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Abstract

Mites (Acari) are one of the most diverse groups of life on Earth; yet, their evolu-

tionary relationships are poorly understood. Also, the resolution of broader arachnid

phylogeny has been hindered by an underrepresentation of mite diversity in phy-

logenomic analyses. To further our understanding of Acari evolution, we design tar-

geted ultraconserved genomic elements (UCEs) probes, intended for resolving the

complex relationships between mite lineages and closely related arachnids. We then

test our Acari UCE baits in‐silico by constructing a phylogeny using 13 existing Acari

genomes, as well as 6 additional taxa from a variety of genomic sources. Our Acari‐
specific probe kit improves the recovery of loci within mites over an existing general

arachnid UCE probe set. Our initial phylogeny recovers the major mite lineages, yet

finds mites to be non‐monophyletic overall, with Opiliones (harvestmen) and Ricin-

uleidae (hooded tickspiders) rendering Parasitiformes paraphyletic.
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1 | INTRODUCTION

Acari, commonly known as mites and ticks, are an extraordinary eco-

logically diverse group that occupy a wide range of niches, from mar-

ine‐living algae feeders, specialist ectoparasites to soil herbivores.

Acari are an old lineage, and their fossil record indicates that they

may have arisen in the late Silurian, with many extant superfamilies

present as far back as the early Devonian (Lindquist, Krantz, & Wal-

ter, 2009), and with a burst of diversification during the late Meso-

zoic (Krantz & Walter, 2009).

Mites have been particularly problematic for modern systematics,

with over 40,000 named species in 540 families, primarily from tem-

perate Eurasia and North America (Lindquist et al., 2009; Walter &

Proctor, 1999). Considering the paucity of data from the rest of the

world, the true species diversity of mites is likely somewhere

between 500,000 and 1 million (Walter & Proctor, 1999). Among

the major challenges for mite systematics is the small size of most

taxa, the availability of taxonomic expertise to identify them, and the

complexities of their position within Arachnida (Fernández & Giribet,

2015; Giribet & Edgecombe, 2012; Giribet, Edgecombe, Wheeler, &

Babbitt, 2002; Regier et al., 2010; Sharma et al., 2014; Shultz, 2007;

Starrett et al., 2017; Wheeler & Hayashi, 1998).

The class Acari is traditionally comprised of two major lineages

(superorders), Parasitiformes and Acariformes, that are defined pri-

marily on the basis of shared plesiomorphic traits. Parasitiformes and

Acariformes have historically been considered to be sister groups lar-

gely based on the lack of convincing evidence that they are not each

other's closest relative (Lindquist et al., 2009). There have been a

number of studies, however, suggesting that not only are Acari not a

monophyletic group, but also that the two superorders may be

somewhat distant relatives (Dabert, Witalinski, Kazmierski, Olsza-

nowski, & Dabert, 2010; Dunlop & Alberti, 2008; Pepato, da Rocha,

& Dunlop, 2010; Van der Hammen, 1989). However, problems pla-

gue the higher taxonomy, and for many orders it is unclear, based

on few studies of comparative morphology, whether even their

placement within the two superorders is correct (Dunlop & Alberti,

2008; Klußmann‐Fricke & Wirkner, 2016; Meither & Dunlop, 2016;

Shultz, 2007).

While the number of molecular phylogenetic studies on Acari is

growing, the majority are based on intrafamilial relationships (Domes,
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Norton, Maraun, & Scheu, 2007; Dowling & OConnor, 2010; Hen-

dricks, Flannery, & Spicer, 2013; Klimov & OConnor, 2008; Klimov &

OConnor, 2013; Murrell, Campbell, & Barker, 2001; Maraun et al.

2004; Mans, de Klerk, Pienaar, de Castro, & Latif, 2012; Pachl et al.,

2012). A number of taxa‐rich phylogenetic studies have addressed

the evolutionary relationships within the major mite lineages Acari-

formes and Parasitiformes based primarily on ribosomal and mito-

chondrial DNA (Dabert et al., 2010; Klimov et al., 2018; Klompen,

Lekveishvili, & Black, 2007; Murrell et al., 2005; Pepato & Klimov,

2015; Pepato et al., 2010). These studies present conflicting frame-

works of the higher‐level relationships that have yet to be tested by

large‐scale phylogenomic data. Some points of conflict are the

monophyly of Acari and Parasitiformes, and the closest relatives to

Parasitiformes and Acariformes (Garwood & Dunlop, 2014; Giribet,

2018; Pepato & Klimov, 2015).

The placement of Acari within Arachnida and their closest arach-

nid relatives are unclear. Various hypotheses have been proposed,

including Acaramorpha sistergroup relationship between Acari and

Ricinulei (hooded tickspiders). Acaramorpha, however, has not been

recovered in several molecular analyses (Garwood & Dunlop, 2014;

Legg, Sutton, & Edgecombe, 2013; Pepato & Klimov, 2015). Giribet

(2018) described the problem, “The relationships of Pseudoscorpi-

ones, Palpigradi, Ricinulei, Solifugae, Opiliones and the two acarine

clades are however poorly understood and they conflict in virtually

every published analysis of arachnid relationships.” As such, the

potential sister groups to either Acari or its major lineages seem

wide‐ranging.
Ultraconserved genomic elements (UCEs) (sensu Faircloth et al.,

2012), provide a powerful approach to sequence many independent

regions of the genome for phylogenetic inference. UCEs have pro-

ven useful in resolving evolutionary relationships at multiple phylo-

genetic scales, both shallow and deep (Blaimer et al., 2015; Faircloth,

Sorenson, Santini, & Alfaro, 2013; JeŠovnik et al., 2017; Moyle et al.,

2016; Van Dam et al., 2017). While UCEs have been developed

across many insect and arachnid orders (Faircloth, 2017; Starrett

et al., 2017), few authors have designed custom UCE probes within

these orders (with the exception of ants, Branstetter, Longino, Ward,

& Faircloth, 2017). Taxon‐specific probes target UCE loci with more

specificity and in greater numbers (Branstetter et al., 2017; Faircloth,

Branstetter, White, & Brady, 2015). UCEs, like many other genomic

subsampling methods, rely on oligonucleotide “bait” capture proce-

dures (Brewer & Bond, 2013) that can be particularly useful when

relying on specimens with degraded DNA (Blaimer, Lloyd, Guillory, &

Brady, 2016; Van Dam et al., 2017). Given the challenges with

obtaining fresh samples for taxa that are either rare or found only in

logistically challenging regions of the world, such DNA capture meth-

ods are beneficial (Bi et al., 2013; McCormack, Tsai, & Faircloth,

2016). This is especially true for mites where many species have

highly specific niches, for example the nasal cavities of birds (Morelli

& Spicer, 2007) or the cloaca of turtles (Krantz & Walter, 2009).

An existing UCE probe set designed for arachnid phylogeny

included only two mite species, both ticks (Ixodes scapularis and

Amblyomma americanum) (Faircloth, 2017) during design. To further

our understanding of Acari evolution, here we design a custom UCE

probe set specific to Acari based on 13 existing mite genomes. UCE

probe kits are typically designed with fewer genomes, but we

included nearly all available mite genomes to enhance the probe kit's

potential effectiveness across this hyperdiverse, ancient group. We

then test this probe set in‐silico on 2 additional mites and 3 other

arachnid libraries, as well as Merostomata (horseshoe crab) in order

to evaluate its effectiveness at recovering the mite phylogeny.

2 | MATERIALS AND METHODS

2.1 | Study group

We used 13 publicly available mite genomes to design a probe set

specifically for Acari (Table 1). The taxa represented in the probe

design included representatives of most, but not all, major divisions

of mites. We then performed an in‐silico test of the probes on these

taxa, plus 2 additional mites, as well as the putatively related arach-

nids groups hooded tickspider (Order Ricinulei) and saddleback har-

vestman (Order Opiliones). A spider and a horseshoe crab were used

as outgroups. The data for the additional taxa were in the form of 3

additional genomes (Dermatophagoides pteronyssinus, Limulus polyphe-

mus, Stegodyphus mimosarum), 2 low coverage “shotgun” libraries

(Cryptocellus goodnighti, Mitopus morio) and 1 UCE bait capture data

set (Neomolgus littoralis) (Table 1).

2.2 | Identification of loci and “bait” design

Our workflow follows that of Faircloth, 2017, and we used PHYLUCE

scripts (Faircloth, 2016; Faircloth et al., 2012). All programs hereafter

beginning with “phyluce” are PYTHON programs part of the PHYLUCE

package. Specifically, we used art (Huang, Li, Myers, & Marth, 2012)

to simulate paired‐end, error‐free reads for each genome that we

then used to align to our “base” genome. We simulated 100 bp

paired end reads at 2× coverage across each genome, and these

reads were then merged. We selected Tetranychus urticae (GenBank

accession number: GCA_000239435.1) as the “base” genome

because it is relatively complete and because its phylogenetic place-

ment, according to our preliminary analyses, is neither early diverging

nor recently diverging within Acari.

In order to align the genomes to the “base” and look for homolo-

gous sections, we used stampy (Lunter & Goodson, 2011). We set

the substitution rate of 0.05 and an insert size of 400. Aligned reads

were converted to the BAM format using samtools view function (Li

et al., 2009), followed by the removal of unmapped reads. Next, the

BAM files were converted to BED format using bedtools (Quinlan &

Hall, 2010). Small gaps were then removed based on alignment posi-

tion (<100) in bedtools.

These alignments were further filtered by removing repetitive

intervals using PHYLUCE v1.6 package (Faircloth, 2016) script “phy-

luce_probe_strip_masked_loci_from_set.” These filtered aligned reads

were then put into an SQLite database using “phyluce_probe_get_mul-

ti_merge_table.” The database was then queried to identify how
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many loci were shared between taxa using “phyluce_probe_query_mul-

ti_merge_table.” We then selected reads that were found in our base

taxon plus 5 other taxa (Table 2). We chose reads found across a rel-

atively high number of taxa because we wanted to have a broad

selection of loci to choose from for future possible sub‐setting. We

then extracted these loci (160 bp in total) from our bed files using

“phyluce_probe_get_genome_sequences_from_bed”.

We next focused on designing baits for these conserved regions.

First, we created a set of temporary baits using “phy-

luce_probe_get_tiled_probes” at a 3× tiling density, accepting 25%

masked bases and with a GC content between 30% < x < 70% of

the sequence to create 2 probes per locus.

We then used LASTZ (Harris, 2007) to align these baits to our exem-

plar taxa and subsequently removed any duplicates (different baits that

hit the same loci and/or multiple loci hit by the same bait) that were

≥50% identical over >50% of the loci's length using “phy-

luce_probe_easy_lastz” and “phyluce_probe_remove_duplicate_hits_from_

probes_using_lastz” to remove the aforementioned duplicates. We then

aligned these temporary Tetranychus baits to the other taxa at a 50%

sequence identity using “phyluce_probe_run_multiple_lastzs_sqlite.” These

non‐duplicated loci were then buffered 180 bp for each locus using

“phyluce_probe_slice_sequence_from_genomes”.

To identify which of these loci were detected consistently across

the different mite genomes, we used “phyluce_probes_get_multi_-

fasta_table” to produce a count of loci detected (Table 2). We

selected loci that were detected in 6 of the 13 taxa. Final baits were

designed using “phyluce_probe_get_tiled_probe_from_multiple_inputs,”

followed by removal of duplicates as before. We titled these baits

the “mite‐v2‐master‐probe‐list‐baits” for clarity.

We then tested to see how closely this bait set matched against

the “all‐Arachnid‐baits” of Faircloth, 2016. We compared the two

sets by seeing how many baits matched at a 50% similarity over

50% of the baits length.

2.3 | In‐silico test of “bait” design

In order to test how well the baits performed, we added another 3

genomes (from a dust mite, a spider and a horseshoe crab) as well as

TABLE 1 GenBank accession numbers for the taxa used in this study

GenBank

accession Taxon

Arachnida

order

Used in UCE

identification

Used in

insilico

test

Data format

origin

Insilico test

no. of

filtered

alignments

Number of

loci in

final

alignment

GCA_002081605.1 Tropilaelaps mercedesae Acari:Parasitiformes x x Genome 811 450

GCA_000828355.1 Sarcoptes scabiei Acari:Acariformes x x Genome 890 584

GCA_002085665.1 Dermatophagoides farinae Acari:Acariformes x x Genome 655 462

GCA_000988765.1 Achipteria coleoptrata Acari:Acariformes x x Genome 899 565

GCA_002135145.1 Euroglyphus maynei Acari:Acariformes x x Genome 943 591

GCA_000988845.1 Hypochthonius rufulus Acari:Acariformes x x Genome 897 584

GCA_002176555.1 Rhipicephalus microplus Acari:Parasitiformes x x Genome 364 147

GCA_000988885.1 Steganacarus magnus Acari:Acariformes x x Genome 934 584

GCA_000239435.1 Tetranychus urticae*** Acari:Acariformes x x Genome 878 547

GCA_000988905.1 Platynothrus peltifer Acari:Acariformes x x Genome 952 591

GCA_002443255.1 Varroa destructor Acari:Parasitiformes x x Genome 687 366

GCA_000255335.1 Galendromus occidentalis Acari: Parasitiformes x x Genome 700 423

GCA_000208615.1 Ixodes scapularis Acari:Parasitiformes x x Genome 731 320

GCA_001901225.2 Dermatophagoides pteronyssinus Acari:Acariformes x Genome 791 533

SRR3932788 Neomolgus littoralis Acari:Acariformes x UCE Reads 194 73

GCA_000517525.1 †Limulus polyphemus †Merostomata x Genome 231 86

GCA_000611955.2 †Stegodyphus mimosarum †Araneae x Genome 410 170

SRR3879970 Cryptocellus goodnighti Ricinulei x Shotgun

Unassembled

Reads

339 111

SRR3879969 Mitopus morio Opiliones x Shotgun

Unassembled

Reads

412 276

Notes. The higher order taxonomic placement as well as the genus and species of the taxa are listed. The *** indicates the base taxon Tetranychus urti-

cae used for conserved loci identification by aligning it to all other genomes. The outgroup Limulus and Stegodyphus are listed with a † next to its name.

The data format origin indicates what type of data was initially acquired from GenBank, genome, unassembled raw reads, or UCE loci from a previous

study (Faircloth, 2017). The in‐silico number of filtered alignments indicates how many individual loci were captured by a particular taxon in the in‐silico
test before any filtering of loci was performed for phylogenetic reconstructions.
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2 shotgun libraries (a hooded tickspider and a saddleback harvestman)

and a UCE data set (a trombiform mite Neomolgus littoralis), see

Table 1. We trimmed shotgun libraries and the raw UCE reads with

trimgalore (Krueger 2015) in order to remove adapters and low‐quality
bases. We assembled the two shotgun libraries using ABYSS 2.0 (Jack-

man et al., 2017), selecting an optimal khmer size with KMERGENIE

(Chikhi & Medvedev, 2014). We assembled the UCE raw reads using

“phyluce_assembly_assemblo_trinity” with TRINITY v2013–02–25 (Grab-

herr et al., 2011). For the data sets excluding the UCE data, we used

“phyluce_probe_run_multiple_lastzs_sqlite” to align our probes to gen-

omes and then extract 400 bp to either side using “phy-

luce_probe_slice_sequence_from_genomes” followed by duplicate

removal using “phyluce_assembly_match_contigs_to_probes” with 67%

minimum coverage 80% minimum match in identity. We then used

“phyluce_assembly_get_match_counts” and “phyluce_assembly_get_fas-

tas_from_match_counts” to extract the loci that matched our probes

into one large fasta file. For the UCE data set, we separately used

“phyluce_assembly_match_contigs_to_probes” and “phyluce_assem-

bly_get_match_counts” to identify UCE loci that matched our probes

as before. Then using “phyluce_assembly_get_fastas_from_match_-

counts,” we created a fasta file for our UCE loci data set. We concate-

nated these two files (UCE loci identified from genomes/assembled

shogun libraries and UCE capture data) into one large fasta file.

We then aligned the sequences using muscle (Edgar, 2004), “phy-

luce_align_seqcap_align” also removing alignments with less than or

equal to 3 taxa present. Then, we trimmed internal gaps using

gblocks (Castresana, 2000) with “phy-

luce_align_get_gblocks_trimmed_alignments_from_untrimmed.” We then

compiled a list of loci shared across taxa using “phy-

luce_align_get_align_summary_data” and cleaned the names of the

files with “phyluce_align_remove_locus_name_from_nexus_lines.”.

We then took these nexus files and using the R package ips

(Heibl, 2008) removed any ragged ends with the function “trimEnds,”

having a minimum of 4 taxa present in the alignment.

2.4 | Phylogenetic reconstructions of exemplar taxa

2.4.1 | Species tree analyses

Using R/unix scrips modified from Van Dam et al., 2017, we desig-

nated 6 character sets for each loci (the UCE central core, 160 bp,

and 5 matching sets, each composed of 1/5 the remaining flanking

length) (see Figure 1) and then used partitionfinder2 (Lanfear, Frand-

sen, Wright, Senfeld, & Calcott, 2016) to evaluate these different

character sets into site rate partitions before individual gene trees

were constructed. First, we created matrices by only including those

alignments that are ~50% complete, with 9 or more taxa present.

We then ran a partitioned maximum‐likelihood (ML) analysis in RAXML

8.2.11 (Stamatakis, 2014) with 100 bootstrap replicates for each

locus. A General Time Reversible +gamma (GTRGAMMA) site rate

substitution model was used for each locus. Lastly, we used a modi-

fied R script from Borowiec, Lee, Chiu, & Plachetzki, 2015, to

remove trees with the lowest 10% quantile of average bootstrap val-

ues. We also removed outlier loci that were potentially oversatu-

rated, calculated as departure from a linear regression between

uncorrected p‐distances and inferred distances of the tips. We then

constructed a species tree using ASTRAL‐III (Zhang, Sayyari, & Mir-

arab, 2017). In addition, we also constructed a species tree with the

same set of loci using SVDquartets (Chifman & Kubatko, 2015) in

Paup* (Swofford, 2001). SVDquartets is expected to be more accu-

rate than ASTRAL when there are few phylogenetically informative

sites among loci, so we chose to use both of these two methods

given possible biases in our loci (Molloy & Warnow, 2017).

2.4.2 | Concatenated analyses

We used this final set of alignments from above by first converting

them from phylip to nexus using the R ips function “write.nex” and

then concatenated the alignments using “phyluce_align_for-

mat_nexus_files_for_raxml.” We partitioned the data set using each

locus as a character set with the “greedy” search algorithm (Lanfear,

Calcott, Ho, & Guindon, 2012) to select for the best partitioning

strategy for the data under the GTRGAMMA site rate substitution

model using the AICc metric. We then conducted 20 ML searches in

RAXML 8.2.11, and used the autoMRE setting to determine a suffi-

cient number of non‐parametric bootstrap replicates. Lastly, we rec-

onciled the bootstrap replicates with the best fitting ML tree.

3 | RESULTS

3.1 | Loci Identification and “bait” design

We identified a total of 1,832 conserved loci and 32,922 baits for

the final bait design. The average number of taxa represented in

each bait set per‐loci is 9 (SE 0.04, 95% CI 8.89–9.07) of the 13 taxa.

The mean number of loci targeted per taxon is 1,266 (SE 92.61, 95%

CI 1,081–1,451). For details for specific taxa see Table 3.

TABLE 2 Number of loci shared between taxa

Shared between # of taxa Loci shared between taxa count

Shared by 1 2,514

Shared by 2 2,474

Shared by 3 2,415

Shared by 4 2,322

Shared by 5 2,211

Shared by 6*** 2,058

Shared by 7 1,856

Shared by 8 1,619

Shared by 9 1,290

Shared by 10 922

Shared by 11 551

Shared by 12 227

Shared by 13 40

The *** indicates the design that was chosen for this bait set, 2,058 loci

shared between 6 of 13 taxa.

468 | VAN DAM ET AL.



When we compare the “mite‐v2‐master‐probe‐list‐baits” against

the “all‐Arachnid‐baits” (Faircloth, 2017), we found that 477 loci

matched at a 50% identity over 50% coverage between bait sets. If

we increased the metrics of similarity to 80% identity over 80% cov-

erage, 303 duplicated loci where found. Lastly, if we looked for

100% matches over the full probe length, we only found 2 loci.

3.2 | In‐silico test of bait design

We initially filtered loci to include those represented by greater than

3 taxa which resulted in 1,437 loci. This subset was further filtered

to only include alignments that had 9 or more taxa present (47%),

representing 713 loci. These loci have a mean length of 302.58 bp, a

mean number of taxa per locus of 11.71 (Figure 2), and a mean num-

ber of 135.39 phylogenetically informative sites (Figure 3). Loci

length was highly correlated with the number of phylogenetically

informative sites p‐value: <2.2e–16, see Figure 4. Removing the low-

est 10% quantile of average bootstrap support trees and potentially

over saturated outlier loci resulted in retaining 643 loci. This final

data set was then used for phylogenetic reconstructions.

3.3 | Phylogenetic reconstructions of exemplar taxa

3.3.1 | Concatenated analyses

Our concatenated analysis returns a non‐monophyletic Acari. A

monophyletic Acariformes is recovered as well as its major subdivi-

sions, Trombidiformes and Sarcoptiformes. Sister group to Acari-

formes is a paraphyletic Parasitiformes, with the non‐mite groups,

saddlebacked harvestman (Opiliones) and hooded tickspider (Ricin-

ulei), placed inside Parasitiformes. Ricinulei is placed as sister to

ticks (Ioxdida) and Opiliones as sister to (Ricinulei +ticks), with the

remaining Parasitiformes, Mesgostigmata, sister to Opiliones +

(Ricinulei +ticks). These relationships are relatively well supported,

excluding the placement of the harvestman and hooded tickspider

(Figure 5).

3.3.2 | Species tree analyses

The results from the Partitionfinder analysis of our initial six charac-

ter sets, (the UCE central core: 160 bp, and 5 matching sets, each

composed of 1/5 the remaining flanking length) identified 466 loci

with a single partition, 222 with 2 partitions and 25 with 3 parti-

tions, there were 0 loci of greater than 3 partitions.

Our ASTRAL species tree analysis recovered a monophyletic

Acari, though support along the backbone of the trees is lacking (Fig-

ure 6). The ASTRAL tree recovers essentially a polytomy between

two major monophyletic clades of mites, Parasitiformes and Acari-

formes, and the single Opiliones represented. Ricinulei is included in

a basal polytomy with Araneae and the horseshoe crab Limulus. The

SVDquartets tree has a similar topology within the ingroup as the

ASTRAL tree, but varies in the relationships between the mites’ close

relatives and recovers a paraphyletic Parasitiformes, with ticks as the

closest relative to the remaining mites. Another primary difference

between the Astral topology and that of the concatenated and

SVDquartets tree is that in the Astral tree, Trombidiformes is non‐
monophyletic, with the spider mite placed as the sister group to

Astigmata.

4 | DISCUSSION

Here, we present a novel toolkit to facilitate future, comprehensive

phylogenomic studies of Acari. Our initial test of this toolkit provides

the first phylogenomic estimation of Acari and succeeds in recover-

ing major mite lineages (Figure 5). Our analyses here do not aim to

resolve mite phylogeny with sufficient taxon sampling, but instead,

demonstrate the potential of our Acari probe kit for generating suffi-

cient data for resolving major outstanding questions regarding the

relationships among mites.

Our phylogenetic analyses, based on few exemplar taxa, do not

recover a monophyletic Acari. Both our concatenated and species

tree analyses indicate that closely related non‐mite arachnids may

render the mites non‐monophyletic. Previous molecular analyses
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have also recovered a non‐monophyletic Acari (Dabert et al., 2010,

Pepato et al., 2010, Pepato & Klimov, 2015). Here, Opiliones alone,

or Opiliones and Ricinulei together exhibit affinity with Parasiti-

formes (Figures 5 and 6). Ricinulei has long been considered a close

Acari relative (Weygoldt & Paulus, 1979), but we find a novel place-

ment of Opiliones, possibly resulting from our limited taxon sampling

of closely related arachnids. Our study did not include previously

proposed Acari relatives such as Solifugae and Pseudoscorpiones.

Though our placement of Opiliones may be spurious, a previous

rDNA phylogenetic study could not exclude the placement of Opil-

iones as sister group to Acari (Pepato et al., 2010).

We consistently recover a monophyletic Acariformes, yet a non‐
monophyletic Parasitiformes. Even when non‐mites are excluded,

Parasitiformes may be paraphyletic with respect to the remaining

mites (Figure 6). Future work needs to include adequate sampling of

closely related non‐tetrapulmonate arachnid outgroups as well as

dense sampling within “Parasitiformes” to resolve these outstanding

questions in the acarine tree of life.

TABLE 3 Distribution of the number of probes per taxon,
followed by the number of loci targeted per taxon

Taxon Number of probes Number of loci

Tropilaelaps mercedesae 2,294 1,147

Sarcoptes scabiei 3,005 1,503

Dermatophagoides farinae 2,189 1,095

Achipteria coleoptrata 3,071 1,536

Euroglyphus maynei 2,906 1,453

Hypochthonius rufulus 3,116 1,558

Rhipicephalus microplus 962 481

Steganacarus magnus 3,033 1,517

Tetranychus urticae*** 3,150 1,575

Platynothrus peltifer 3,064 1,532

Varroa destructor 2,002 1,001

Galendromus occidentalis 2,271 1,136

Ixodes scapularis 1,859 930

Total unique 32,922 1,832

The base taxon Tetranychus urticae is indicated with ***.
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Our concatenated topology is generally well‐supported; yet, the
taxa with the fewest number of loci tend to have lower bootstrap

support and unstable placement. Taxa represented by fewer loci,

including Ricinulei, Opiliones and the trombidiform mite Neoglomus,

are represented by data that were not captured from high‐quality
genomes, but instead from unassembled shotgun sequencing reads,

or in the case of Neoglomus from a previously captured arachnid

UCE data set. The pre‐existing sequences that were used for capture

in these cases insufficiently represented the genomes of these taxa

(Table 1) in terms of phylogenetic loci recovery. We expect that loci

recovery from these taxa would be higher based on new extractions

with more sequencing data. However, considering that only 170

Neoglomus loci were recovered from the arachnid UCE data set of

Starrett et al., 2017, indicates effectiveness of the mite baits.

Our bait design purposefully selected loci to be less highly con-

served (uniformly present), occurring in just 6 of the 13 taxa used for

bait design. We relied on this less conserved design, first, because we

were uncertain of how genome completeness could give a false indi-

cation of locus absence in a taxon. Secondly, we expected that this

more inclusive probe design may allow for the capture of more loci

within particular groups, for example Acariformes, as opposed to

being primarily designed to capture loci found across both
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Acariformes and Parasitiformes. Ultimately, our design was conserva-

tive enough to capture, in‐silico, hundreds of loci from not only puta-

tively close mite relatives, like hooded tickspiders (Ricinulei), but also

groups more distantly related to Acari, like a spider, horseshoe crab

and in particular, saddleback harvestman (Opiliones). This relatively

high level of locus recovery from Opiliones may be due either to the

completeness of the Opiliones genome we relied on, or represent the

actual phylogenetic affinity between Acari and Opiliones. In the previ-

ous arachnid UCE study (Starrett et al., 2017), they recovered on aver-

age 359.4 loci for Opiliones. For our one exemplar Opiliones

(Mitopus_morio), we recovered 412 loci, which was greater than the

highest number of loci, 406, recovered by Starrett et al., 2017. These

results suggest that although our bait set was designed for Acari, it

performs as well as the Faircloth, 2017 “all‐Arachnid‐baits” for Opil-

iones.

To understand the relationship of the superorders of Acari to

one another, as well as their relationships to other arachnid orders,

it is clear that a more thorough taxon sampling of Acari and Arach-

nida is required. No molecular analyses to date, including ours, have

included all relevant mite and arachnid taxa to conclusively test mite

monophyly. Acari may hold the key to understanding early arachnid

evolution, which has remained unresolved even in the genomic era

(Fernández & Giribet, 2015; Giribet & Edgecombe, 2012; Giribet

et al., 2002; Mans et al., 2012; Pepato & Klimov, 2015; Regier et al.,

2010; Sharma et al., 2014; Shultz, 2007; Starrett et al., 2017;

Wheeler & Hayashi, 1998). We hope that by contributing this novel

probe set, our understanding of the relationships among Acari, and

indeed, arachnid phylogeny as a whole, can progress.
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