
Adaptive Hashing for Model Counting

Jonathan Kuck1, Tri Dao1, Shengjia Zhao1, Burak Bartan1, Ashish Sabharwal2, and Stefano Ermon1

1Stanford University 2Allen Institute for Artificial Intelligence

{kuck,trid,sjzhao,bbartan,ermon}@stanford.edu, ashishs@allenai.org

Abstract

Randomized hashing algorithms have seen re-

cent success in providing bounds on the model

count of a propositional formula. These meth-

ods repeatedly check the satisfiability of a for-

mula subject to increasingly stringent random

constraints. Key to these approaches is the

choice of a fixed family of hash functions that

strikes a good balance between computational

efficiency and statistical guarantees for a hy-

pothetical worst case formula. In this paper

we propose a scheme where the family of hash

functions is chosen adaptively, based on prop-

erties of the specific input formula. Akin to

adaptive importance sampling, we use solu-

tions to the formula (found during the bound-

ing procedure of current methods) to estimate

properties of the solution set, which guides the

construction of random constraints. Addition-

ally, we introduce an orthogonal variance re-

duction technique that is broadly applicable to

hashing based methods. We empirically show

that, when combined, these approaches lead to

better lower bounds on existing benchmarks,

with a median improvement factor of 213 over

1,198 propositional formulas.1

1 INTRODUCTION

Propositional model counting is the problem of count-

ing the number of satisfying solutions to a Boolean ex-

pression. Exact model counting is computationally in-

tractable, which has led to the development of approx-

imation schemes. An effective line of work performs

approximate model counting using randomized hashing

schemes [Gomes et al., 2006, Chakraborty et al., 2013a,

1Code at https://github.com/ermongroup/adaptive hashing

Ermon et al., 2014, Ivrii et al., 2015, Achlioptas and

Jiang, 2015, Belle et al., 2015, Achlioptas et al., 2018,

Soos and Meel, 2019]. These methods reduce the #P-

complete model counting problem [Valiant, 1979] to a

polynomial number of NP queries of Boolean satisfiabil-

ity (SAT), which can benefit from decades of research

in combinatorial reasoning and fast SAT solvers [Biere

et al., 2009, Soos and Meel, 2019]. The fundamental

idea is to approximate the number of elements in a set by

recursively splitting the set in half using a hash function

until only a single element is left. We focus on improving

the hash functions at the heart of these methods.

As an illustrative example, consider a 100 by 100 grid of

chess boards. Each board contains 8 by 8 cells, where

each cell may or may not contain a piece. The maximum

number of pieces present across all boards is 64× 1002.

We want to know the number of pieces across all boards,

but directly counting them is computationally expensive.

To obtain a good estimate of the number of chess pieces

it is sufficient to be able to (a) independently remove each

piece with probability 1/2, thus removing half the pieces

in expectation, and (b) check whether at least one piece

is still on any board. Note that in the problems we con-

sider pieces are ‘removed’ implicitly, so this operation

is much easier than counting. Suppose we apply oper-

ation (a) followed by operation (b) repeatedly, until op-

eration (b) informs us after round m + 1 that there are

no longer any pieces remaining. Then 2m is a good esti-

mate of the number of pieces across all boards. However,

it would be very tedious to independently remove each

piece with probability 1/2 during operation (a), repre-

senting (a lack of) computational efficiency. Instead we

might be tempted to perform our algorithm considering

only pieces on black squares, black squares in even rows,

or even a single randomly chosen square on each chess

board. We would then scale our answer by the fraction of

pieces considered, e.g. multiply it by 2 when only con-

sidering pieces on black squares. This would be more

computationally efficient, reducing our work in expecta-

tion by factors of 2, 4, and 64 respectively, but represents

a degradation in statistical efficiency. These approaches

will give good estimates if the pieces are distributed uni-

formly across all boards, but will perform very poorly

on certain configurations. If pieces are placed only on

white squares then the first scheme will completely fail.

If pieces are only placed on a small fraction of the chess

boards, then the third scheme’s performance will de-

grade. When applied to an unknown configuration, these

computationally efficient methods will yield weaker sta-

tistical bounds on the true number of pieces.

In the context of propositional model counting, we are

given a boolean expression and each satisfying assign-

ment is equivalent to a chess piece. Analogously, we

remove satisfying assignments using hash functions. Im-

proving hash function performance is challenging be-

cause of the inherent tension between computational and

statistical efficiency. Hash functions are commonly im-

plemented by appending parity constraints to the orig-

inal boolean expression. It has been shown that re-

ducing the length of parity constraints (i.e., the num-

ber of variables involved) improves computational effi-

ciency at the cost of statistical efficiency, a trade-off that

improves practical performance in many cases [Ermon

et al., 2014, Zhao et al., 2016, Achlioptas and Theodor-

opoulos, 2017, Achlioptas et al., 2018]. In particular,

regular constraints inspired by low-density parity check

codes have recently been shown to perform extremely

well in practice [Achlioptas and Theodoropoulos, 2017,

Achlioptas et al., 2018]. Combined with improvements

in SAT solving technology specifically tailored to parity

constraints [Soos and Meel, 2019], these advances have

led to dramatic scalability improvements.

A key limitation of all existing hashing-based ap-

proaches, however, is that the family of hash functions

is defined a priori, and the same family is used for every

input formula with the same number of variables. The-

oretical guarantees are provided showing that the family

will perform well regardless of the “shape” of the solu-

tion set of the input formula. The family of hash func-

tions plays the same role as the proposal distribution in

importance sampling [Hadjis and Ermon, 2015]. Exist-

ing hashing approaches analogously use a fixed proposal

distribution with good worst-case guarantees, i.e., a pro-

posal distribution that is expected to work well for infer-

ence on many target distributions.

Inspired by adaptive importance sampling, we explore

the idea of designing hash functions that are tailored to

the properties of each input propositional formula. To

this end, we note that existing approaches solve a se-

quence of SAT instances obtained from the input formula

by adding an increasing number of parity constraints.

Many of these instances are satisfiable, and in this case

a SAT solver will also return a solution. These solutions

are currently discarded, however, they have unexploited

value. Our main insight is that these solutions are ap-

proximately uniform samples from the set of all possi-

ble solutions [Gomes et al., 2007], and can therefore be

used to infer important properties of the solution set (e.g.,

marginals) without additional overhead.

We propose an adaptive method to improve the con-

struction of random parity constraints using approxi-

mate samples found during the search procedure used in

Achlioptas and Theodoropoulos [2017] and Achlioptas

et al. [2018]. Intuitively, we use estimated marginals

to encourage the hash functions to partition the solu-

tion set into hash buckets as evenly as possible. In the

chess board analogy, each solution is represented by a

chess piece. We choose which computationally efficient

method to use based on the chess pieces that have been

previously found. If the original scheme is performed re-

peatedly, but pieces are only found on black squares, we

could choose to only consider pieces on black squares

and scale our result by a factor of 2. On the other hand,

if pieces are only found on a small fraction of the boards,

then we could choose to only consider these boards and

appropriately scale our result. While our approach is

in principle compatible with various hash families, we

focus on regular/biregular matrices inspired by LDPC

codes because of their excellent performance [Achliop-

tas and Theodoropoulos, 2017, Achlioptas et al., 2018].

Additionally, we propose an orthogonal variance reduc-

tion technique to improve accuracy at the cost of extra

computation. This approach can be used with any hash

function construction and SAT solver. The key idea is

that by performing multiple repetitions and using a suit-

able aggregation strategy, one can provably reduce the

variance of the estimate of the model count, and thus

tighten bounds. The repetitions are independent, which

allows them to be performed in parallel. We demon-

strate empirically that the combination of our variance

reduction technique and adaptive strategy can lead to dra-

matic improvements in both lower bound tightness and

computation speed. On an example problem instance,

which was selected due to its computational difficulty,

we demonstrate dramatic improvements. We compute

a lower bound using extremely sparse regular constraint

matrices that is tighter, by over a factor of 2100, than the

bound computed using biregular constraint matrices with

1.5 times the density. In addition, our bound can be com-

puted over 100x faster than the denser biregular bound,

using a simple parallelization procedure across 10 cores.

Algorithm 1 Known Lower Bound

Inputs: s: Solution cutoff

∆: Failure Probability

{Am}nm=1: Fixed distributions over parity matrices Fm
2

OS : A SAT oracle

Output: A probabilistic lower bound on |S|

1: T =
⌈

8 log 1
∆

⌉

2: m = 1
3: while m ≤ n do

4: for t = 1, · · · , T do

5: Sample Am ∼ Am , denote hm(x) = Amx
6: Sample b ∼ Uniform(Fm

2)
// Invoke oracle OS up to s times to check

// whether the input formula with additional

// constraints Amx = b has at least s distinct

// solutions

7: wt = min
{

s, |S ∩ (hm)−1(b)|
}

8: if
∑T

t=1 w
t < sT/2 then

9: break
10: m = m+ 1
11: Output “|S| ≥ s⌊2m−3⌋”

2 BACKGROUND

Model Counting by Hashing. Let x1, · · · , xn be n bi-

nary variables, and let S ⊆ F
n
2 = {0, 1}n be a high-

dimensional set with size up to 2n. Addition and mul-

tiplication are defined modulo 2 for F2 = {0, 1}. The

set S is usually defined by conditions that its elements

must satisfy, such as through a boolean expression. An

NP oracle can be used to determine whether S is empty.

Membership in S of a specific x ∈ F
n
2 can be tested

by evaluating the boolean expression. We would like to

estimate |S|, the number of elements in S. When S is

the set of solutions to a boolean expression over n bi-

nary variables, the problem of computing |S| is known

as model counting, which is the canonical #P complete

problem [Valiant, 1979].

The hashing approach [Gomes et al., 2006, Chakraborty

et al., 2013b, Ermon et al., 2013] reduces counting to

solving a polynomial number of NP-complete SAT prob-

lems. As a primitive operation, the estimation procedure

randomly partitions S into 2m bins, selects one of these

bins, and checks whether S has at least s elements in this

bin. Checking whether s elements of S belong to this bin

can be done with a query to an NP oracle, e.g., invoking

a SAT solver. Performing this primitive operation over

a range of m values gives an estimate of |S|. Repeating

this estimation procedure a small number of times allows

us to approximate |S| well by giving both lower and up-

per bounds that hold with high probability. This result

is notable because solving counting problems (in #P) is

Algorithm 2 New, Adaptive Lower Bound

Inputs: s: Solution cutoff

∆: Failure probability

K: Number of repetitions per trial

OS : A SAT oracle

Output: A probabilistic lower bound on |S|

1: T =
⌈

8 log 1
∆

⌉

2: m = 1
3: D = ∅ // Solutions found so far

4: while m ≤ n do

5: for t = 1, · · · , T do

6: for k = 1, · · · ,K do

7: Am = SampleAdaptiveMatrix(D,m)
8: Sample b ∼ Uniform(Fm

2)
// Invoke oracle OS up to sK times to check

// whether the input formula with additional

// constraints Amx = b has at least sK
// distinct solutions

9: wk = min
{

sK, |S ∩ (hm)−1(b)|
}

10: S′ = Up to sK solutions obtained at step 9

11: D = D ∪ S′

12: wt = min
{

s, 1
K

∑K
k=1 wk

}

13: if
∑T

t=1 w
t < sT/2 then

14: break
15: m = m+ 1
16: Output “|S| ≥ s⌊2m−3⌋”

believed to be significantly harder than solving decision

problems (in NP) [Valiant, 1979].

A Hashing Algorithm for Model Counting. In this

section we formally define the model counting algorithm

based on hashing. There are several variants of the algo-

rithms [Gomes et al., 2006, Chakraborty et al., 2013a,

Ermon et al., 2014, Ivrii et al., 2015, Achlioptas and

Jiang, 2015, Belle et al., 2015, Achlioptas et al., 2018,

Soos and Meel, 2019] based on the same core idea. For

ease of exposition we present the simplest variant in Al-

gorithm 1. We note that more efficient versions are pos-

sible, e.g., replacing the linear search in Line 3 with bi-

nary search [Chakraborty et al., 2016] or doubling binary

search [Achlioptas and Theodoropoulos, 2017]. The

methods we introduce can be applied to more efficient

variants of Algorithm 1, as in our experiments.

We denote a hash function that maps all elements x ∈ F
n
2

to one of 2m bins as hm : Fn
2 → F

m
2 (where m ≤ n).

It has m components hm = (hm
1 , · · · , hm

m), where each

hm
i maps x to one of two bins.

The hash function hm is implemented using parity con-

straints. That is, hm(x) = Amx, where Am is a binary

matrix in F
m×n
2 and addition and multiplication are done

modulo 2. Each row of A is an individual parity con-

straint, with the i-th row corresponding to hm
i , that maps

every x ∈ F
n
2 to one of 2 bins. Combined, the parity

constraint matrix maps every x ∈ F
n
2 to one of 2m bins.

At each iteration, the algorithm samples Am from some

distributionAm, which defines the hash function hm (al-

though this dependence is not explicit in our notation).

We will return to the choice of Am in the next section.

Given the hash function hm we can inspect the 2m hash

bins. If most of the hash bins contain at least k elements

from S, then it is likely that |S| ≥ k2m−1. More pre-

cisely, we uniformly sample b from F
m
2 and invoke the

SAT oracle OS to exactly bound the size of the set

S(hm) ≡ S ∩ (hm)−1(b). (1)

|S(hm)| will be a random variable (as Am is randomly

sampled from Am, and b is randomly sampled from

Uniform(Fm
2)). If we can decide with high probability

that |S(hm)| ≥ k (i.e. Pr[|S(hm)| ≥ k] ≥ 1/2), then

we obtain a probabilistic lower bound on the size of S.

This claim is formalized in the following proposition.

Proposition 1. Let any distribution Am over F
m×n
2 ,

∆ ∈ (0, 1), and s ≥ 1 be inputs to Algorithm 1. The

output of Algorithm 1 is correct with probability at least

1−∆, where the probability is with respect to the random

choices made by the algorithm. (Proof in Appendix.)

When the linear search in Alg. 1 is replaced with the

doubling binary search from Achlioptas and Theodor-

opoulos [2017, p. 4], m is iterated over in descending

order. This may lead to up to log2 n tests of invalid

lower bounds, and one must guarantee that none of these

tests incorrectly verifies the bound. In this case, setting

T =
⌈

8 ln log
2
n

∆

⌉

and using a union bound guarantees

the same overall correctness probability of at least 1−∆.

Statistical vs. Computational Efficiency. The cor-

rectness of Algorithm 1 does not depend on A accord-

ing to Proposition 1. However, the tightness of the lower

bound depends critically on the choice ofA. Suppose the

true size of S is 2m, then we know that E[|S(hm)|] = 1.

However, Pr[|S(hm)| = 1] could still be close to 0.

This will happen if there are a few very large bins (i.e.,

|S ∩ (hm)−1(b)| is very large for a few values of b),
while most of the bins are empty. Suppose we run Al-

gorithm 1 with such a family of hash functions and it

outputs “|S| > s⌊2j−3⌋”. This bound will likely be very

loose, that is |S| ≫ s⌊2j−3⌋. In contrast, for an ideal

hash function, each bin would have exactly one element,

that is Pr[|S(hm)| = 1] = 1. In this case our algorithm

would conclude that 2m−2 is a lower bound (with s = 1).

We could get a perfect 2m lower bound with small mod-

ifications to the algorithm, but this is not essential in our

paper, as we focus on hard problems with lower bounds

that are usually loose by hundreds of orders of magni-

tude. In general, we would like Var[|S(hm)|] to be as

close to zero as possible. Var[|S(hm)|] depends on the

choice of A. Therefore, selecting a good A is crucial.

Early work used a parity matrix A sampled from an

i.i.d. Bernoulli distribution with probability 1/2 [Valiant

and Vazirani, 1986, Gomes et al., 2006]. In expectation

each row of A contains n/2 non-zero elements. In other

words, half of the variables in x are involved in each par-

ity constraint
∑n

j=1 Aijxj = bj . A will act as a pair-

wise independent hash function with this construction.

The hashed value of one element, Ax1, will give no in-

formation about the hashed value of any other element,

Ax2, for any two elements x1, x2 ∈ F
n
2 . In turn, this

yields a very small Var[|S(h)|] because the hash func-

tion acts almost independently. However, implementing

this construction results in SAT problems that are com-

putationally challenging to solve. Gomes et al. [2007],

Ermon et al. [2014], Zhao et al. [2016], Achlioptas and

Theodoropoulos [2017] reduced the length of these con-

straints, achieving dramatic computational speedups at

the cost of degradation in statistical efficiency (usually

measured by increased variance Var[|S(h)|]).

As the length of parity constraints decreases, the selec-

tion of which specific variables are included in each con-

straint becomes increasingly critical. The statistical effi-

ciency of short parity constraints can be improved by cre-

ating dependencies between constraints [Achlioptas and

Theodoropoulos, 2017, Achlioptas et al., 2018]. Specif-

ically, the parity constraint matrix A is required to be

biregular, with the same number of 1’s in every row

and column. However, this improvement is still insuf-

ficient for a large fraction of benchmark problems. We

propose a new class of methods that impose additional

structure on which variables may group together in con-

straints based on knowledge of the solution set S shape,

thus further increasing statistical efficiency. For exam-

ple, “frozen” variables, which always take the same value

across all satisfying assignments, are useless when in-

cluded in parity constraints. Similarly, variables that al-

most always take the same value have little utility. Our

approach is to balance the quality of parity constraints,

ensuring that all constraints contain some variables that

we believe to be useful, while also distributing variables

believed to be less useful uniformly among constraints.

The two key contributions of this paper are modifications

to Algorithm 1 that are shown in our Algorithm 2:

1. We construct hash functions adaptively, based on

information about the specific set shape (line 7).

2. We introduce a general variance reduction tech-

nique. Instead of adding a single set of parity con-

straints to the SAT problem of interest and solving

the resulting problem, we aggregate solutions to K
problems resulting from modifying the SAT prob-

lem of interest with K independently sampled hash

functions (for loop on line 6).

3 ADAPTIVE HASHING

Optimal Constraints for Statistical Efficiency. Intu-

itively, the reason short parity constraints usually lead

to poor statistical efficiency is that the constraint fails to

split the solution set S into equally sized parts. More

precisely, Var[|S(h)|] is smallest (in fact, it is zero) if

|S ∩ (hm)−1(b)| is the same for all b ∈ F
m
2 and for all

hm in the family of hash functions. To hypothetically

create such a family of hash functions, we consider con-

structing each hash function in the family by sequentially

adding m constraints through the following idealized (al-

beit impossible) process.

1) Given the set S we first pick a single parity constraint,

h1(x) =
∑

j A
m
1jxj , that splits S into 2 equally sized

subsets. That is, exactly half of the elements in S satisfy

h1(x) = 0 and the other half satisfy h1(x) = 1.

2) Given S and h1 we add a second parity constraint,

h2(x) =
∑

j A
m
2jxj , that splits the 2 current subsets

into 4 equally sized subsets. That is, for each subset

S ∩h−1
1 (0) and S ∩h−1

1 (1), exactly half of the elements

satisfy h2(x) = 0 and the other half satisfy h2(x) = 1.

3) Continue adding constraints that equally split all cur-

rent subsets until we have 2m equally sized subsets.

The family of hash functions, defined as all hash

functions that this process can construct, will have

Var[|S(h)|] = 0. Even though this idealized fam-

ily of hash functions is impossible to construct in prac-

tice (especially using short length constraints), it sug-

gests another interesting trade-off: improved statistical

efficiency from hash functions that split a particular set

evenly vs. the additional computation required to iden-

tify these hash functions. Even when we fix the length of

each constraint to a set number of variables, we can still

find good hash functions by choosing which variables we

include in each constraint. Finding better constraints re-

quires computational cost, but leads to improved statis-

tical efficiency. There is potentially a large spectrum of

algorithms exploring the optimal trade-offs.

Adaptive Biregular Constraints. In this section we

show how to adaptively construct biregular constraint

matrices utilizing knowledge about the shape of a

particular set S. The biregular constraint matrices

from Achlioptas and Theodoropoulos [2017] obtain state

of the art performance for short constraints. Combined

with our adaptive approach we see further improvements.

In this paper, we focus on a very cheap approximation

to the idealized constraints of Section 3, with the desir-

able property that it can be used to adaptively restrict

the family of biregular matrices. A constraint hi that

splits S ∩ h−1
1 (b1) ∩ · · · ∩ h−1

i−1(bi−1) in half for ev-

ery (b1, · · · , bi−1) also split S in half. Therefore, con-

straints that do not split S in half cannot be optimal.

While it is difficult to generate optimal, short constraints,

it is relatively easy to avoid generating certain types of

constraints that split the entire set into two highly imbal-

anced subsets.

Our approach is to restrict the family of hash functions

by avoiding these parity constraints that are likely to be

very poor for the particular set S. A constraint hi(x) =
∑

j A
m
ijxj is useless when it fails to split the set S. That

is, PS(hi(x) = 1) ≈ 1 or PS(hi(x) = 1) ≈ 0, where

PS is a uniform distribution on the elements in S. One

scenario where this will occur is when each variable in

hi has marginal probability close to 0 or 1 under PS , i.e.

PS(xu = 1) ≈ 1 or PS(xu = 1) ≈ 0 for all u such

that Aiu = 1. Our adaptive construction avoids such

constraints. In general, variables with marginals close to

0 or 1 are useless in the sense that they do not improve

the ability of a constraint to evenly split the set. On the

other hand, variables with marginals closer to 1/2 are

generally more useful in constraints (note that this is a

rough statement, as it ignores the potentially complicated

dependencies between variables in the set).

Following this intuition, our adaptive approach ensures

that all constraints contain at least some ‘high quality’

variables. We assign variables to constraints in a round-

robin fashion. Beginning with the m variables whose

marginals are closest to 1/2, we randomly assign one

variable to each of the m constraints. We repeat this

process for groups of m variables with marginals succes-

sively farther from 1/2. If the density of the constraint

matrix is set such that variables appear in it more than

once, this procedure will loop through the variables re-

peatedly, always traversing ‘high quality’ to ‘low quality’

groups. In this manner, every constraint is guaranteed to

contain some ‘high quality’ variables while no constraint

will contain only ‘low quality’ variables. This procedure

is formalized in Algorithm 3.2

When the constraint density is set to 1/m, so that each

variable appears in exactly one constraint, we can visual-

2For ease of exposition we assume (n mod m) = 0 and
that d is an integer. When (n mod m) 6= 0, a block of vari-
ables will wrap from the n-th to the first variable. When d is
not an integer, the loop over b will break partway through and
the last block may contain fewer than m variables.

Algorithm 3 SampleAdaptiveMatrix

Inputs: D: Set of previously found SAT solutions

m: Number of constraints to sample

d: The constraint matrix will contain dn one-entries

Output: A constraint matrix A ∈ F
m×n
2 .

1: // Empirical variable marginals

2: pℓ = |{x ∈ D | xℓ = 1}|/|D|, for ℓ = 1, · · · , n
3: // Uniformity scores

4: sℓ = |pℓ − 1/2|, for ℓ = 1, · · · , n
5: (v1, · · · , vn) = arg-sort smallest first (s1, · · · , sn)
6: A = 0m×n

7: for d times do

8: for b = 0, · · · , n/m− 1 do

9: repeat

10: i = bm+ 1
11: j = i+m− 1
12: (v′1, · · · v

′

b) = permute(vi, · · · , vj)
13: until A[l, v′l] == 0 for all l ∈ {1, · · · , b}
14: A[l, v′l] = 1 for all l ∈ {1, · · · , b}
15: Return A

ize the constraint sampling procedure of Algorithm 3 as

a three step process:

1. Sort the variables x1, · · · , xn by |pi − 1/2| and re-

index the variables in sorted order. For the rest of

the section we assume that x1, · · · , xn are ordered

so that |p1−1/2| < |p2−1/2| < · · · < |pn−1/2|.

2. Construct an m×n block diagonal matrix as below:













1 0 . 0 0 1 0 . 0 0 . 1 0
0 1 . 0 0 0 1 . 0 0 . 0 1
.
0 0 . 1 0 0 0 . 1 0 . 0 0
0 0 . 0 1 0 0 . 0 1 . 0 0













Note that variables with estimated marginals closest

to 1/2 appear in the left most block while variables

with estimated marginals furthest from 1/2 appear

in the right most block.

3. Randomly permute the columns of each submatrix

of A0.

Approximately Uniform Samples for Free. One snag

with our adaptive approach is the problem of computing

probabilities, PS , of the uniform distribution over ele-

ments in S. Our approach is to estimate these proba-

bilities using approximate samples from the distribution.

Prior work has shown that SAT solvers draw just such ap-

proximately uniform samples [Gomes et al., 2007] when

solving problems modified by long parity constraints.

The main advantage of this approach is that there is no

overhead involved, as the SAT solver is already invoked

during the bounding procedure (line 7 in Algorithm 1) —

we simply have to record the solutions found so far (lines

10 and 11) instead of discarding them as current meth-

ods do. We lose guarantees on the quality of these sam-

ples because our parity constraints are short, but still gain

valuable information about the shape of the set [Gomes

et al., 2007]. In our experiments we observe that our con-

struction has very small overhead, but potentially large

gains in performance.

4 VARIANCE REDUCTION VIA

MULTIPLE REPETITIONS

The first and second moments of the random variables

|S(h)| play a key role in the analysis of hashing-based

algorithms. In practice, the statistical performance de-

pends crucially on how concentrated |S(h)| is around

its expected value. Specifically, performance is poor

(bounds are loose) if most realizations of S(h) are

empty (no solutions survive after adding the random

constraints), but there are a few unlikely, very large

realizations (all solutions survive). Our procedure for

adaptively sampling constraint matrices aims to improve

hashing performance by reducing the variance of |S(h)|.
In this section we present an orthogonal approach for re-

ducing variance, which can be combined with our adap-

tive procedure.

Specifically, variance can always be reduced by aver-

aging over multiple, independent realizations of |S(h)|.
Averaging always preserves the expected value, and is

guaranteed to reduce variance. Define S
m

to be the

mean of K independent realizations of |S(hm)|. Then

variance is reduced to Var[S
m
] = Var[|S(hm)|]/K.

Algorithm 2 achieves this variance reduction by calculat-

ing a lower bound on S
m

in line 12. Note that the min op-

eration on line 9 serves as an optimization, because call-

ing the SAT solver is unnecessary once it has found sK
solutions, and removing this min results in a mathemat-

ically equivalent algorithm. This reduction in variance

leads to tighter lower bounds output by Algorithm 2, as

we will see in the experiments. In contrast, note that in-

creasing the number of trials, T , in Algorithm 1 will in-

crease the probability that the output is correct, but even

in the limit of T →∞might not give a tight bound. Fur-

ther, the probability that the tighter bound of Algorithm 2

is valid (see Proposition 2) remains the same as for Algo-

rithm 1, because the two modifications—using adaptive

matrices and multiple repetitions—do not significantly

affect the proof of Proposition 1.

Remark 1. It is worth noting the subtle differences

between Algorithm 2 and apparently similar modifica-

References

D. Achlioptas and P. Jiang. Stochastic integration via

error-correcting codes. In Proc. Uncertainty in Artifi-

cial Intelligence, 2015.

D. Achlioptas and P. Theodoropoulos. Probabilistic

model counting with short XORs. In International

Conference on Theory and Applications of Satisfiabil-

ity Testing, pages 3–19. Springer, 2017.

D. Achlioptas, Z. Hammoudeh, and P. Theodoropoulos.

Fast and flexible probabilistic model counting. In In-

ternational Conference on Theory and Applications of

Satisfiability Testing, pages 148–164. Springer, 2018.

V. Belle, G. Van den Broeck, and A. Passerini. Hashing-

based approximate probabilistic inference in hybrid

domains. In Proceedings of the 31st Conference on

Uncertainty in Artificial Intelligence (UAI), 2015.

A. Biere, M. Heule, H. van Maaren, and T. Walsh. Hand-

book of satisfiability. Frontiers in artificial intelligence

and applications, vol. 185, 2009.

S. Chakraborty, K. Meel, and M. Vardi. A scalable and

nearly uniform generator of SAT witnesses. In Proc. of

the 25th International Conference on Computer Aided

Verification (CAV), 2013a.

S. Chakraborty, K. Meel, and M. Vardi. A scalable ap-

proximate model counter. In Proc. of the 19th Interna-

tional Conference on Principles and Practice of Con-

straint Programming (CP), pages 200–216, 2013b.

S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorith-

mic improvements in approximate counting for proba-

bilistic inference: From linear to logarithmic sat calls.

In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, pages 3569–

3576. AAAI Press, 2016.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman.

Taming the curse of dimensionality: Discrete inte-

gration by hashing and optimization. In Proc. of the

30th International Conference on Machine Learning

(ICML), 2013.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman.

Low-density parity constraints for hashing-based dis-

crete integration. In Proc. of the 31st International

Conference on Machine Learning (ICML), pages 271–

279, 2014.

C. P. Gomes, A. Sabharwal, and B. Selman. Model

counting: A new strategy for obtaining good bounds.

In Proc. of the 21st National Conference on Artificial

Intelligence (AAAI), pages 54–61, 2006.

C. P. Gomes, A. Sabharwal, and B. Selman. Near-

uniform sampling of combinatorial spaces using xor

constraints. In Advances In Neural Information Pro-

cessing Systems, pages 481–488, 2007.

S. Hadjis and S. Ermon. Importance sampling over sets:

A new probabilistic inference scheme. In UAI, pages

355–364, 2015.

A. Ivrii, S. Malik, K. S. Meel, and M. Y. Vardi. On com-

puting minimal independent support and its applica-

tions to sampling and counting. Constraints, pages

1–18, 2015.

C. Muise, S. A. McIlraith, J. C. Beck, and E. Hsu.

DSHARP: Fast d-DNNF Compilation with sharpSAT.

In Canadian Conference on Artificial Intelligence,

2012.

M. Soos and K. S. Meel. Bird: Engineering an efficient

CNF-XOR SAT solver and its applications to approx-

imate model counting. In Proceedings of AAAI Con-

ference on Artificial Intelligence (AAAI), 1 2019.

L. Valiant. The complexity of enumeration and relia-

bility problems. SIAM Journal on Computing, 8(3):

410–421, 1979.

L. Valiant and V. Vazirani. NP is as easy as detecting

unique solutions. Theoretical Computer Science, 47:

85–93, 1986.

S. Zhao, S. Chaturapruek, A. Sabharwal, and S. Ermon.

Closing the gap between short and long XORs for

model counting. In AAAI, pages 3322–3329, 2016.

7 Appendix

7.1 Proof of Proposition 1

Proof. Suppose Algorithm 1 outputs “|S| ≥ s⌊2j−3⌋”
but |S| < s⌊2j−3⌋. We will show that this happens with

probability at most ∆. Let the iteration with m = i be

the final iteration where a break would have resulted in a

correct output, i.e., i = argmaxi′ s⌊2
i′−3⌋ ≤ |S|. This

means that s⌊2i−3⌋ ≤ |S| < s⌊2i−2⌋. Also note that

i ≥ 2 because of the floor operator. The algorithm out-

puts an incorrect bound if and only if the while-loop on

m breaks with m = j such that j ≥ i + 1. For this

to happen, the while loop would not have been broken

in all iterations with m ≤ i. In particular, we would

have observed
∑T

t=1 w
t ≥ sT/2 on iteration i. How-

ever, this is an unlikely event, as we now show. Observe

that S(hi) = S ∩ (hi)−1(b) by definition, and

E[|S(hi)|] =
|S|

2i
<

s⌊2i−2⌋

2i
≤

s

4
.

This results in the inequalities

E[wt] = E
[

min
{

s, |S(hi)|
}]

≤ min
{

E [s] ,E
[

|S(hi)|
]}

≤ s/4. (2)

Since wt ∈ [0, s], we can apply Hoeffding’s inequality

and use Equation 2 to obtain

Pr

[

1

T

T
∑

t=1

wt ≥
s

2

]

≤ exp

(

−
2T

s2

(s

2
−

s

4

)2
)

= exp

(

−
T

8

)

.

Setting T =
⌈

8 ln 1
∆

⌉

, we have exp
(

−T
8

)

≤ ∆. There-

fore, the probability of observing
∑T

t=1 w
t ≥ sT/2 in

iteration i (making the output of Algorithm 1 incorrect)

is bounded above by ∆.

7.2 Proof of Proposition 2

Proof. Suppose Algorithm 2 outputs “|S| ≥ s⌊2j−3⌋”
but |S| < s⌊2j−3⌋. We will show that this happens with

probability at most ∆. Let the iteration with m = i be

the final iteration where a break would have resulted in a

correct output, i.e., i = argmaxi′ s⌊2
i′−3⌋ ≤ |S|. This

means that s⌊2i−3⌋ ≤ |S| < s⌊2i−2⌋. Also note that

i ≥ 2 because of the floor operator.

The algorithm outputs an incorrect bound if and only if

the while-loop on m breaks with m = j such that j ≥
i+ 1. For this to happen, the while loop would not have

been broken in all iterations with m ≤ i. In particular,

we would have observed
∑T

t=1 w
t ≥ sT/2 on iteration

i. However, this is an unlikely event, as we now show.

Observe that S(hi) = S ∩ (hi)−1(b) by definition, and

E[|S(hi)|] =
|S|

2i
<

s⌊2i−2⌋

2i
≤

s

4
.

This property holds because b is chosen uniformly at ran-

dom on line 8 of Algorithm 2. Crucially, this property

holds regardless of how the matrices Am are constructed

on line 7.

This results in the inequalities

E[wk] = E
[

min
{

sK, |S(hj−1)|
}]

≤ s/4

E

[

1

K

K
∑

k=1

wk

]

≤ s/4

E[wt] = E

[

min

{

s,
1

K

K
∑

k=1

wk

}]

≤ s/4 (3)

Since wt ∈ [0, s], we can apply Hoeffding’s inequality

and use Equation 3 to obtain

Pr

[

1

T

T
∑

t=1

wt ≥
s

2

]

≤ exp

(

−
2T

s2

(s

2
−

s

4

)2
)

= exp

(

−
T

8

)

.

Setting T =
⌈

8 ln 1
∆

⌉

, we have exp
(

−T
8

)

≤ ∆. There-

fore, the probability of observing
∑T

t=1 w
t ≥ sT/2 in

iteration i (making the output of Algorithm 1 incorrect)

is bounded above by ∆.

7.3 Upper Bound

Proof. Suppose Algorithm 4 outputs “|S| ≤ s2j+1”, but

this is incorrect, and s2j+2 ≥ |S| > s2j+1. That is, the

output is the largest invalid upper bound. We will show

that Algorithm 1 outputs this, or any other smaller invalid

bound, with probability at most ∆. For the algorithm to

output the smallest valid upper bound, 2j+2, the iteration

with m = j + 2 would have resulted in breaking the

while-loop on m. Thus, in every prior iteration i ≤ j+1,

we would have observed
∑T

t=1 w
t ≥ sT/2. We will

use the union bound to upper bound the probability of

observing
∑T

t=1 w
t < sT/2 for some i ≤ j + 1.

Fix any i ≤ j + 1. Then, E[|S(hi)|] = µi = |S|/2
i =

2j−i |S|/2j > s2j−i+1 by our assumption. Let the vari-

ance be Var[|S(hi)|] = σ2
i . We first observe that the

min operation with sKon line 10 of Algorithm 1 serves

only an optimization purpose, and does not alter the out-

come of the algorithm (because of the subsequent min
operation when computing wt). Thus, for the sake of

analysis, we can let wk = |S(hi)| without loss of gener-

ality.

For brevity of notation, let wK = 1
K

∑K
k=1 wk. Then,

E[wK] = E[|S(hi)|] > s2j−i+1 and Var[wK] ≤
σ2
i /K. Applying Cantelli’s inequality:

Pr[wK ≤ s] = Pr
[

wK ≤ E [wK]− (E [wK]− s)
]

≤
σ2
i /K

σ2
i /K + s2(2j−i+1 − 1)2

≤
σ2
i /K

σ2
i /K + s24j−i

Hence, Pr[wK ≥ s] ≥ s24j−i

σ2

i
/K+s24j−i . Since wt =

min{s, wK}, we also have Pr[wt ≥ s] ≥ s24j−i

σ2

i
/K+s24j−i .

Let yt denote a 0-1 indicator variable that is 1 when

wt ≥ s. Then yt ≤ wt and E[yt] ≥ s24j−i

σ2

i
/K+s24j−i . By a

precondition of the theorem, s24j−i ≥ µ2
i /16 > σ2

i /K,

which implies E[yt] > 1/2, making it unlikely to ob-

serve the sum of Ti such yt variables to be smaller than

Ti/2. We thus have:

Pr

[

Ti
∑

t=1

wt <
sTi

2

]

≤ Pr

[

Ti
∑

t=1

yt <
Ti

2

]

≤ exp



−
2

Ti

(

E

[

Ti
∑

t=1

yt

]

−
Ti

2

)2




≤ exp

(

−
2

Ti

(

s24j−iTi

σ2
i /K + s24j−i

−
Ti

2

)2
)

= exp

(

−
Ti

2

(

s24j−i − σ2
i /K

s24j−i + σ2
i /K

)2
)

≤ exp

(

−
Ti

2

(

µ2
i /16− σ2

i /K

µ2
i /16 + σ2

i /K

)2
)

= exp

(

−
Ti

2

(

1− 16γ2
i /K

1 + 16γ2
i /K

)2
)

,

where the second inequality follows from Hoeffding’s in-

equality and the last inequality follows because s24j−i ≥
µ2
i /16. This expression is at most ∆/n because Ti is set

to

⌈

2
(

1+16γ2

i /K

1−16γ2

i
/K

)2

ln n
∆

⌉

in line 4 of Algorithm 4. Ap-

plying the union bound over all i ≤ j+1, the probability

of observing
∑Ti

t=1 w
t < sTi/2 in any iteration i ≤ j+1,

and thus possibly outputting an incorrect upper bound, is

bounded above by ∆.

When the linear search in Algorithm 4 is replaced with

more efficient search procedures, the definition of Ti can

be modified to achieve the desired probability of correct-

ness.

Algorithm 4 Upper Bound with Variance Reduction

Inputs: K: Number of repetitions per trial

s: Solution cutoff

∆: Failure probability

OS : A SAT oracle

{Am}nm=1: For each m ∈ [1, n], a distribution over

parity matrices with known variance bounds that satisfy

16σ2
m < Kµ2

m, where Var[|S(hm)|] ≤ σ2
m and

µm = E[|S(hm)|]

Output: A probabilistic upper bound on |S|

1: m = 1
2: while m ≤ n do

3: γ2
m = σ2

m/µ2
m

4: Tm =

⌈

2
(

1+16γ2

m/K
1−16γ2

m/K

)2

ln n
∆

⌉

5: for t = 1, · · · , T do

6: for k = 1, · · · ,K do

7: Sample Am ∼ Am , denote hm(x) = Amx
8: Sample b ∼ Uniform(Fm

2)
9: wk ← min

{

sK, |S ∩ (hm)−1(b)|
}

{ Invoke

oracle OS up to sK times to check whether

the input formula with additional constraints

Amx = b has at least sK distinct solutions}

10: wt ← min
{

s, 1
K

∑K
k=1 wk

}

11: if
∑T

t=1 w
t < sT/2 then

12: break
13: m = m+ 1
14: Output “|S| ≤ s2m+1”

