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Abstract: We discuss a lubrication approximation model of the interface between
two immiscible fluids in a Hele-Shaw cell, derived in Constantin et al. (Phys Rev E
47(6):4169-4181, 1993) and widely studied since. The model consists of a single one
dimensional evolution equation for the thickness 22 = 2h(x, t) of a thin neck of fluid,

dh+dc(hd2h) =0,

forx € (—1, 1) and ¢t > 0. The boundary conditions fix the neck height and the pressure
jump:

h(£l,0)=1, 8?h(£l,1)=P > 0.

We prove that starting from smooth and positive %, as long as h(x,7) > 0, for x €
[—1,1], t € [0, T], no singularity can arise in the solution up to time 7. As a con-
sequence, we prove for any P > 2 and any smooth and positive initial datum that the
solution pinches off in either finite or infinite time, i.e., inf[_1 1]x[0,7,) # = O, for some
T. € (0, c0]. These facts have been long anticipated on the basis of numerical and
theoretical studies.

1. Introduction

In the Hele-Shaw problem, two immiscible viscous fluids are placed in a narrow gap be-
tween two plates. Neglecting variations transversal to the plates, the problem is modeled
by two dimensional incompressible and irrotational hydrodynamical equations. In the
presence of surface tension, boundary conditions connect the mean curvature of the inter-
face separating the two fluids to the pressure jump. The fluids form characteristic patterns
[ST58]. The zero surface tension limit has been associated in the physical literature to
Laplacian growth [KMWZ04], integrable systems [MWWZ00], and to diffusion-limited
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aggregation [WS81,Vic84,Hal00]. A dimension reduction, using lubrication approxi-
mation, leads to degenerate fourth order parabolic equations in one space dimension.
The original derivations are related to wetting, thin films, and the triple junction between
two fluids and a solid substrate (see [DG85,SH88,0DB97, BEIT09] and [ED74,Gre78,
Hoc81]). Some of the mathematical papers related to the spreading of thin films and
bubbles are [BF90,BP96,BP98,GO03,GKO08,BW02,Knul5,KM15,GIM17].

Our focus in this paper is on singularity formation. In this context, a one dimen-
sional model for topology change in a Hele-Shaw set-up was discussed in [CDG*93].
The equation describes the evolution of the thickness % of a thin neck of fluid. The
paper [CDG"93] derives the evolution equation of 4 using lubrication approximation,
describes its variational dissipative structure and its steady states, and discusses the pos-
sibility of reaching zero thickness in finite or infinite time. This singularity formation was
investigated theoretically and numerically in quite a number of studies. In [DGKZ93]
a first numerical evidence of finite time pinch off was obtained. Systematic expansions
and numerical results for a wider range of problems indicated finite time pinch off and
velocity singularities in [GPS93]. A family of equations was considered in [BBDK94],
numerical results supporting selfsimilar behavior were obtained, and finite or infinite
time pinch off was asserted. In [ED94] numerical studies and physical arguments com-
pared lubrication approximation equations to careful experiments of drop formation
([CR80,CM80,PSS90]). In [CBEN99] experiment and scaling near equal viscosities
are accompanied by studies of the dependence of the breaking rate and shape of the
drop on the viscosity ratio. A comprehensive survey of selfsimilar behaviors is given
in [EF08], including a discussion of the pinch off scenarios presented on the basis of
numerical evidence in [ABB96].

In spite of the remarkable success of the dramatically reduced model obtained by lu-
brication approximation (see (1.1)—(1.2) below) to quantitatively describe experimental
reality, as evidenced by numerical studies and theoretical investigations, the finite time
pinch off has yet to be rigorously proved. In this paper, we prove an old conjecture of one
of us, recorded in [ED94], that as long as & > 0 no singularity can arise from smooth and
positive initial data (see Theorem 1.1 below). We also prove that indeed, as suggested
in [CDG%93] and in [BBDK94], global in time behavior leads to pinch off, just as finite
time singularities do (see Theorem 1.7 below). To the best of our knowledge, this is the
first rigorous proof for the emergence of a pinching singularity in the one dimensional
Hele-Shaw model of [CDG"93].

The equation we study ([CDG*93])

th(x,t) + oy (h th)(x, t) =0, (x,1) e(—1,1) x (0, 00), (1.1)
is supplemented with boundary conditions

h(£l,t) =1, t>0,

1.2
Zh(x1,1) =P, t>0. (-2

Here, P > 0 is the pressure of the less viscous fluid and /2 > 0 is half of the width of the
thin neck. The equation has a steady solution 4 p, given by (1.8) below, which is unique
in a class of relatively smooth solutions (see Proposition A.2). This steady solution has
a neck singularity if P > 2 (a segment where it is identically zero). The main result of
the paper is to prove convergence to this solution in finite or infinite time. In order to do
so we start by obtaining a strong enough local existence result. We exploit further the
structure of the equation to pass to limit of infinite time, and prove that the limits have
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to be formed from pieces of parabolas and straight lines where they do not vanish. Then
we prove that the only possible valid limit there is 4 p.
We denote I = (—1, 1) and for any T € (0, oo], we define

X(T) = {f e L([0, T1; H3(I)) : 9 f € L2([0, T; H2(1))}

endowed with its natural norm. When T is finite, by interpolation X (7") is equivalent to
the space

L>®([0, T1; H3(D) N L([0, T1; H3(D)).

Theorem 1.1 (Local existence of strong solutions and continuation criterion). Let hg €
H3 (1) satisfy the boundary conditions (1.2) with P > 0, and assume hy ,, := infj hg >
0. There exists a positive finite time T, depending only on P, ||ho|| g3 1y and ho m, such
that problem (1.1)—(1.2) with initial data hy has a unique solution h € X(T) with
il’lf[x[()j] h > 0.

Moreover; there exists an increasing function F : R* x R* — R* depending only
on P such that

Ihllx )y < F( o I70ll 7). (1.3)

inf;x0,7]

Therefore, h blows up in the sense that it leaves the space X (T) at a finite time T* if
and only if

inf h(r,x) \ Oast 7 T*. (1.4)
xel
Furthermore, if we denote
D(h(t)) =/h|a§h|2(x,t)dx (1.5)
1
then
T
/0 D)t < Cllholl g + 1) (1.6)

for some C > 0 depending only on P, and

t
D(h(1)) = D(h(O))+/ (/a,h|a§h|2(x,s)dxds—2/ |8x8,h|2(x,s)dx)ds (1.7)
0 1 1

fora.e.t €10, T].

Remark 1.2. We observe that the right-hand side of (1.3) does not explicitly depend on
T . This fact is used in the proof of Theorem 1.7 because it permits unique continuation
of the solution uniformly in time as long as /4 is bounded below.

The problem (1.1)—(1.2) has the energy

E(h(t)) = %/;|8xh(x,t)|2dx+P/lh(x,t)dx
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which dissipates according to
d
SEG®) = =Dt =~ [ hx.ojodhtr.nPdx <0
I

(see the proof of (2.11) below).
Define the steady solution & p by

hp(x)zg(x2—1)+1, P < (0,2], (1.8a)

P 2
2 x| - 1
o) — {2<|x| w2 xp <l <1, - (1.5b)

0, x| < xp,

where xp = 1 — \/g for P > 2. The energy dissipation rate D (k) vanishes forh = hp.

When P € (0, 2], hp is a smooth, nonnegative solution of (1.1)—(1.2). When P > 2,
hp € W2%(]) and has a jump of its second derivative at +xp. In the second case, i p
is a weak solution in the sense of the following definition.

Definition 1.3 (Weak solution). We say that a nonnegative function s € L>([0, T1; H>(I))
isaweak solution of (1.1)—(1.2)on [0, T ]if there exists § > Osuchthatfora.e.t € [0, T],
h(t) e C2([—1, —1+68])nN CZ([l — 6, 1]), h(¢) verifies the boundary conditions (1.2),

and
T T 1
2 2\ 22 _
/fhaﬂpdxdt —//(h&xh — §|8xh| )axgodxdt =0 (1.9)
0JI 0JI

forall ¢ € Cg°(1 x (0, T)).

The preceding definition is based on the identity
1
e (hddh) = 82 (hdlh — §|axh|2). (1.10)

Remark 1.4 (Global weak solutions). We prove in Theorem A.1 of the appendix that for
any nonnegative H' data that is smooth near 41 and satisfies the boundary condition
(1.2), there exists a global weak solution to (1.1)—-(1.2). Related results for different
boundary conditions can be found in [BF90,BP96,BP98§].

The next proposition implies that 4 p has the least energy among all weak solutions.

Proposition 1.5 (Energy minimizer). For any nonegative function h € H'(I) taking
value 1 at £1 we have E(h) > E(hp). Moreover, E(h) = E(hp) ifand only if h = hp.

In order to prove the finite or infinite time pinch off, we show that a sequence of
functions with bounded energy E and vanishing energy dissipation rate D converges
weakly to the energy minimizer /.

Theorem 1.6 (Relaxation to energy minimizer). Let (h,) be sequence of nonnegative
H3(I)functi0ns satisfying (1.2). Assume that (hy,) is uniformly bounded in HY(I) and
D(hy,) — 0. Then we have h, — hp in H'(I) and h, — hp in Hﬁ)c({x thp(x) > 0}).
When P € (0,2), hy, — hp in H3(I).

As a corollary of Theorems 1.1 and 1.6 we have the main result of this paper:
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Theorem 1.7 (Stability for P < 2 and pinch off for P > 2).

Part1.If P € (0, 2), then h p is asymptotically stable in H'(I). More precisely, there ex-
ist8, ¢, C > 0depending only on P such that the following holds. Ifhy € H> (1) satisfies
inf; hg > Oand |ho — hp|lgn < S8then h € X(T) forany T > 0, inf;xg+h > c and

Ih() —hpllgiy < Cllho — hpllgiyexp(—ct) Vi > 0.
Moreover, h(t) — hp in H3(I) ast — oQ.

Part 2. If P > 2, then starting from any positive hg € H3(I), the solution h of (1.1)-
(1.2), constructed in Theorem 1.1, pinches off at either finite or infinite time. In the latter
case, by Theorem 1.6, h(t,) — hp in H' (I) and h(t,) — hp in Hﬁac({x chp(x) >0}
for some t, — oc.

Remark 1.8. When P > 2, if h is global in X, the bound (1.3) blows up since 4 is
pinched at infinite time. In particular, the bound for 4 in L*°([0, T]; H 3(I)) blows up
as T — oo. Nevertheless, along an unbounded sequence of times, & converges to 4 p in
H} ({x : hp(x) > 0}).

Remark 1.9. Assume that & is a positive smooth solution of (1.1)—(1.2) on [0, T*), T* €
(0, 00), and that min, ¢y h(x, T*) = 0. Let x,,, (¢) be a position of the minimum of % in x
at time ¢ and denote h,, (t) = h(x,,(t), t). Since (3,h) (x;, (1), t) = 0, itis easy to see that

%ln hy(t) = —(B?h)(xm(t), t) Vrel0,TY).

This implies
T*
(32h) (X (1), 1)dt = 00.

We also remark that in the derivation of model (1.1) (see [CDG*93]), the speed of the
flow is given by v = afh, and hence

T*
f (0x0) (X (2), t)dt = 0.
0

This is one kind of singularity occurring when / touches 0 in finite time.

Throughout this paper, F (-, ..., -) denotes nonnegative functions which are increasing
in each argument. 7 may change from line to line unless it is enumerated.

2. A Linear Problem

Let T be a positive real number and let g be a positive function satisfying

g € L([0,T); H(I)), dg e L'([0,T]; L()). 2.1
We study in this section the linear problem
dh(x, 1)+ 0, (gd3n)(x, 1) =0, (x,t) e I x(0,7),
h(£l,0) =1, 3Zh(£l,t)=P, >0, (2.2)
h(x, 1) = ho(x), t=0.

We prove the following well-posedness result.
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Theorem 2.1 (Strong solution for the linear problem). For every hg € H>(I) satisfying
the boundary conditions (1.2), there exists a unique solution h € X (T) to problem (2.2).
Moreover, denoting

cr = inf g(x, 1) >0,
(x,0)el x[0,T]

then h obeys the bounds

1
I2llxcr) < }‘(C—, gl oo g0, 79: 21y » 18:& 1l L1 10, 73: 2201y » 10l 113). (2.3)
||h||L00([(),T];H1(1)) <Cd+ ||h0||H1(1)) (2.4)
T
fo /Ig 192h|* dxdt < C(1+ ||h0||§1.(1)). (2.5)

Here, F and C depend only on P. Furthermore, denoting w = g 8)§h we have that

5 w?
/w (x,t)dx :/ (x, 0) // w2 (x, s)dxds
1 g(x, ) 1 8(x, O)

-2 f / 102w|*(x, s)dxds, (2.6)
0J1

w 1 0rg
( 1) —(,0) +3 — (.9 lw(, s)llLeds,
NG L2(I) 8 L2(I) 0 | g2 L2(1)
2.7)
and
t 1 w 2
197w (-, )[17.ds < = H—(
/0 y k 20Ve LX(D)
1 ) g
+5 / ! ‘—( 5) lw(-, $)llzo 1) ds (2.8)
0 L2(I) L2(I)

hold for a.e. t € [0, T].

The remainder of this section contains the proof of Theorem 2.1. Let (g") a sequence
of C*°([0, T'] x I) functions such that g"(x, ) > c¢7/2 and

¢" — g € L®([0, T]; H*(I)), 8g" — d.g € L' ([0, T]; L>®(I)). (2.9)

Let hg be a sequence of C (T functions satisfying (1.2) and converging to ho in H>(I).
By the classical parabolic theory (see Theorem 6.2 [LM72]), there exists for each n a
unique solution 2" € C*(I) to the problem (2.2) with g replaced by g” and h( replaced
by hg. We prove a closed a priori estimate for 2" in X (T), a contraction estimate in
H'(I), and then pass to the limit n — o0 to obtain the existence and uniqueness of a
h € X(T) solving (2.2). To this end, we set

P
u":h"—z(xz—l)—l.
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Then,
n n a3 n n n p 2
B = —0,(g" ") on[0.71, w'li—o = — Z(7 — 1)~ 1, (2.10)
and
W'(E1,) =0, u',(£1,)=0.

Throughout Sects. 2.1, 2.2 and 2.3 we write u" = u, h" = h, hj = ho and g" = g to
simplify notation.

2.1. H' energy. We first claim that h satisfies

d 1 2 3712
— | (519xh|” + Ph) = — | gldyh|” < 0. 2.11)
dt I 2 I

Indeed, we have

d (1
" —|0,h|? =/a,axhaxh = 3hd h|" —/a,hafh
tJr2 I I

_ /1 0, (g9 %h = —/Ig|a;?h|2 + Pgalnl',,

and

d
el Ph:—P/Bx(gafh):—PgZ)fhll_l,
dt 1 1

where we use the fact that 0,2 (%1, -) = 0 (because (%1, -) = 1). This proves (2.11).
Next, multiplying (2.10) by —afu, then integrating by parts we get

—fa,uafu =/ax(ga§u)a§u = gd3ud’u|!, —/g|aju| = —fg|a§u|2.
1 1 1 1
But

2 1 ld 2
— | Qudju = —0;udyu|_;+ | 00 xudyu = =— [ |Oyul
1 I 2dt 1

noticing that d;u(%1, -) = 0 (because u(£1, -) = 0). Denoting

Ey = |ldcull 2y D1 = /803Ul 2p).

we obtain 14
——E}+D?=0, (2.12)
2dt
and hence | |
2 2 _ 1 2
SEVD + 1Dl 0,7y = 5 E10) (2.13)

In particular, (2.13) and the definition of u gives

loxullz2y < 10xu(O)ll 2= N0xholl2(y + P- (2.14)
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Since u(£1, t) = 0, the Poincaré inequality also gives
lullp2(ry = Clldxullz2y < CA+ llhollgi(py) (2.15)
which implies together with (2.14) and the definition of u that
Al oo, 71, 11y = CU + Nholl 1)) (2.16)

where C only depends on P.
Moreover, by (2.13) we obtain

T
fo /Ig 192 h2dxdt < C(1 + ||h0||§,](,)), (2.17)

and by the positivity of g,

C
||33h||L2([0,T];L2(1)) = Jc_(l + ||h0||H1(1)) (2.18)

T

where c7 is as in the statement of the theorem.

2.2. H? energy. We multiply (2.10) by 8§u and integrate. On one hand,

/a,uaju = duddul', —/a,axuagu = —/a,axuagu
1 1 1

1d
2,11 2,92 212
:—8,8xu8xu|_1+/18t8xu8xu= Edtfllaxm .

On the other hand,

—/ax(gafu)a;‘u = —/g|a;‘u|2—/axgafua;‘u.
1 1 1

Denoting

Ey = 10%ull 2y, D2 = 1/803ull2p).
it follows that
1d

2 2 3 a4

IA

! 1 2 2 2
;”axg||L°°(1X[0,T])DID2 < E”axg”LOO(lx[O,T])DI +5D2.

In view of (2.13), this yields

T T
1
E§(T)+/ D3dt < E§(0)+c—2||axg||§oo(,x[m)/ D3dt
0 0 0

1
=< E%(O) + 2_c2”anH%OO(IX[O,T])E%(O)’
0
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and consequently,
102N Loy 22ay * VT I0E Rl 2o,z
= C(0 +|hollg2) + %||8xg||L°°(I><[O,T])(||h0||H1([) +C). (2.19)
This, together with (2.16) implies

4
Al Loo o, 71: 520y + Ve 105 Rl 120, 73: 221y

1
= C +lhollg2) + ;||axg||L°°([><[O,T])(||h0”H'(I) +0). (2.20)

2.3. H3 energy. A direct L? estimate for B;’u would make high order boundary terms
appear (up to order 5) which are not given by the boundary conditions. Instead, we
exploit further the structure of the equation. Setting w = g 8; h, we have 0;h = —0,w,
and thus 0, w(£1) = 8§w(i1) = 0 in view of (1.2). From the identity

0
dw = 8,80 h +gdd,h = 8w gdtw
8

we conclude

08 w? /8;g 2 / 4 1 08 5
w——— — —w = [ wijw—= [ —w
ZdI/ / ' e 18 208
0
ft—ng—/wa;‘w

(2.21)
Integrating by parts twice and using the boundary conditions for w gives
/w8§w=/|8$w|2,
I I
which yields
2 2
3t ,O
/w * )dx:/w (x ) // wz(x s)dxds
1 8(x, 1) I g(x,O)
t
—2//|a§w|2(x,s)dxds, (2.22)
1d 1 og
|| — 32 2 < ! e [ 2.23
2dtll\/_IILz oy wlly. < 2||gZ ||L2II¢§|IL2I|w||L (2.23)
and 1d 1 9
w g w oo,
——[—%, + 18> — 122 e [ — 1125 2.24
2dt”[” +[197wll7 2I| P Iz IIﬁlle (2.24)

By (2.24) and Gronwall’s lemma,

T
w wo 0rg
=1l Looo.71:22) + 102wl 120, 71:22) < Il—= I 2 exp 2/ [—llzeeds). (2.25)
NG (0,T1;L2) x ([0,T1;L?) N (0 < )
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Moreover, since
32w = 02g0>h +20,80%h + gddh

and
193] ooty < CIOERN 21y (2.26)

which follows from Poincaré-Wirtinger’s inequality and the fact that
/aﬁhdx =32h(1) — 3*h(~1)= P — P =0,
I

we get

18Rl 12 < 1821121193 R ] oo + 201 gll oo 19*RIl 2 + 192w]] 2 227)
< Cligl 21881 12 + 182wll 2.

In view of (2.20), (2.25), (2.27), and the lower bound g > cr, we thus obtain
103hll oo, 71:12) + 193 20, 71:12)

1
=< -7'—(;, ||g||L00([o,T];H2), ||8tg||L1([o,T];Loc)’ ||h0||H3)~ (2.28)

2.4. Proof of Theorem 2.1. A combination of (2.20), (2.18) and (2.28) leads to

1
A" | xr) < }'(c—, ||g”||L°°([0,T];H2(1))7 ||atgn||Ll([o,T];Loc)7 ||h8 ||H3)
T (2.29)

1
< -7:(; gl oo o, 71 52 (1)) » 19081l L1 0. 77 Loy N0l gr3)-

Recall that 9;h" = —9d,w" and 3, w" (£1) = 0. Itthen follows from Poincaré’s inequality
and (2.25) that

1
l|0:h" ||L2([0,T];H1) = C||wn||L2([o,T];H2) = .7:(;, ||azg||L1([0,T];LO<>)7 ||h0||H3)~
_ (2.30)
By virtue of Aubin-Lions’s lemma applied with the triple H3(I) c C*(I) c HY(D),
there exists 7 € X (T) such that

" —~ h in L3([0, T1; H>(]))), (2.31)
" =~ xh in L([0, T]; H>(I)), (2.32)
" — h in C([0, T]; C*(D)). (2.33)

For any test function ¢ € C5°(I x (0, T)),

T T
/ / h"d,pdxdt + / / ¢33 n" 8, pdxdt = 0.
0 1 0 1

The convergences (2.31) and (2.9) ensure that (%, g) satisfies the same weak formulation.
Then because & € L>([0, T]; H*(I)) and g € L*([0, T]; H*(I)), we actually have
dh + 3y (gdh) = 0in L%([0, T]; H'). Next, (2.33) implies that #(0) = ho and the
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boundary conditions dyh(£1,1) =1, th(il, t) = P are observed for any ¢ € [0, T].
The bounds (2.3), (2.4) and (2.5) on & are inherited from the corresponding bounds (2.29),
(2.16) and (2.17) on h". Letting n — oo in (2.22) yields (2.6). Finally, integrating (2.23)
and letting n — oo we obtain (2.7) and (2.8).

The uniqueness of solutions follows from the energy inequality. Let /1, h> be two
solutions of (2.2) with the same initial condition /. The difference k = h; — hy solves

Ok (x, 1) +0x(gd3k) (x, 1) =0, (x,1) € I x (0, T),
k(£1,1) = 32k(£1,1) =0, t>0, (2.34)
k(x,1) =0, t=0.

Similarly to the H' energy estimate for u above, we multiply the first equation in (2.34)
by —afk and integrate by parts to get

1d 2 3712
EEHBX/{”LZ(I) = _/Iglaxkl < Oa

consequently d,k = 0. Since k(£1) = 0 we conclude that k = 0, concluding the proof
of uniqueness.

3. A Nondegenrerate Problem

Fixing a small positive real number &, we prove in this section the global well-posedness
of the following nondegenerate nonlinear parabolic problem

A h(x,t) + 0y (v h2 +8283h)(x, t)=0, (x,1) el x(0,00),
h(£1,1) = 1,82h(£1,1) = P, t>0, 3.1)
h(xvt) :h()(.x), t:O

Theorem 3.1 (Strong solution for the nondegenerate nonlinear problem). For every hg €
H? satisfying the boundary conditions (1.2), and for every T > 0, there exists a unique
solution h € X (T) to problem (3.1). Moreover, h obeys the bounds

IRl x ) < F( Nhollg3), (3.2)

inflx[(),T] |h| + &
||h||L00([0,T];H1(1)) =C+ ||h0||H1(1)) (3.3)

with F and C depending only on P. Furthermore, (2.5), (2.6), (2.7) and (2.8) hold with
g =Vh%+e2

3.1. Uniqueness. If hy and hy are two solutions of (3.1), we set k = h; — hr and

gj = W, j = 1,2. Observe that k solves

Ok (x, 1) + 8y (g197K) (x, 1) + 0, (81 — 82)03h2) (x,1) =0, (x,1) € I x (0, 00),
k(+1, 1) = 3%k(£1,1) =0, t >0,
k(x,1) =0, t=0.

(3.4
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Multiplying the first equation in (3.4) by —afk and integrating by parts (note that 9,4 ; €
L*([0, T1; Hy (1)) we get
1d 2 3702 37,43
3 g 10Ky = = [ @113k = | (g1 = 282200k
<= [ 10342 - [ 01 - eataai
I 1

It is readily seen that

lg1(x) — g2(0)| < Iy — hallzeery < Cllkll gy

which implies

‘ /1 (81 — 82233 k| < Clikll g1 133 h2ll 2 103K 2 -

Since k(x1, -) = 0, Poincaré’s inequality gives [kl ;1) < Clldxk| 2(y). This com-
bined with a Young inequality leads to
1d
5 77 10k IZ2 ) = CellekliZa ) 103 Rl

Because ||8§h2||Lz(,) € L%([0, T)) for any T > 0 we conclude by Gronwall’s lemma
that .k = 0 and thus £ = 0.

3.2. Local existence. The existence of a local-in-time solution is obtained by Picard’s
iterations. We set h%(x, 1) = ho(x) for all + > 0 and define recursively Wt n >0, to
be the solution of the problem

"™ (x, 1) + 3, (8" (x, 1) =0, (x,1) € I x (0, 00),

gn — /|h”|2+82, (3 5)
h(£l,1) =1, 32h(£l,1) = P, t>0, '
h(x3 t) :hO(x)» t:O

Applying recursively Theorem 2.1 we find that 2" € X (T) for any T > 0. We now
prove by induction that there exist Ty, Co > 0,

1 1
Ty = To(g, lhollg3), Co = Co(g, 1200l g3)s

such that for any n > 0,

A" 11 x (o) + ||31hn||Ll([0,T0];LOO) < Co. (3.6)
In view of the identities
bg" = Uy WK
|72 + g2 |72 + g2

DS 7 S i U W N

g :
* VIR +e2 (2 +e2)3

(3.7)
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we find
19:8" Il L1 o, 7y: 200y < N10:A™ | L1 (0,73 L) (3.8)
and

g™ oo o, 71; 2) < 7:1(— A" | oo o, 71 112))- (3.9)
This together with (2.3) yields

1
||hn+1 lxy < F2(T, > ||hn||Loo([0’T];H2), ||8thn||L1([0,T];L°C)’ 170l g3)- (3.10)

Thus

||hn+1 ||L2([0,T] H3 = ~7:2(T N ||hn||L00(() T1;H?)» ||3th ||L1 [0,T];L>®)> ||h0||H3)
(3.11)
possibly with another F>. From the equation for 4"*! we deduce that
13ch™ N 1o, 7200y < VT IR Nl 20,73 L)
=< C\/_Hgn||L°°([O,T];HZ)||hn+1 I 220,77, %)

<ff3(T BN oo o.77: 22y 18" L L1 0.7 0wy 10l 173

(3.12)
Thus (3.6) holds for n = 0, 1 with arbitrary Ty € (0, 1) and

Co > max [ ol Fa(1, 1, Wholl ., 0, Whol ), F5(1, = holls, . ol )|
=M. (3.13)
Assume (3.6) for 0, 1, ...n with n > 1 we now prove it for n + 1. A direct induction

based on (3.10) would amplify the bound for 4"*!, and thus additional considerations
are needed.

Lemma 3.2. There exist § € (0, 1) and Fs, F¢ such that forall T < 1 andn > 1,

||h"+1||X(T)<7:5< T F (1B oy 106" 2o, i) Wholl e )-
(3.14)

Proof. We first note that u” := h" — %xz solves

du (x, 1) + 3 (g"1A3uM)(x, 1) =0,  (x,1) € I x (0, 00),

n—1 _ n—12 2
8 Vi 2' e (3.15)
u(£1,t) = do;u"(£1,1) =0, t >0,

u(x,1) = ug(x) :=ho(x) — gxz, t=0.

Then as in Sect. 2.2, we multiply the first equation in (3.15) by B;‘M" and integrate by
parts to obtain

1d 2 —1 194 2 —1493 4
Ed_Ha un”LZ(I) ﬁgn |8Xun| - [8xgn 3xu"8Xu".
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Let us note that 9,02u € L*([0, T]; H~'(I)) and 32u € L*([0, T; Hj (I)). Employing
the Gagliardo-Nirenberg inequality

3
183 Fll 2y < CHOL AN 1A 120 + Clf iz @ =7

L
we bound
/ 08" 130t < 08" oy 103" g 1% 2
1
< Cllg" My 195" 1 55 ™ 126,
+Clg" gz lagu™ 2y ™ | 221
Consequently

2 ny2 a4 ny2
N9 oo o, 73200 + IV 8" %12 10,7120y
I+a

T
_ 1—
S ”8)%“"(0)”%2(1) +C||g" 1“Loo([(),T];Hz(I))||un||Looa([O’T];L2(1)) /(; ||8)?un”L2(I)

T
-1 4
+Clg" Ileqo,T];HZ(I))||”"||L°°([0,T];L2(1>)/O Iy u™ 21y

Appealing to Holder’s inequality we can gain small factors of powers of T':

T
/O lodu 1142, < T2 103 14500 1y 2

T
/0 [0 u N2y < T2||3§Mn||L2([o,T];L2(1))~

Invoking (3.9) and (3.10) with n replaced by n — 1 leads to

2 _1q4
856" | oo 0.7 221y + I &1 05u™ | 120,71 1201y

1 _ _
= TﬂfB(g, A" 1||L°0([0,T];H2(1))’ [| 8, h" 1||L1([0,T];L00)s lhollg3) + llwoll g2y
for some B € (0, 1) and for all T < 1, n > 1. We thus obtain by virtue of (2.4),
1 _ _
||hn||L0°([o,T|;H2) = Tﬁf4(g, ||hn 1||LOO([0,T];HZ)y ||3thn IHL]([O,T];LOO)’ ||h0||H3)

+Cllholl g2 + C.
Substituting this and (3.12) (with n replaced by n — 1) in (3.10) yields

1" x
1 B 1 n—1 n—1
= AT 2 TPF( 0 o ey 100" 2o sy Wholl )
+Clihollg + C,

1 _ -
\/7-7:3(T, g, ||hn 1||LO<>([(),T];1-12), ||3thn 1||Ll([0,T];LO<>), ||h0||H3)7 ||h0||H3>

<f5< LTV Fo(lIn"~ ||L°°([0,T];H2)v||athn71”L2([0,T];H1))’”h0“H3)

forsomey € (0, 1),forallT <landn>1. O
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Now we choose
1
Co > max { M, F5(=. 1. llholl )
£
and Ty € (0, 1) satisfying

1
Ty F6(Co. Co) = 1. VToF3(=, Co, Co, liholl ) = Co
then owing to (3.12), (3.14) and the induction hypothesis,

1 1
1A N x (zp) + 1102 210,71 20¢) < Co

which completes the proof of the uniform bounds (3.6). In fact, using the first equation
in (3.5) and the uniniform boundedness of 4" in X (Tp) we deduce that d;4" is uniformly
bounded in L%([0, Tol: H'(1)). Passing to the limit » — oo with the use of Aubin-
Lions’s lemma, we obtain a solution 2 € X (Tp) of (3.1). Moreover, Ty € (0, 1) depends
only on ||hg||x and &, and the bound

1
1llx () = Co = F (. hollgs)

holds. Finally, (2.5), (2.6), (2.7) and (2.8) hold with g = v/h?2 + &2 by applying Theorem
2.1 to (3.5) then letting n — oo.

3.3. Global existence. We now iterate the above procedure over time intervals 7, of
length less than 1 and glue the solutions together to obtain a maximal solution / defined
on [0, T*) with T* € (0, o0].

Proposition 3.3. For any T < T*, h obeys the bound

IRl x ) < F( Mhollyz),  hw(T) == inf |h]. (3.16)

hn(T) +¢ Ix[0,T]

Proof. We revisit the energy estimates leading to Theorem 2.1 but with g replaced by
h. First, the inequality (2.11) holds,

i/(1|a h|*> + Ph) = —/g|83h|2 <0
dt J; 2 * I . -

Lettingu =h — 5 (x> — 1) — 1 and g = v/h% +¢2, as in Sects. 2.1 and 2.2 we have
that 1 d

Ed—tE%+D2 <0 (3.17)

and

1d

2., n2 3,04
EEE2 + D5 = —/IBXgaxuaxu

hold, where

Ei = |locull 2y, D1 = IV/805ull 2, Ezx = 182ull 2y, D2 = Ilv/gdtull 2.
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In particular, we deduce as for (2.16) that
120 Looro.71: 0 (1y) < CAL+ ol g ry)-

Writing 0, g = Bxhg = (Oyu + Px)% and noting that |#| < g we bound

<)

< -
T hu(T)+¢

deud udtu dx

/axgaguéﬁﬁudx dx+P/ }xaguaju
1 1

[0y 1]l Loo(ry D1 D2 + D

h(T) + ¢

92l g1y D1 D2 + Dy
09

< -
T hu(T)+e hw(T) + ¢

P
< ———EDiDy+ ———D 1D,
hp(T) + & hp(T) + &
1 C C
o S oS p
2 h2,(T) + &2 h2,(T) + &2

where the bound

2
l0xull g1y < Clloyull L2y,

D,

D,

(3.18)

which follows from Poincaré-Wirtinger’s inequality together with the fact that | ; Oxu =

0, was used. Thus

ld 2 1 2 C 2112 C 2
st a0 = e B D+ 5 Di
2d1 272 hZ(T) +¢ h2(T) +¢

which combined with (3.17) yields

1d 2 1 2 c 22 c 212
P TR e T aw L L By e L
2 dt 2 h2(T) + ¢ h2(T) + e

with E? = 5o Ef + E3. Then by the Gronwall lemma,

¢ 2
| E2ll 0.1y < IENlLo(0.17) < E(0) CXP(WllDllle([oﬂ))

< E(0) exp( ~EF(0)).

C
h2,(T)+e
It follows that

D < —|E [ D
D21l 220,77 = hm(T)+s” 2llLeeqo.rp D1l L2 0,77

E(0) exp( ET(0)E1(0).

C
< — -
T hp(T) +¢ h2.(T) + &2
A combination of (3.18), (3.17), (3.19) and (3.20) leads to
IRl Lo, 73 2y + 1920 20,73 20y + 195 R 1 200,71 220y

<7 ( kol g2).-

1
hy(T) + ¢

(3.19)

(3.20)

(3.21)
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We now turn to the H?> estimate. As proved in Sect. 3.2, (2.7) and (2.8) (with g =

+/h3 + £2) hold on each iterative time interval 7,,, and thus hold on [0, 7] by gluing
them together. In other words, we have for a.e. t € [0, T] that

w w 1 [ 0¢
l—=COllzgy < I—=C 02y + 5 = Co )2 llw, s)liLeds  (3.22)
0 g2

NG NG
and
Lo 2
fo 102w (-, $)]1%2ds < —||f< 02,
/ l— ; ( S)||L2(1)||ﬂ(',S)||L2(1)||w(',5)||L°°dS-
(3.23)
But by (2.26) it is readily seen that
lwlize < Cliglz= 83kl Lo < C(llhllz +)[37R] 12
and
19802 < 19:hll 2 < CllAN g2 (13RI L2 + 107A1 12). (3.24)
Consequently
w wo C
I—= oo, 322y = |l llz2 + A
NG V& (h(T) + )3
with
A= ||w||L°°([0,T];L°°)”atg”Lz([O‘T];Lz)
< CAIAl g1 + )l oo, (1031 20,7122 103 Rl 20 2
+ ”84h”L2 0 Tl L2)>
1
<F(———,|h
< (hm(T) s 70l 172)
in view of (3.21), and
197wl 2 < Sl + =l o0, 71: 2
x L2 OT]L) 2 \/_0 (hm(T)+8)% JE ([0,T];L7)
||8tg||L°°([0 711 lwll Lo (o, 71; L0
C C
< I (12 + -A)A
VA (hm(T) +£)2 ~ V& (h(T) +£)2
<F(———. |k .
= (hm(T)+8 l 0||H2)
Appealing to (2.27) with g = h we deduce that
||33h||L00([0 T1:L2) T ||35h||L00([() T1;L?) = -7:(;, ||h0||H3) (3.25)
x 1 x IS =2 N, (T) + ¢

from which (3.16) follows. O
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Now (3.16) implies the global bound

1
7l x ) < f(g, 0]l 73)

for any T < T*. We thus conclude that T* = oo. Furthermore, the bounds (3.2) and
(3.3) follow from (3.18), (3.25) and (3.21).

4. Proof of Theorem 1.1
Let ho € H3 satisfy the boundary conditions (1.2) and

hom = irIlfho > 0.

Step 1 (Approximate equations). For each ¢ € (0, 1], let &, be the solution of the
nondegenrate problem

dhe(x, 1)+ (Vh2+ 8203 he) (x, 1) =0,  (x,1) € (—1,1) x (0, 00),
he(£1,0) =1, 8the(£1,1) = P, t>0, (4.1)
he(x, 1) = ho(x), r=0.

According to Theorem 3.1, h® € X(T') for any T > 0 and &, obeys the bounds

lhellx )y < f(m7 ||h0||H3), 4.2)
\m

el Lo,y 0 1y < CA+ Nhollgiry) (4.3)
with

hem(T) = nf ]Ihs(x, nl.

i
(x,nelx[0,T

Moreover, (2.5) and (2.6) hold with g = \/h2 + &2.
Using the equation for . and (4.2) we get

I0:hell 20,7911y < F( Aol g3) (4.4)

hem(T) +¢

for all T < 1. This implies

t
he (6, 1) = (2, 0) — | / dyhe (x, 5)ds|
0

> hom — VT 19hell 120,711 (4.5)
1

= o =V G v

hollgs) Ve <T < 1.

Step 2 (Bootstrap) Denote

1

de(T)= ———, T <1
e(T) o) %2 <
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We choose Cy sufficiently large and Tp sufficiently small so that

1
Co> —. (4.6)
hO,m
ho
VToF(Co, lhollg3) < T””, 4.7
1
Co 4.8)

> .
ho.m — ~/ToF2(Co. llholl3)
This is possible by taking

2 ho
Co > P v ToF2(Co, llhollg3) < Tm

0,m

We claim that
d.(Tp) < Co Ve > 0. 4.9)

Indeed, if (4.9) is not true then there exists 9 > 0 such that dg, (7o) > Co. By (4.6),

1 1
<—<C0.

dg,(0) =
80( ) h(),m+8 - h(),m

By the continuity of dg(-), there exists T1 € (0, Tp) such that d;,(T7) = Cp. Then (4.7)
implies

ho.m
VTIF(dey (T), ol 3) = VT1IF(Co, [hollg3) < v ToF (Co, lholl 3) < OT

We deduce from (4.5) that

1
inf hg, > =h 0
IXI[%,Tl] e = 510.m =

and

heom(T1) = ho.m —+/ToF (Co, |lholly3) > 0.
Hence

1 1
< .
hegm(T1) +&0 — hom — F(Co, llholl g3)

Co =dg,(Th) =

This contradicts (4.8), and thus we conclude the claim (4.9). Coming back to (4.5) we
find

1
inf he > —ho,, Ve >O0.
1x[0,Tp] 2

Step 3 (Conclusion of the argument) Inserting (4.9) into (4.2) and (4.4) yields

lhellx o) + 10ehell 20, 71 51 (1)) < Mo
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for some M depending only on ||h0||H3(1) and hg . Set & = % and rename h;, = h,,
d, = d.. According to Aubin-Lions’s lemma, there exists 7 € X (Tp) such that

h, — h in L*([0, Tol; H(I)), (4.10)
" — % h in L°°([0, Tol; H> (1)), 4.11)
hy — h in C([0, Tol; C*(D)). (4.12)

Moreover, it is easy to check that & solves the problem (1.1)—(1.2). Letting ¢ — 0 in
(4.5) we find

1
inf h>—=h 0.
le[%,To] -2 Om =

Next, it follows from (4.2) and the convergences (4.10), (4.11) that

I x 7y =< Hminf |17, ]l xm) < linlgig(l)f}-( T 7ol g73)-

hnm (To) + 5,
We can replace lim inf by lim of a subsequence ny — oo. For some (xi, tx) € I X
[0, To1, hny,m (To) = hy, (xk, t). By the compactness of [—1, 1] x [0, Tp], there exists a
subsequence ng; — oo such that

(XK, t;) = (x0,10) € [—1, 11 X [0, Tol, Ay (xXk;5 tk;) = hixo,t0) = inf h
i j : 1%[0,Tp]

where (4.12) was used in the second convergence. Consequently

1
IRl x ) < F(= kol 3)
0 11mj—>oo h”kj (xk_/. , tk_;) + #
J

< Fle—— lhollgs
(1nf1><[O,T0]h H )

where the fact that F is increasing was used.
In addition, passing to the limitin (2.5) and (2.6) leads to (1.6) and (1.7) repsectively.
Finally, because £ is positive on I, it is unique by the same argument as in Sect. 3.1.

5. Proof of Proposition 1.5

Lethe H'(I)bea nonnegative function satisfying #(41) = 1. We have

1
E(h(1)) =§/|8xh|2dx+P/hdx
1 1
1 2 1 2
== [ |0x(h —hp)|["dx + = | |3 hp|°dx
2 J; 2 J;

+/8x(h—hp)8xhpdx+P/hdx.
1 1
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Integration by parts in the cross term gives
/Iax(h — hp)achpdx = (h— hp)achplL, — /I(h — hp)d2hpdx
=— fl(h — hp)d*hpdx

since h = hp at 1.
Case 1: P € (0, 2]. In this case aghp = P, and thus

1 1
E(h(t) = 5 / 19, (h — hp)|*dx + 5[ |97 p|2dx + P/hp > E(hp).
1 1 1

Moreover, E(h(t)) = E(hp) if and only if d,(h — hp) = 0 which is equivalent to
h = hp by the boundary condition A(£+1) = hp(£l) = 1.

Case 2: P > 2. Then 83hp(x) = Pif|x| > xp and = 0 if |x| < xp. Thus

1 1
E(h(t)) = —/|8X(h—hp)|2dx+—/laxhp|2dx+P/h—P/ (h — hp)
2 J; 2 J; I xp<lx|<l

xp

1 1
= —/|8x(h—hp)|2dx+—f|8xhp|2dx+P/ hp+P/ h
2 1 2 1 xp<|x|<l —Xp

1 1 xp
= —f|8x(h—hp)|2dx+—/|8xhp|2dx+P/hp+P/ h
2/, 2/, ! _

xp
> E(hp).
Moreover, E(h(t)) = E(hp) if and only if

dx(h—hp)=0 onl,
h=0 on (—xp,xP).

Again, owing to the boundary condition #(£1) = hp(+1) = 1, this is equivalent to
h(x,) =hp(x) for|x| > xpand h =0 on (—xp, xp). In other words, h = hp.

6. Proof of Theorem 1.6

Let h,, be a sequence of nonnegative H>(I) functions satisfying (1.2). Assume that A,

is uniformly bounded in H L(I) and D(h,) — 0. Note that in view of the Gagliardo-
Nirenberg inequality

! 1
If 2y < Clax FUL NI+ CUF Ly

the energy E defines a norm which is equivalent to the H'(I) norm. Then, by extracting
a subsequence, still denoted t,,, we have h, — hoo in H 1 (I). In particular,

hy — hoo in C(I). (6.1)
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Observe that if at some xg € T = [—1, 1], hoo(xg) > O then for some § > 0, hoo >
2hoo(x0) 0n Iy 5 1= (x0—8, x0+8)NI. By (6.1), hy = Fhoo(x0) on Iy, s for sufficiently
large n. By the definition of D (h) we get

/ 103h, (x)|>dx — 0. (6.2)
Iy

0.8

By interpolation, the quantity
N3(u) :=/ (ul* +|3]ul*)dx
IXO.S

defines a norm which is equivalent to the H> (Iy,,5) norm. It follows from (6.1) and (6.2)
that h,, — hoo in N3 and

N3(hoo) < liminf N3(h(t,)) = lim |hn (x)>dx + lim / 103 R, (x)|2dx
n—>0oo n—0o0o ])(01(S n—>0oo 1«\‘0,5
=/ |hoo(x)*dx,
Ix0,8

hence

/ 10300 (x))?dx = 0.

Ixo.S
We have proved that

Lemma 6.1. If hoo(x9) > 0, xo € 1, then there exists a neighborhood I, s = (xo —
8, x0+8)N 1 of xo in which h,,, hso are positive, 33}100 =0,andh, — hy in H3(1x0,3)-
Consequently, thoo =0onZ ={x €1l :he(x)> 0}, hence h is either a parabola
or a straight line on each connected component (which are open intervals) of Z.

The next lemma rules out the possibility that £, goes down to 0 at a non-zero angle.
Lemma 6.2. Let xo € I and J = (xg, xo+68) C I. Letk € CZ(J) be such thatk > 0 on
J and k, 3.k, ng are right-continuous at xo with k(x3) = 0 and 9,k(x§) # 0. Let k,, be

a sequence of nonnegative functions in H>(I) such that k,(£1) = ¢ > 0 and k, — k
in C*(J). Then,

/k,,|ajkn|2 £ 0.
I

The same conclusion holds if J is placed by (xo — 8, xo) C I and x§ is replaced by x;
in the assumptions on k.

Proof. Assume by contradiction

/ kn |92k |> — 0. (6.3)
1

Then in view of Hoder’s inequality and the boundedness of &, in L°°(7), we have for
any I’ C I that

‘ / k02K,
1/

1

1 1
< VITI( [ BiottPax)” < ViTTsup bl ( [ kaloth )’
1/ n I/
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from which it follows that

/ knd2k, — 0 VI' C I. (6.4)
Since
+\ 02 + 1 +112 1 +\12
k(xg)oyk(xg) — 5(3xk(xo)) = _z(axk(xo)) <0
there exists ¢ € (0, §) so small that 9,k (xg + &) % 0 and
2 1 2
k(xo + &) k(xo +¢€) — 5(8xk(x0 +¢&))° < 0.

Here, the assumptions that k € C2(J) and k, 8.k, Bfk are right continuous at xo were
used. We note that k,(x) > ¢ > Oon J; = (xo + &, x9 + 8) for all n. This combined
with (6.3) yields fll |E))§kn|2 — 0, and thus k, — k in H3(J}) since we know k, — k

in C°(Jp). In particular, k € C%(J1) and

kn(xo+€&) => k(xp+¢€) >0, 0cky(xo+€) = dvk(xo+¢) #0,
92k (x0 + &) — 0%k(x0 +€).

Let x,, be the global minimum of k,, on 1. We know that k, > 0, k,(£1) = ¢ > 0 and
ky(x0) — k(xg) = 0, hence x,, € I for n sufficiently large. Then dyk(x,) = 0 and
ngn (x,) > 0. Now we compute

xo+é
f knd2ky = kd2k,
X,

n

Xn

xp+e Xo+e 5
- / Bk 92k
Xn

= Ky (x0 + &) 32k (x0 + &) — ki (x2) 32k ()
1 1
— 5 Bckn(xo + €)%+ E(axkn(xn))2
= ky (x0 + £)02ky (x0 + &) — ki (x2) 2k ()

1 2
- E(axkn (xo +€))°.
Since k;, (xn)a)?k,, (xn) > 0, the right-hand side is smaller than or equal to
2 1 2
kn(xo + €)05kn(x0 + &) — 5(3xkn (xo +¢))
which converges to
1
k(xo +£)9%k(xo + &) — z(axk(xo +6))2 <0

while the left-hand side converges to 0, according to (6.4). This contradiction concludes
the proof. O
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We now proceed to show ho, = hp.First,hoo (1) = lim i, (1) = 1. By Lemma 6.1, there
exists 89 € (0, 1) such that h, — he in H3>((1 — 80, 1)), heo > 0 and 83hoo = 0 on
(1—38o, 1). In particular, k, — hso in C2([1—38¢, 11) and 82hoo(1) = lim 32k, (1) = P
Let J = (1,1 — §) be the connected component of Z = {x € I : hoo(x) > 0} whose
closure contains 1. Then %, is a parabola of the form

P P
hoo(x) = Ex +ax +b, E+a+b=1 (6.5)

on J.

Case 1: P € (0,2). We claim that § > 1. Assume by contradiction § < 1. Then
hoo(xg) = 0with xg :=1— 4§ € [0, 1). According to Lemma 6.2, d,/s0(x9) = 0. This
is equivalent to

A=a>-2P(l—a—%5)=(a+P)*-2P =0,
X0 =—1%,

where the first condition is equivalenttoa = a; = V2P —Pora=a,=—+2P—
Ifa=athenxo = —22-F =1 — /2 < 0.1fa = ay then xg = Y2E*¥ > 1. Both
cases being impossible, we conclude that § > 1. In particular, 4 assumes the form (6.5)
on [—e, 1] with some ¢ > 0.

Similarly, if we start from x = —1 we also have that h,(x) = %x +a'x + b for
x € [—1,¢&'] for some ¢ € (0,1) and a’, b’ € R. Necessarily ax + b = a’x + b" on
[—e, &’], and thus (a’, ") = (a, b). In other words, A~ assumes the form (6.5) on the
whole interval [—1, 1]. Equalizing hso(—1) = heo(l) = 1 leads to a = 0. We thus
conclude that

2

h(x) = g(xz —1D+1=hp on[—1,1].

Case 2: P > 2. Arguing as in Case 1 we find 6 < 1 and hy(x0) = 0 with

2
=1-8=1—,/==xpel0,1),
X0 5 =P [0, 1)
anda = /2P — P.

When P =2, xg = 0and a = 0. Hence hyo(x) = x2on [0, 1]. A similar argument
also gives ho(x) = xZon[—1,0], hence hoo = hp.
Consider now the case P > 2. Then xo = xp € (0, 1) and

P P P P
hoo(x)z3x2+ax+b=5x2+(\/2P—P)x+l— 2P+5=E(x—xp)2

on [xp, 1]. We claim that i, = 0 on [0, xp), then by symmetry ho, = hp. Assume
by contradiction /oo (x1) > O for some x; € [0, xp). Let (a,b) C I be the connected
component of Z = {x € I : ho > 0} that contains x;. Necessarily &5, (b) = 0 and
b < xp. By Lemma 6.1, h is either a parabola or a straight line (a, b). Let us show
that both cases are impossible. Indeed, if /o is a straight line on (a, b) then A hits O
at x = b (from the left) with an angle, which is impossible according to Lemma 6.2.
Assume now that /1, is a parabola on (a, b). Since h must touch down from the left
of b at zero angle, the only possibility is that the parabola L x2+ax +b is positive while
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its slope is negative on (—oo, b). Thus hso(x) = gxz + ax + b on the whole interval

[—1, b]. But then Ao (—1) = hoo (1) = 1 yields a = 0 which contradicts the fact that
a=+2P — P < 0. Therefore, hoo = hp when P > 2.

By Lemma 6.1, h, — hp in Hﬁw({x :hp(x) > 0}) for any P > 0. Furthermore,
when P € (0,2),hp > Oon I and one can take in Lemma 6.1 I, 5 = I forany xo € I,
hence h,, — hp in H3(I). We have actually proved that any subsequence of (h,) has
a subsequence with desired convergence properties. Because the limit is unique (and is
equal to /& p) we conclude that in fact the whole sequence /1, has those properties.

7. Proof of Theorem 1.7

Part 1. Let P € (0,2), and let hg € H3(I) satisfy (1.2) and inf; hy > 0. According
to Theorem 1.1, there exist a maximal time of existence 7* € (0, co] and a unique
solution & € X (T') withinf;yo,77h > Oforany T < T*. Setu = h — h p, then because
33hp = 0 we have

{atu(x,t) +0,(hPu)(x, 1) =0, (x,1) el x0T, o

u(E1, 1) = u(£l,1) =0, t>0.

Multiplying the first equation in (7.1) by —Bfu and integrating by parts, we obtain as in
Sect. 2.1,

1d
Mnaxu(-,onizm=—/Ih<r,x)|a;?u(x,z>|2dx, re0.7%. (12
In particular,

loxuC, Dl 2y < 19xuC, Ol 2y 1€ (0, T%).

Since u(£1, -) = 0, Poincaré’s inequality together with the embedding H (I ccu
yields

(-, )l ooy < Crlloxu(, f)||L2(1) =< C1||3xu('»0)||1‘2(1)7 t€(0,T).

Consequently,

2-P
h(x,t) = hp(x) = Cilloxu(, 02y = = Cilloxu, 0l z2(p),

and thus
h(x,t) > 12_—1) (7.3)
-2 2
for all (x,7) € I x [0, T*) provided
00, Oll 2y < S ot
2C; 2

Therefore, T* = oo according to the blow-up criterion (1.4).
Next, we show that i converges to hs, exponentially in H'(I). Indeed, because
aﬁu(:l:l, -) = 0and f, oyudx = u(l) — u(—1) = 0, Poincaré’s inequalities yield

183u(x, Dl 2y = CallZux, Dl 2y = Calldeux, Dl 2
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which combined with (7.3) and (7.2) leads to

%||axu(~, D32y < =CalldauC, D172
By Gronwall’s lemma,
18xu (- Dl 2y < 18xu(, 0]l 12y exp(—Cat) Vi > 0.
Finally, note that u(%1, -) = 0 we conclude by Poincaré’s inequality that
luC Ol < Cllul, Ol g1y exp(=Cat) ¥ > 0. (7.4)

Let us now turn to prove that D(h) € W1 (R*). According to (1.6), D(h) € L'(R*).
Thus, by virtue of (1.7), it remains to show that

A= / dh|3n%(x, s)dx — 2f |0,0:h) (x, s)dx € L'(R").
1 1

In the rest of this proof, we write LP LY = L?(R*; L9(I)). We first note that by (3.24),
19:hll 202 < Clll oo (133 R 1 1212 + 105R 1 L212). (7.5)
Consider next 8,97 = —32hd h — 23,hd*h — hdh. Tt is readily seen that
19:hdghll 22 < CllAll oo g2 03hN 202, 1R3RN 212 < Cllll oo g 183011 122
Using (2.26) we bound
197h3 Rl 22 < 193RI Lo 2 103R1 2000 < ClOFRI oo 2 1051212

Consequently

1920kl 272 < CllAll oo 2 197R1 1212 + R oo g1 17R1 22 (7.6)
In view of the lower bound (7.3), it follows from (1.3) that

172l x @y < Fllholl g3)- (7.7)
This together with (7.6) yields

o0
/0 /I 10,317 (x, )dxds = [13:0,h11%5,> < F(llholl3). (7.8)

On the other hand, using (2.26) and Holder’s inequality we get

/ 9h|3h1*dx < 19:hl 2y 19301 L2y 183 RN ooy
1

< Cllhl 21O RN 2y 10301 21y

o0
/ ‘/ 3h 3% (x, s)dx
0 1

hence

ds < Cl|h)| 2120102R] oo 21020 1212
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Employing (7.5) and (7.7) we deduce that
oo
f ’/8;h|33h|2(x,s)dx ds < F(lholl )
0 I

which combined with (7.8) concludes that A € L'(R*). This completes the proof of
D(h) € WELRY). According to Corollary 8.9 [Brel1] we then have D(h(¢)) — 0 as
t — o0, and thus Theorem 1.6 implies that 4(¢) — hp in H3(I) ast — oo.

Part 2. Let P > 2, and let hy € H3(I) satisfy (1.2) and inf; hp > 0. Suppose that
the solution % to (1.1)—(1.2) with initial data h¢ is not pinched at finite time neither at
infinite time, then according to Theorem 1.1, / is global, 7 € X (T') forany T > 0, and

inf h>co (7.9)
I x[0,00)

for some cg > 0. Set
P 2
hoo(x) = E(x —D+1.

Observe that /i is a stationary solution of (1.1)—(1.2) and h, vanishes at +,/1 — %.
As before, u = h — ho satisfies (7.1). By virtue of (7.9), the proof of (7.4) also gives
luC, Oy = Cllul, 0l g1y exp(=Ct) Vi > 0.

In particular,

tlim 1h(, ) = hoollcay = 0.
—00

Because hoo (/1 — %) = 0, we deduce that lim; . h(y/1 — %, t) = 0 which contra-
dicts (7.9).

Assume now that / is global in time. Since D (h) € L'(R™") there exists f, — oo such
that D(h(t,)) — 0. By virtue of Theorem 1.6, h(#,) — hp in HY(I) and h(t,) — hp
in H ({x : hp(x) > 0}).

Appendix A. Weak Solutions

Theorem A.1 (Existence of global weak solutions). Let hg € H L(I) be a nonnegative
function such that hg € H>((—=1, —1 + 80)) N H3((1 — 8, 1)) for some 8y € (0, 1)
and hg satisfies (1.2). Let T be a positive real number. Then there exists a global weak
solution h of (1.1)—(1.2) in the sense of Definition 1.3. More precisely,

heCd x [0, TN L0, T]; H' (1) N LA([0, T); H*(1) N H' (0, T); H~' (1))

and there exists § € (0, 1) independent of T such that

he L*([0, T1; H>((=1, =1+ 8) N H3((1 - 8, 1))).
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Proof. Let hy € H 3(I) be a sequence of nonnegative functions satisfying (1.2) such

that by — hin H Y n H3J). According to Theorem 3.1 there exists for each n a
unique solution 4" € X ([0, T']), for any T > 0, to the problem

" (x, 1) + 0y (y/|h|? +n—28;h")(x, t)=0, (x,t) € I x (0,00),
h'(xl1,1) = l,agh”(il,t):P, t >0, (A.1)
h'(x,t) :hg(x), t=0.

Moreover, there exists C > 0 independent of n and T such that

A" oo o, 71 11 (1)) = Cllhgll gy (A.2)

and

T
/ /g"|a§h"|2(x,s)dxds < CUMGlG gy + Dy &' =VIFP+n=2  (A3)
0 1
Writing g"93h" = 8, (¢"32h") — 3,g"82h" we have
0= ;" +0,(g"0°h") = 8,h™ + 02 (g">h") — 0,(3,8"0>h™).

Then, forany ¢ € C5°(I x (0, T)),

T T T
— / / "9 + / / g"92n" 32 + / f 38" 9%h" 3, = 0. (A.4)
0 1 0 1 0 1

Because A" (%1, ) = 1 and A" is uniformly bounded in L*°(R*; C%(T)) (by virtue of

(A.2) and the embedding H'(I) c C 3 (I)), there exists 8 > 0 sufficiently small such
that

1
h'(x,1t) > 3 Vi>0,VxeJ=[—-1,-1+8]U[1=6,1]:=J1; UJj,.

It then follows from (A.3) that
||33h”||L2(R+;L2(11)) <C=Chollg1 ) (A.5)
which combined with (A.2) and interpolation yields
IR 2o, r1: 30y < € = Clhollgipy, T), YT > 0. (A.6)

Let A > 0 depend only on [|A¢|| 71(;y such that ||h"[| oo (s xr+) < A for all n. We define

A
fnls) = Fu(s) = —/ Ju(r)dr.

/A dr
s Ar2+n—2
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Note that g,(s) < 0 and F,(s) > O for any s < A. Let x be a nonnegative cut-off
function equal to 1 on I} := I \ J; and supported on (—1, 1). Multiplying the first
equation in (A.1) by f,, (h" (x, t)) x (x) then integrating by parts we obtain

[ o oy = = [ a0t £,
=/Ig”aih"f,;(h”)axh"xdx+/Ig"a§h”f,,(h”)axxdx
=/1agh"axhnxdx+/1g"33h"fn(h")axxdx
= —/I|a§h"|zxdx—/Iagh"axh"axxdx

+/Ig"33h"f,,(h")axxdx.
Since

d
/ 0" fu (W) xdx = - / Fy(h")xdx
I dt J;

we deduce that

T
an<h")<x,T>xdx+/ /|agh"|2xdxds
1 0 I
T
< f F,(W")(x, 0)xdx — / f 32h" 3, h" 3, xdxds (A7)
1 0 1

T
+/ /g”a)?h”fn(h”)axxdxds.
0 1

We split

T T
/ /afh"axh"axxdx=/ fafh"axh”axxdx
0 1 0 I
T
+/ f 32h" 8, h" 3, xdx =: Hy + Ha.
0 Ji

Using Holder’s inequality and (A.2) we get
|Hi| = C”a)%hn||L2([0,T];L2(11))1 C= C(||h0||1-11(1)7 T).
On the other hand, (A.6) gives
|Ha| = C = C(lholl g1y, T)-
Thus

T
/ /afh"axh”axxdxds < CIOFh" 20,7120y + Co € = CUlholl g py. T).
0 1
(A.8)
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Applying Holder’s inequality together with (A.2) and (A.3) we find

T
/ /g"afh"fn(h")axxdxds < C = C(lhollgi 1y T)- (A.9)
0 1

In addition, it is easy to see that

/IFn(h”)(x, 0)xdx = C = Clholl (1)) (A.10)

Putting together (A.7), (A.8), (A.9) and (A.10) yields

2,02 2
102" 172 0. 73: 22010y = CNOXR" 1210, 79: 22010y + €+ € = Clllhollgr¢ry- T)-

Consequently, there exists C = C(||ho|| (> T') such that
1038 2oy < € V.
This together with (A.6) implies
183" |20, 7;22()) < € V. (A1)

Let us fix a positive (finite) time 7'. A combination of (A.2) and (A.3) leads to the uniform
boundedness of g”&%h” in L2([0, T1; L(I)), hence the uniform boundedness of d,/4"
in L2([0, T1; H~'(1)). Using this, (A.2), (A.6), (A.11) and Aubin-Lions’s lemma we
conclude that up to extracting a subsequence,
W' — hin L*([0, T1; H* (D)),
h" — hin C(I x [0, T]) N L*([0, T]; H' (1)) N L*([0, T; C*(J1))

for some

heCdx[0,T))NL®I0, T]; H () N L*([0, T]; H>(I))
NL2([0, T1; H3 (D) N H3(J1 )

with 9,4 € L>((0, T); H~'(I)). In particular, & satisfies the boundary conditions (1.2)
fora.e. t € [0, T]. We claim that

h(x,t) >0 V(x,t) el x[0,T].
Indeed, coming back to (A.7) we deduce from (A.8), (A.9) and (A.10) that

/1 Fu(h"(x, 1))dx < C(lholl 11y, T) (A.12)

foralln > O and ¢+ < T. Assume by contradiction /(xp, o) < O for some (xo, fp) €
I x [0, T]. Since A" — h uniformly on I x [0, T], there exist n > 0 and ng € N such
that

hy(x,t9) < —n if |[x —xo| <68, n > np.

But for such x,
A

Fu(h"(x, 10)) = —/

h" (x,10)

0 0
fn(s)ds > —/ fu(s)ds — —/ foo(8)ds asn — oo
- -
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by the monotone convergence theorem, here
foo(s) := lim f,(s) = —o0
n—o0

for any s < 0. It follows that

/ Fy(h" (x, 0)) = +00
I

which contradicts (A.12), and thus 2 > 0.
Then letting n — oo in (A.4) leads to

T T T
—f fh8t¢+/ /hafhafwf faxhafhax<p =0 Vg e C&U x (0,T)).
0 1 0 1 0 1
(A.13)

Writing 8xh8§h = 18,18,1|? and integrating by parts in the last integral we arrive at

T T
1
—/ /ha,<p+/ /(hafh— E|axh|2)a§¢ =0 Vo eCPU x(0,T)). (A.14)
0 1 0 1

In other words, & is a weak solution of (1.1)—(1.2) in the sense of Definition 1.3. 0O

In general, weak solutions can be non-unique. Nevertheless, the steady weak solution
h p is unique as shown in the next Proposition.

Proposition A.2 (Uniqueness of i p). Forany P > 0, hp is the unique even weak steady
solution, in the sense of Definition 1.3, to (1.1)—(1.2).

Proof. Itiseasy tocheck that /i p is an even weak steady solution in the sense of Definition
1.3. Assume now that 4 is an even weak steady solution, we prove that 7 = hp. We first
notice that the weak formulation (1.9) is equivalent to 9, dy (hafh — %|8xh|2) = 01in

2'(I), or again 3y (hd>h — %laxh|2) = C in 2'(I) for some constant C. We claim that
C = 0. Indeed, writing hd2h = 3, (hd,h) — |3,h|*) we get

1 1
C / ¢ = —(hoZh = S10:h1, 0:0) 7 (1.1 = = (hOTh = S10ch I, 0:0) 21y, 1201y
1

for any ¢ € 2(I). Noting that / is even, we can make the change of variables x > —x
to obtain

1
C/QD = (thh - §|8Xh|2, 8X¢1)L2(1),L2(1) = _C/gé)]
I 1

with ¢ (-) = (=) € Z(I). Since [, ¢ = [, ¢ for any ¢ € 2(I) we conclude that
C = 0 as claimed.
‘We thus have

1
0= (hd’h — E|axh|2, %@ 121y 12(1)

1
2 2 2
= (0;h, 0x(h@)) 21y, 121y — (O3 h, Oxh) 1201 121y + E(axwxh' s 9231y, L2(1)

= —(03h. h) 11y, b1y (A.15)
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forany ¢ € H(} (). TIf h(xp) > 0, xo € 1, there exists a neighborhood Iy, of x( in I such
that i > $h(xo) on Iy,. For any ¢ € H{ (Iy,), defining

Y oxel
(p(_x)z hv X0
0, xel\ly

we have ¢ € HJ (I,) C H}(I) and by (A.15),

3
Och V) 11 1) (1) = O

This implies 3’4 = 0 in 2/ (I,), and thus 3>h = 0 in Z'({h > 0}). Consequently, on
each connected component (which are open intervals) of {h > 0}, A is either a parabola
or a straight line. In addition, # cannot hit 0 at a non-zero angle because 1 € H?>(I). We
are thus in the same situation as in the proof of Theorem 1.6 which allows us to conclude
thath = hp. O
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