hdx = ∂2x h(1) − ∂2x h(−1) = P − P = 0,

we get

‖g∂5x h‖L2 ≤ ‖∂2x g‖L2‖∂3x h‖L∞ + 2‖∂x g‖L∞‖∂4x h‖L2 + ‖∂2xw‖L2

≤ C‖g‖H2‖∂4x h‖L2 + ‖∂2xw‖L2 .
(2.27)

In view of (2.20), (2.25), (2.27), and the lower bound g ≥ cT , we thus obtain

‖∂3x h‖L∞([0,T ];L2) + ‖∂5x h‖L2([0,T ];L2)

≤ F
( 1

cT
, ‖g‖L∞([0,T ];H2), ‖∂t g‖L1([0,T ];L∞), ‖h0‖H3

)
. (2.28)

2.4. Proof of Theorem 2.1. A combination of (2.20), (2.18) and (2.28) leads to

‖hn‖X (T ) ≤ F
( 1

cT
, ‖gn‖L∞([0,T ];H2(I )), ‖∂t gn‖L1([0,T ];L∞), ‖hn0‖H3

)

≤ F
( 1

cT
, ‖g‖L∞([0,T ];H2(I )), ‖∂t g‖L1([0,T ];L∞), ‖h0‖H3

)
.

(2.29)

Recall that ∂t hn = −∂xw
n and ∂xw

n(±1) = 0. It then follows fromPoincaré’s inequality
and (2.25) that

‖∂t hn‖L2([0,T ];H1) ≤ C‖wn‖L2([0,T ];H2) ≤ F
( 1

cT
, ‖∂t g‖L1([0,T ];L∞), ‖h0‖H3

)
.

(2.30)
By virtue of Aubin-Lions’s lemma applied with the triple H3(I ) ⊂ C2(I ) ⊂ H1(I ),
there exists h ∈ X (T ) such that

hn ⇀ h in L2([0, T ]; H5(I ))), (2.31)

hn ⇀ ∗ h in L∞([0, T ]; H3(I )), (2.32)

hn → h in C([0, T ];C2(I )). (2.33)

For any test function φ ∈ C∞
0 (I × (0, T )),

∫ T

0

∫

I
hn∂tφdxdt +

∫ T

0

∫

I
gn∂3x h

n∂xφdxdt = 0.

The convergences (2.31) and (2.9) ensure that (h, g) satisfies the sameweak formulation.
Then because h ∈ L2([0, T ]; H4(I )) and g ∈ L∞([0, T ]; H2(I )), we actually have
∂t h + ∂x (g∂3x h) = 0 in L2([0, T ]; H1). Next, (2.33) implies that h(0) = h0 and the
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boundary conditions ∂xh(±1, t) = 1, ∂2x h(±1, t) = P are observed for any t ∈ [0, T ].
The bounds (2.3), (2.4) and (2.5) onh are inherited from the correspondingbounds (2.29),
(2.16) and (2.17) on hn . Letting n → ∞ in (2.22) yields (2.6). Finally, integrating (2.23)
and letting n → ∞ we obtain (2.7) and (2.8).

The uniqueness of solutions follows from the energy inequality. Let h1, h2 be two
solutions of (2.2) with the same initial condition h0. The difference k = h1 − h2 solves

⎧⎪⎨
⎪⎩

∂t k(x, t) + ∂x (g∂3x k)(x, t) = 0, (x, t) ∈ I × (0, T ),

k(±1, t) = ∂2x k(±1, t) = 0, t > 0,
k(x, t) = 0, t = 0.

(2.34)

Similarly to the H1 energy estimate for u above, we multiply the first equation in (2.34)
by −∂2x k and integrate by parts to get

1

2

d

dt
‖∂x k‖2L2(I ) = −

∫

I
g|∂3x k|2 ≤ 0,

consequently ∂xk = 0. Since k(±1) = 0 we conclude that k = 0, concluding the proof
of uniqueness.

3. A Nondegenrerate Problem

Fixing a small positive real number ε, we prove in this section the global well-posedness
of the following nondegenerate nonlinear parabolic problem

⎧⎪⎨
⎪⎩

∂t h(x, t) + ∂x (
√
h2 + ε2∂3x h)(x, t) = 0, (x, t) ∈ I × (0,∞),

h(±1, t) = 1, ∂2x h(±1, t) = P, t > 0,
h(x, t) = h0(x), t = 0.

(3.1)

Theorem 3.1 (Strong solution for the nondegenerate nonlinear problem). For every h0 ∈
H3 satisfying the boundary conditions (1.2), and for every T > 0, there exists a unique
solution h ∈ X (T ) to problem (3.1). Moreover, h obeys the bounds

‖h‖X (T ) ≤ F
( 1

inf I×[0,T ] |h| + ε
, ‖h0‖H3

)
, (3.2)

‖h‖L∞([0,T ];H1(I )) ≤ C(1 + ‖h0‖H1(I )) (3.3)

with F and C depending only on P. Furthermore, (2.5), (2.6), (2.7) and (2.8) hold with
g = √

h2 + ε2.

3.1. Uniqueness. If h1 and h2 are two solutions of (3.1), we set k = h1 − h2 and

g j =
√
h2j + ε2, j = 1, 2. Observe that k solves

⎧
⎪⎨
⎪⎩

∂t k(x, t) + ∂x (g1∂3x k)(x, t) + ∂x ((g1 − g2)∂3x h2)(x, t) = 0, (x, t) ∈ I × (0,∞),

k(±1, t) = ∂2x k(±1, t) = 0, t > 0,
k(x, t) = 0, t = 0.

(3.4)
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Multiplying the first equation in (3.4) by−∂2x k and integrating by parts (note that ∂t h j ∈
L2([0, T ]; H1

0 (I ))) we get

1

2

d

dt
‖∂x k‖2L2(I ) = −

∫

I
g1|∂3x k|2 −

∫

I
(g1 − g2)∂

3
x h2∂

3
x k

≤ −ε

∫

I
|∂3x k|2 −

∫

I
(g1 − g2)∂

3
x h2∂

3
x k.

It is readily seen that

|g1(x) − g2(x)| ≤ ‖h1 − h2‖L∞(I ) ≤ C‖k‖H1(I )

which implies
∣∣∣∣
∫

I
(g1 − g2)∂

3
x h2∂

3
x k

∣∣∣∣ ≤ C‖k‖H1(I )‖∂3x h2‖L2(I )‖∂3x k‖L2(I ).

Since k(±1, ·) = 0, Poincaré’s inequality gives ‖k‖H1(I ) ≤ C‖∂x k‖L2(I ). This com-
bined with a Young inequality leads to

1

2

d

dt
‖∂x k‖2L2(I ) ≤ Cε‖∂xk‖2L2(I )‖∂3x h2‖2L2(I ).

Because ‖∂3x h2‖L2(I ) ∈ L2([0, T ]) for any T > 0 we conclude by Grönwall’s lemma
that ∂xk = 0 and thus k = 0.

3.2. Local existence. The existence of a local-in-time solution is obtained by Picard’s
iterations. We set h0(x, t) = h0(x) for all t > 0 and define recursively hn+1, n ≥ 0, to
be the solution of the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t hn+1(x, t) + ∂x (gn∂3x h
n+1)(x, t) = 0, (x, t) ∈ I × (0,∞),

gn = √|hn|2 + ε2,

h(±1, t) = 1, ∂2x h(±1, t) = P, t > 0,
h(x, t) = h0(x), t = 0.

(3.5)

Applying recursively Theorem 2.1 we find that hn ∈ X (T ) for any T > 0. We now
prove by induction that there exist T0,C0 > 0,

T0 = T0(
1

ε
, ‖h0‖H3), C0 = C0(

1

ε
, ‖h0‖H3),

such that for any n ≥ 0,

‖hn‖X (T0) + ‖∂t hn‖L1([0,T0];L∞) ≤ C0. (3.6)

In view of the identities

∂t g
n = hn∂t hn√|hn|2 + ε2

, ∂x g
n = hn∂xhn√|hn|2 + ε2

,

∂2x g
n = |∂xhn|2 + hn∂2x h

n

√|hn|2 + ε2
− |hn|2|∂xhn|2

(|hn|2 + ε2)
3
2

, (3.7)
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we find
‖∂t gn‖L1([0,T ];L∞) ≤ ‖∂t hn‖L1([0,T ];L∞) (3.8)

and

‖gn‖L∞([0,T ];H2) ≤ F1(
1

ε
, ‖hn‖L∞([0,T ];H2)). (3.9)

This together with (2.3) yields

‖hn+1‖X (T ) ≤ F2(T,
1

ε
, ‖hn‖L∞([0,T ];H2), ‖∂t hn‖L1([0,T ];L∞), ‖h0‖H3). (3.10)

Thus

‖hn+1‖L2([0,T ];H5) ≤ F2(T,
1

ε
, ‖hn‖L∞([0,T ];H2), ‖∂t hn‖L1([0,T ];L∞), ‖h0‖H3)

(3.11)
possibly with another F2. From the equation for hn+1 we deduce that

‖∂t hn+1‖L1([0,T ];L∞) ≤ √
T ‖∂t hn+1‖L2([0,T ];L∞)

≤ C
√
T ‖gn‖L∞([0,T ];H2)‖hn+1‖L2([0,T ];H5)

≤ √
TF3(T,

1

ε
, ‖hn‖L∞([0,T ];H2), ‖∂t hn‖L1([0,T ];L∞), ‖h0‖H3).

(3.12)
Thus (3.6) holds for n = 0, 1 with arbitrary T0 ∈ (0, 1) and

C0 > max
{
‖h0‖H3 ,F2(1,

1

ε
, ‖h0‖H3 , 0, ‖h0‖H3),F3(1,

1

ε
, ‖h0‖H3 , 0, ‖h0‖H3)

}

=: M. (3.13)

Assume (3.6) for 0, 1, ...n with n ≥ 1 we now prove it for n + 1. A direct induction
based on (3.10) would amplify the bound for hn+1, and thus additional considerations
are needed.

Lemma 3.2. There exist δ ∈ (0, 1) and F5, F6 such that for all T ≤ 1 and n ≥ 1,

‖hn+1‖X (T ) ≤ F5

(1
ε
, T δF6

(‖hn−1‖L∞([0,T ];H2(I )), ‖∂t hn−1‖L2([0,T ];H1)

)
, ‖h0‖H3(I )

)
.

(3.14)

Proof. We first note that un := hn − P
2 x

2 solves

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t un(x, t) + ∂x (gn−1∂3x u
n)(x, t) = 0, (x, t) ∈ I × (0,∞),

gn−1 = √|hn−1|2 + ε2,

un(±1, t) = ∂2x u
n(±1, t) = 0, t > 0,

un(x, t) = un0(x) := h0(x) − P
2 x

2, t = 0.

(3.15)

Then as in Sect. 2.2, we multiply the first equation in (3.15) by ∂4x u
n and integrate by

parts to obtain

1

2

d

dt
‖∂2x un‖2L2(I ) = −

∫

I
gn−1|∂4x un|2 −

∫

I
∂x g

n−1∂3x u
n∂4x u

n .
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Let us note that ∂t∂2x u ∈ L2([0, T ]; H−1(I )) and ∂2x u ∈ L2([0, T ]; H1
0 (I )). Employing

the Gagliardo-Nirenberg inequality

‖∂3x f ‖L2(I ) ≤ C‖∂4x f ‖α
L2(I )‖ f ‖1−α

L2(I )
+ C‖ f ‖L2(I ), α = 3

4
,

we bound ∣∣∣∣
∫

I
∂x g

n−1∂3x u
n∂4x u

n
∣∣∣∣ ≤ ‖∂x gn−1‖L∞(I )‖∂3x un‖L2(I )‖∂4x un‖L2(I )

≤ C‖gn−1‖H2(I )‖∂4x un‖1+α
L2(I )‖un‖1−α

L2(I )

+ C‖gn−1‖H2(I )‖∂4x un‖L2(I )‖un‖L2(I ).

Consequently

‖∂2x un‖2L∞([0,T ];L2(I )) + ‖
√
gn−1∂4x u

n‖2L2([0,T ];L2(I ))

≤ ‖∂2x un(0)‖2L2(I ) + C‖gn−1‖L∞([0,T ];H2(I ))‖un‖1−α

L∞([0,T ];L2(I ))

∫ T

0
‖∂4x un‖1+α

L2(I )

+ C‖gn−1‖L∞([0,T ];H2(I ))‖un‖L∞([0,T ];L2(I ))

∫ T

0
‖∂4x un‖L2(I ).

Appealing to Hölder’s inequality we can gain small factors of powers of T :
∫ T

0
‖∂4x un‖1+α

L2(I ) ≤ T
1−α
2 ‖∂4x un‖α+1

L2([0,T ];L2(I )),

∫ T

0
‖∂4x un‖L2(I ) ≤ T

1
2 ‖∂4x un‖L2([0,T ];L2(I )).

Invoking (3.9) and (3.10) with n replaced by n − 1 leads to

‖∂2x un‖L∞([0,T ];L2(I )) + ‖
√
gn−1∂4x u

n‖L2([0,T ];L2(I ))

≤ T βF3(
1

ε
, ‖hn−1‖L∞([0,T ];H2(I )), ‖∂t hn−1‖L1([0,T ];L∞), ‖h0‖H3) + ‖u0‖H2(I )

for some β ∈ (0, 1) and for all T ≤ 1, n ≥ 1. We thus obtain by virtue of (2.4),

‖hn‖L∞([0,T ];H2) ≤ T βF4
(1
ε
, ‖hn−1‖L∞([0,T ];H2), ‖∂t hn−1‖L1([0,T ];L∞), ‖h0‖H3

)

+C‖h0‖H2 + C.

Substituting this and (3.12) (with n replaced by n − 1) in (3.10) yields

‖hn+1‖X (T )

≤ F2

(
T,

1

ε
, T βF4

(1
ε
, ‖hn−1‖L∞([0,T ];H2), ‖∂t hn−1‖L2([0,T ];H1), ‖h0‖H3

)

+ C‖h0‖H2 + C,

√
TF3

(
T,

1

ε
, ‖hn−1‖L∞([0,T ];H2), ‖∂t hn−1‖L1([0,T ];L∞), ‖h0‖H3

)
, ‖h0‖H3

)

≤ F5

(1
ε
, T γF6

(‖hn−1‖L∞([0,T ];H2), ‖∂t hn−1‖L2([0,T ];H1)

)
, ‖h0‖H3

)

for some γ ∈ (0, 1), for all T ≤ 1 and n ≥ 1. ��
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Now we choose

C0 > max
{
M,F5(

1

ε
, 1, ‖h0‖H3)

}

and T0 ∈ (0, 1) satisfying

T γ
0 F6(C0,C0) ≤ 1,

√
T0F3(

1

ε
,C0,C0, ‖h0‖H3) ≤ C0

then owing to (3.12), (3.14) and the induction hypothesis,

‖hn+1‖X (T0) + ‖∂t hn+1‖L1([0,T0];L∞) ≤ C0

which completes the proof of the uniform bounds (3.6). In fact, using the first equation
in (3.5) and the uniniform boundedness of hn in X (T0)we deduce that ∂t hn is uniformly
bounded in L2([0, T0]; H1(I )). Passing to the limit n → ∞ with the use of Aubin-
Lions’s lemma, we obtain a solution h ∈ X (T0) of (3.1). Moreover, T0 ∈ (0, 1) depends
only on ‖h0‖X and ε, and the bound

‖h‖X (T0) ≤ C0 ≤ F(
1

ε
, ‖h0‖H3)

holds. Finally, (2.5), (2.6), (2.7) and (2.8) hold with g = √
h2 + ε2 by applying Theorem

2.1 to (3.5) then letting n → ∞.

3.3. Global existence. We now iterate the above procedure over time intervals Tm of
length less than 1 and glue the solutions together to obtain a maximal solution h defined
on [0, T ∗) with T ∗ ∈ (0,∞].
Proposition 3.3. For any T < T ∗, h obeys the bound

‖h‖X (T ) ≤ F
( 1

hm(T ) + ε
, ‖h0‖H3

)
, hm(T ) := inf

I×[0,T ] |h|. (3.16)

Proof. We revisit the energy estimates leading to Theorem 2.1 but with g replaced by
h. First, the inequality (2.11) holds,

d

dt

∫

I
(
1

2
|∂xh|2 + Ph) = −

∫

I
g|∂3x h|2 ≤ 0.

Letting u = h − P
2 (x2 − 1) − 1 and g = √

h2 + ε2, as in Sects. 2.1 and 2.2 we have
that

1

2

d

dt
E2
1 + D2

1 ≤ 0 (3.17)

and

1

2

d

dt
E2
2 + D2

2 = −
∫

I
∂x g∂

3
x u∂4x u

hold, where

E1 = ‖∂xu‖L2(I ), D1 = ‖√g∂3x u‖L2 , E2 = ‖∂2x u‖L2(I ), D2 = ‖√g∂4x u‖L2 .
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In particular, we deduce as for (2.16) that

‖h‖L∞([0,T ];H1(I )) ≤ C(1 + ‖h0‖H1(I )). (3.18)

Writing ∂x g = ∂xh
h
g = (∂xu + Px) hg and noting that |h| ≤ g we bound

∣∣∣∣
∫

I
∂x g∂

3
x u∂4x udx

∣∣∣∣ ≤
∫

I

∣∣∣∂xu∂3x u∂4x u
∣∣∣ dx + P

∫

I

∣∣∣x∂3x u∂4x u
∣∣∣ dx

≤ 1

hm(T ) + ε
‖∂xu‖L∞(I )D1D2 +

P

hm(T ) + ε
D1D2

≤ 1

hm(T ) + ε
‖∂xu‖H1(I )D1D2 +

P

hm(T ) + ε
D1D2

≤ C

hm(T ) + ε
E2D1D2 +

P

hm(T ) + ε
D1D2,

≤ 1

2
D2
2 +

C

h2m(T ) + ε2
E2
2D

2
1 +

C

h2m(T ) + ε2
D2
1

where the bound

‖∂xu‖H1(I ) ≤ C‖∂2x u‖L2(I ),

which follows from Poincaré-Wirtinger’s inequality together with the fact that
∫
I ∂xu =

0, was used. Thus

1

2

d

dt
E2
2 +

1

2
D2
2 ≤ C

h2m(T ) + ε2
E2
2D

2
1 +

C

h2m(T ) + ε2
D2
1

which combined with (3.17) yields

1

2

d

dt
E2 +

1

2
D2
2 ≤ C

h2m(T ) + ε2
E2
2D

2
1 ≤ C

h2m(T ) + ε2
E2D2

1

with E2 = C
h2m (T )+ε2

E2
1 + E2

2 . Then by the Grönwall lemma,

‖E2‖L∞([0,T ]) ≤ ‖E‖L∞([0,T ]) ≤ E(0) exp(
C

h2m(T ) + ε2
‖D1‖2L2([0,T ]))

≤ E(0) exp(
C

h2m(T ) + ε2
E2
1(0)).

(3.19)

It follows that

‖D2‖L2([0,T ]) ≤ C

hm(T ) + ε
‖E2‖L∞([0,T ])‖D1‖L2([0,T ])

≤ C

hm(T ) + ε
E(0) exp(

C

h2m(T ) + ε2
E2
1(0))E1(0).

(3.20)

A combination of (3.18), (3.17), (3.19) and (3.20) leads to

‖h‖L∞([0,T ];H2(I )) + ‖∂3x h‖L2([0,T ];L2(I )) + ‖∂4x h‖L2([0,T ];L2(I ))

≤ F
( 1

hm(T ) + ε
, ‖h0‖H2

)
. (3.21)
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We now turn to the H3 estimate. As proved in Sect. 3.2, (2.7) and (2.8) (with g =√
h3 + ε2) hold on each iterative time interval Tm , and thus hold on [0, T ] by gluing

them together. In other words, we have for a.e. t ∈ [0, T ] that

‖ w√
g
(·, t)‖L2(I ) ≤ ‖ w√

g
(·, 0)‖L2(I ) +

1

2

∫ t

0
‖∂t g

g
3
2

(·, s)‖L2(I )‖w(·, s)‖L∞ds (3.22)

and∫ t

0
‖∂2xw(·, s)‖2L2ds ≤ 1

2
‖ w√

g
(·, 0)‖2L2(I )

+
1

2

∫ t

0
‖∂t g

g
3
2

(·, s)‖L2(I )‖
w√
g
(·, s)‖L2(I )‖w(·, s)‖L∞ds.

(3.23)

But by (2.26) it is readily seen that

‖w‖L∞ ≤ C‖g‖L∞‖∂3x h‖L∞ ≤ C(‖h‖L∞ + ε)‖∂4x h‖L2

and
‖∂t g‖L2 ≤ ‖∂t h‖L2 ≤ C‖h‖H2(‖∂3x h‖L2 + ‖∂4x h‖L2). (3.24)

Consequently

‖ w√
g
‖L∞([0,T ];L2) ≤ ‖ w0√

g0
‖L2 +

C

(hm(T ) + ε)
3
2

A

with

A = ‖w‖L∞([0,T ];L∞)‖∂t g‖L2([0,T ];L2)

≤ C(‖h‖H1 + ε)‖h‖L∞([0,T ];H2)

(
‖∂3x h‖L2([0,T ];L2)‖∂4x h‖L2([0,T ];L2)

+ ‖∂4x h‖2L2([0,T ];L2)

)

≤ F
( 1

hm(T ) + ε
, ‖h0‖H2

)

in view of (3.21), and

‖∂2xw‖2L2([0,T ];L2)
≤ 1

2
‖ w0√

g0
‖2L2 +

C

(hm(T ) + ε)
3
2

‖ w√
g
‖L∞([0,T ];L2)

‖∂t g‖L∞([0,T ];L2)‖w‖L∞([0,T ];L∞)

≤ 1

2
‖ w0√

g0
‖2L2 +

C

(hm(T ) + ε)
3
2

(
‖ w0√

g0
‖L2 +

C

(hm(T ) + ε)
3
2

A
)
A

≤ F
( 1

hm(T ) + ε
, ‖h0‖H2

)
.

Appealing to (2.27) with g = h we deduce that

‖∂3x h‖L∞([0,T ];L2) + ‖∂5x h‖L∞([0,T ];L2) ≤ F
( 1

hm(T ) + ε
, ‖h0‖H3

)
(3.25)

from which (3.16) follows. ��
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Now (3.16) implies the global bound

‖h‖X (T ) ≤ F
(1
ε
, ‖h0‖H3

)

for any T < T ∗. We thus conclude that T ∗ = ∞. Furthermore, the bounds (3.2) and
(3.3) follow from (3.18), (3.25) and (3.21).

4. Proof of Theorem 1.1

Let h0 ∈ H3 satisfy the boundary conditions (1.2) and

h0,m := inf
I
h0 > 0.

Step 1 (Approximate equations). For each ε ∈ (0, 1], let hε be the solution of the
nondegenrate problem

⎧⎪⎨
⎪⎩

∂t hε(x, t) + (
√
h2ε + ε2∂3x hε)x (x, t) = 0, (x, t) ∈ (−1, 1) × (0,∞),

hε(±1, t) = 1, ∂2x hε(±1, t) = P, t > 0,
hε(x, t) = h0(x), t = 0.

(4.1)

According to Theorem 3.1, hε ∈ X (T ) for any T > 0 and hε obeys the bounds

‖hε‖X (T ) ≤ F
( 1

hε,m(T ) + ε
, ‖h0‖H3

)
, (4.2)

‖hε‖L∞([0,T ];H1(I )) ≤ C(1 + ‖h0‖H1(I )) (4.3)

with

hε,m(T ) = inf
(x,t)∈I×[0,T ]

|hε(x, t)| .

Moreover, (2.5) and (2.6) hold with g = √
h2ε + ε2.

Using the equation for hε and (4.2) we get

‖∂t hε‖L2([0,T ];H1) ≤ F
( 1

hε,m(T ) + ε
, ‖h0‖H3

)
(4.4)

for all T ≤ 1. This implies

hε(x, t) ≥ hε(x, 0) − |
∫ t

0
∂t hε(x, s)ds|

≥ h0,m − √
T ‖∂t hε‖L2([0,T ];L∞)

≥ h0,m − √
TF

( 1

hε,m(T ) + ε
, ‖h0‖H3

) ∀t ≤ T ≤ 1.

(4.5)

Step 2 (Bootstrap) Denote

dε(T ) = 1

hε,m(T ) + ε
, T ≤ 1.
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We choose C0 sufficiently large and T0 sufficiently small so that

C0 >
1

h0,m
, (4.6)

√
T0F(C0, ‖h0‖H3) ≤ h0,m

2
, (4.7)

C0 >
1

h0,m − √
T0F2(C0, ‖h0‖H3)

. (4.8)

This is possible by taking

C0 >
2

h0,m
,

√
T0F2(C0, ‖h0‖H3) ≤ h0,m

2
.

We claim that
dε(T0) ≤ C0 ∀ε > 0. (4.9)

Indeed, if (4.9) is not true then there exists ε0 > 0 such that dε0(T0) > C0. By (4.6),

dε0(0) = 1

h0,m + ε
≤ 1

h0,m
< C0.

By the continuity of dε0(·), there exists T1 ∈ (0, T0) such that dε0(T1) = C0. Then (4.7)
implies

√
T1F(dε0(T1), ‖h0‖H3) = √

T1F(C0, ‖h0‖H3) ≤ √
T0F(C0, ‖h0‖H3) ≤ h0,m

2
.

We deduce from (4.5) that

inf
I×[0,T1]

hε0 ≥ 1

2
h0,m > 0

and

hε0,m(T1) ≥ h0,m − √
T0F(C0, ‖h0‖H3) > 0.

Hence

C0 = dε0(T1) = 1

hε0,m(T1) + ε0
≤ 1

h0,m − F(C0, ‖h0‖H3)
.

This contradicts (4.8), and thus we conclude the claim (4.9). Coming back to (4.5) we
find

inf
I×[0,T0]

hε ≥ 1

2
h0,m ∀ε > 0.

Step 3 (Conclusion of the argument) Inserting (4.9) into (4.2) and (4.4) yields

‖hε‖X (T0) + ‖∂t hε‖L2([0,T0];H1(I )) ≤ M0
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for some M0 depending only on ‖h0‖H3(I ) and h0,m . Set ε = 1
n and rename hn = hε,

dn = dε. According to Aubin-Lions’s lemma, there exists h ∈ X (T0) such that

hn ⇀ h in L2([0, T0]; H5(I )), (4.10)

hn ⇀ ∗ h in L∞([0, T0]; H3(I )), (4.11)

hn → h in C([0, T0];C2(I )). (4.12)

Moreover, it is easy to check that h solves the problem (1.1)–(1.2). Letting ε → 0 in
(4.5) we find

inf
I×[0,T0]

h ≥ 1

2
h0,m > 0.

Next, it follows from (4.2) and the convergences (4.10), (4.11) that

‖h‖X (T0) ≤ lim inf
n→∞ ‖hn‖X (T0) ≤ lim inf

n→∞ F
( 1

hn,m(T0) + 1
n

, ‖h0‖H3
)
.

We can replace lim inf by lim of a subsequence nk → ∞. For some (xk, tk) ∈ I ×
[0, T0], hnk ,m(T0) = hnk (xk, tk). By the compactness of [−1, 1] × [0, T0], there exists a
subsequence nk j → ∞ such that

(xk j , tk j ) → (x0, t0) ∈ [−1, 1] × [0, T0], hnk j (xk j , tk j ) → h(x0, t0) ≥ inf
I×[0,T0]

h

where (4.12) was used in the second convergence. Consequently

‖h‖X (T0) ≤ F
( 1

lim j→∞ hnk j (xk j , tk j ) +
1
nk j

, ‖h0‖H3
)

≤ F
( 1

inf I×[0,T0] h
, ‖h0‖H3

)

where the fact that F is increasing was used.
In addition, passing to the limit in (2.5) and (2.6) leads to (1.6) and (1.7) repsectively.
Finally, because h is positive on I , it is unique by the same argument as in Sect. 3.1.

5. Proof of Proposition 1.5

Let h ∈ H1(I ) be a nonnegative function satisfying h(±1) = 1. We have

E(h(t)) =1

2

∫

I
|∂xh|2dx + P

∫

I
hdx

=1

2

∫

I
|∂x (h − hP )|2dx +

1

2

∫

I
|∂xhP |2dx

+
∫

I
∂x (h − hP )∂xhPdx + P

∫

I
hdx .
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Integration by parts in the cross term gives
∫

I
∂x (h − hP )∂xhPdx = (h − hP )∂xhP |1−1 −

∫

I
(h − hP )∂2x hPdx

= −
∫

I
(h − hP )∂2x hPdx

since h = hP at ±1.

Case 1: P ∈ (0, 2]. In this case ∂2x hP = P , and thus

E(h(t)) = 1

2

∫

I
|∂x (h − hP )|2dx +

1

2

∫

I
|∂xhP |2dx + P

∫

I
hP ≥ E(hP ).

Moreover, E(h(t)) = E(hP ) if and only if ∂x (h − hP ) = 0 which is equivalent to
h = hP by the boundary condition h(±1) = hP (±1) = 1.

Case 2: P > 2. Then ∂2x hP (x) = P if |x | > xP and = 0 if |x | < xP . Thus

E(h(t)) = 1

2

∫

I
|∂x (h − hP )|2dx +

1

2

∫

I
|∂xhP |2dx + P

∫

I
h − P

∫

xP<|x |<1
(h − hP )

= 1

2

∫

I
|∂x (h − hP )|2dx +

1

2

∫

I
|∂xhP |2dx + P

∫

xP<|x |<1
hP + P

∫ xP

−xP
h

= 1

2

∫

I
|∂x (h − hP )|2dx +

1

2

∫

I
|∂xhP |2dx + P

∫

I
hP + P

∫ xP

−xP
h

≥ E(hP ).

Moreover, E(h(t)) = E(hP ) if and only if

{
∂x (h − hP ) = 0 on I,
h = 0 on (−xP , xP ).

Again, owing to the boundary condition h(±1) = hP (±1) = 1, this is equivalent to
h(x, ·) = hP (x) for |x | > xP and h = 0 on (−xP , xP ). In other words, h = hP .

6. Proof of Theorem 1.6

Let hn be a sequence of nonnegative H3(I ) functions satisfying (1.2). Assume that hn
is uniformly bounded in H1(I ) and D(hn) → 0. Note that in view of the Gagliardo-
Nirenberg inequality

‖ f ‖L2(I ) ≤ C‖∂x f ‖
1
2
L2‖ f ‖

1
2
L1 + C‖ f ‖L1(I ),

the energy E defines a norm which is equivalent to the H1(I ) norm. Then, by extracting
a subsequence, still denoted tn , we have hn ⇀ h∞ in H1(I ). In particular,

hn → h∞ in C(I ). (6.1)
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Observe that if at some x0 ∈ I = [−1, 1], h∞(x0) > 0 then for some δ > 0, h∞ ≥
2
3h∞(x0) on Ix0,δ := (x0−δ, x0+δ)∩ I . By (6.1), hn ≥ 1

2h∞(x0) on Ix0,δ for sufficiently
large n. By the definition of D(h) we get

∫

Ix0,δ

|∂3x hn(x)|2dx → 0. (6.2)

By interpolation, the quantity

N3(u) :=
∫

Ix0,δ

(|u|2 + |∂3x u|2)dx

defines a norm which is equivalent to the H3(Ix0,δ) norm. It follows from (6.1) and (6.2)
that hn ⇀ h∞ in N3 and

N3(h∞) ≤ lim inf
n→∞ N3(h(tn)) = lim

n→∞

∫

Ix0,δ

|hn(x)|2dx + lim
n→∞

∫

Ix0,δ

|∂3x hn(x)|2dx

=
∫

Ix0,δ

|h∞(x)|2dx,

hence ∫

Ix0,δ

|∂3x h∞(x)|2dx = 0.

We have proved that

Lemma 6.1. If h∞(x0) > 0, x0 ∈ I , then there exists a neighborhood Ix0,δ = (x0 −
δ, x0 +δ)∩ I of x0 in which hn, h∞ are positive, ∂3x h∞ = 0, and hn → h∞ in H3(Ix0,δ).
Consequently, ∂3x h∞ = 0 on Z = {x ∈ I : h∞(x) > 0}, hence h∞ is either a parabola
or a straight line on each connected component (which are open intervals) of Z.

The next lemma rules out the possibility that hn goes down to 0 at a non-zero angle.

Lemma 6.2. Let x0 ∈ I and J = (x0, x0 + δ) ⊂ I . Let k ∈ C2(J ) be such that k > 0 on
J and k, ∂xk, ∂2x k are right-continuous at x0 with k(x

+
0 ) = 0 and ∂xk(x+0 ) �= 0. Let kn be

a sequence of nonnegative functions in H3(I ) such that kn(±1) = c > 0 and kn → k
in C2(J ). Then,

∫

I
kn|∂3x kn|2 �→ 0.

The same conclusion holds if J is placed by (x0 − δ, x0) ⊂ I and x+0 is replaced by x−
0

in the assumptions on k.

Proof. Assume by contradiction
∫

I
kn|∂3x kn|2 → 0. (6.3)

Then in view of Höder’s inequality and the boundedness of kn in L∞(I ), we have for
any I ′ ⊂ I that
∣∣∣∣
∫

I ′
kn∂

3
x kn

∣∣∣∣ ≤ √|I ′|
( ∫

I ′
k2n |∂3x kn|2dx

) 1
2 ≤ √|I ′| sup

n
‖kn‖L∞(I )

( ∫

I ′
kn|∂3x kn|2dx

) 1
2
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from which it follows that ∫

I ′
kn∂

3
x kn → 0 ∀I ′ ⊂ I. (6.4)

Since

k(x+0 )∂2x k(x
+
0 ) − 1

2
(∂xk(x

+
0 ))2 = −1

2
(∂x k(x

+
0 ))2 < 0

there exists ε ∈ (0, δ) so small that ∂xk(x0 + ε) �= 0 and

k(x0 + ε)∂2x k(x0 + ε) − 1

2
(∂xk(x0 + ε))2 < 0.

Here, the assumptions that k ∈ C2(J ) and k, ∂x k, ∂2x k are right continuous at x0 were
used. We note that kn(x) ≥ c > 0 on J1 = (x0 + ε, x0 + δ) for all n. This combined
with (6.3) yields

∫
J1

|∂3x kn|2 → 0, and thus kn → k in H3(J1) since we know kn → k

in C0(J1). In particular, k ∈ C2(J 1) and

kn(x0 + ε) → k(x0 + ε) > 0, ∂x kn(x0 + ε) → ∂xk(x0 + ε) �= 0,

∂2x kn(x0 + ε) → ∂2x k(x0 + ε).

Let xn be the global minimum of kn on I . We know that kn ≥ 0, kn(±1) = c > 0 and
kn(x0) → k(x0) = 0, hence xn ∈ I for n sufficiently large. Then ∂x k(xn) = 0 and
∂2x kn(xn) > 0. Now we compute

∫ x0+ε

xn
kn∂

3
x kn = kn∂

2
x kn

∣∣∣
x0+ε

xn
−

∫ x0+ε

xn
∂x kn∂

2
x kn

= kn(x0 + ε)∂2x kn(x0 + ε) − kn(xn)∂
2
x kn(xn)

− 1

2
(∂xkn(x0 + ε))2 +

1

2
(∂xkn(xn))

2

= kn(x0 + ε)∂2x kn(x0 + ε) − kn(xn)∂
2
x kn(xn)

− 1

2
(∂xkn(x0 + ε))2.

Since kn(xn)∂2x kn(xn) ≥ 0, the right-hand side is smaller than or equal to

kn(x0 + ε)∂2x kn(x0 + ε) − 1

2
(∂xkn(x0 + ε))2

which converges to

k(x0 + ε)∂2x k(x0 + ε) − 1

2
(∂xk(x0 + ε))2 < 0

while the left-hand side converges to 0, according to (6.4). This contradiction concludes
the proof. ��
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We now proceed to show h∞ = hP . First, h∞(1) = lim hn(1) = 1. ByLemma 6.1, there
exists δ0 ∈ (0, 1) such that hn → h∞ in H3((1 − δ0, 1)), h∞ > 0 and ∂3x h∞ = 0 on
(1−δ0, 1). In particular, hn → h∞ inC2([1−δ0, 1]) and ∂2x h∞(1) = lim ∂2x hn(1) = P .
Let J = (1, 1 − δ) be the connected component of Z = {x ∈ I : h∞(x) > 0} whose
closure contains 1. Then h∞ is a parabola of the form

h∞(x) = P

2
x2 + ax + b,

P

2
+ a + b = 1 (6.5)

on J .

Case 1: P ∈ (0, 2). We claim that δ > 1. Assume by contradiction δ ≤ 1. Then
h∞(x0) = 0 with x0 := 1 − δ ∈ [0, 1). According to Lemma 6.2, ∂xh∞(x0) = 0. This
is equivalent to

{
� := a2 − 2P(1 − a − P

2 ) = (a + P)2 − 2P = 0,
x0 = − a

P ,

where the first condition is equivalent to a = a1 = √
2P − P or a = a2 = −√

2P − P .

If a = a1 then x0 = −
√
2P−P
P = 1 −

√
2
P < 0. If a = a2 then x0 =

√
2P+P
P > 1. Both

cases being impossible, we conclude that δ > 1. In particular, h assumes the form (6.5)
on [−ε, 1] with some ε > 0.

Similarly, if we start from x = −1 we also have that h∞(x) = P
2 x

2 + a′x + b′ for
x ∈ [−1, ε′] for some ε′ ∈ (0, 1) and a′, b′ ∈ R. Necessarily ax + b = a′x + b′ on
[−ε, ε′], and thus (a′, b′) = (a, b). In other words, h∞ assumes the form (6.5) on the
whole interval [−1, 1]. Equalizing h∞(−1) = h∞(1) = 1 leads to a = 0. We thus
conclude that

h(x) = P

2
(x2 − 1) + 1 = hP on [−1, 1].

Case 2: P ≥ 2. Arguing as in Case 1 we find δ ≤ 1 and h∞(x0) = 0 with

x0 = 1 − δ = 1 −
√

2

P
= xP ∈ [0, 1),

and a = √
2P − P .

When P = 2, x0 = 0 and a = 0. Hence h∞(x) = x2 on [0, 1]. A similar argument
also gives h∞(x) = x2 on [−1, 0], hence h∞ = hP .

Consider now the case P > 2. Then x0 = xP ∈ (0, 1) and

h∞(x) = P

2
x2 + ax + b = P

2
x2 + (

√
2P − P)x + 1 − √

2P +
P

2
= P

2
(x − xP )2

on [xP , 1]. We claim that h∞ = 0 on [0, xP ), then by symmetry h∞ = hP . Assume
by contradiction h∞(x1) > 0 for some x1 ∈ [0, xP ). Let (a, b) ⊂ I be the connected
component of Z = {x ∈ I : h∞ > 0} that contains x1. Necessarily h∞(b) = 0 and
b ≤ xP . By Lemma 6.1, h∞ is either a parabola or a straight line (a, b). Let us show
that both cases are impossible. Indeed, if h∞ is a straight line on (a, b) then h∞ hits 0
at x = b (from the left) with an angle, which is impossible according to Lemma 6.2.
Assume now that h∞ is a parabola on (a, b). Since h∞ must touch down from the left
of b at zero angle, the only possibility is that the parabola P

2 x
2 + ax + b is positive while



On Singularity Formation in a Hele-Shaw Model 163

its slope is negative on (−∞, b). Thus h∞(x) = P
2 x

2 + ax + b on the whole interval
[−1, b]. But then h∞(−1) = h∞(1) = 1 yields a = 0 which contradicts the fact that
a = √

2P − P < 0. Therefore, h∞ = hP when P > 2.
By Lemma 6.1, hn → hP in H3

loc({x : hP (x) > 0}) for any P > 0. Furthermore,
when P ∈ (0, 2), hP > 0 on I and one can take in Lemma 6.1 Ix0,δ = I for any x0 ∈ I ,
hence hn → hP in H3(I ). We have actually proved that any subsequence of (hn) has
a subsequence with desired convergence properties. Because the limit is unique (and is
equal to hP ) we conclude that in fact the whole sequence hn has those properties.

7. Proof of Theorem 1.7

Part 1. Let P ∈ (0, 2), and let h0 ∈ H3(I ) satisfy (1.2) and inf I h0 > 0. According
to Theorem 1.1, there exist a maximal time of existence T ∗ ∈ (0,∞] and a unique
solution h ∈ X (T )with inf I×[0,T ] h > 0 for any T < T ∗. Set u = h−hP , then because
∂3x hP = 0 we have

{
∂t u(x, t) + ∂x (h∂3x u)(x, t) = 0, (x, t) ∈ I × (0, T ∗),
u(±1, t) = ∂2x u(±1, t) = 0, t > 0.

(7.1)

Multiplying the first equation in (7.1) by −∂2x u and integrating by parts, we obtain as in
Sect. 2.1,

1

2

d

dt
‖∂xu(·, t)‖2L2(I ) = −

∫

I
h(t, x)|∂3x u(x, t)|2dx, t ∈ (0, T ∗). (7.2)

In particular,

‖∂xu(·, t)‖L2(I ) ≤ ‖∂xu(·, 0)‖L2(I ), t ∈ (0, T ∗).

Since u(±1, ·) = 0, Poincaré’s inequality together with the embedding H1(I ) ⊂ C(I )
yields

‖u(·, t)‖L∞(I ) ≤ C1‖∂xu(·, t)‖L2(I ) ≤ C1‖∂xu(·, 0)‖L2(I ), t ∈ (0, T ∗).

Consequently,

h(x, t) ≥ hP (x) − C1‖∂xu(·, 0)‖L2(I ) ≥ 2 − P

2
− C1‖∂xu(·, 0)‖L2(I ),

and thus

h(x, t) ≥ 1

2

2 − P

2
(7.3)

for all (x, t) ∈ I × [0, T ∗) provided

‖∂xu(·, 0)‖L2(I ) ≤ 1

2C1

2 − P

2
.

Therefore, T ∗ = ∞ according to the blow-up criterion (1.4).
Next, we show that h converges to h∞ exponentially in H1(I ). Indeed, because

∂2x u(±1, ·) = 0 and
∫
I ∂xudx = u(1) − u(−1) = 0, Poincaré’s inequalities yield

‖∂3x u(x, t)‖L2(I ) ≥ C2‖∂2x u(x, t)‖L2(I ) ≥ C3‖∂xu(x, t)‖L2(I )
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which combined with (7.3) and (7.2) leads to

d

dt
‖∂xu(·, t)‖2L2(I ) ≤ −C4‖∂xu(·, t)‖2L2(I ).

By Grönwall’s lemma,

‖∂xu(·, t)‖L2(I ) ≤ ‖∂xu(·, 0)‖L2(I ) exp(−C4t) ∀t > 0.

Finally, note that u(±1, ·) = 0 we conclude by Poincaré’s inequality that

‖u(·, t)‖H1(I ) ≤ C‖u(·, 0)‖H1(I ) exp(−C4t) ∀t > 0. (7.4)

Let us now turn to prove that D(h) ∈ W 1,1(R+). According to (1.6), D(h) ∈ L1(R+).
Thus, by virtue of (1.7), it remains to show that

A :=
∫

I
∂t h|∂3x h|2(x, s)dx − 2

∫

I
|∂x∂t h|2(x, s)dx ∈ L1(R+).

In the rest of this proof, we write L pLq ≡ L p(R+; Lq(I )). We first note that by (3.24),

‖∂t h‖L2L2 ≤ C‖h‖L∞H2(‖∂3x h‖L2L2 + ‖∂4x h‖L2L2). (7.5)

Consider next ∂x∂t h = −∂2x h∂3x h − 2∂xh∂4x h − h∂5x h. It is readily seen that

‖∂xh∂4x h‖L2L2 ≤ C‖h‖L∞H2‖∂4x h‖L2L2 , ‖h∂5x h‖L2L2 ≤ C‖h‖L∞H1‖∂5x h‖L2L2 .

Using (2.26) we bound

‖∂2x h∂3x h‖L2L2 ≤ ‖∂2x h‖L∞L2‖∂3x h‖L2L∞ ≤ C‖∂2x h‖L∞L2‖∂4x h‖L2L2 .

Consequently

‖∂x∂t h‖L2L2 ≤ C‖h‖L∞H2‖∂4x h‖L2L2 + C‖h‖L∞H1‖∂5x h‖L2L2 . (7.6)

In view of the lower bound (7.3), it follows from (1.3) that

‖h‖X (R+) ≤ F(‖h0‖H3
)
. (7.7)

This together with (7.6) yields
∫ ∞

0

∫

I
|∂x∂t h|2(x, s)dxds = ‖∂x∂t h‖2L2L2 ≤ F(‖h0‖H3

)
. (7.8)

On the other hand, using (2.26) and Hölder’s inequality we get
∫

I
∂t h|∂3x h|2dx ≤ ‖∂t h‖L2(I )‖∂3x h‖L2(I )‖∂3x h‖L∞(I )

≤ C‖∂t h‖L2(I )‖∂3x h‖L2(I )‖∂4x h‖L2(I ),

hence
∫ ∞

0

∣∣∣∣
∫

I
∂t h|∂3x h|2(x, s)dx

∣∣∣∣ ds ≤ C‖∂t h‖L2L2‖∂3x h‖L∞L2‖∂4x h‖L2L2 .
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Employing (7.5) and (7.7) we deduce that

∫ ∞

0

∣∣∣∣
∫

I
∂t h|∂3x h|2(x, s)dx

∣∣∣∣ ds ≤ F(‖h0‖H3
)

which combined with (7.8) concludes that A ∈ L1(R+). This completes the proof of
D(h) ∈ W 1,1(R+). According to Corollary 8.9 [Bre11] we then have D(h(t)) → 0 as
t → ∞, and thus Theorem 1.6 implies that h(t) → hP in H3(I ) as t → ∞.

Part 2. Let P ≥ 2, and let h0 ∈ H3(I ) satisfy (1.2) and inf I h0 > 0. Suppose that
the solution h to (1.1)–(1.2) with initial data h0 is not pinched at finite time neither at
infinite time, then according to Theorem 1.1, h is global, h ∈ X (T ) for any T > 0, and

inf
I×[0,∞)

h ≥ c0 (7.9)

for some c0 > 0. Set

h∞(x) = P

2
(x2 − 1) + 1.

Observe that h∞ is a stationary solution of (1.1)–(1.2) and h∞ vanishes at ±
√
1 − 2

P .
As before, u = h − h∞ satisfies (7.1). By virtue of (7.9), the proof of (7.4) also gives

‖u(·, t)‖H1(I ) ≤ C‖u(·, 0)‖H1(I ) exp(−Ct) ∀t > 0.

In particular,

lim
t→∞ ‖h(·, t) − h∞(·)‖C(I ) = 0.

Because h∞(

√
1 − 2

P ) = 0, we deduce that limt→∞ h(

√
1 − 2

P , t) = 0 which contra-
dicts (7.9).

Assume now that h is global in time. Since D(h) ∈ L1(R+) there exists tn → ∞ such
that D(h(tn)) → 0. By virtue of Theorem 1.6, h(tn) ⇀ hP in H1(I ) and h(tn) → hP
in H3

loc({x : hP (x) > 0}).

Appendix A. Weak Solutions

Theorem A.1 (Existence of global weak solutions). Let h0 ∈ H1(I ) be a nonnegative
function such that h0 ∈ H3((−1,−1 + δ0)) ∩ H3((1 − δ0, 1)) for some δ0 ∈ (0, 1)
and h0 satisfies (1.2). Let T be a positive real number. Then there exists a global weak
solution h of (1.1)–(1.2) in the sense of Definition 1.3. More precisely,

h ∈ C(I × [0, T ]) ∩ L∞([0, T ]; H1(I )) ∩ L2([0, T ]); H2(I )) ∩ H1((0, T ); H−1(I ))

and there exists δ ∈ (0, 1) independent of T such that

h ∈ L2([0, T ]; H3((−1,−1 + δ)) ∩ H3((1 − δ, 1))
)
.
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Proof. Let hn0 ∈ H3(I ) be a sequence of nonnegative functions satisfying (1.2) such
that hn0 → h in H1(I ) ∩ H3(J ). According to Theorem 3.1 there exists for each n a
unique solution hn ∈ X ([0, T ]), for any T > 0, to the problem

⎧⎪⎨
⎪⎩

∂t hn(x, t) + ∂x (
√|hn|2 + n−2∂3x h

n)(x, t) = 0, (x, t) ∈ I × (0,∞),

hn(±1, t) = 1, ∂2x h
n(±1, t) = P, t > 0,

hn(x, t) = hn0(x), t = 0.
(A.1)

Moreover, there exists C > 0 independent of n and T such that

‖hn‖L∞([0,T ];H1(I )) ≤ C‖hn0‖H1(I ) (A.2)

and

∫ T

0

∫

I
gn|∂3x hn|2(x, s)dxds ≤ C(‖hn0‖2H1(I ) + 1), gn =

√
|hn|2 + n−2. (A.3)

Writing gn∂3x h
n = ∂x (gn∂2x h

n) − ∂x gn∂2x h
n we have

0 = ∂t h
n + ∂x (g

n∂3x h
n) = ∂t h

n + ∂2x (g
n∂2x h

n) − ∂x (∂x g
n∂2x h

n).

Then, for any ϕ ∈ C∞
0 (I × (0, T )),

−
∫ T

0

∫

I
hn∂tϕ +

∫ T

0

∫

I
gn∂2x h

n∂2xϕ +
∫ T

0

∫

I
∂x g

n∂2x h
n∂xϕ = 0. (A.4)

Because hn(±1, ·) = 1 and hn is uniformly bounded in L∞(R+;C 1
2 (I )) (by virtue of

(A.2) and the embedding H1(I ) ⊂ C
1
2 (I )), there exists δ > 0 sufficiently small such

that

hn(x, t) ≥ 1

2
∀t ≥ 0, ∀x ∈ J1 := [−1,−1 + δ] ∪ [1 − δ, 1] := J1,l ∪ J1,r .

It then follows from (A.3) that

‖∂3x hn‖L2(R+;L2(J1)) ≤ C = C(‖h0‖H1(I )) (A.5)

which combined with (A.2) and interpolation yields

‖hn‖L2([0,T ];H3(J1)) ≤ C = C(‖h0‖H1(I ), T ), ∀T > 0. (A.6)

Let A > 0 depend only on ‖h0‖H1(I ) such that ‖hn‖L∞(I×R+) ≤ A for all n. We define

fn(s) = −
∫ A

s

dr√
r2 + n−2

, Fn(s) = −
∫ A

s
fn(r)dr.
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Note that gn(s) ≤ 0 and Fn(s) ≥ 0 for any s ≤ A. Let χ be a nonnegative cut-off
function equal to 1 on I1 := I \ J1 and supported on (−1, 1). Multiplying the first
equation in (A.1) by fn(hn(x, t))χ(x) then integrating by parts we obtain

∫

I
∂t h

n fn(h
n)χdx = −

∫

I
∂x (g

n∂3x h
n) fn(h

n)χdx

=
∫

I
gn∂3x h

n f ′
n(h

n)∂xh
nχdx +

∫

I
gn∂3x h

n fn(h
n)∂xχdx

=
∫

I
∂3x h

n∂xh
nχdx +

∫

I
gn∂3x h

n fn(h
n)∂xχdx

= −
∫

I
|∂2x hn|2χdx −

∫

I
∂2x h

n∂xh
n∂xχdx

+
∫

I
gn∂3x h

n fn(h
n)∂xχdx .

Since
∫

I
∂t h

n fn(h
n)χdx = d

dt

∫

I
Fn(h

n)χdx

we deduce that
∫

I
Fn(h

n)(x, T )χdx +
∫ T

0

∫

I1
|∂2x hn|2χdxds

≤
∫

I
Fn(h

n)(x, 0)χdx −
∫ T

0

∫

I
∂2x h

n∂xh
n∂xχdxds

+
∫ T

0

∫

I
gn∂3x h

n fn(h
n)∂xχdxds.

(A.7)

We split

∫ T

0

∫

I
∂2x h

n∂xh
n∂xχdx =

∫ T

0

∫

I1
∂2x h

n∂xh
n∂xχdx

+
∫ T

0

∫

J1
∂2x h

n∂xh
n∂xχdx =: H1 + H2.

Using Hölder’s inequality and (A.2) we get

|H1| ≤ C‖∂2x hn‖L2([0,T ];L2(I1)), C = C(‖h0‖H1(I ), T ).

On the other hand, (A.6) gives

|H2| ≤ C = C(‖h0‖H1(I ), T ).

Thus
∣∣∣∣
∫ T

0

∫

I
∂2x h

n∂xh
n∂xχdxds

∣∣∣∣ ≤ C‖∂2x hn‖L2([0,T ];L2(I1)) + C, C = C(‖h0‖H1(I ), T ).

(A.8)
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Applying Hölder’s inequality together with (A.2) and (A.3) we find
∣∣∣∣
∫ T

0

∫

I
gn∂3x h

n fn(h
n)∂xχdxds

∣∣∣∣ ≤ C = C(‖h0‖H1(I ), T ). (A.9)

In addition, it is easy to see that
∫

I
Fn(h

n)(x, 0)χdx ≤ C = C(‖h0‖H1(I )). (A.10)

Putting together (A.7), (A.8), (A.9) and (A.10) yields

‖∂2x hn‖2L2([0,T ];L2(I1))
≤ C‖∂2x hn‖L2([0,T ];L2(I1)) + C, C = C(‖h0‖H1(I ), T ).

Consequently, there exists C = C(‖h0‖H1(I ), T ) such that

‖∂2x hn‖L2([0,T ];L2(I1)) ≤ C ∀n.

This together with (A.6) implies

‖∂2x hn‖L2([0,T ];L2(I )) ≤ C ∀n. (A.11)

Let us fix a positive (finite) time T . A combination of (A.2) and (A.3) leads to the uniform
boundedness of gn∂3x h

n in L2([0, T ]; L2(I )), hence the uniform boundedness of ∂t hn

in L2([0, T ]; H−1(I )). Using this, (A.2), (A.6), (A.11) and Aubin-Lions’s lemma we
conclude that up to extracting a subsequence,

hn ⇀ h in L2([0, T ]; H2(I )),

hn → h in C(I × [0, T ]) ∩ L2([0, T ]; H1(I )) ∩ L2([0, T ];C2(J1))

for some

h ∈ C(I × [0, T ]) ∩ L∞([0, T ]; H1(I )) ∩ L2([0, T ]; H2(I ))

∩L2([0, T ]; H3(J1,l) ∩ H3(J1,r ))

with ∂t h ∈ L2((0, T ); H−1(I )). In particular, h satisfies the boundary conditions (1.2)
for a.e. t ∈ [0, T ]. We claim that

h(x, t) ≥ 0 ∀(x, t) ∈ I × [0, T ].
Indeed, coming back to (A.7) we deduce from (A.8), (A.9) and (A.10) that

∫

I
Fn(h

n(x, t))dx ≤ C(‖h0‖H1(I ), T ) (A.12)

for all n ≥ 0 and t ≤ T . Assume by contradiction h(x0, t0) < 0 for some (x0, t0) ∈
I × [0, T ]. Since hn → h uniformly on I × [0, T ], there exist η > 0 and n0 ∈ N such
that

hn(x, t0) < −η if |x − x0| ≤ δ, n ≥ n0.

But for such x ,

Fn(h
n(x, t0)) = −

∫ A

hn(x,t0)
fn(s)ds ≥ −

∫ 0

−η

fn(s)ds → −
∫ 0

−η

f∞(s)ds as n → ∞
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by the monotone convergence theorem, here

f∞(s) := lim
n→∞ fn(s) = −∞

for any s ≤ 0. It follows that
∫

I
Fn(h

n(x, t0)) = +∞

which contradicts (A.12), and thus h ≥ 0.
Then letting n → ∞ in (A.4) leads to

−
∫ T

0

∫

I
h∂tϕ +

∫ T

0

∫

I
h∂2x h∂2xϕ +

∫ T

0

∫

I
∂xh∂2x h∂xϕ = 0 ∀ϕ ∈ C∞

0 (I × (0, T )).

(A.13)
Writing ∂xh∂2x h = 1

2∂x |∂xh|2 and integrating by parts in the last integral we arrive at

−
∫ T

0

∫

I
h∂tϕ +

∫ T

0

∫

I

(
h∂2x h − 1

2
|∂xh|2)∂2xϕ = 0 ∀ϕ ∈ C∞

0 (I × (0, T )). (A.14)

In other words, h is a weak solution of (1.1)–(1.2) in the sense of Definition 1.3. ��
In general, weak solutions can be non-unique. Nevertheless, the steady weak solution
hP is unique as shown in the next Proposition.

Proposition A.2 (Uniqueness of hP ). For any P > 0, hP is the unique even weak steady
solution, in the sense of Definition 1.3, to (1.1)–(1.2).

Proof. It is easy to check that hP is an evenweak steady solution in the sense ofDefinition
1.3. Assume now that h is an even weak steady solution, we prove that h = hP . We first
notice that the weak formulation (1.9) is equivalent to ∂x∂x (h∂2x h − 1

2 |∂xh|2) = 0 in
D ′(I ), or again ∂x (h∂2x h − 1

2 |∂xh|2) = C in D ′(I ) for some constant C . We claim that
C = 0. Indeed, writing h∂2x h = ∂x (h∂xh) − |∂xh|2) we get

C
∫

I
ϕ = −〈h∂2x h − 1

2
|∂xh|2, ∂xϕ〉D ′(I ),D(I ) = −(h∂2x h − 1

2
|∂xh|2, ∂xϕ)L2(I ),L2(I )

for any ϕ ∈ D(I ). Noting that h is even, we can make the change of variables x �→ −x
to obtain

C
∫

I
ϕ = 〈h∂2x h − 1

2
|∂xh|2, ∂xϕ1〉L2(I ),L2(I ) = −C

∫

I
ϕ1

with ϕ1(·) = ϕ(−·) ∈ D(I ). Since
∫
I ϕ1 = ∫

I ϕ for any ϕ ∈ D(I ) we conclude that
C = 0 as claimed.

We thus have

0 = (h∂2x h − 1

2
|∂xh|2, ∂xϕ)L2(I ),L2(I )

= (∂2x h, ∂x (hϕ))L2(I ),L2(I ) − (∂2x h, ∂xhϕ)L2(I ),L2(I ) +
1

2
(∂x |∂xh|2, ϕ)L2(I ),L2(I )

= −〈∂3x h, hϕ〉H−1(I ),H1
0 (I ) (A.15)
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for any ϕ ∈ H1
0 (I ). If h(x0) > 0, x0 ∈ I , there exists a neighborhood Ix0 of x0 in I such

that h ≥ 1
2h(x0) on Ix0 . For any ψ ∈ H1

0 (Ix0), defining

ϕ(x) =
{

ψ
h , x ∈ Ix0 ,
0, x ∈ I \ Ix0

we have ϕ ∈ H1
0 (Ix0) ⊂ H1

0 (I ) and by (A.15),

〈∂3x h, ψ〉H−1(Ix0 ),H1
0 (Ix0 ) = 0.

This implies ∂3x h = 0 in D ′(Ix0), and thus ∂3x h = 0 in D ′({h > 0}). Consequently, on
each connected component (which are open intervals) of {h > 0}, h is either a parabola
or a straight line. In addition, h cannot hit 0 at a non-zero angle because h ∈ H2(I ). We
are thus in the same situation as in the proof of Theorem 1.6 which allows us to conclude
that h = hP . ��
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