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When a polymer network is exposed to a suitable solvent, the migration of solvent molecules into the
network will cause volumetric deformation, known as swelling, but more importantly forms a mixture
that is known as a polymeric gel. Despite numerous potential applications, many aspects of the coupled
diffusion-deformation behavior in polymeric gels have not yet been thoroughly investigated. Here, we fo-
Keywords: cus our attention on the coupled deformation-diffusion response of fiber-reinforced polymeric gels. The
Gels presence of embedded fibers in a swellable polymer matrix leads to anisotropy in the overall behavior.
Polymeric materials In order to capture this response, we have developed a constitutive model for fiber-reinforced polymeric
Anisotropic materials gels, that explicitly takes into account anisotropy in both the mechanical and diffusive behavior. The con-

Diffusion
Finite elements

stitutive model is implemented as user element subroutine (UEL) in the commercial finite element soft-
ware package Abaqus/Standard. Numerical simulations are performed to show the behavior of the model,

and qualitative comparisons are made to experiments of a soft robotic gripper.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Mixing a polymeric network with a suitable solvent will cause
the network to expand, allowing for solvent diffusion and volumet-
ric deformation, commonly referred to as swelling. A polymer ma-
terial in this mixed and swollen state is known as a polymeric gel.

Gels are ubiquitous, they are used in many applications from
packers in the oil industry [6,34] to drug delivery systems [10].
Due to the similarity between polymeric gels and biological tissues,
polymeric gels are widely used in tissue engineering as scaffolds
[35], injectable cartilage and tissue formations [37]. An important
distinction between biological tissues and much of the previous lit-
erature on the mechanics of polymeric gels is that most biologi-
cal tissues contain fibers. The existence of these fibers embedded
in the material, causes the properties to be significantly different
along the fiber direction [15,16,42,46,50]. In other words, the pres-
ence of embedded fibers imposes pronounced anisotropy in the re-
sponse of these materials.

Also, many polymers respond to environmental stimuli such
as temperature, electric and magnetic fields, pH, and more
[22,23,26,27,33,36,47,52]. The responsiveness of polymeric gels to
environmental stimuli has been widely employed in soft robotics
[44,49]. The applications of soft robots are vast [32], the more ex-
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otic ones include morphing airfoils, rotary actuators, and grippers
[7,24,51]. Newly designed polymeric gels are being developed to
enhance the performance of these systems [53]. Further, the flex-
ibility of soft robots and their similarity to biological systems are
utilized in bio-hybrid robotics [9]. The fast emerging development
of gel-based soft robots makes modeling of this class of materials
an important task for simulating their operation.

The early research of Tanaka and Fillmore [48] is commonly
considered the starting point of modern day research on poly-
meric gels. In recent years, there have been many notable attempts
to formulate theories capable of capturing multiphysics behavior
of isotropic gels [cf, e.g., [5,12,14,18-20,30,38,39]]. In the litera-
ture, one also finds a vast number of constitutive models for cap-
turing anisotropic behavior of fiber-reinforced polymers [cf., e.g.,
[2,8,29,43]]. However, there are only a few notable attempts to in-
clude influence of embedded fibers on behavior of polymeric gels
in recent years [40,41,45].

The objective of this work is to develop a continuum level cou-
pled deformation-diffusion constitutive model for fiber-reinforced
polymeric gels. The novelty of the model is that it builds upon
previous work by taking into account the mechanical influence
of fibers, as well as the anisotropic diffusion they may impart.
The behavior of the dry polymer matrix is modeled using a non-
Gaussian statistical mechanics based model that takes limited
chain extensibility into account. In addition to the behavior of dry
polymer matrix, we include the contribution of embedded fibers
with a volume fraction and modulus. The mechanical behavior of
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polymer network is coupled with the diffusion of solvent by im-
plementing Flory-Huggins model for mixing free energy between
polymer network and solvent. We assume the embedded fibers do
not imbibe solvent, and accordingly there is no mixing between
the fiber and solvent. Further, we numerically implemented our
multiphysics constitutive model in commercially available finite el-
ement software package Abaqus/Standard [1] by writing a user el-
ement subroutine (UEL). The numerical implementation allows for
the behavior and capabilities of the model to be presented through
boundary value problems. Lastly, to show the usefulness of the
model and it’s implementation, a qualitative comparison is made
between the model and an experimentally realized soft robotic
gripper.

The remainder of this paper is organized as follows.
Section 2 summarizes the continuum level framework, in
Section 3 we presented the overview of thermodynamics of
the system, in Section 4 we provide basic constitutive equations
and in Section 5 we show the specialization of free energy for
fiber-reinforced polymeric gels. Section 6 shows the usefulness of
our constitutive model and numerical simulation procedure. In
Section 7 we show a comparison between the operation of our
diffusion activated soft gripper and its numerical simulation. We
finish with some concluding remarks in Section 8. In an Appendix,
Section 9 we present the governing equations and the numerical
solution procedure using finite elements required for numerical
implementation.

2. Continuum framework

We begin by summarizing the governing continuum level equa-
tions for coupled solvent diffusion and large deformation of soft
polymeric gels. For further details, the reader is referred to our
previous work in the literature [cf., e.g., 14, and references therein].

2.1. Kinematics

Consider a dry body Bg identified with the region of space it
occupies in a fixed reference configuration, and denote by Xz an
arbitrary material point of Bg. The dry referential body Bg then
undergoes a motion X = x(Xg., t) to the deformed body B; with de-
formation gradient given by!

F =V, such that ] = detF > 0. (1)

The right and left Cauchy-Green deformation tensors are given by
C=F"F and B = FF", respectively. Additionally, to model the fibers,
we assume y different fiber orientations may be present in the
dry reference body, denoted by the term family. Each fiber fam-
ily is characterized by a direction af{’) (a unit vector), and vol-

ume fraction fé") in Br. At the outset, we assume that the fibers
do not absorb any solvent and remain dry, and are perfectly bonded
to the polymer matrix. Following the approach in Holzapfel [28], a
pseudo-invariant is introduced for each family of fibers, which as
previously noted has been used to model the anisotropic response
of fiber-reinforced soft materials [40,41,50]. Specifically, we use the
pseudo-invariant

1) =al . cal) = (A0)’, )

where A(Y) has the physical interpretation of the stretch along the
fiber family direction algy) for each y.

1 The symbols V, Div and Curl denote the gradient, divergence and curl with re-
spect to the material point xg in the reference configuration; grad, div and curl
denote these operators with respect to the point X = x(Xg, t) in the deformed con-
figuration.

The theory is based upon a multiplicative decomposition
F=F"F, with F = A*1, (3)

of the deformation gradient F into a mechanical part, F™, and a
swelling part F°, with AS the swelling stretch. Further, this allows
us to rewrite the right Cauchy-Green tensor in the form

C = (F"F) (F"F) = (A)’F"F" = (A%)*C™. (4)
Based on (3), the relative volume change is given by

J = detF = det (F"F°) = J"J°, with
detF" =J™ > 0, and detFF =] >0, (5)
where /™ is the volume change due to mechanical effects, and J®

the volume change due to swelling. As is typical in the literature
[12,30] we assume the volume change due to swelling is given by

JF=1+RQc, and therefore A°=(1+ Qcg)'/3. (6)

Here cg represents the solvent content measured in moles of sol-
vent per unit reference volume of the dry polymer, and €2 the vol-
ume of a mole of solvent.

Further, using (1) and (3), we write velocity gradient

L=FF!=L"+F'LF*! (7)
with L™ and LS, mechanical and swelling part, respectively, given
by
L" =F"F"! and L' =FF. (8)
Next, we define the mechanical and swelling stretching and spin
tensors
D™ = sym L™,
D’ = sym LS,

W™ = skw L™,
WS = skw L* ©)

so that L™ = D™ + W™ and LS = D° + W5,
Recalling (3), (8) and (9) we obtain

D' = (A°A")1 and W' =0, (10)
and since
Js = Jtr DS, (11)

we may write

1,061
D’ = g(jsjs . (12)
2.2. Balance of forces and moments

Neglecting inertial effects, the balance of forces and moments
in the referential body By are expressed as

div TR + bR =0 and TRF' = FTIT{ (13)

respectively, where Ty is first Piola stress and by is an external
body force per unit referential volume. The boundary of the ref-
erential body has outward unit normal ng. The surface traction on
an element of the referential surface is given by tg = Tgrng. As com-
mon in continuum mechanics, the Piola stress is related to Cauchy
stress T in the deformed body by

Tg =JTF 7, T=]"TRF". (14)

In the current configuration the balance of forces and moments is
given in the deformed body B; by

divT+b=0 and T=T, (15)

where b is the external body force per unit current volume. Lastly,
the surface traction on the boundary of deformed body with out-
ward unit normal n is t = Tn.

therefore,
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2.3. Balance of solvent content

We assume that the intake and outflow of solvent does not in-
volve any chemical reactions. Therefore, the balance of solvent con-
tent in the referential and current configurations takes the form

ér=—divjr and ¢ = —Jdivj, (16)

where jg and j are the fluid flux in referential and current config-
uration, respectively.
Defining the polymer volume fraction

e L _Gsyro g (17)

1 + QCR -
which lies in the range 0 <¢ <1, the balance of solvent content
(16) may be rewritten in the referential and current forms
b . o ..

—— —divjg =0 and —divj=0. 18
Here ¢ — 1 is simply a dry polymer, while ¢ <1 is a locally
swollen state. Lastly, the surface flux into an element of the refer-
ential and current surface is given by jgr = —jg -ng and j = —j-n,
respectively.

3. Thermodynamics

A complete thermodynamic derivation of a model for polymeric
gels is thoroughly discussed in the earlier research published by
our group. For more details regarding thermodynamics, the reader
is referred to Chester and co-workers [11-13].

Let the body Bg contain an arbitrary part Pg. Under isother-
mal conditions, the first two laws of thermodynamics may be com-
bined into a single free energy imbalance. The free energy imbal-
ance requires that the temporal increase in free energy in any part
be less than or equal to the power expended plus that which is
brought into that part from fluid transport. Specifically the free en-
ergy imbalance takes the form

Yrdvg S/ TRnR'XdaR+/ bg - xdvr
Pr IPR Pr

—/ Mjr - mrdag, (19)
IPr

with @ the chemical potential of the solvent. Applying the diver-
gence theorem to the terms in (19), we obtain

[ (= v Tes by ~Te <

+ udiv jg +jr - Vie)dvg < 0. (20)

Using (13) and (16), since (20) must hold for every part Pg, we
write

Y —Tr © F—puég+jr- Vi <0. (1)
Recalling (3) and (8), we decompose the stress power
Tg : F=(JTF™7) : F" 4+ (JF" ' TF™ ") : L". (22)

HEI'C, we introduce two new stress measures
sm LHTEm-7 and Mm & jEmTEm- T (23)

as a mechanical Piola stress and Mandell stress, respectively. Fur-
ther, using (23), we can write (22) in the form

Tg : F=S™ : F"+M™ : L’ (24)
In addition, we introduce mechanical second Piola stress
T" = JF"ITF™ 7 (25)

and since the rate of change of mechanical right Cauchy-Green
tensor is C™ = F™" TF™ + F™" TF" we can write

T : C" =2(F"T™) : Fn =28™ : F". (26)

Employing (10) and (12) we can write the stress-power (22) in the
form

.1 : —
Te : F=ST" : C" P, (27)
where we have defined the mean normal pressure, p, as ﬁdéf
—1mtr .

Applying the kinematical constraint between cg and J* given by
(6), in (19), and using (27), we obtain the free energy imbalance in
the form

. 1 . .
Yr—5T" 0 " = paacr +Jr - VI <0, (28)
where the active chemical potential is defined as ftact def u— pL2.

4. Basic constitutive equations

Based on (28), and considering frame indifference, the basic
constitutive equations are

YR = Yr(C™. R)

™  =T"C", cR) (29)
Mact = /»_‘vact (cm’ CR)

along with a Darcy-type relation for the spatial solvent flux
j=-M(C" cp)grad u, (30)

where M(C™, cg) is the mobility tensor. Here, to account for
any anisotropy due to the embedded fibers, or other sources of
anisotropy, the mobility retains it's tensorial characteristic, and not
simplified to a scalar in this work. Pushed back to the reference
body, using the standard relations jg = JF'j and Vu = F'grad p,
we may rewrite (30) in the referential form

jr = —JFIM(C™, cg)F "V L. (31)

Sufficient conditions to satisfy (28) using (29) yield relations for
the Cauchy stress

i [ pm OVR(C™, cR)
T— 1[2F’“7F’"T], 2
J o (32)
and the chemical potential

dr(C™, 3
1= ngkc“uszp. (33)

We further note that to satisfy the thermodynamic imbalance in
(28), the mobility tensor M(C™, cg) has to be positive definite in
the presence of solvent and whenever Vu #0.

5. Specialized constitutive equations
5.1. Free energy

For ease of notation, and following the approach used to in-
clude the fiber volume fraction in Pan and Zhong [45], we define

fr=Y_f (34)

14

such that fg is the sum of the volume fractions of all families of
fibers in Bg, and therefore (1 — fg) is the total volume fraction of
swellable polymer matrix in Bg. Next, we assume total free energy
of the system to be additively decomposed
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% — (1 _ fR>wénatrix + (l _ fR)wl;nixing
R (35)
14

where /3tiX js the free energy of polymer matrix, w;‘ixmg is the
free energy of mixing between polymer matrix and solvent, and
wéy)’ﬁber is the free energy of each fiber family.

5.1.1. Mechanical free energy of the polymer matrix
Following the literature, and using (6), we define the effective

stretch, A, which includes both mechanical and swelling deforma-
tion, as

3 def %tr c— %(1 + Q) AV o, (36)

For capturing the mechanical behavior of the polymer matrix, we
use a non-Gaussian statistical mechanics based model [3,4], which
takes into account limited extensibility of polymer chains (also
known as locking),

R ET
- (%)ﬁo —In (sinlioﬂo)]

- Go<}; 1n]ﬂ0) +]5[%Kln]’“], (37)

x
of the Langevin function £(e) = coth(e) — (s)~1. This form of me-
chanical free energy includes two material parameters, the initial
shear modulus Gy, and the locking stretch A;. The locking stretch
A has the physical interpretation of the limiting value of the ef-
fective stretch A, when the chains are fully extended.

with 8 :L—l(}%> and B :L‘1(lL), where £-1 is the inverse

5.1.2. Mixing free energy

For our estimate of mixing free energy we implement the well
known Flory-Huggins model [21,31] which takes into account mix-
ing of solvent molecules and the polymer matrix in the form

mixin. 0
RoE = WUk

QCR 1
+R19CR(ln<] +QCR> + x(1 - Sch))' (38)

Here, 10 is a reference chemical potential, R is the gas constant, $
is absolute temperature, and yx is a dimensionless polymer-solvent
interaction parameter.

5.1.3. Mechanical free energy for the fibers

To account for mechanical free energy for the embedded fibers
we adopt the form found in Holzapfel [28] which is also used
in Nardinocchi et al. [40]. Following the approach discussed in
Section 2.1, the contribution due to the fibers is modeled using

1
éy).ﬁber _ EE(V)(I‘(‘)/) —1)2, (39)

with E) the fiber modulus for each fiber family y. Also, recall
that Ifl”) defined in (2) includes the dependence on orientation.
Thereby, we incorporate the influence of different fiber families,
which may have a different fiber modulus and/or orientation, and

volume fraction through flgy) as seen in (35).

5.14. Total free energy

Combining the mechanical free energy of the polymer matrix
(37), the mechanical free energy of the embedded fibers (39), along
with the mixing free energy (38) into (35), we obtain the total free
energy

Y= (1 fR){Go/\f[(i)ﬁ +In (miﬂ)
- (%L)'BO —In (sin%)ﬂo)] B GO<);L ln],30>
+1Ocr +R0CR<IH (1 fgcR) - X<l +1QCR))

1 1
+15[21<1njm]} + ;frgwismagw “1)2. (40)

5.2. Cauchy stress

Following (32), and using (40), we obtain the Cauchy stress

_ 81ﬁR(C ", R) o
1 m T
T=] (ZF —acm F )

=J71 (1= f2)(Go(£9~2B™ — &o1) + K (InJ™)1)

contribution due to the polymer matrix

_’_]71 széy)E(y)()‘s)z(Ifly) _ 1)Fm(al({)’) ®al({)/))l:m7’ (41)
Y

contribution due to the fibers

with

e (ot (o) w

From (41) it is clear that the volume fraction of embedded
fibers fé") determines the contribution of each constituent of
the system. The influence of the polymer matrix to the Cauchy
stress decreases with fg, however, the importance of the embed-
ded fibers increases with fg. Further, the stiffness of the polymer
matrix decreases with solvent concentration through terms related
to ¢. Further, since there is no mixing between the solvent and
the embedded fibers, the embedded fibers tend to constrain the
swelling process. Lastly, it is worth noting that due to (3) and (2),
the embedded fibers have an affect on both swelling and mechan-
ical deformation.

5.3. Chemical potential

Next, using (40) and (33), we obtain the chemical potential in
the form

_ 0 1,
M_TCR_Q§J tr T

=(1 —fR)I:MU +Rl9(ln(1 — @) +¢+Xp¢2>]

mixing contribution

-(1- fR)[QK(ln]e) - %I(Q(ln]e)z]

matrix “mechanical” contribution

+fR[§EQ(1 + Qep)la(ly — 1)] : (43)

fiber “mechanical” contribution

Here, it can be observed that the chemical potential is not only af-
fected by the mixing of polymer matrix and solvent, but also by
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Table 1
Material parameters used in the numerical simula-
tions.

Parameter  Value

Polymer Matrix Go 1 MPa
K 100 MPa
L 10.0
Solvent Q 1 x 10~4 m3/mol
no 0.0 J/mol
Interaction X 0.2
Fibers EY) 1 GPa

the mechanical deformation of the fiber-reinforced polymeric gel.
The mechanical pressure and its energy, along with the deforma-
tion of embedded fibers, contributes to the chemical potential of
the system, thus fully coupling the mechanical and chemical as-
pects of gel behavior.

5.4. Mobility tensor

The solvent mobility tensor, which takes into account any possi-
ble anisotropy in diffusion, is assumed to be temperature and con-
centration dependent, and is given in the form

(44)

where D and c=J lcg represent the tensorial diffusivity and
the solvent concentration per unit spatial volume, respectively.
The tensorial form of the diffusivity allows for the inclusion of
anisotropic diffusion response. In practice it is generally more con-
venient to use ¢ in place of ¢ since ¢ is bounded, 0 <¢ <1. Ac-
cordingly, using (17) we rewrite (44) in the form

1-¢
M=D| —~—|. 45
<R19 Qe ) (45)
Also, as previously mentioned in Section 4, the mobility tensor M
must be positive definite based on the free energy imbalance (28).

As a further consequence, we take the diffusivity tensor D to be
positive definite.

6. Model behavior through numerical simulations

In this section, we present the capabilities of our anisotropic
deformation-diffusion constitutive model for polymeric gels with
embedded fibers by solving various boundary value problems. We
note that details for the governing equations and finite element
implementation are provided in an Appendix, Section 9. In this
section we consider both two dimensional plane strain swelling,
and three-dimensional free swelling. Specifically we consider an
initial dry body with a square/cube shape having an edge length of
2 mm under a constant isothermal temperature of 298 K. In both
cases the body is traction free, undergoing essentially free swelling,
however in plane strain the third dimension is constrained. The
specific simulations that follow first probe the constitutive model
when (i) the diffusion is anisotropic without fibers, (ii) a single
family of fibers are present and the diffusion is isotropic, and lastly
(iii) when a single family of fibers and anisotropic diffusion are
present. Specific values for the material parameters that remain
unchanged across all the numerical simulations that follow are
provided in Table 1.

6.1. Boundary value problem setup
Here, we define the boundary value problem which will be

solved to present the model behavior. Fig. 1 shows both plane
strain and three-dimensional situations. As shown in Fig. 1, the

body is symmetric, and therefore we only model 1/4 in plane
strain, or 1/8 in three dimensions. We note that in all simulations
that follow, fiber directions are chosen to maintain this symmetry
throughout.

For these swelling simulations, the initial dry body is immersed
into a solvent bath at a constant temperature of 298 K. With refer-
ence to Fig. 1, the corresponding mechanical boundary conditions
are:

o symmetry on all relevant planes — faces AB and AD in plane
strain, and faces ABCD, ABEF, and ADGE in 3D;

o traction free on all other faces — faces BC and CD in plane
strain, and faces BCHF, CDHG, and EFGH in 3D;

and the corresponding chemical boundary conditions are:

e no flux on all symmetry planes — faces AB and AD in plane
strain, and faces ABCD, ABEF, and ADGE in 3D;

« a prescribed chemical potential ji(t) = u®+ pgexp(—t/t;) on
faces in contact with solvent — faces BC and CD in plane strain,
and faces BCHF, CDHG, and EFGH in 3D. Here t; =200 s is a
decay time used to apply the chemical potential boundary con-
dition smoothly, and p is the initial chemical potential at time
t = 0, obtained using (43).

6.2. Anisotropic diffusion in the absence of fibers

To emphasize the affect that anisotropic diffusion has on the
deformation, we simulate a polymeric gel without embedded
fibers. Thus, we take fz = 0 and prescribe the diffusivity tensor in
the form (referring to the coordinate basis as shown in Fig. 1)

|10 O 9.2
D= o 1!* 10—°m?/s and
10 0 0 (46)

D=|0 1 O
0 0 10

x 1072m?2/s

for plane strain and 3D, respectively. For comparison, we show the
results using an isotropic diffusivity, D = (1 x 10-81) m?[s, with
the same boundary conditions mentioned above.

Fig. 2 shows contours of ¢ at a few snapshots in time for
the isotropic and anisotropic simulations. The simulation results
in Fig. 2 show the clear difference between the behavior of the
isotropic and anisotropic diffusivity in the deformation-diffusion
behavior of the polymeric gel. The decreased diffusivity in the e,
direction leads to noticeably slower diffusion and corresponding
swelling along that direction, leading to an observable anisotropy
in the overall response of a gel. However, as expected, after long
times, where diffusion is no longer driving solvent at equilibrium,
there is no difference between the isotropic and anisotropic results.

6.3. Isotropic diffusion with embedded fibers

Next, we consider isotropic diffusion, but with the influence of
embedded fibers. To observe the influence of the fiber volume frac-
tion, we consider only a single fiber family with a fiber direction
aR = e; (referring to the coordinate basis as shown in Fig. 1), for
both plane strain and three-dimensional simulations. For compari-
son, we show the results using an isotropic gel without any fibers,
and, in all cases we take D = (1 x 10-81) m?/s. Then, we vary the
fiber volume fraction, choosing

fa={1x10"3,5x10"3,1x 1072, 5x 1072, 1 x 1071}.

in the simulations that follow.

Fig. 3 shows contours of ¢ at a few snapshots in time for the
isotropic and anisotropic simulations with fg =1 x 10~!. The re-
sults of numerical simulation in Fig. 3 clearly show that, due to the
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a) b)

Fig. 1. Schematic of an initially dry 2 mm (a) square and (b) cube, immersed in solvent. For the numerical simulation, due to symmetry, we mesh only mesh the portion of
the body indicated in dark grey.

a) ¢)

Fig. 2. Simulation results showing ¢ at (a) 900 s, (b) 1800 s, and (c) 6 h, in plane strain (top) and 3D (bottom). In all cases, to help with comparison, the left portion is the
isotropic simulation, while the right portion is anisotropic diffusion in the absence of fibers. Further, the thick dotted line indicates the initial dry body.

a) b)

Fig. 3. Simulation results showing ¢ at 6 h for (a) plane strain, and (b) 3D. In both cases, to help with comparison, the left portion is the isotropic simulation, while the
right portion is anisotropic, with fiber direction ag = e; and volume fraction fz = 10~'. Further, the thick dotted line indicates the initial dry body.
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Fig. 4. Simulation results showing the stretch along the fiber direction, All, and that
perpendicular to it A+ near equilibrium at 6 h for various fiber volume fractions.

constrained swelling caused by the embedded fibers, the swelling
stretch along the fiber direction is significantly lower than that in
the other directions. That difference is further quantified in Fig. 4,
where the stretch along the fiber direction Al decreases with the
increase in fiber volume fraction. This is accompanied by an in-
crease in the swelling stretch along the other directions, indicated
by AL

6.4. Anisotropic diffusion with embedded fibers

In this section, we perform simulations that include both em-
bedded fibers and anisotropic diffusion. To keep results easy to in-
terpret, we take a single fiber direction with ag = e, at a volume
fraction of fg =1 x 10~', and assume the diffusivity to be (refer-
ring to the coordinate basis as shown in Fig. 1)

_(10 o -9m2
D_[O 1:|><10 m4/s and
0 0 0 (47)

D=|0 1 O
0 0 10

for plane strain and 3D, respectively. As previously mentioned, we
assume the embedded fibers unable to swell, causing the solvent
transport to be impeded along the fiber direction. Accordingly, we
take the solvent diffusivity to be significantly slower in the di-
rection of embedded fibers. Similar to the simulation results pre-
sented thus far, we again compare against an isotropic polymeric
gel in the absence of embedded fibers, using an isotropic diffusiv-
ity D= (1 x 10781) m?/s.

Fig. 5 shows contours of ¢ at a few snapshots in time for the
isotropic and anisotropic simulations. The simulation results, under
both plane stain and three-dimensional conditions, display pro-
nounced anisotropy which is easily observed in Fig. 5. Due to the
combined influence of solvent diffusion anisotropy and the me-
chanical response of embedded fibers, the deformation is signifi-
cantly constrained along the e, direction, while the gel is allowed
to freely swell in the other directions. Opposed to the example in
Section 6.2, even when the equilibrium is reached, after 6 h of
free swelling there is a significant difference between isotropic and
anisotropic simulations, due entirely to the presence of embedded
fibers.

x 102m?/s

7. Diffusion activated soft gripper: Qualitative comparison
between experiment and simulation

As a final exercise of the model, we qualitatively compare our
simulation results with experiments of a soft robotic gripper. Since
the materials used in the experiment have not yet been character-
ized, our comparison is only qualitative, and we continue using the
material parameters provided in Table 1.

The construction of the diffusion activated soft gripper consists
of two arms of fiber-reinforced polymer gel connected to a rigid
glass plate. The two arms are composed of polyethylene glycol di-
acrylate (PEGDA 700) and off-the-shelf medical gauze to used for
the embedded fibers. To manufacture the soft gripper, a photo-
curable precursor solution is prepared by mixing PEGDA 700, as a
monomer, and 43 mM of phenylbis(2,4,6-trimethylbenzoyl) phos-
phine oxide as a photo-initiator. A piece of medical gauze, with
approximately a 0.5 mm thickness is placed on a transparent glass
mold. The precursor solution is then poured into the mold, up to
1.5 mm from the bottom, and polymerized using ultraviolet (UV)
illumination, with an exposure energy of 250 mJ/cmZ. As a result,
a 1.5 mm thick composite polymer film is formed, with a 0.5 mm
thick fiber network embedded on the bottom as can be seen in
Fig. 6a. The composite polymer film is cut into the 57 mm long
and 3.5 mm wide strips as in Fig. 6b. Two fiber-embedded com-
posite polymer strips, serving as gripper arms, are bonded to a
glass plate using super glue. The arms are oriented with the fiber-
reinforced side facing downward, with the angle between the arms
70° as shown in Fig. 7.

In the experiment, shown in Fig. 8, the full gripper is sub-
merged into solvent, in this case water, and the subsequent dif-
fusion and anisotropic swelling due to the embedded fibers causes
the gripper arms to bend and close onto a block. This mode of
deformation is utilized for grabbing and subsequently moving the
block.

For the finite element simulation, due to the symmetry of the
gripper, we mesh only a quarter of the geometry, i.e. a half of
1 arm. The structured finite element mesh of the gripper con-
sists of 6,958 three-dimensional 8-node brick user-elements. Also,
since the gripper arms are constructed with embedded fibers only
close to the bottom of the arms, we model two distinct layers
through the thickness — the bottom with fibers embedded; and
an isotropic top layer without fibers. Specifically, the top layer is
taken to be 1 mm thick as shown in Fig. 9, and since there are
no embedded fibers, fz =0, with an isotropic solvent diffusivity
D = (1.5 x 10%1) m?/s. The bottom layer is taken to be 0.5 mm
thick, and contains two families of embedded fibers oriented per-
pendicular to each other with directions, a]g” =ey and 31(12) = ey,
written in the local coordinate system as shown in Fig. 9. Addi-
tionally, we choose the fiber volume fraction to be the same for
both orientations, and relatively small based on Fig. 6c, specifically

é” = flgz) =102, Since the bottom layer contains fibers, we as-
sume the diffusivity to be slightly anisotropic, and we take

1.0 00 00
D=|00 15 00| x108m?/s (48)
00 00 1.0

in the local 1/ — 2’ — 3’ coordinate system as shown in Fig. 9.2

To realistically simulate the experiment, we include a non-
swellable block with edge length 2 mm that will be picked up by
the soft gripper. We assume the block is much stiffer than the soft
gripper and model the block as linear elastic with modulus 5 GPa.
The interaction between the soft gripper and the block is modeled
with a rough contact interaction, meaning no slip. For visualization
purposes, a rigid body is included in the simulation to model the
glass plate from the experiment, and the soft gripper is bonded to
this glass plate in the simulation such that it may swell along e,,
but is fully constrained in e;.

Considering Fig. 9, the mechanical boundary conditions pre-
scribed for this simulation are:

2 We note that both the fiber directions, and diffusivity, given here in local
coordinate system 1’ — 2’ —3’, are later rotated to the global coordinate system
1 -2 - 3 inside the finite element simulation.
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Fig. 5. Simulation results showing ¢ at (a) 900 s, (b) 1800 s, and (c) 6 h, in plane strain (top) and 3D (bottom). In all cases, to help with comparison, the left portion is the
isotropic simulation, while the right portion is anisotropic diffusion with fiber direction ag = e, and fz = 10~'. Further, the thick dotted line indicates the initial dry body.

PEGDA 700

PEGDA 700 with /

embedded fibers

2mm

S

Fig. 6. Manufacture of the composite gripper arm. (a) Shows medical gauze embedded in the lower portion of the body, and (b) shows the two strips used to construct the

soft gripper, prior to bonding in the initial dry state.

Glass plate —»

Top
Top (isotropic)
(isotropic) e

\\/

Bottom
(anisotropic)

Fig. 7. Schematic of the soft gripper assembly. The gripper arms are bonded to a
glass plate with the fiber-reinforced side facing downward.

o Symmetry boundary conditions are prescribed on the 1-2 and
2-3 planes.

o The displacement on face A-A is mechanically constrained along
the 1-direction. In addition, the top node on face A-A is pinned.

o The glass plate is fully constrained, while the block is traction
free on all faces.

Next, to account for the immersion in solvent, the chemical po-
tential is prescribed on the external faces of the gripper, except
for the face bonded to the glass plate. As before, the chemical
potential is prescribed in the form fi(t) = u® + pgexp(—t/ty) to
smoothly apply the chemical potential boundary condition.

Fig. 10 shows contours of ¢ in the simulation of the soft gripper
working at various snapshots in time. The initially dry soft grip-
per, shown in Fig. 10a, is immersed in solvent and through diffu-
sion begins to swell and deform. The bottom layer of the gripper,
which contains the embedded fibers and has an anisotropic dif-
fusivity, swells less than the top layer. This constrained swelling
of the bottom layer, forces the arms to bend, and eventually close
in and grab the block. Finally, the block is picked up and may be
moved elsewhere.

Comparing our numerical simulation with the experimentally
observed operation of a soft gripper, we have qualitative agree-
ment between the two. In both cases, the presence of the em-
bedded fibers on the bottom side of the soft gripper leads to con-
strained swelling, which in turn causes the gripper to close and
grab the block. Therefore, the constitutive model and it’s numeri-
cal implementation may provide a qualitative tool for the design of
soft robotic devices.

8. Concluding remarks

We have developed a continuum-level model to capture the
major features of fiber-reinforced polymeric gel behavior. The
anisotropic aspects of the model are (i) the influence of non-linear
elastic embedded fibers that do not swell inside the polymer ma-
trix, and (ii) anisotropic diffusion of solvent within the polymer
matrix. The mechanical response of the polymer matrix is de-
scribed using a non-Gaussian statistical-mechanical model, along
with Flory-Huggins model for mixing free energy.
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a)

c)

Fig. 8. Experimental results showing the operation of diffusion activated soft gripper. (a) Initially after immersion into water, (b) the embedded fibers cause anisotropic

swelling to make the gripper arms close in and grab the block, and (c) lifting the block.

Section view
B-B
3.5

Block

Fig. 9. Schematic of the soft gripper assembly that is used in the numerical simu-
lation, indicating the local coordinate system used for material properties, as well
as the layers with and without fibers.

The constitutive model has been numerically implemented in
a commercially available software package Abaqus/Standard [1] by
writing a user element subroutine (UEL). That numerical imple-
mentation was utilized for solving boundary-value problems which
showcase the capabilities of the model to simulate the behavior of
fiber-reinforced polymeric gels.

Lastly, we have constructed a diffusion activated soft gripper
and experimentally observed its operation. Using the numerical
implementation of the constitutive model, we were able to simu-
late the operation of our soft gripper. Qualitative comparison of ex-
periment and simulation shows good agreement between the two,
thus displaying the capabilities of our model to account for the
major features of fiber-reinforced polymeric gel behavior.

Nonetheless, in the current literature on gel mechanics, there is
a lack of experimental data required for the calibration of consti-

tutive models. Towards the future, improvements in experimental
methods and experimental data focused on mechanics would allow
the refinement and validation of constitutive models.
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Appendix. Governing equations and finite-element
implementation

In the absence of body forces and inertial effects, the governing
partial differential equations, expressed in the deformed body B3,
consist of the balance of forces and the balance of solvent content.
The balance of forces yields

divT=0 in B, (49)

with the Cauchy stress T given by (41). And the balance of solvent
content yields

¢
JQp?
with the fluid flux j given by (30) and the mobility by (45). With
t

the displacement denoted by u(x, t), the mechanical boundary con-
ditions on 03; are given by

and Tn=t on &, (51)

+divj=0 in B, (50)

u=u on Sy,

where @ and t are the prescribed displacements and spatial surface
tractions, respectively, and Sy and S¢ are complementary subsur-
faces of dB;. The chemical boundary conditions on dB5; are given
by

w=ji on S,, and —j-n=j on &, (52)

where i and j are the prescribed chemical potential and spatial
surface flux, respectively, and S, and S; are another set of com-
plementary subsurfaces of dB;. The initial conditions are taken as
u(xg, 0) = up

and u(Xg,0) = in Bg. (53)
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a)

c)

Fig. 10. Simulation results showing ¢ during operation of diffusion activated soft gripper. (a) The initial state immediately after immersion in water, (b) the embedded fibers
cause anisotropic swelling to make the gripper arms close in and grab the block, and (c) lifting the block.

The coupled set of equations (49) and (50), along with the
boundary conditions (51) and (52), and initial conditions (53), rep-
resents the strong form of the initial boundary value problem for
the displacement field and the chemical potential field.

With w; and w;, denoting two weighting fields, the weak form
of the boundary-value problem (49) through (52) is

I, (T : ag;’:)dv_fs (wy - T)da,
i (s ) = ( 8W2)dv+ Js, (w2])da.

Following our previous work [13,14], the deformed body is approx-
imated using finite elements, B; = UBf, and the nodal degrees of
freedom are the displacement and the chemical potential, which
are interpolated inside each element by

u=>) "u'N* and p=> N4, (54)

with the index A=1,2, ... denoting the nodes of the element, u?
and p# the nodal displacements and chemical potentials, and NA
the shape functions. Employing a standard Galerkin approach, in
which the weighting fields w; and w, are interpolated by the same
shape functions, leads to the following element-level residuals

(e

A . 8
R = fzsg (%)du‘* fo (.l : 3x>dU
+Jg: (N*])da.

These element-level residuals are assembled into a global residual,
which represents a non-linear system of equations for the nodal
degrees of freedom.

Correspondingly, four element level tangents are required for
the iterative Newton-Raphson solution procedure. The first tangent
accounts for changes in the displacement residual with respect to
the displacement, and is given by

(Ru)* dv+ [s (N*E)da,

(55)

ORA A 3
w_ [ ON N dv NANBEda, (56)

K5, = ikl 5~
B 8x U 8)( S¢ Buk

uite = gyB T
k

where the spatial tangent modulus A is related to the referential
tangent modulus Ay through

ukl .I ijFln(AR)zmkn’ (57)
and the referential tangent modulus is given by Ag = def 881;{ And
further,

aRA ONA /3T;; 0
Ak :/ ( oo )N 58

wit = g8 = e ox; \3g o) (58)

oRrRA ONA o\ ONE

AB Tk [ O, OH) OV
I<ILU/z - aug -/l;e axi (Mll an> axl de (59)
and

oRA ANB /¢ b
ges — O _ [ NN (ﬁaﬁ - 8—¢)du

mreoub 5 JQP2\ P o O

3j; INA s O]
_/Be (W T )dv—/f (N N @>da. (60)

Our finite-element procedures have been implemented in com-
mercially available software package Abaqus/Standard [1] using
a user-element subroutine (UEL). We have developed a four-
noded isoparametric quadrilateral plane-strain user-element, and
an eight-noded continuum brick user-element. In order to avoid
issues related to volumetric-locking, we utilize the F-bar method
of de Souza Neto et al. [17] for fully-integrated elements. For com-
plete details regarding the implementation of Abaqus user-element
subroutines for multi-physics problems, readers are referred to
Chester et al. [14].

The UEL is verified by comparing analytically tractable solutions
against our numerical simulations. Due to the complexity of the
fully coupled-scheme in this work, the verifications are done sepa-
rately on mechanical and diffusion part, respectively. Here, we put
our emphasis on the mechanical verification for the inclusion of
fibers since the details verifying the diffusion aspects of the UEL
have been previously reported in [14].

For the mechanical verification, a simple shear motion is pre-
scribed on a cubic gel embedded with one fiber family with a
referential direction of ag, the schematic is shown in Fig. 11a.
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Fig. 11. Comparison between analytical and numerical solutions for simple shear deformation. (a) Schematic of a cubic gel with a single fiber family embedded with
referential orientation ag undergoing simple shear deformation. The normalized stress Ti,/Go and normal stress difference (Ty; — T33)/Go is plotted against the amount of
shear y = tan@ for different fiber orientations (b) ag = [1,0,0]", (c) ag = [1/+/2,1/+/2,0]", and (d) az = [0, 1,0]".

According to Gurtin et al. [25], the corresponding deformation is
given by

1 y O
[F]=]10 1 of. (61)
0 0 1

where y =tanf denotes the amount of shear. The referential
fiber’s orientation may be written in the form

ag = [ay, a, 0], (62)

with a; and a, denote components in the x; and x, directions,
respectively. Also, to make ag a unit vector, the constraint of
/@ + a3 =1 has to be fulfilled. After taking the tensor product
operation of ag, the structure tensor Ag is given by

a2 @ma O
[Ar]=|@a, d O (63)
0 0 0

Next, two further assumptions are made: (1) The complete incom-
pressibility (i.e. J=1) is assumed for the analytical solution, and
(2) no fluid is present (i.e. ¢ = 1). Under these assumptions, the
Cauchy stress in (41) is now given by

T= (- fr)(GB—P1) +2fRE(l4 — 1) (FARF") (64)
with

_ 1o (3= Gum)?
I Gl v R (65)

I, =a+2aay +(1+y?)ad.

Note that P in (64) denotes a constitutively indeterminate pressure,
which is introduced to satisfy the incompressibility constraint.

For material parameters, we again use the same parame-
ters that are shown in Table 1 and a volume fraction fg =0.5
for the fibers. On the numerical side, to approximate a nearly
incompressible material we take K = 103Gy. Since we are in-
terested in verifying the mechanical response in the presence
of fibers, we take three independent cases, ag =[1,0,0]", ag =
[1/+/2,1/4/2,0]7, and ag = [0, 1,0], to investigate different initial
fiber orientations.

Fig. 11 compares the analytical with a single element (U3D8)
simulation for the shear stress and normal stress difference given

by
Ty = (1 — fR)Gy + 2fRE(s — 1) (ara; + a3y) (66)

and,

Ty — T3 = (1 - fR)Gy?
+2fRE(I4 — 1)(a% + 2a1a,y + a3y?)  (67)

respectively, against the numerical solutions. We note that the
stress is normalized by the initial shear modulus Gy, and the
cases ag =[1,0,0]", ag = [1/+/2,1/+/2,0]", and ag = [0, 1,0], are
shown in Fig. 11b, ¢ and d, respectively. The solid and dashed lines
represent the analytical solutions, and the markers the numeri-
cally calculated results. It is worth mentioning that the case with
the referential fiber orientation of ag =[1,0,0]" does not involve
stretching along the fiber direction, which makes the model exhibit
a pure hyperelastic response. Finally, the good agreement between
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analytical and numerical results indicate the mechanical portion
including fibers of our finite element implementation is verified.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.mechrescom.2019.02.002.
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