Adaptive Hashing for Model Counting

Jonathan Kuck!, Tri Dao!, Shengjia Zhao!, Burak Bartan!, Ashish Sabharwal?, and Stefano Ermon!

I'Stanford University

2 Allen Institute for Artificial Intelligence

{kuck, trid, sjzhao,bbartan, ermon}@stanford .edu, ashishs@allenai.org

Abstract

Randomized hashing algorithms have seen re-
cent success in providing bounds on the model
count of a propositional formula. These meth-
ods repeatedly check the satisfiability of a for-
mula subject to increasingly stringent random
constraints. Key to these approaches is the
choice of a fixed family of hash functions that
strikes a good balance between computational
efficiency and statistical guarantees for a hy-
pothetical worst case formula. In this paper
we propose a scheme where the family of hash
functions is chosen adaptively, based on prop-
erties of the specific input formula. Akin to
adaptive importance sampling, we use solu-
tions to the formula (found during the bound-
ing procedure of current methods) to estimate
properties of the solution set, which guides the
construction of random constraints. Addition-
ally, we introduce an orthogonal variance re-
duction technique that is broadly applicable to
hashing based methods. We empirically show
that, when combined, these approaches lead to
better lower bounds on existing benchmarks,
with a median improvement factor of 2'2 over
1,198 propositional formulas.'

1 INTRODUCTION

Propositional model counting is the problem of count-
ing the number of satisfying solutions to a Boolean ex-
pression. Exact model counting is computationally in-
tractable, which has led to the development of approx-
imation schemes. An effective line of work performs
approximate model counting using randomized hashing
schemes [Gomes et al., 2006, Chakraborty et al., 2013a,

'Code at https://github.com/ermongroup/adaptive_hashing

Ermon et al., 2014, Ivrii et al., 2015, Achlioptas and
Jiang, 2015, Belle et al., 2015, Achlioptas et al., 2018,
Soos and Meel, 2019]. These methods reduce the #P-
complete model counting problem [Valiant, 1979] to a
polynomial number of NP queries of Boolean satisfiabil-
ity (SAT), which can benefit from decades of research
in combinatorial reasoning and fast SAT solvers [Biere
et al., 2009, Soos and Meel, 2019]. The fundamental
idea is to approximate the number of elements in a set by
recursively splitting the set in half using a hash function
until only a single element is left. We focus on improving
the hash functions at the heart of these methods.

As an illustrative example, consider a 100 by 100 grid of
chess boards. Each board contains 8 by 8 cells, where
each cell may or may not contain a piece. The maximum
number of pieces present across all boards is 64 x 1002.
We want to know the number of pieces across all boards,
but directly counting them is computationally expensive.
To obtain a good estimate of the number of chess pieces
it is sufficient to be able to (a) independently remove each
piece with probability 1/2, thus removing half the pieces
in expectation, and (b) check whether at least one piece
is still on any board. Note that in the problems we con-
sider pieces are ‘removed’ implicitly, so this operation
is much easier than counting. Suppose we apply oper-
ation (a) followed by operation (b) repeatedly, until op-
eration (b) informs us after round m + 1 that there are
no longer any pieces remaining. Then 2™ is a good esti-
mate of the number of pieces across all boards. However,
it would be very tedious to independently remove each
piece with probability 1/2 during operation (a), repre-
senting (a lack of) computational efficiency. Instead we
might be tempted to perform our algorithm considering
only pieces on black squares, black squares in even rows,
or even a single randomly chosen square on each chess
board. We would then scale our answer by the fraction of
pieces considered, e.g. multiply it by 2 when only con-
sidering pieces on black squares. This would be more
computationally efficient, reducing our work in expecta-



tion by factors of 2, 4, and 64 respectively, but represents
a degradation in statistical efficiency. These approaches
will give good estimates if the pieces are distributed uni-
formly across all boards, but will perform very poorly
on certain configurations. If pieces are placed only on
white squares then the first scheme will completely fail.
If pieces are only placed on a small fraction of the chess
boards, then the third scheme’s performance will de-
grade. When applied to an unknown configuration, these
computationally efficient methods will yield weaker sta-
tistical bounds on the true number of pieces.

In the context of propositional model counting, we are
given a boolean expression and each satisfying assign-
ment is equivalent to a chess piece. Analogously, we
remove satisfying assignments using hash functions. Im-
proving hash function performance is challenging be-
cause of the inherent tension between computational and
statistical efficiency. Hash functions are commonly im-
plemented by appending parity constraints to the orig-
inal boolean expression. It has been shown that re-
ducing the length of parity constraints (i.e., the num-
ber of variables involved) improves computational effi-
ciency at the cost of statistical efficiency, a trade-off that
improves practical performance in many cases [Ermon
et al., 2014, Zhao et al., 2016, Achlioptas and Theodor-
opoulos, 2017, Achlioptas et al., 2018]. In particular,
regular constraints inspired by low-density parity check
codes have recently been shown to perform extremely
well in practice [Achlioptas and Theodoropoulos, 2017,
Achlioptas et al., 2018]. Combined with improvements
in SAT solving technology specifically tailored to parity
constraints [Soos and Meel, 2019], these advances have
led to dramatic scalability improvements.

A key limitation of all existing hashing-based ap-
proaches, however, is that the family of hash functions
is defined a priori, and the same family is used for every
input formula with the same number of variables. The-
oretical guarantees are provided showing that the family
will perform well regardless of the “shape” of the solu-
tion set of the input formula. The family of hash func-
tions plays the same role as the proposal distribution in
importance sampling [Hadjis and Ermon, 2015]. Exist-
ing hashing approaches analogously use a fixed proposal
distribution with good worst-case guarantees, i.e., a pro-
posal distribution that is expected to work well for infer-
ence on many target distributions.

Inspired by adaptive importance sampling, we explore
the idea of designing hash functions that are tailored to
the properties of each input propositional formula. To
this end, we note that existing approaches solve a se-
quence of SAT instances obtained from the input formula
by adding an increasing number of parity constraints.

Many of these instances are satisfiable, and in this case
a SAT solver will also return a solution. These solutions
are currently discarded, however, they have unexploited
value. Our main insight is that these solutions are ap-
proximately uniform samples from the set of all possi-
ble solutions [Gomes et al., 2007], and can therefore be
used to infer important properties of the solution set (e.g.,
marginals) without additional overhead.

We propose an adaptive method to improve the con-
struction of random parity constraints using approxi-
mate samples found during the search procedure used in
Achlioptas and Theodoropoulos [2017] and Achlioptas
et al. [2018]. Intuitively, we use estimated marginals
to encourage the hash functions to partition the solu-
tion set into hash buckets as evenly as possible. In the
chess board analogy, each solution is represented by a
chess piece. We choose which computationally efficient
method to use based on the chess pieces that have been
previously found. If the original scheme is performed re-
peatedly, but pieces are only found on black squares, we
could choose to only consider pieces on black squares
and scale our result by a factor of 2. On the other hand,
if pieces are only found on a small fraction of the boards,
then we could choose to only consider these boards and
appropriately scale our result. While our approach is
in principle compatible with various hash families, we
focus on regular/biregular matrices inspired by LDPC
codes because of their excellent performance [Achliop-
tas and Theodoropoulos, 2017, Achlioptas et al., 2018].

Additionally, we propose an orthogonal variance reduc-
tion technique to improve accuracy at the cost of extra
computation. This approach can be used with any hash
function construction and SAT solver. The key idea is
that by performing multiple repetitions and using a suit-
able aggregation strategy, one can provably reduce the
variance of the estimate of the model count, and thus
tighten bounds. The repetitions are independent, which
allows them to be performed in parallel. We demon-
strate empirically that the combination of our variance
reduction technique and adaptive strategy can lead to dra-
matic improvements in both lower bound tightness and
computation speed. On an example problem instance,
which was selected due to its computational difficulty,
we demonstrate dramatic improvements. We compute
a lower bound using extremely sparse regular constraint
matrices that is tighter, by over a factor of 21°°, than the
bound computed using biregular constraint matrices with
1.5 times the density. In addition, our bound can be com-
puted over 100x faster than the denser biregular bound,
using a simple parallelization procedure across 10 cores.



Algorithm 1 Known Lower Bound

Inputs: s: Solution cutoff

A: Failure Probability

{A™}n _,: Fixed distributions over parity matrices F5*
Og: A SAT oracle

Output: A probabilistic lower bound on | S|

Algorithm 2 New, Adaptive Lower Bound
Inputs: s: Solution cutoff

A Failure probability

K': Number of repetitions per trial

Og: A SAT oracle

Output: A probabilistic lower bound on |S]|

I T = [8log L]

2:m=1

3: while m < ndo

4: fort=1,---,Tdo

5: Sample A™ ~ A™ , denote h'™ (z) = A™z

6: Sample b ~ Uniform(F5")
// Invoke oracle Og up to s times to check
/I whether the input formula with additional
// constraints A”x = b has at least s distinct
// solutions

7: wt—mln{s 1SN (k™) ~1(b)]}

8 if thl w' < sT/2 then

o: break

10: m=m+1

11: Output “|S| > s|2m~3|”

2 BACKGROUND

Model Counting by Hashing. Letx,,--- ,x, ben bi-
nary variables, and let S C F3 = {0,1}" be a high-
dimensional set with size up to 2. Addition and mul-
tiplication are defined modulo 2 for Fo = {0,1}. The
set S is usually defined by conditions that its elements
must satisfy, such as through a boolean expression. An
NP oracle can be used to determine whether S is empty.
Membership in S of a specific z € F5 can be tested
by evaluating the boolean expression. We would like to
estimate |S|, the number of elements in S. When S is
the set of solutions to a boolean expression over n bi-
nary variables, the problem of computing |.S| is known
as model counting, which is the canonical #P complete
problem [Valiant, 1979].

The hashing approach [Gomes et al., 2006, Chakraborty
et al., 2013b, Ermon et al., 2013] reduces counting to
solving a polynomial number of NP-complete SAT prob-
lems. As a primitive operation, the estimation procedure
randomly partitions S into 2™ bins, selects one of these
bins, and checks whether S has at least s elements in this
bin. Checking whether s elements of S belong to this bin
can be done with a query to an NP oracle, e.g., invoking
a SAT solver. Performing this primitive operation over
a range of m values gives an estimate of |S|. Repeating
this estimation procedure a small number of times allows
us to approximate |S| well by giving both lower and up-
per bounds that hold with high probability. This result
is notable because solving counting problems (in #P) is

—[slog 4]
m=1
D = () // Solutions found so far
while m < n do
fort=1,---,T do
fork=1,--- ,Kdo
A™ = SampleAdaptiveMatrix (D, m)
Sample b ~ Uniform(F3")
// Invoke oracle Og up to sK times to check
/I whether the input formula with additional
/I constraints A"z = b has at least sK
// distinct solutions
9: wk—mln{sK |S N (™)~ |}

P DN R R

10: S’ = Up to sK solutions obtalned at step 9
11: D=DUs’

12: wt :min{s,%zﬁil wk}

13 if Y], w' < sT/2 then

14: break

15 m=m+1
16: Output “|S| > s|2m 3]

believed to be significantly harder than solving decision
problems (in NP) [Valiant, 1979].

A Hashing Algorithm for Model Counting. In this
section we formally define the model counting algorithm
based on hashing. There are several variants of the algo-
rithms [Gomes et al., 2006, Chakraborty et al., 2013a,
Ermon et al., 2014, Ivrii et al., 2015, Achlioptas and
Jiang, 2015, Belle et al., 2015, Achlioptas et al., 2018,
Soos and Meel, 2019] based on the same core idea. For
ease of exposition we present the simplest variant in Al-
gorithm 1. We note that more efficient versions are pos-
sible, e.g., replacing the linear search in Line 3 with bi-
nary search [Chakraborty et al., 2016] or doubling binary
search [Achlioptas and Theodoropoulos, 2017]. The
methods we introduce can be applied to more efficient
variants of Algorithm 1, as in our experiments.

We denote a hash function that maps all elements x € I3
to one of 2™ bins as K™ : Iy — F5* (where m < n).
It has m components h"™ = (hY*,--- , h"), where each
hi* maps « to one of two bins.

The hash function 2™ is implemented using parity con-
straints. That is, h™(x) = A™x, where A™ is a binary
matrix in F3"*"™ and addition and multiplication are done



modulo 2. Each row of A is an individual parity con-
straint, with the i-th row corresponding to A", that maps
every x € I} to one of 2 bins. Combined, the parity
constraint matrix maps every « € [ to one of 2™ bins.
At each iteration, the algorithm samples A™ from some
distribution A™, which defines the hash function A™ (al-
though this dependence is not explicit in our notation).
We will return to the choice of A™ in the next section.

Given the hash function h™ we can inspect the 2™ hash
bins. If most of the hash bins contain at least k£ elements
from S, then it is likely that |S| > E2m=1 More pre-
cisely, we uniformly sample b from 5" and invoke the
SAT oracle Og to exactly bound the size of the set

S(h™) =8N (R™)~1(b). 1)

|S(h™)| will be a random variable (as A™ is randomly
sampled from A", and b is randomly sampled from
Uniform(IF3")). If we can decide with high probability
that |[S(h™)| > k (i.e. Pr[|S(h™)| > k] > 1/2), then
we obtain a probabilistic lower bound on the size of S.
This claim is formalized in the following proposition.

Proposition 1. Ler any distribution A,, over F3'*",
A € (0,1), and s > 1 be inputs to Algorithm 1. The
output of Algorithm 1 is correct with probability at least
1—A, where the probability is with respect to the random
choices made by the algorithm. (Proof in Appendix.)

When the linear search in Alg. 1 is replaced with the
doubling binary search from Achlioptas and Theodor-
opoulos [2017, p. 4], m is iterated over in descending
order. This may lead to up to log, n tests of invalid
lower bounds, and one must guarantee that none of these
tests incorrectly verifies the bound. In this case, setting

T =
the same overall correctness probability of at least 1 — A.

{8 In mg%" and using a union bound guarantees

Statistical vs. Computational Efficiency. The cor-
rectness of Algorithm 1 does not depend on A accord-
ing to Proposition 1. However, the tightness of the lower
bound depends critically on the choice of A. Suppose the
true size of S is 2", then we know that E[|S(h™)|] = 1.
However, Pr[|S(h™)| = 1] could still be close to 0.
This will happen if there are a few very large bins (i.e.,
|S N (h™)~1(b)] is very large for a few values of b),
while most of the bins are empty. Suppose we run Al-
gorithm 1 with such a family of hash functions and it
outputs “|S| > s|2773|”. This bound will likely be very
loose, that is |S] > s|2/73]. In contrast, for an ideal
hash function, each bin would have exactly one element,
that is Pr[|S(h™)| = 1] = 1. In this case our algorithm
would conclude that 2™~ 2 is a lower bound (with s = 1).
We could get a perfect 2" lower bound with small mod-
ifications to the algorithm, but this is not essential in our

paper, as we focus on hard problems with lower bounds
that are usually loose by hundreds of orders of magni-
tude. In general, we would like Var[|S(h"™)]] to be as
close to zero as possible. Var[|S(h™)|] depends on the
choice of A. Therefore, selecting a good A is crucial.

Early work used a parity matrix A sampled from an
i.i.d. Bernoulli distribution with probability 1/2 [Valiant
and Vazirani, 1986, Gomes et al., 2006]. In expectation
each row of A contains n/2 non-zero elements. In other
words, half of the variables in x are involved in each par-
ity constraint 37, Ajjz; = b;. A will act as a pair-
wise independent hash function with this construction.
The hashed value of one element, Az', will give no in-
formation about the hashed value of any other element,
Ax?, for any two elements xl,:L'2 € 5. In turn, this
yields a very small Var[|S(h)|] because the hash func-
tion acts almost independently. However, implementing
this construction results in SAT problems that are com-
putationally challenging to solve. Gomes et al. [2007],
Ermon et al. [2014], Zhao et al. [2016], Achlioptas and
Theodoropoulos [2017] reduced the length of these con-
straints, achieving dramatic computational speedups at
the cost of degradation in statistical efficiency (usually
measured by increased variance Var[|S(h)[]).

As the length of parity constraints decreases, the selec-
tion of which specific variables are included in each con-
straint becomes increasingly critical. The statistical effi-
ciency of short parity constraints can be improved by cre-
ating dependencies between constraints [Achlioptas and
Theodoropoulos, 2017, Achlioptas et al., 2018]. Specif-
ically, the parity constraint matrix A is required to be
biregular, with the same number of 1’s in every row
and column. However, this improvement is still insuf-
ficient for a large fraction of benchmark problems. We
propose a new class of methods that impose additional
structure on which variables may group together in con-
straints based on knowledge of the solution set S shape,
thus further increasing statistical efficiency. For exam-
ple, “frozen” variables, which always take the same value
across all satisfying assignments, are useless when in-
cluded in parity constraints. Similarly, variables that al-
most always take the same value have little utility. Our
approach is to balance the quality of parity constraints,
ensuring that all constraints contain some variables that
we believe to be useful, while also distributing variables
believed to be less useful uniformly among constraints.

The two key contributions of this paper are modifications
to Algorithm 1 that are shown in our Algorithm 2:
1. We construct hash functions adaptively, based on

information about the specific set shape (line 7).

2. We introduce a general variance reduction tech-



nique. Instead of adding a single set of parity con-
straints to the SAT problem of interest and solving
the resulting problem, we aggregate solutions to K
problems resulting from modifying the SAT prob-
lem of interest with K independently sampled hash
functions (for loop on line 6).

3 ADAPTIVE HASHING

Optimal Constraints for Statistical Efficiency. Intu-
itively, the reason short parity constraints usually lead
to poor statistical efficiency is that the constraint fails to
split the solution set S into equally sized parts. More
precisely, Var[|S(h)|] is smallest (in fact, it is zero) if
|S N (h™)~1(b)] is the same for all b € F3* and for all
h™ in the family of hash functions. To hypothetically
create such a family of hash functions, we consider con-
structing each hash function in the family by sequentially
adding m constraints through the following idealized (al-
beit impossible) process.

1) Given the set S we first pick a single parity constraint,
hi(z) = >_; Afz;, that splits S into 2 equally sized
subsets. That is, exactly half of the elements in S satisfy
hi(x) = 0 and the other half satisfy hy (z) = 1.

2) Given S and h; we add a second parity constraint,
ho(z) = >_; A%ix;, that splits the 2 current subsets
into 4 equally sized subsets. That is, for each subset
SN hyt(0) and S N AT Y(1), exactly half of the elements
satisfy ho(z) = 0 and the other half satisfy ho(z) = 1.

3) Continue adding constraints that equally split all cur-
rent subsets until we have 2™ equally sized subsets.

The family of hash functions, defined as all hash
functions that this process can construct, will have
Var[|S(h)]] = 0. Even though this idealized fam-
ily of hash functions is impossible to construct in prac-
tice (especially using short length constraints), it sug-
gests another interesting trade-off: improved statistical
efficiency from hash functions that split a particular set
evenly vs. the additional computation required to iden-
tify these hash functions. Even when we fix the length of
each constraint to a set number of variables, we can still
find good hash functions by choosing which variables we
include in each constraint. Finding better constraints re-
quires computational cost, but leads to improved statis-
tical efficiency. There is potentially a large spectrum of
algorithms exploring the optimal trade-offs.

Adaptive Biregular Constraints. In this section we
show how to adaptively construct biregular constraint
matrices utilizing knowledge about the shape of a
particular set S. The biregular constraint matrices
from Achlioptas and Theodoropoulos [2017] obtain state

of the art performance for short constraints. Combined
with our adaptive approach we see further improvements.

In this paper, we focus on a very cheap approximation
to the idealized constraints of Section 3, with the desir-
able property that it can be used to adaptively restrict
the family of biregular matrices. A constraint h; that
splits S N Ay (by) N --- N kY (b;—1) in half for ev-
ery (by, - ,b;_1) also split S in half. Therefore, con-
straints that do not split S’ in half cannot be optimal.
While it is difficult to generate optimal, short constraints,
it is relatively easy to avoid generating certain types of
constraints that split the entire set into two highly imbal-
anced subsets.

Our approach is to restrict the family of hash functions
by avoiding these parity constraints that are likely to be
very poor for the particular set S. A constraint h,;(z) =
> Afjxj is useless when it fails to split the set S. That
is, Ps(hi(z) = 1) = 1 or Pg(h;(x) = 1) ~ 0, where
Ps is a uniform distribution on the elements in S. One
scenario where this will occur is when each variable in
h; has marginal probability close to 0 or 1 under Pg, i.e.
Ps(z, = 1) ~ 1 or Pg(z, = 1) = 0 for all u such
that A;, = 1. Our adaptive construction avoids such
constraints. In general, variables with marginals close to
0 or 1 are useless in the sense that they do not improve
the ability of a constraint to evenly split the set. On the
other hand, variables with marginals closer to 1/2 are
generally more useful in constraints (note that this is a
rough statement, as it ignores the potentially complicated
dependencies between variables in the set).

Following this intuition, our adaptive approach ensures
that all constraints contain at least some ‘high quality’
variables. We assign variables to constraints in a round-
robin fashion. Beginning with the m variables whose
marginals are closest to 1/2, we randomly assign one
variable to each of the m constraints. We repeat this
process for groups of m variables with marginals succes-
sively farther from 1/2. If the density of the constraint
matrix is set such that variables appear in it more than
once, this procedure will loop through the variables re-
peatedly, always traversing ‘high quality’ to ‘low quality’
groups. In this manner, every constraint is guaranteed to
contain some ‘high quality’ variables while no constraint
will contain only ‘low quality’ variables. This procedure
is formalized in Algorithm 3.2

When the constraint density is set to 1/m, so that each
variable appears in exactly one constraint, we can visual-

2For ease of exposition we assume (n mod m) = 0 and
that d is an integer. When (n mod m) # 0, a block of vari-
ables will wrap from the n-th to the first variable. When d is
not an integer, the loop over b will break partway through and
the last block may contain fewer than m variables.



Algorithm 3 SampleAdaptiveMatrix

Inputs: D: Set of previously found SAT solutions
m: Number of constraints to sample
d: The constraint matrix will contain dn one-entries
Output: A constraint matrix A € F;**".
// Empirical variable marginals
pe={x €D |z, =1}|/|D|, fort=1,---,n
// Uniformity scores
se=|pe—1/2,for{=1,---,n
(v1,- - ,v,) = arg-sort smallest first (s1,--- , s,)
A — 0m><n
for d times do
forb=0,---
repeat
1=bm+1
j=t1+m-—1
(vi,---vp) = permute(v;, - - - ,v;)
until A[l,v]] ==0foralll € {1,---,b}
All,v]] =1foralll € {1,--- ,b}
: Return A

,n/m—1do
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ize the constraint sampling procedure of Algorithm 3 as
a three step process:

1. Sort the variables x4, - - - ,x, by |p; — 1/2| and re-
index the variables in sorted order. For the rest of
the section we assume that xq,- - - , z, are ordered
sothat |p; —1/2| < |pa —1/2| < -+ < |pp —1/2].

2. Construct an m X n block diagonal matrix as below:

10 . 0 0|1 O 0 0 1 0
01 .0 0(0 1 0 0 0 1
0 0 1 0{0 O 1 0 0 0
0 0 0 1|0 0 0 1 0 0

Note that variables with estimated marginals closest
to 1/2 appear in the left most block while variables
with estimated marginals furthest from 1/2 appear
in the right most block.

3. Randomly permute the columns of each submatrix
of AO .

Approximately Uniform Samples for Free. One snag
with our adaptive approach is the problem of computing
probabilities, Pg, of the uniform distribution over ele-
ments in S. Our approach is to estimate these proba-
bilities using approximate samples from the distribution.
Prior work has shown that SAT solvers draw just such ap-
proximately uniform samples [Gomes et al., 2007] when
solving problems modified by long parity constraints.

The main advantage of this approach is that there is no
overhead involved, as the SAT solver is already invoked
during the bounding procedure (line 7 in Algorithm 1) —
we simply have to record the solutions found so far (lines
10 and 11) instead of discarding them as current meth-
ods do. We lose guarantees on the quality of these sam-
ples because our parity constraints are short, but still gain
valuable information about the shape of the set [Gomes
etal., 2007]. In our experiments we observe that our con-
struction has very small overhead, but potentially large
gains in performance.

4 VARIANCE REDUCTION VIA
MULTIPLE REPETITIONS

The first and second moments of the random variables
|S(h)| play a key role in the analysis of hashing-based
algorithms. In practice, the statistical performance de-
pends crucially on how concentrated |S(h)| is around
its expected value. Specifically, performance is poor
(bounds are loose) if most realizations of S(h) are
empty (no solutions survive after adding the random
constraints), but there are a few unlikely, very large
realizations (all solutions survive). Our procedure for
adaptively sampling constraint matrices aims to improve
hashing performance by reducing the variance of |S(h)].
In this section we present an orthogonal approach for re-
ducing variance, which can be combined with our adap-
tive procedure.

Specifically, variance can always be reduced by aver-
aging over multiple, independent realizations of |S(h)].
Averaging always preserves the expected value, and is
guaranteed to reduce variance. Define S™ to be the
mean of K independent realizations of |S(h™)|. Then
variance is reduced to Var[S"] = Var[|S(h™)|]/K.
Algorithm 2 achieves this variance reduction by calculat-
ing a lower bound on S inline 12. Note that the min op-
eration on line 9 serves as an optimization, because call-
ing the SAT solver is unnecessary once it has found s K
solutions, and removing this min results in a mathemat-
ically equivalent algorithm. This reduction in variance
leads to tighter lower bounds output by Algorithm 2, as
we will see in the experiments. In contrast, note that in-
creasing the number of trials, 7", in Algorithm 1 will in-
crease the probability that the output is correct, but even
in the limit of 7" — oo might not give a tight bound. Fur-
ther, the probability that the tighter bound of Algorithm 2
is valid (see Proposition 2) remains the same as for Algo-
rithm 1, because the two modifications—using adaptive
matrices and multiple repetitions—do not significantly
affect the proof of Proposition 1.

Remark 1. It is worth noting the subtle differences
between Algorithm 2 and apparently similar modifica-
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Figure 1: The x-axis shows the baseline bound. The
y-axis shows log, of the ratio of our variance reduced
bound computed with K = 10 solutions to the baseline
bound. Each point represents one problem and above the
black line denotes improvement. In addition to the log
ratio, data is displayed with a symmetric log scale.

tions to Algorithm 1. Replacing s in Algorithm 1 with
s’ = sK results in a seemingly similar algorithm. How-
ever, the break condition on the while loop over m would
compute the sum of only T random variables w?, as op-
posed to T'K random variables wy, in Algorithm 2. This
difference would result in much earlier stopping and a
looser bound relative to Algorithm 2. Replacing 7" in
Algorithm 1 with 77 = TK would give a bound that
holds with higher probability. However, this modifica-
tion would only utilize s solutions per problem instance,
losing the ability of Algorithm 2 to smooth between in-
stances containing many and few solutions. This smooth-
ing is critical for variance reduction.

Proposition 2. Let s > 1, K > 1, and A € (0,1) be
inputs to Algorithm 2. The output of Algorithm 2 is cor-
rect with probability at least 1 — A, where the probability
is with respect to the random choices made by the algo-
rithm. (See Appendix for a proof.)

Upper Bounds. While we have confined our discus-
sion to lower bounds until this point, randomized hash-
ing methods can also give upper bounds on the exact
model count. While lower bounds can be derived for
very general families of hash functions, upper bounds
generally place more restrictions on the types of hash
functions that can be used [Ermon et al., 2014]. For ex-
ample, consider a slight variant of Algorithm 1 that out-
puts the upper bound “|S| < s2™+!” (Algorithm 4 in
the appendix). Here, the family of hash functions must
have provably low variance with 1602, < pu2, where
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Figure 2: The x-axis shows our variance reduced bound
computed with K = 10 solutions. The y-axis shows log,
of the ratio of our adaptive, variance reduced bound com-
puted with K = 10 solutions to our variance reduced
bound computed with K = 10 solutions. Data is dis-
played with a symmetric log scale.

o2, > Var[|S(h™)|] is a computable upper bound on the
variance and i, = E[|S(h"™)|]. While families of dense
hash functions satisfy this condition, it places a restric-
tion on the use of sparse hash functions with higher vari-
ance. However, employing our variance reduction strat-
egy with K > 1 repetitions allows us to relax this con-
dition to 1602, < Ku? while maintaining correctness
of the algorithm. Increasing the number of repetitions K
has two primary effects on the upper bound. First, it al-
lows for the use of families of hash functions with larger
variance, stated in Theorem 1. Second, it reduces the
number of trials, 7', required for the upper bound to hold
with a specified probability (line 4 in Algorithm 4). This
formulation is similar to the upper bounding strategy in
Achlioptas et al. [2018], cf. Lemma 1 and Theorem 2.

Theorem 1. Ler s > 1, K > 1, and A € (0,1) be
inputs to Algorithm 4. In addition, let {A™}" _, be a
set of distributions over parity matrices which defines
a family of uniform hash functions with bounded vari-
ance. For each distribution define the upper bound, o2,
on the variance of its associated hash function, satisfying
Var[|S(h™)|] < 02, < Ku2,/16. Then, with probabil-
ity at least 1 — A, the output of Algorithm 4 is correct,
where the probability is w.r.t the random choices made
by the algorithm. (See Appendix for a proof.)

S EXPERIMENTS

We evaluated the performance of our proposed method
on the suite of benchmarks used in Soos and Meel
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Figure 3: Instances where DSharp did not finish within
5,000 seconds. The x-axis shows the lower bound given
by the baseline regular construction. The y-axis shows
log,, of the ratio of the lower bound given by one of our
proposed improvements to the baseline lower bound.

[2019]. These problems were taken from a range of
application areas including probabilistic reasoning, plan
recognition, DQMR networks, ISCAS89 combinatorial
circuits, quantified information flow, program synthesis,
functional synthesis, and logistics. Of these 1,896 bench-
marks, the exact model counter DSharp [Muise et al.,
2012] solved 698 within 2 seconds. We evaluated our
methods on the remaining 1,198 non-trivial instances.

Thanks to recent improvements in the underlying SAT
solver, CryptoMiniSat [Soos and Meel, 2019], used by
all randomized hashing frameworks, the range of prob-
lem instances that can be solved within a guaranteed
multiplicative factor has dramatically increased. Soos
and Meel [2019] report that ApproxMC3 is able to solve
1,140 of the problem instances in the data set we use
within a timeout of 5,000 seconds, notably overtaking
DSharp which was only able to solve 1,001 (we note that
in experiments on our cluster, DSharp only solved 955
problems within this time limit). However, there still ex-
ist many problems that are beyond the reach of these ap-
proaches, with 756 in the data set. In our experiments
we aggressively target increasing the range of SAT prob-
lems for which we can provide some information. As
a baseline we compute a probabilistic lower bound us-
ing doubling binary search with state of the art, biregular
constraint matrices, as in Algorithm 2 from Achlioptas
and Theodoropoulos [2017, p. 4]. These constraint ma-
trices have been shown to excel at giving tight bounds
with short constraints. In our baseline we further re-
duce constraint length beyond what was considered in
Achlioptas and Theodoropoulos [2017], such that every
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Figure 4: The x-axis shows the lower bound computed
by the baseline regular construction. The y-axis shows
log,, of the ratio of either the exact model count (DSharp)
or the lower bound by one of our improvements to the
baseline lower bound.

variable appears in exactly one constraint and constraints
have balanced lengths (forming a regular constraint ma-
trix). Such ultra-short constraints are very efficient to
solve but result in loose bounds.

Our proposed methods can be used to significantly
tighten these bounds without significantly increasing
runtime. We computed lower bounds for our methods
and the baseline using doubling binary search, a fail-
ure probability of A = .05, and imposed a 5,000 sec-
ond timeout on the cumulative time of all calls to the
SAT solver.> We imposed the same 5,000 second time-
out across all calls to the SAT solver when evaluating
our variance reduction technique, rather than giving this
technique access to parallel computation.

Figure 1 compares our variance reduction technique with
the baseline, regular construction. Using K = 10 solu-
tions, the median improvement in the lower bound was
a factor of 2!, The baseline construction computed
bounds for all but 100 problems within the time limit,
while our variance reduction technique computed bounds
for all but 200 problems. With parallel computation this
number would likely have been much closer to 100.

Figure 2 shows the performance of our variance reduc-
tion technique when combined with our adaptive con-
struction compared to our variance reduction technique

3We did not include time spent in our python script during
the bounding procedure, as this code is not optimized and the
calls to the SAT solver limit computational efficiency for hard
problems. For example, when computing the adaptive, regular
bound (with the smallest density) in Figure 5, the time spent by
our python script generating constraints is roughly 5% of the
time spent calling the SAT solver.



alone. We estimated marginals and performed adapta-
tion using only the samples naturally acquired during the
search process (with K = 10). The median improve-
ment in the lower bound was a factor of 8. In addition,
many problem instances saw dramatic improvements, up
to a factor of 2!°°°. When our variance reduction tech-
nique was combined with our adaptive construction, 209
problem instances timed out.

We ran DSharp (using infinite precision numbers) on all
problem instances with a timeout of 5,000 seconds. Fig-
ure 4 shows how each method compares with the ex-
act model counts provided by DSharp on 242 problems
DSharp was able to solve within this time budget (ex-
cluding the 698 problems it could solve within 2 sec-
onds and 15 problem instances where the model count
returned by DSharp was large than 2°0°0, as these Fig-
ure 3 shows how our methods compared with the base-
line on the 732 problem instances that DSharp timed out
on, but our methods completed. The general trends in im-
provement between the baseline and our variance reduc-
tion method and between our variance reduction method
and our adaptive construction combined with variance
reduction appear similar between problem instances that
DSharp did and did not time out on.

There is a trade-off between the statistical and compu-
tational efficiency of hash functions. Using a higher
density of ones improves statistical efficiency but hurts
computational efficiency. By reducing the density of
the biregular matrix construction from Achlioptas and
Theodoropoulos [2017], we were able to dramatically
improve computational efficiency at the cost of statistical
efficiency, resulting in weaker bounds. Since our vari-
ance reduction technique requires additional (although
highly parallel) computation, it is natural to ask how
the resulting bound compares with denser, biregular con-
structions. We chose a computationally challenging
problem instance (90-34-3-q) and show bound improve-
ment and computational requirements when the density
of biregular constraints is varied in Figure 5. Constraint
density is varied from variables appearing in 1.0 to 1.7
constraints on average. We plot log, of the bound ob-
tained by using variance reduction alone, variance reduc-
tion combined with adaptation methods, and the base-
line. We set K = 10 for both our methods. We show
both sequential and naive parallel runtimes (time used
by the SAT solver). The naive parallel runtime was simu-
lated by sequentially solving each of the X' = 10 SAT in-
stances during a search step but recording the solver time
at that step as the maximum of the 10 runtimes. Note
that with true parallelization and proper integration with
the SAT solver this time could be significantly reduced,
by terminating all computation as soon as the required
number of solutions are found. We see that combining
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Figure 5: Tradeoff between runtime and lower bound for
problem instance 90-34-3-q, selected for its difficulty.

our two strategies can reduce runtime by orders of mag-
nitude while simultaneously computing a bound that is
tighter by many orders of magnitude. The zig-zag pat-
tern is likely caused by doubling binary search [Achliop-
tas et al., 2018, p. 6], where random failures during the
final verification stage may result in both a significant
increase in computation time and weaker lower bound.

6 CONCLUSIONS

Randomized hashing algorithms have emerged as a lead-
ing approach to approximate model counting. The per-
formance of these algorithms depends crucially on the
statistical and computational efficiency of the hash func-
tions used. We introduced a novel adaptive construction
for hash functions which utilizes the solutions to satis-
fiable instances that are found during the search for a
bound. We also introduced a general variance reduc-
tion technique for tightening lower bounds at the expense
of additional, but highly parallel, computation. When
combined, these two approaches lead to improved lower
bounds across a broad range of benchmarks. While we
focused on a version of the regular constraint matrices
from Achlioptas and Theodoropoulos [2017] with even
shorter constraints, the general idea is likely to be appli-
cable to other randomized constructions. In future work,
it would be interesting to explore alternative strategies
that leverage the information contained in the approxi-
mate samples obtained from the SAT solver.
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7 Appendix

7.1 Proof of Proposition 1

Proof. Suppose Algorithm 1 outputs “|S| > s[2773)”
but |S| < s[2772]. We will show that this happens with
probability at most A. Let the iteration with m = ¢ be
the final iteration where a break would have resulted in a
correct output, i.e., i = argmaxy s|2° 3| < |S|. This
means that s[2°73] < |S| < s[2072|. Also note that
i > 2 because of the floor operator. The algorithm out-
puts an incorrect bound if and only if the while-loop on
m breaks with m = j such that 5 > ¢ 4+ 1. For this
to happen, the while loop would nor have been broken
in all iterations with m < 4. In particular, we would
have observed 3.7, w' > sT'/2 on iteration i. How-
ever, this is an unlikely event, as we now show. Observe
that S(h?) = S N (h*)~1(b) by definition, and

Bjs(n) = o < 22 <

=] »

This results in the inequalities
E[w'] = E [min {s, |S(h")|}]
<min{E[s],E[|S(h)[]} < s/4. (2

Since w' € [0, s], we can apply Hoeffding’s inequality
and use Equation 2 to obtain

Setting 7' = [81n % |, we have exp (—%) < A. There-
fore, the probability of observing Zthl wt > sT/2 in

iteration ¢ (making the output of Algorithm 1 incorrect)
is bounded above by A. O

7.2 Proof of Proposition 2

Proof. Suppose Algorithm 2 outputs “|S| > s|2773)”
but |S] < s|2773]. We will show that this happens with
probability at most A. Let the iteration with m = i be
the final iteration where a break would have resulted in a
correct output, i.e., i = arg maxy s|2¢ 3| < |S|. This
means that s[2°73] < [S| < s|2i72]. Also note that
1 > 2 because of the floor operator.

The algorithm outputs an incorrect bound if and only if
the while-loop on m breaks with m = j such that 7 >
1 + 1. For this to happen, the while loop would not have
been broken in all iterations with m < 4. In particular,
we would have observed 23:1 w' > sT/2 on iteration

1. However, this is an unlikely event, as we now show.
Observe that S(h?) = S N (h')~1(b) by definition, and

_ @ _ SLQFQJ

B[Sl = 5 < 25

<
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This property holds because b is chosen uniformly at ran-
dom on line 8 of Algorithm 2. Crucially, this property
holds regardless of how the matrices A,,, are constructed
on line 7.

This results in the inequalities

E[wy] = E [min {sK,|S(h"1)[}] < s/4

1 X
E szk] <s/4
k=1
| K
E[w'] = E min{s,K;wk}l <s/4 (3

Since w' € [0, s], we can apply Hoeffding’s inequality
and use Equation 3 to obtain

1 t S 2T /s 5\2
T 221 SeXp(s2(24)>

Setting T' = [8 In %W , we have exp (f%) < A. There-
fore, the probability of observing Zle wt > sT/2 in

iteration ¢ (making the output of Algorithm 1 incorrect)
is bounded above by A. O

7.3 Upper Bound

Proof. Suppose Algorithm 4 outputs “|S| < 271, but
this is incorrect, and s2772 > |S| > s27*!, That is, the
output is the largest invalid upper bound. We will show
that Algorithm 1 outputs this, or any other smaller invalid
bound, with probability at most A. For the algorithm to
output the smallest valid upper bound, 2772, the iteration
with m = 7 + 2 would have resulted in breaking the
while-loop on m. Thus, in every prior iteration ¢ < j+1,
we would have observed Zthl wt > sT/2. We will
use the union bound to upper bound the probability of
observing 3"/, w' < sT/2 for some i < j + 1.

Fix any i < j + 1. Then, E[|S(h")|] = u; = |S|/2¢ =
2771|S|/27 > $27~+1 by our assumption. Let the vari-
ance be Var[|S(h')|] = o?. We first observe that the
min operation with sKon line 10 of Algorithm 1 serves
only an optimization purpose, and does not alter the out-
come of the algorithm (because of the subsequent min
operation when computing w?). Thus, for the sake of




analysis, we can let wy, = |S(h*)| without loss of gener-
ality.

For brevity of notati_on, let WK = % Zszl wg. Then,
Efwk] = E[|S(h)|] > 52771 and Var[wg] <
o? /K. Applying Cantelli’s inequality:

Pr[@K < S} =Pr [EK <E [EK] — (E [EK] — S)]

o?/K
< —
~ 02/K + s2(2071H1 —1)2
o?/K
= 02K + 524
Hence, Prjwg > s] > (712/;;4% Since- wt —
min{s, Wk }, we also have Pr[w! > s] > 02/;&%

Let y* denote a 0-1 indicator variable that is 1 when

w' > s. Then y* < w' and E[y’] > % Bya

precondition of the theorem, s247~% > uf /16 > 01.2 /K,
which implies E[y’] > 1/2, making it unlikely to ob-
serve the sum of T} such g’ variables to be smaller than
T;/2. We thus have:

Tz T‘
“m lzyt <I

t=1

2 d 7\
<exp|-—= (E yt| — z)
E t=1 2
_ 2 s249 71T, \>
X — e s A - T —_—
PN\ G2 /K 5241 2
T; (2497 — o2 /K \?
= ex _——
PN (w1 oK
co [T (1i/16 =0} /K ’
=P\ T2\ 216+ o2 /K

Ty (1-1642/K\"
=exp| -7 (——57) |

2 \1+1672/K
where the second inequality follows from Hoeffding’s in-
equality and the last inequality follows because s247~¢ >
u2/16. This expression is at most A /n because T; is set
to 12 (229%/5)* 1 2 | i Tine 4 of Algorithm 4. A
(0] W n A 1n 11me 4 o gorithm 4. Ap-
plying the union bound over all 7 < 7+ 1, the probability
of observing Zthl w' < sT;/21in any iteration i < j+1,
and thus possibly outputting an incorrect upper bound, is
bounded above by A. O

When the linear search in Algorithm 4 is replaced with
more efficient search procedures, the definition of T;; can
be modified to achieve the desired probability of correct-
ness.

Algorithm 4 Upper Bound with Variance Reduction
Inputs: K: Number of repetitions per trial

s: Solution cutoff

A Failure probability

Og: A SAT oracle

{A™}" _,: For each m € [1,n], a distribution over
parity matrices with known variance bounds that satisfy
1602, < Kp2,, where Var[|S(h™)]] < o2, and
i = E[|S(h™)]]

Output: A probabilistic upper bound on | S|

I:m=1
2: while m < n do
5ok =ik

2

" %:pgﬁ@@hﬂ}

5 fort=1,---,Tdo

6: fork=1,---,Kdo

7: Sample A™ ~ A™ , denote h™(z) = A™x

8: Sample b ~ Uniform(F3")

9: wy, <+ min {sK, SN (k™)1 (b)]} { Invoke
oracle Og up to sK times to check whether
the input formula with additional constraints
A™ax = b has at least sK distinct solutions}

10: wt min{&%ZkK:l wk}
1 if Y, w' < sT/2 then
12: break

13: m=m+1
14: Output “|S| < s2m+1»




