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a b s t r a c t 

When a polymer network is exposed to a suitable solvent, the migration of solvent molecules into the 

network will cause volumetric deformation, known as swelling, but more importantly forms a mixture 

that is known as a polymeric gel. Despite numerous potential applications, many aspects of the coupled 

diffusion-deformation behavior in polymeric gels have not yet been thoroughly investigated. Here, we fo- 

cus our attention on the coupled deformation-diffusion response of fiber-reinforced polymeric gels. The 

presence of embedded fibers in a swellable polymer matrix leads to anisotropy in the overall behavior. 

In order to capture this response, we have developed a constitutive model for fiber-reinforced polymeric 

gels, that explicitly takes into account anisotropy in both the mechanical and diffusive behavior. The con- 

stitutive model is implemented as user element subroutine (UEL) in the commercial finite element soft- 

ware package Abaqus/Standard. Numerical simulations are performed to show the behavior of the model, 

and qualitative comparisons are made to experiments of a soft robotic gripper. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mixing a polymeric network with a suitable solvent will cause

he network to expand, allowing for solvent diffusion and volumet-

ic deformation, commonly referred to as swelling. A polymer ma-

erial in this mixed and swollen state is known as a polymeric gel.

Gels are ubiquitous, they are used in many applications from

ackers in the oil industry [6,34] to drug delivery systems [10] .

ue to the similarity between polymeric gels and biological tissues,

olymeric gels are widely used in tissue engineering as scaffolds

35] , injectable cartilage and tissue formations [37] . An important

istinction between biological tissues and much of the previous lit-

rature on the mechanics of polymeric gels is that most biologi-

al tissues contain fibers. The existence of these fibers embedded

n the material, causes the properties to be significantly different

long the fiber direction [15,16,42,46,50] . In other words, the pres-

nce of embedded fibers imposes pronounced anisotropy in the re-

ponse of these materials. 

Also, many polymers respond to environmental stimuli such

s temperature, electric and magnetic fields, pH, and more

22,23,26,27,33,36,47,52] . The responsiveness of polymeric gels to

nvironmental stimuli has been widely employed in soft robotics

44,49] . The applications of soft robots are vast [32] , the more ex-
∗ Corresponding author. 
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tic ones include morphing airfoils, rotary actuators, and grippers

7,24,51] . Newly designed polymeric gels are being developed to

nhance the performance of these systems [53] . Further, the flex-

bility of soft robots and their similarity to biological systems are

tilized in bio-hybrid robotics [9] . The fast emerging development

f gel-based soft robots makes modeling of this class of materials

n important task for simulating their operation. 

The early research of Tanaka and Fillmore [48] is commonly

onsidered the starting point of modern day research on poly-

eric gels. In recent years, there have been many notable attempts

o formulate theories capable of capturing multiphysics behavior

f isotropic gels [cf., e.g., [5,12,14,18–20,30,38,39] ]. In the litera-

ure, one also finds a vast number of constitutive models for cap-

uring anisotropic behavior of fiber-reinforced polymers [cf., e.g.,

2,8,29,43] ]. However, there are only a few notable attempts to in-

lude influence of embedded fibers on behavior of polymeric gels

n recent years [40,41,45] . 

The objective of this work is to develop a continuum level cou-

led deformation-diffusion constitutive model for fiber-reinforced

olymeric gels. The novelty of the model is that it builds upon

revious work by taking into account the mechanical influence

f fibers, as well as the anisotropic diffusion they may impart.

he behavior of the dry polymer matrix is modeled using a non-

aussian statistical mechanics based model that takes limited

hain extensibility into account. In addition to the behavior of dry

olymer matrix, we include the contribution of embedded fibers

ith a volume fraction and modulus. The mechanical behavior of

https://doi.org/10.1016/j.mechrescom.2019.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
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polymer network is coupled with the diffusion of solvent by im-

plementing Flory-Huggins model for mixing free energy between

polymer network and solvent. We assume the embedded fibers do

not imbibe solvent, and accordingly there is no mixing between

the fiber and solvent. Further, we numerically implemented our

multiphysics constitutive model in commercially available finite el-

ement software package Abaqus/Standard [1] by writing a user el-

ement subroutine (UEL). The numerical implementation allows for

the behavior and capabilities of the model to be presented through

boundary value problems. Lastly, to show the usefulness of the

model and it’s implementation, a qualitative comparison is made

between the model and an experimentally realized soft robotic

gripper. 

The remainder of this paper is organized as follows.

Section 2 summarizes the continuum level framework, in

Section 3 we presented the overview of thermodynamics of

the system, in Section 4 we provide basic constitutive equations

and in Section 5 we show the specialization of free energy for

fiber-reinforced polymeric gels. Section 6 shows the usefulness of

our constitutive model and numerical simulation procedure. In

Section 7 we show a comparison between the operation of our

diffusion activated soft gripper and its numerical simulation. We

finish with some concluding remarks in Section 8 . In an Appendix,

Section 9 we present the governing equations and the numerical

solution procedure using finite elements required for numerical

implementation. 

2. Continuum framework 

We begin by summarizing the governing continuum level equa-

tions for coupled solvent diffusion and large deformation of soft

polymeric gels. For further details, the reader is referred to our

previous work in the literature [cf., e.g., 14 , and references therein].

2.1. Kinematics 

Consider a dry body B R identified with the region of space it

occupies in a fixed reference configuration, and denote by x R an

arbitrary material point of B R . The dry referential body B R then

undergoes a motion x = χ(x R , t) to the deformed body B t with de-

formation gradient given by 1 

F = ∇ χ, such that J = det F > 0 . (1)

The right and left Cauchy–Green deformation tensors are given by

C = F � F and B = FF � , respectively. Additionally, to model the fibers,

we assume γ different fiber orientations may be present in the

dry reference body, denoted by the term family . Each fiber fam-

ily is characterized by a direction a 
(γ ) 
R 

(a unit vector), and vol-

ume fraction f 
(γ ) 
R 

in B R . At the outset, we assume that the fibers

do not absorb any solvent and remain dry, and are perfectly bonded

to the polymer matrix . Following the approach in Holzapfel [28] , a

pseudo-invariant is introduced for each family of fibers, which as

previously noted has been used to model the anisotropic response

of fiber-reinforced soft materials [40,41,50] . Specifically, we use the

pseudo-invariant 

I 
(γ ) 
4 

= a 
(γ ) 
R 

· Ca (γ ) 
R 

= 

(
λ(γ ) 

)2 
, (2)

where λ( γ ) has the physical interpretation of the stretch along the

fiber family direction a 
(γ ) 

for each γ . 

R 

1 The symbols ∇ , Div and Curl denote the gradient, divergence and curl with re- 

pect to the material point x R in the reference configuration; grad, div and curl 

enote these operators with respect to the point x = χ(x R , t) in the deformed con- 

figuration. 

d  

w  

t  

w

The theory is based upon a multiplicative decomposition 

 = F m F s , with F s = λs 1 , (3)

f the deformation gradient F into a mechanical part, F m , and a

welling part F s , with λs the swelling stretch. Further, this allows

s to rewrite the right Cauchy–Green tensor in the form 

 = ( F m F s ) 
� 
( F m F s ) = ( λs ) 

2 
F m � F m = ( λs ) 

2 
C m . (4)

ased on (3) , the relative volume change is given by 

 = det F = det ( F m F s ) = J m J s , with 

det F m = J m > 0 , and det F s = J s > 0 , (5)

here J m is the volume change due to mechanical effects, and J s 

he volume change due to swelling. As is typical in the literature

12,30] we assume the volume change due to swelling is given by

 
s = 1 + �c R , and therefore λs = (1 + �c R ) 

1 / 3 . (6)

ere c R represents the solvent content measured in moles of sol-

ent per unit reference volume of the dry polymer, and � the vol-

me of a mole of solvent. 

Further, using (1) and (3) , we write velocity gradient 

 = 
˙ F F −1 = L m + F m L s F m −1 (7)

ith L m and L s , mechanical and swelling part, respectively, given

y 

 
m = 

˙ F m F m −1 and L s = 
˙ F s F s −1 . (8)

ext, we define the mechanical and swelling stretching and spin

ensors 

D 
m = sym L m , W 

m = skw L m , 

D 
s = sym L s , W 

s = skw L s , 
(9)

o that L m = D 
m + W 

m and L s = D 
s + W 

s . 

Recalling (3), (8) and (9) we obtain 

 
s = 

(
˙ λs λs −1 

)
1 and W 

s = 0 , (10)

nd since 

˙ 
 
s = J s tr D 

s , (11)

e may write 

 
s = 

1 

3 

(
˙ J s J s −1 

)
1 . (12)

.2. Balance of forces and moments 

Neglecting inertial effects, the balance of forces and moments

n the referential body B R are expressed as 

iv T R + b R = 0 and T R F 
� = FT � R (13)

espectively, where T R is first Piola stress and b R is an external

ody force per unit referential volume. The boundary of the ref-

rential body has outward unit normal n R . The surface traction on

n element of the referential surface is given by t R = T R n R . As com-

on in continuum mechanics, the Piola stress is related to Cauchy

tress T in the deformed body by 

 R = JTF − � , therefore , T = J −1 T R F 
� . (14)

n the current configuration the balance of forces and moments is

iven in the deformed body B t by 

iv T + b = 0 and T = T � , (15)

here b is the external body force per unit current volume. Lastly,

he surface traction on the boundary of deformed body with out-

ard unit normal n is t = Tn . 
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.3. Balance of solvent content 

We assume that the intake and outflow of solvent does not in-

olve any chemical reactions. Therefore, the balance of solvent con-

ent in the referential and current configurations takes the form 

˙  R = −div j R and ˙ c R = −J div j , (16)

here j R and j are the fluid flux in referential and current config-

ration, respectively. 

Defining the polymer volume fraction 

def = 

1 

1 + �c R 
= (λs ) −3 = (J s ) −1 (17)

hich lies in the range 0 < φ < 1, the balance of solvent content

16) may be rewritten in the referential and current forms 

˙ φ

�φ2 
− div j R = 0 and 

˙ φ

J�φ2 
− div j = 0 . (18)

ere φ → 1 is simply a dry polymer, while φ < 1 is a locally

wollen state. Lastly, the surface flux into an element of the refer-

ntial and current surface is given by j R = −j R · n R and j = −j · n ,

espectively. 

. Thermodynamics 

A complete thermodynamic derivation of a model for polymeric

els is thoroughly discussed in the earlier research published by

ur group. For more details regarding thermodynamics, the reader

s referred to Chester and co-workers [11–13] . 

Let the body B R contain an arbitrary part P R . Under isother-

al conditions, the first two laws of thermodynamics may be com-

ined into a single free energy imbalance. The free energy imbal-

nce requires that the temporal increase in free energy in any part

e less than or equal to the power expended plus that which is

rought into that part from fluid transport. Specifically the free en-

rgy imbalance takes the form 

˙  

P R 
ψ R dv R ≤

∫ 
∂P R 

T R n R · ˙ χda R + 

∫ 
P R 

b R · ˙ χdv R 

−
∫ 
∂P R 

μj R · n R da R , (19) 

ith μ the chemical potential of the solvent. Applying the diver-

ence theorem to the terms in (19) , we obtain ∫ 
P R 

(
˙ ψ R − ( div T R + b R ) · ˙ χ − T R : ˙ F 

+ μdiv j R + j R · ∇μ
)
dv R ≤ 0 . (20)

sing (13) and (16) , since (20) must hold for every part P R , we

rite 

˙ 
 R − T R : ˙ F − μ ˙ c R + j R · ∇μ ≤ 0 . (21)

ecalling (3) and (8) , we decompose the stress power 

 R : ˙ F = 

(
JTF m − � 

)
: ˙ F m + 

(
JF m � TF m − � 

)
: L s . (22)

ere, we introduce two new stress measures 

 
m def = JTF m − � and M 

m def = JF m � TF m − � , (23)

s a mechanical Piola stress and Mandell stress, respectively. Fur-

her, using (23) , we can write (22) in the form 

 R : ˙ F = S m : ˙ F m + M 
m : L s (24)

n addition, we introduce mechanical second Piola stress 

 
m = JF m −1 TF m − � (25) 
nd since the rate of change of mechanical right Cauchy–Green

ensor is ˙ C m = F m � ̇ F m + ˙ F m � F m , we can write 

 
m : C m = 2 ( F m T m ) : ˙ F m = 2 S m : F m . (26)

mploying (10) and (12) we can write the stress-power (22) in the

orm 

 R : ˙ F = 

1 

2 
T m : ˙ C m − p J s , (27)

here we have defined the mean normal pressure, p̄ , as p̄ 
def= 

1 
3 J 

m tr T . 

Applying the kinematical constraint between c R and J 
s given by

6) , in (19) , and using (27) , we obtain the free energy imbalance in

he form 

˙ 
 R −

1 

2 
T m : ˙ C m − μact c R + j R · ∇μ ≤ 0 , (28)

here the active chemical potential is defined as μact 
def = μ − p̄ �. 

. Basic constitutive equations 

Based on (28) , and considering frame indifference, the basic

onstitutive equations are 

ψ R = ψ̄ R ( C 
m , c R ) 

T m = T̄ m ( C m , c R ) 
μact = μ̄act ( C m , c R ) 

} 

(29) 

long with a Darcy-type relation for the spatial solvent flux 

 = −M̄ (C m , c R ) grad μ, (30)

here M̄ (C m , c R ) is the mobility tensor. Here, to account for

ny anisotropy due to the embedded fibers, or other sources of

nisotropy, the mobility retains it’s tensorial characteristic, and not

implified to a scalar in this work. Pushed back to the reference

ody, using the standard relations j R = JF −1 j and ∇μ = F � grad μ,

e may rewrite (30) in the referential form 

 R = −JF −1 M̄ (C m , c R ) F 
− � ∇μ. (31)

Sufficient conditions to satisfy (28) using (29) yield relations for

he Cauchy stress 

 = J −1 
[ 
2 F m 

∂ ψ̄ R (C 
m , c R ) 

∂C m 
F m � 

] 
, (32)

nd the chemical potential 

= 

∂ ψ̄ R (C 
m , c R ) 

∂c R 
+ �p̄ . (33) 

e further note that to satisfy the thermodynamic imbalance in

28) , the mobility tensor M̄ (C m , c R ) has to be positive definite in

he presence of solvent and whenever ∇μ � = 0 . 

. Specialized constitutive equations 

.1. Free energy 

For ease of notation, and following the approach used to in-

lude the fiber volume fraction in Pan and Zhong [45] , we define

f R = 

∑ 

γ

f 
(γ ) 
R 

(34) 

uch that f R is the sum of the volume fractions of all families of

bers in B R , and therefore (1 − f R ) is the total volume fraction of

wellable polymer matrix in B R . Next, we assume total free energy

f the system to be additively decomposed 
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f  
ψ R = ( 1 − f R ) ψ 
matrix 
R + (1 − f R ) ψ 

mixing 
R 

+ 

∑ 

γ

f 
(γ ) 
R 

ψ 

(γ ) , fiber 
R 

, (35)

where ψ 
matrix 
R 

is the free energy of polymer matrix, ψ 

mixing 
R 

is the

free energy of mixing between polymer matrix and solvent, and

ψ 

(γ ) , fiber 
R 

is the free energy of each fiber family. 

5.1.1. Mechanical free energy of the polymer matrix 

Following the literature, and using (6) , we define the effective

stretch, λ̄, which includes both mechanical and swelling deforma-

tion, as 

λ̄
def = 

√ 

1 

3 
tr C = 

1 √ 

3 
( 1 + �c R ) 

1 / 3 
√ 

tr C m . (36)

For capturing the mechanical behavior of the polymer matrix, we

use a non-Gaussian statistical mechanics based model [3,4] , which

takes into account limited extensibility of polymer chains (also

known as locking), 

ψ 
matrix 
R = G 0 λ

2 
L 

[ (
λ̄

λL 

)
β + ln 

(
β

sinh β

)
−

(
1 

λL 

)
β0 − ln 

(
β0 

sinh β0 

)] 
− G 0 

(
λL 

3 
ln Jβ0 

)
+ J s 

[ 
1 

2 
K ln J m 

] 
, (37)

with β = L 
−1 

(
λ̄
λL 

)
and β0 = L 

−1 
(

1 
λL 

)
, where L 

−1 is the inverse

of the Langevin function L (•) = coth (•) − (•) −1 . This form of me-

chanical free energy includes two material parameters, the initial

shear modulus G 0 , and the locking stretch λL . The locking stretch

λL has the physical interpretation of the limiting value of the ef-

fective stretch λ̄, when the chains are fully extended. 

5.1.2. Mixing free energy 

For our estimate of mixing free energy we implement the well

known Flory–Huggins model [21,31] which takes into account mix-

ing of solvent molecules and the polymer matrix in the form 

ψ 

mixing 
R 

= μ0 c R 

+ Rϑc R 

(
ln 

(
�c R 

1 + �c R 

)
+ χ

(
1 

1 + �c R 

))
. (38)

Here, μ0 is a reference chemical potential, R is the gas constant, ϑ
is absolute temperature, and χ is a dimensionless polymer-solvent

interaction parameter. 

5.1.3. Mechanical free energy for the fibers 

To account for mechanical free energy for the embedded fibers

we adopt the form found in Holzapfel [28] which is also used

in Nardinocchi et al. [40] . Following the approach discussed in

Section 2.1 , the contribution due to the fibers is modeled using 

ψ 

(γ ) , fiber 
R 

= 

1 

2 
E (γ ) (I 

(γ ) 
4 

− 1) 2 , (39)

with E ( γ ) the fiber modulus for each fiber family γ . Also, recall

that I 
(γ ) 
4 

defined in (2) includes the dependence on orientation.

Thereby, we incorporate the influence of different fiber families,

which may have a different fiber modulus and/or orientation, and

volume fraction through f 
(γ ) 
R 

as seen in (35) . 
.1.4. Total free energy 

Combining the mechanical free energy of the polymer matrix

37) , the mechanical free energy of the embedded fibers (39) , along

ith the mixing free energy (38) into (35) , we obtain the total free

nergy 

 R = (1 − f R ) 

{
G 0 λ

2 
L 

[ (
λ̄

λL 

)
β + ln 

(
β

sinh β

)
−

(
1 

λL 

)
β0 − ln 

(
β0 

sinh β0 

)] 
− G 0 

(
λL 

3 
ln Jβ0 

)

+ μ0 c R + Rϑc R 

(
ln 

(
�c R 

1 + �c R 

)
+ χ

(
1 

1 + �c R 

))

+ J s 
[ 
1 

2 
K ln J m 

] }
+ 

∑ 

γ

f 
(γ ) 
R 

1 

2 
E (γ ) (I 

(γ ) 
4 

− 1) 2 . (40)

.2. Cauchy stress 

Following (32) , and using (40) , we obtain the Cauchy stress 

 = J −1 

(
2 F m 

∂ ψ̄ R (C 
m , c R ) 

∂ C m 
F m � 

)
= J −1 ( 1 − f R ) 

(
G 0 

(
ζφ−2 / 3 B 

m − ζ0 1 
)

+ J s K( ln J m ) 1 
)︸ ︷︷ ︸ 

contribution due to the polymer matrix 

+ J −1 
∑ 

γ

2 f 
(γ ) 
R 

E (γ ) (λs ) 2 (I 
(γ ) 
4 

− 1) F m (a 
(γ ) 
R 

� a 
(γ ) 
R 

) F m � 

︸ ︷︷ ︸ 
contribution due to the fibers 

, (41)

ith 

def = 

(
λL 

3 ̄λ

)
L 

−1 
(

λ̄

λL 

)
and ζ0 

def = 

(
λL 

3 

)
L 

−1 
(

1 

λL 

)
. (42)

From (41) it is clear that the volume fraction of embedded

bers f 
(γ ) 
R 

determines the contribution of each constituent of

he system. The influence of the polymer matrix to the Cauchy

tress decreases with f R , however, the importance of the embed-

ed fibers increases with f R . Further, the stiffness of the polymer

atrix decreases with solvent concentration through terms related

o φ. Further, since there is no mixing between the solvent and

he embedded fibers, the embedded fibers tend to constrain the

welling process. Lastly, it is worth noting that due to (3) and (2) ,

he embedded fibers have an affect on both swelling and mechan-

cal deformation. 

.3. Chemical potential 

Next, using (40) and (33) , we obtain the chemical potential in

he form 

= 

∂ψ R 

∂c R 
− �

1 

3 
J m tr T 

= ( 1 − f R ) 

[ 
μ0 + Rϑ 

(
ln (1 − φ) + φ + χ p φ2 

)] 
︸ ︷︷ ︸ 

mixing contribution 

−( 1 − f R ) 

[ 
�K ( ln J e ) − 1 

2 
K �( ln J e ) 2 

] 
︸ ︷︷ ︸ 

matrix “mechanical” contribution 

+ f R 

[ 
2 

3 
E�( 1 + �c R ) I 4 (I 4 − 1) 

] 
︸ ︷︷ ︸ 

fiber “mechanical” contribution 

. (43)

ere, it can be observed that the chemical potential is not only af-

ected by the mixing of polymer matrix and solvent, but also by
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Table 1 

Material parameters used in the numerical simula- 

tions. 

Parameter Value 

Polymer Matrix G 0 1 MPa 

K 100 MPa 

λL 10.0 

Solvent � 1 × 10 −4 m 
3 /mol 

μ0 0.0 J/mol 

Interaction χ 0.2 

Fibers E ( γ ) 1 GPa 
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i  

s  
he mechanical deformation of the fiber-reinforced polymeric gel.

he mechanical pressure and its energy, along with the deforma-

ion of embedded fibers, contributes to the chemical potential of

he system, thus fully coupling the mechanical and chemical as-

ects of gel behavior. 

.4. Mobility tensor 

The solvent mobility tensor, which takes into account any possi-

le anisotropy in diffusion, is assumed to be temperature and con-

entration dependent, and is given in the form 

 = D 

c 

Rϑ 

= D 

c R 
JRϑ 

, (44)

here D and c = J −1 c R represent the tensorial diffusivity and

he solvent concentration per unit spatial volume, respectively.

he tensorial form of the diffusivity allows for the inclusion of

nisotropic diffusion response. In practice it is generally more con-

enient to use φ in place of c since φ is bounded, 0 < φ ≤1. Ac-

ordingly, using (17) we rewrite (44) in the form 

 = D 

(
1 − φ

Rϑ J�φ

)
. (45) 

lso, as previously mentioned in Section 4 , the mobility tensor M

ust be positive definite based on the free energy imbalance (28) .

s a further consequence, we take the diffusivity tensor D to be

ositive definite. 

. Model behavior through numerical simulations 

In this section, we present the capabilities of our anisotropic

eformation-diffusion constitutive model for polymeric gels with

mbedded fibers by solving various boundary value problems. We

ote that details for the governing equations and finite element

mplementation are provided in an Appendix, Section 9. In this

ection we consider both two dimensional plane strain swelling,

nd three-dimensional free swelling. Specifically we consider an

nitial dry body with a square/cube shape having an edge length of

 mm under a constant isothermal temperature of 298 K. In both

ases the body is traction free, undergoing essentially free swelling,

owever in plane strain the third dimension is constrained. The

pecific simulations that follow first probe the constitutive model

hen (i) the diffusion is anisotropic without fibers, (ii) a single

amily of fibers are present and the diffusion is isotropic, and lastly

iii) when a single family of fibers and anisotropic diffusion are

resent. Specific values for the material parameters that remain

nchanged across all the numerical simulations that follow are

rovided in Table 1 . 

.1. Boundary value problem setup 

Here, we define the boundary value problem which will be

olved to present the model behavior. Fig. 1 shows both plane

train and three-dimensional situations. As shown in Fig. 1 , the
ody is symmetric, and therefore we only model 1/4 in plane

train, or 1/8 in three dimensions. We note that in all simulations

hat follow, fiber directions are chosen to maintain this symmetry

hroughout. 

For these swelling simulations, the initial dry body is immersed

nto a solvent bath at a constant temperature of 298 K. With refer-

nce to Fig. 1 , the corresponding mechanical boundary conditions

re: 

• symmetry on all relevant planes — faces AB and AD in plane

strain, and faces ABCD, ABEF, and ADGE in 3D; 
• traction free on all other faces — faces BC and CD in plane

strain, and faces BCHF, CDHG, and EFGH in 3D; 

nd the corresponding chemical boundary conditions are: 

• no flux on all symmetry planes — faces AB and AD in plane

strain, and faces ABCD, ABEF, and ADGE in 3D; 
• a prescribed chemical potential μ̆(t) = μ0 + μ0 exp (−t/t d ) on

faces in contact with solvent — faces BC and CD in plane strain,

and faces BCHF, CDHG, and EFGH in 3D. Here t d = 200 s is a

decay time used to apply the chemical potential boundary con-

dition smoothly, and μ0 is the initial chemical potential at time

t = 0 , obtained using (43) . 

.2. Anisotropic diffusion in the absence of fibers 

To emphasize the affect that anisotropic diffusion has on the

eformation, we simulate a polymeric gel without embedded

bers. Thus, we take f R = 0 and prescribe the diffusivity tensor in

he form (referring to the coordinate basis as shown in Fig. 1 ) 

D = 

[
10 0 
0 1 

]
× 10 −9 m 

2 / s and 

D = 

[ 

10 0 0 
0 1 0 
0 0 10 

] 

× 10 −9 m 
2 / s 

(46) 

or plane strain and 3D, respectively. For comparison, we show the

esults using an isotropic diffusivity, D = 

(
1 × 10 −8 1 

)
m 

2 /s, with

he same boundary conditions mentioned above. 

Fig. 2 shows contours of φ at a few snapshots in time for

he isotropic and anisotropic simulations. The simulation results

n Fig. 2 show the clear difference between the behavior of the

sotropic and anisotropic diffusivity in the deformation-diffusion

ehavior of the polymeric gel. The decreased diffusivity in the e 2 
irection leads to noticeably slower diffusion and corresponding

welling along that direction, leading to an observable anisotropy

n the overall response of a gel. However, as expected, after long

imes, where diffusion is no longer driving solvent at equilibrium,

here is no difference between the isotropic and anisotropic results.

.3. Isotropic diffusion with embedded fibers 

Next, we consider isotropic diffusion, but with the influence of

mbedded fibers. To observe the influence of the fiber volume frac-

ion, we consider only a single fiber family with a fiber direction

 R = e 1 (referring to the coordinate basis as shown in Fig. 1 ), for

oth plane strain and three-dimensional simulations. For compari-

on, we show the results using an isotropic gel without any fibers,

nd, in all cases we take D = 

(
1 × 10 −8 1 

)
m 

2 /s. Then, we vary the

ber volume fraction, choosing 

f R = { 1 × 10 −3 , 5 × 10 −3 , 1 × 10 −2 , 5 × 10 −2 , 1 × 10 −1 } . 
n the simulations that follow. 

Fig. 3 shows contours of φ at a few snapshots in time for the

sotropic and anisotropic simulations with f R = 1 × 10 −1 . The re-

ults of numerical simulation in Fig. 3 clearly show that, due to the
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Fig. 1. Schematic of an initially dry 2 mm (a) square and (b) cube, immersed in solvent. For the numerical simulation, due to symmetry, we mesh only mesh the portion of 

the body indicated in dark grey. 

Fig. 2. Simulation results showing φ at (a) 900 s, (b) 1800 s, and (c) 6 h, in plane strain (top) and 3D (bottom). In all cases, to help with comparison, the left portion is the 

isotropic simulation, while the right portion is anisotropic diffusion in the absence of fibers. Further, the thick dotted line indicates the initial dry body. 

Fig. 3. Simulation results showing φ at 6 h for (a) plane strain, and (b) 3D. In both cases, to help with comparison, the left portion is the isotropic simulation, while the 

right portion is anisotropic, with fiber direction a R = e 1 and volume fraction f R = 10 −1 . Further, the thick dotted line indicates the initial dry body. 
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Fig. 4. Simulation results showing the stretch along the fiber direction, λ‖ , and that 
perpendicular to it λ⊥ near equilibrium at 6 h for various fiber volume fractions. 
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scribed for this simulation are: 

2 We note that both the fiber directions, and diffusivity, given here in local 

coordinate system 1 ′ − 2 ′ − 3 ′ , are later rotated to the global coordinate system 

1 − 2 − 3 inside the finite element simulation. 
onstrained swelling caused by the embedded fibers, the swelling

tretch along the fiber direction is significantly lower than that in

he other directions. That difference is further quantified in Fig. 4 ,

here the stretch along the fiber direction λ‖ decreases with the

ncrease in fiber volume fraction. This is accompanied by an in-

rease in the swelling stretch along the other directions, indicated

y λ⊥ . 

.4. Anisotropic diffusion with embedded fibers 

In this section, we perform simulations that include both em-

edded fibers and anisotropic diffusion. To keep results easy to in-

erpret, we take a single fiber direction with a R = e 2 at a volume

raction of f R = 1 × 10 −1 , and assume the diffusivity to be (refer-

ing to the coordinate basis as shown in Fig. 1 ) 

D = 

[
10 0 
0 1 

]
× 10 −9 m 

2 / s and 

D = 

[ 

10 0 0 
0 1 0 
0 0 10 

] 

× 10 −9 m 
2 / s 

(47) 

or plane strain and 3D, respectively. As previously mentioned, we

ssume the embedded fibers unable to swell, causing the solvent

ransport to be impeded along the fiber direction. Accordingly, we

ake the solvent diffusivity to be significantly slower in the di-

ection of embedded fibers. Similar to the simulation results pre-

ented thus far, we again compare against an isotropic polymeric

el in the absence of embedded fibers, using an isotropic diffusiv-

ty D = 

(
1 × 10 −8 1 

)
m 

2 /s. 

Fig. 5 shows contours of φ at a few snapshots in time for the

sotropic and anisotropic simulations. The simulation results, under

oth plane stain and three-dimensional conditions, display pro-

ounced anisotropy which is easily observed in Fig. 5 . Due to the

ombined influence of solvent diffusion anisotropy and the me-

hanical response of embedded fibers, the deformation is signifi-

antly constrained along the e 2 direction, while the gel is allowed

o freely swell in the other directions. Opposed to the example in

ection 6.2 , even when the equilibrium is reached, after 6 h of

ree swelling there is a significant difference between isotropic and

nisotropic simulations, due entirely to the presence of embedded

bers. 

. Diffusion activated soft gripper: Qualitative comparison 

etween experiment and simulation 

As a final exercise of the model, we qualitatively compare our

imulation results with experiments of a soft robotic gripper. Since

he materials used in the experiment have not yet been character-

zed, our comparison is only qualitative, and we continue using the

aterial parameters provided in Table 1 . 
The construction of the diffusion activated soft gripper consists

f two arms of fiber-reinforced polymer gel connected to a rigid

lass plate. The two arms are composed of polyethylene glycol di-

crylate (PEGDA 700) and off-the-shelf medical gauze to used for

he embedded fibers. To manufacture the soft gripper, a photo-

urable precursor solution is prepared by mixing PEGDA 700, as a

onomer, and 43 mM of phenylbis(2,4,6-trimethylbenzoyl) phos-

hine oxide as a photo-initiator. A piece of medical gauze, with

pproximately a 0.5 mm thickness is placed on a transparent glass

old. The precursor solution is then poured into the mold, up to

.5 mm from the bottom, and polymerized using ultraviolet (UV)

llumination, with an exposure energy of 250 mJ/cm 
2 . As a result,

 1.5 mm thick composite polymer film is formed, with a 0.5 mm

hick fiber network embedded on the bottom as can be seen in

ig. 6 a. The composite polymer film is cut into the 57 mm long

nd 3.5 mm wide strips as in Fig. 6 b. Two fiber-embedded com-

osite polymer strips, serving as gripper arms, are bonded to a

lass plate using super glue. The arms are oriented with the fiber-

einforced side facing downward, with the angle between the arms

0 ° as shown in Fig. 7 . 

In the experiment, shown in Fig. 8 , the full gripper is sub-

erged into solvent, in this case water, and the subsequent dif-

usion and anisotropic swelling due to the embedded fibers causes

he gripper arms to bend and close onto a block. This mode of

eformation is utilized for grabbing and subsequently moving the

lock. 

For the finite element simulation, due to the symmetry of the

ripper, we mesh only a quarter of the geometry, i.e. a half of

 arm. The structured finite element mesh of the gripper con-

ists of 6,958 three-dimensional 8-node brick user-elements. Also,

ince the gripper arms are constructed with embedded fibers only

lose to the bottom of the arms, we model two distinct layers

hrough the thickness — the bottom with fibers embedded; and

n isotropic top layer without fibers. Specifically, the top layer is

aken to be 1 mm thick as shown in Fig. 9 , and since there are

o embedded fibers, f R = 0 , with an isotropic solvent diffusivity

 = 

(
1 . 5 × 10 −8 1 

)
m 

2 /s. The bottom layer is taken to be 0.5 mm

hick, and contains two families of embedded fibers oriented per-

endicular to each other with directions, a (1) 
R 

= e 1 ′ and a 
(2) 
R 

= e 3 ′ ,
ritten in the local coordinate system as shown in Fig. 9 . Addi-

ionally, we choose the fiber volume fraction to be the same for

oth orientations, and relatively small based on Fig. 6 c, specifically

f (1) 
R 

= f (2) 
R 

= 10 −2 . Since the bottom layer contains fibers, we as-

ume the diffusivity to be slightly anisotropic, and we take 

 = 

[ 

1 . 0 0 . 0 0 . 0 
0 . 0 1 . 5 0 . 0 
0 . 0 0 . 0 1 . 0 

] 

× 10 −8 m 
2 / s (48) 

n the local 1 ′ − 2 ′ − 3 ′ coordinate system as shown in Fig. 9 . 2 

To realistically simulate the experiment, we include a non-

wellable block with edge length 2 mm that will be picked up by

he soft gripper. We assume the block is much stiffer than the soft

ripper and model the block as linear elastic with modulus 5 GPa.

he interaction between the soft gripper and the block is modeled

ith a rough contact interaction, meaning no slip. For visualization

urposes, a rigid body is included in the simulation to model the

lass plate from the experiment, and the soft gripper is bonded to

his glass plate in the simulation such that it may swell along e 2 ,

ut is fully constrained in e 1 . 

Considering Fig. 9 , the mechanical boundary conditions pre-



14 N. Bosnjak, S. Wang and D. Han et al. / Mechanics Research Communications 96 (2019) 7–18 

Fig. 5. Simulation results showing φ at (a) 900 s, (b) 1800 s, and (c) 6 h, in plane strain (top) and 3D (bottom). In all cases, to help with comparison, the left portion is the 

isotropic simulation, while the right portion is anisotropic diffusion with fiber direction a R = e 2 and f R = 10 −1 . Further, the thick dotted line indicates the initial dry body. 

Fig. 6. Manufacture of the composite gripper arm. (a) Shows medical gauze embedded in the lower portion of the body, and (b) shows the two strips used to construct the 

soft gripper, prior to bonding in the initial dry state. 

Fig. 7. Schematic of the soft gripper assembly. The gripper arms are bonded to a 

glass plate with the fiber-reinforced side facing downward. 
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• Symmetry boundary conditions are prescribed on the 1–2 and

2–3 planes. 
• The displacement on face A-A is mechanically constrained along

the 1-direction. In addition, the top node on face A-A is pinned.
• The glass plate is fully constrained, while the block is traction

free on all faces. 

Next, to account for the immersion in solvent, the chemical po-

tential is prescribed on the external faces of the gripper, except

for the face bonded to the glass plate. As before, the chemical

potential is prescribed in the form μ̆(t) = μ0 + μ0 exp (−t/t d ) to

smoothly apply the chemical potential boundary condition. 
Fig. 10 shows contours of φ in the simulation of the soft gripper

orking at various snapshots in time. The initially dry soft grip-

er, shown in Fig. 10 a, is immersed in solvent and through diffu-

ion begins to swell and deform. The bottom layer of the gripper,

hich contains the embedded fibers and has an anisotropic dif-

usivity, swells less than the top layer. This constrained swelling

f the bottom layer, forces the arms to bend, and eventually close

n and grab the block. Finally, the block is picked up and may be

oved elsewhere. 

Comparing our numerical simulation with the experimentally

bserved operation of a soft gripper, we have qualitative agree-

ent between the two. In both cases, the presence of the em-

edded fibers on the bottom side of the soft gripper leads to con-

trained swelling, which in turn causes the gripper to close and

rab the block. Therefore, the constitutive model and it’s numeri-

al implementation may provide a qualitative tool for the design of

oft robotic devices. 

. Concluding remarks 

We have developed a continuum-level model to capture the

ajor features of fiber-reinforced polymeric gel behavior. The

nisotropic aspects of the model are (i) the influence of non-linear

lastic embedded fibers that do not swell inside the polymer ma-

rix, and (ii) anisotropic diffusion of solvent within the polymer

atrix. The mechanical response of the polymer matrix is de-

cribed using a non-Gaussian statistical-mechanical model, along

ith Flory–Huggins model for mixing free energy. 
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Fig. 8. Experimental results showing the operation of diffusion activated soft gripper. (a) Initially after immersion into water, (b) the embedded fibers cause anisotropic 

swelling to make the gripper arms close in and grab the block, and (c) lifting the block. 

Fig. 9. Schematic of the soft gripper assembly that is used in the numerical simu- 

lation, indicating the local coordinate system used for material properties, as well 

as the layers with and without fibers. 
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The constitutive model has been numerically implemented in

 commercially available software package Abaqus/Standard [1] by

riting a user element subroutine (UEL). That numerical imple-

entation was utilized for solving boundary-value problems which

howcase the capabilities of the model to simulate the behavior of

ber-reinforced polymeric gels. 

Lastly, we have constructed a diffusion activated soft gripper

nd experimentally observed its operation. Using the numerical

mplementation of the constitutive model, we were able to simu-

ate the operation of our soft gripper. Qualitative comparison of ex-

eriment and simulation shows good agreement between the two,

hus displaying the capabilities of our model to account for the

ajor features of fiber-reinforced polymeric gel behavior. 

Nonetheless, in the current literature on gel mechanics, there is

 lack of experimental data required for the calibration of consti-
utive models. Towards the future, improvements in experimental

ethods and experimental data focused on mechanics would allow

he refinement and validation of constitutive models. 
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ppendix. Governing equations and finite-element 

mplementation 

In the absence of body forces and inertial effects, the governing

artial differential equations, expressed in the deformed body B t ,

onsist of the balance of forces and the balance of solvent content.

he balance of forces yields 

iv T = 0 in B t , (49)

ith the Cauchy stress T given by (41) . And the balance of solvent

ontent yields 

˙ φ

J�φ2 
+ div j = 0 in B t , (50)

ith the fluid flux j given by (30) and the mobility by (45) . With

he displacement denoted by u ( x , t ), the mechanical boundary con-

itions on ∂B t are given by 

 = ŭ on S u , and Tn = ̆t on S t , (51)

here ŭ and ̆t are the prescribed displacements and spatial surface

ractions, respectively, and S u and S t are complementary subsur-

aces of ∂B t . The chemical boundary conditions on ∂B t are given

y 

= μ̆ on S μ, and − j · n = j̆ on S j , (52)

here μ̆ and j̆ are the prescribed chemical potential and spatial

urface flux, respectively, and S μ and S j are another set of com-

lementary subsurfaces of ∂B t . The initial conditions are taken as

 (x R , 0) = u 0 and μ(x R , 0) = μ0 in B R . (53)

https://doi.org/10.13039/100000001
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Fig. 10. Simulation results showing φ during operation of diffusion activated soft gripper. (a) The initial state immediately after immersion in water, (b) the embedded fibers 

cause anisotropic swelling to make the gripper arms close in and grab the block, and (c) lifting the block. 
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The coupled set of equations (49) and (50) , along with the

boundary conditions (51) and (52) , and initial conditions (53) , rep-

resents the strong form of the initial boundary value problem for

the displacement field and the chemical potential field. 

With w 1 and w 2 denoting two weighting fields, the weak form

of the boundary-value problem (49) through (52) is ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∫ 
B t 

(
T : 

∂w 1 

∂x 

)
dv = 

∫ 
S t 

(
w 1 · t̆ 

)
da, 

∫ 
B t 

(
w 2 ̇ φ
J�φ2 

)
dv = 

∫ 
B t 

(
j · ∂w 2 

∂x 

)
dv + 

∫ 
S ω 

(
w 2 ̆j 

)
da. 

Following our previous work [13,14] , the deformed body is approx-

imated using finite elements, B t = ∪B 
e 
t , and the nodal degrees of

freedom are the displacement and the chemical potential, which

are interpolated inside each element by 

u = 

∑ 

u 
A N 

A and μ = 

∑ 

μA N 
A , (54)

with the index A = 1 , 2 , . . . denoting the nodes of the element, u A 

and μA the nodal displacements and chemical potentials, and N 
A 

the shape functions. Employing a standard Galerkin approach, in

which the weighting fields w 1 and w 2 are interpolated by the same

shape functions, leads to the following element-level residuals 

(R u ) A = − ∫ 
B e t 

(
T 
∂N 

A 

∂x 

)
dv + 

∫ 
S e t 

(
N 

A t̆ 
)
da, 

(R μ) A = 

∫ 
B e t 

(
N A ̇ φ
J�φ2 

)
dv + 

∫ 
B e t 

(
j · ∂N 

A 

∂x 

)
dv 

+ 

∫ 
S e 
j 

(
N 

A ̆j 
)
da. 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(55)

These element-level residuals are assembled into a global residual,

which represents a non-linear system of equations for the nodal

degrees of freedom. 

Correspondingly, four element level tangents are required for

the iterative Newton–Raphson solution procedure. The first tangent

accounts for changes in the displacement residual with respect to

the displacement, and is given by 

K AB u i u k 
= −∂R A u i 

∂ u B 
= 

∫ 
B e t 

∂N 
A 

∂ x j 
A i jkl 

∂N 
B 

∂ x l 
dv −

∫ 
S e t 

N 
A N 

B ∂ ̆t 

∂ u k 
da, (56)
k r  
here the spatial tangent modulus A is related to the referential

angent modulus A R through 

 i jkl = J −1 F jm 
F ln ( A R ) imkn , (57)

nd the referential tangent modulus is given by A R 
def = 

∂T R 
∂F 

. And

urther, 

 
AB 
u i μ

= −∂R A u i 
∂ μB 

= 

∫ 
B e 

∂N 
A 

∂x j 

(∂T i j 
∂φ

∂φ

∂μ

)
N 

B dv , (58)

 
AB 
μu k 

= −∂R A μ

∂ u B 
k 

= −
∫ 
B e 

∂N 
A 

∂x i 

(
M il 

∂μ

∂x k 

)
∂N 

B 

∂x l 
dv , (59)

nd 

 
AB 
μμ = − ∂R A μ

∂ μB 
= −

∫ 
B e 

N 
A N 

B 

J�φ2 

(
2 

˙ φ

φ

∂φ

∂μ
− ∂ ˙ φ

∂μ

)
dv 

−
∫ 
B e 

(
∂ j i 
∂μ

∂N 
A 

∂x i 

)
dv −

∫ 
S e 
j 

(
N 

A N 
B ∂ ̆j 

∂μ

)
da . (60)

ur finite-element procedures have been implemented in com-

ercially available software package Abaqus/Standard [1] using

 user-element subroutine (UEL). We have developed a four-

oded isoparametric quadrilateral plane-strain user-element, and

n eight-noded continuum brick user-element. In order to avoid

ssues related to volumetric-locking, we utilize the F-bar method

f de Souza Neto et al. [17] for fully-integrated elements. For com-

lete details regarding the implementation of Abaqus user-element

ubroutines for multi-physics problems, readers are referred to

hester et al. [14] . 

The UEL is verified by comparing analytically tractable solutions

gainst our numerical simulations. Due to the complexity of the

ully coupled-scheme in this work, the verifications are done sepa-

ately on mechanical and diffusion part, respectively. Here, we put

ur emphasis on the mechanical verification for the inclusion of

bers since the details verifying the diffusion aspects of the UEL

ave been previously reported in [14] . 

For the mechanical verification, a simple shear motion is pre-

cribed on a cubic gel embedded with one fiber family with a

eferential direction of a , the schematic is shown in Fig. 11 a.
R 
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Fig. 11. Comparison between analytical and numerical solutions for simple shear deformation. (a) Schematic of a cubic gel with a single fiber family embedded with 

referential orientation a R undergoing simple shear deformation. The normalized stress T 12 / G 0 and normal stress difference (T 11 − T 33 ) /G 0 is plotted against the amount of 

shear γ = tan θ for different fiber orientations (b) a R = [1 , 0 , 0] � , (c) a R = [1 / 
√ 

2 , 1 / 
√ 

2 , 0] � , and (d) a R = [0 , 1 , 0] � . 
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ccording to Gurtin et al. [25] , the corresponding deformation is

iven by 

F 
]

= 

[ 

1 γ 0 
0 1 0 
0 0 1 

] 

, (61) 

here γ = tan θ denotes the amount of shear. The referential

ber’s orientation may be written in the form 

 R = [ a 1 , a 2 , 0] 
� , (62)

ith a 1 and a 2 denote components in the x 1 and x 2 directions,

espectively. Also, to make a R a unit vector, the constraint of 

a 2 
1 

+ a 2 
2 

= 1 has to be fulfilled. After taking the tensor product

peration of a R , the structure tensor A R is given by 

A R 

]
= 

[ 

a 2 1 a 1 a 2 0 

a 1 a 2 a 2 2 0 
0 0 0 

] 

. (63) 

ext, two further assumptions are made: (1) The complete incom-

ressibility (i.e. J = 1 ) is assumed for the analytical solution, and

2) no fluid is present (i.e. φ = 1 ). Under these assumptions, the

auchy stress in (41) is now given by 

 = (1 − f R )(G B − P 1 ) + 2 f R E(I 4 − 1)(FA R F 
� ) (64)

ith 

G = 

1 

3 
G 0 

(
3 − ( ̄λ/λL ) 

2 

1 − ( ̄λ/λL ) 2 

)
and 

I 4 = a 2 1 + 2 a 1 a 2 γ + (1 + γ 2 ) a 2 2 . 

⎫ ⎬ 

⎭ 

(65) 
ote that P in (64) denotes a constitutively indeterminate pressure,

hich is introduced to satisfy the incompressibility constraint. 

For material parameters, we again use the same parame-

ers that are shown in Table 1 and a volume fraction f R = 0 . 5

or the fibers. On the numerical side, to approximate a nearly

ncompressible material we take K = 10 3 G 0 . Since we are in-

erested in verifying the mechanical response in the presence

f fibers, we take three independent cases, a R = [1 , 0 , 0] � , a R =
1 / 

√ 

2 , 1 / 
√ 

2 , 0] � , and a R = [0 , 1 , 0] � , to investigate different initial
ber orientations. 

Fig. 11 compares the analytical with a single element (U3D8)

imulation for the shear stress and normal stress difference given

y 

 12 = (1 − f R ) Gγ + 2 f R E(I 4 − 1)(a 1 a 2 + a 2 2 γ ) (66)

nd, 

 11 − T 33 = (1 − f R ) Gγ 2 

+ 2 f R E(I 4 − 1)(a 2 1 + 2 a 1 a 2 γ + a 2 2 γ
2 ) (67)

espectively, against the numerical solutions. We note that the

tress is normalized by the initial shear modulus G 0 , and the

ases a R = [1 , 0 , 0] � , a R = [1 / 
√ 

2 , 1 / 
√ 

2 , 0] � , and a R = [0 , 1 , 0] � , are
hown in Fig. 11 b, c and d, respectively. The solid and dashed lines

epresent the analytical solutions, and the markers the numeri-

ally calculated results. It is worth mentioning that the case with

he referential fiber orientation of a R = [1 , 0 , 0] � does not involve
tretching along the fiber direction, which makes the model exhibit

 pure hyperelastic response. Finally, the good agreement between
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analytical and numerical results indicate the mechanical portion

including fibers of our finite element implementation is verified. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.mechrescom.2019.02.002 . 
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