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ABSTRACT
Scientific data analysis pipelines face scalability bottlenecks when

processing massive datasets that consist of millions of small files.

Such datasets commonly arise in domains as diverse as detecting

supernovae and post-processing computational fluid dynamics sim-

ulations. Furthermore, applications often use inference frameworks

such as TensorFlow and PyTorch whose naive I/O methods exacer-

bate I/O bottlenecks. One solution is to use scientific file formats,

such as HDF5 and FITS, to organize small arrays in one big file.

However, storing everything in one file does not fully leverage the

heterogeneous data storage capabilities of modern clusters.

This paper presents Henosis, a system that intercepts data ac-

cesses inside the HDF5 library and transparently redirects I/O to

the in-memory Redis object store or the disk-based TileDB array

store. During this process, Henosis consolidates small arrays into

bigger chunks and intelligently places them in data stores. A critical

research aspect of Henosis is that it formulates object consolida-

tion and data placement as a single optimization problem. Henosis

carefully constructs a graph to capture the I/O activity of a work-

load and produces an initial solution to the optimization problem

using graph partitioning. Henosis then refines the solution using a

hill-climbing algorithm which migrates arrays between data stores

to minimize I/O cost. The evaluation on two real scientific data

analysis pipelines shows that consolidation with Henosis makes

I/O 300× faster than directly reading small arrays from TileDB and

3.5× faster than workload-oblivious consolidation methods. More-

over, jointly optimizing consolidation and placement in Henosis

makes I/O 1.7× faster than strategies that perform consolidation

and placement independently.

1 INTRODUCTION
The data volume processed by scientific pipelines is increasing

rapidly. Scientific pipelines in various domains, such as plasma

simulation [9], climate modeling [16], transient detection [19], and

computational fluid dynamics, analyze massive amounts of array

data that range up to petabytes. For example, the Large Hadron

Collider produces approximately 15 petabytes of data annually, and

the Sloan Digital Sky Survey (SDSS) [7] archives terabytes of data

for hundreds of millions of astronomical objects.
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Although the aggregate data volume of many datasets is enor-

mous, individual observations are often stored as independent small

files for downstream processing. The supernovae detection pipeline

in the ASAS-SN sky survey stores detected transient stars in sepa-

rate 1.7 KB files [19]; a vortex prediction pipeline on the simulation

of a Mach 1.3 jet produces vortices with average size 8 KB [36];

sequencing the human genome produces nearly 30 million files av-

eraging 190 KB each [8]; and 20 million images served by SDSS are

less than 1 MB on average [7]. These files are small compared with

the typical block sizes of modern file systems. For example, the de-

fault block size of the Hadoop Distributed File System (HadoopFS)

is 64 MB and the default stripe size of the Lustre parallel file system

is 1 MB. Achieving respectable I/O performance when accessing

a large number of small files is particularly challenging for a dis-

tributed file system. In addition, it is cumbersome and error-prone

for users to organize large collections of small files manually.

One solution that has been embraced by scientists is storing

such datasets in array-centric file formats like HDF5, netCDF and

FITS. These file formats arrange collections of objects in an inter-

nal hierarchy, offer richer metadata support than file systems, and

store entire collections of objects as a single file. However, these

file format libraries adopt a monolithic design that tightly couples

an array-centric API with a particular physical data layout. This

monolithic design is not well-suited to the heterogeneous I/O ca-

pabilities of modern clusters. Storing everything in one file in the

parallel file system does not fully utilize nodes with large memory

or nodes with locally attached flash-based storage. A large mem-

ory node would be an ideal deployment setting for an in-memory

key/value store such as Redis, while fast locally-attached storage

can be utilized with a locality-conscious file system in user space,

such as HadoopFS. Unfortunately, established array-centric file

format libraries do not support multiple storage backends with

heterogeneous I/O capabilities.

This paper describes Henosis, an I/O library that allows HDF5-

based programs to consolidate, place and read small arrays on

heterogeneous data stores. The prototype implementation of Heno-

sis that we describe in this paper supports two storage backends:

(1) Redis [25], an in-memory object store with a key/value interface,

and (2) TileDB [28], an array management system for distributed

file systems such as HadoopFS. By leveraging the recent virtual

object (VOL) interface of the HDF5 library, existing HDF5 applica-

tions can benefit from the I/O optimizations of Henosis without

recompilation, as Henosis makes no modifications to the public

HDF5 API and can be dynamically loaded at runtime.

The research question that naturally arises when supporting

multiple storage backends is how one should physically lay out

array data across data stores with heterogeneous I/O capabilities.

Consider, for example, the Redis and TileDB data stores mentioned
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Figure 1: Read throughput of Redis, an in-memory object
store, and TileDB, a disk-based array store, when accessing
small (1.7 KB) and large (1.7MB) objects. Redis is nearly 100×

faster than TileDB with small objects, but read throughput
is statistically indistinguishable with large objects.

earlier. If one stores small objects that are 1.7 KB each, the read

throughput of Redis outperforms TileDB by nearly 100×, as shown

in Figure 1. This is an instance of the data placement problem on

heterogeneous storage systems, a topic which has been well-studied

in prior literature [11–13, 24, 31, 38]. Yet, if one stores objects that

are 1.7 MB each, the read throughputs of TileDB and Redis become

statistically indistinguishable. Although consolidation is less ex-

plored in prior research, the results clearly show that it has the

potential to equalize I/O performance as long as the requested

small objects can be consolidated into sufficiently big chunks. How-

ever, consolidation and placement are not orthogonal optimizations:

A consolidation-oblivious placement algorithm misses opportuni-

ties to place data in a manner that benefits from sequential I/O.

Conversely, a placement-oblivious consolidation algorithm cannot

differentiate between fast and slow I/O devices that often co-exist

in modern HPC systems.

This paper describes how Henosis formulates consolidation and

placement as a single optimization problem. Henosis carefully con-

structs a graph to capture the I/O activity and produces an ini-

tial solution to the optimization problem using graph partitioning.

Henosis then uses a hill-climbing algorithm to iteratively refine

the solution by migrating arrays between data stores to minimize

an I/O cost metric. Experimental results from Henosis on two real

scientific pipelines, transient star detection and vortices prediction,

show that Henosis speeds up I/O by 300× compared with native

TileDB (which doesn’t support consolidation) and 3.5× compared

with workload-oblivious consolidation methods. The iterative re-

finement procedure in Henosis speeds up I/O performance by nearly

3× compared with the initial solution from graph partitioning and

1.7× compared with two strategies that perform consolidation and

placement independently.

The main contributions of this paper are:

(1) We formulate array consolidation and placement as a single op-

timization problem that allows both techniques to be considered

simultaneously.

(2) We design a heuristic method to optimize the array storage plan

that consists of two steps. The first step devises an initial stor-

age plan by creating and partitioning a query-weighted graph.

The plan is then iteratively refined by moving arrays between

TileDB and Redis based on an I/O cost metric.

(3) We design and implement an I/O library prototype, Henosis,

to transparently consolidate, place and read small arrays for

HDF5 applications. The evaluation, based on two real workloads,

shows that Henosis accelerates I/O by 300× compared with

native TileDB and 1.7× over workload-oblivious consolidation

and placement strategies.

The remainder of the paper is structured as follows. Section 2 pres-

ents necessary background on the HDF5 library. Section 3 describes

two application drivers that process small arrays. Section 4 de-

scribes the Henosis architecture. Section 5 formulates consolidation

and placement as a single optimization problem, and proposes a

heuristic method to optimize the array storage plan based on graph

partitioning and the hill climbing technique. Section 6 follows with

more details about the implementation. Section 7 describes the ex-

perimental setup and presents the performance evaluation, Section

8 presents related work, and Section 9 concludes.

2 BACKGROUND
This section first introduces the array model which is prevalent

in scientific computing. It then describes two new features of the

HDF5 array library, namely the virtual dataset (VDS) and the virtual

object layer (VOL), which allow Henosis to transparently store and

consolidate arrays on different storage backends. Although this

paper focuses on the HDF5 library, the consolidation and placement

techniques are also applicable to other array formats.

Scientific datasets in various domains such as astronomy, physics,

and medicine can be represented by arrays. Arrays are said to be

dense when every cell has an associated value, or sparse when

the majority of the cells are empty. Sparse arrays are sometimes

stored as dense arrays after filling all empty cells with a null value.
Dense arrays are commonly stored in a chunked layout. A chunk

is a subarray bounded by a (hyper-)rectangle that covers adjacent

cells. Chunks commonly have a fixed user-defined size, although

research prototypes like ArrayStore support irregular chunks that

cover a different volume of the coordinate space [34].

HDF5 is a prominent scientific data format used tomanage arrays

and is the one we have developed Henosis on. The two HDF5

operations of interest are read and write. The read operation returns

the values of any subset of the cells in an array. Inversely, the

write operation updates a subset of the cells in an array. In both

operations, users define the accessed cells either as a set of (hyper-

)rectangles or as a list of points.

Virtual object layer: The virtual object layer (VOL) is a new ab-

straction layer in HDF5 that allows one to intercept and inject I/O

operations without modifying the application-facing public HDF5

interface. VOL intercepts all the function calls that manipulate data

and routes them to a custom, user-defined virtual object driver. The

driver is a C program that performs user-defined operations, such

as storing data in another representation. Henosis implements a

VOL driver that redirects I/O operations to other storage backends.

This allows existing HDF5 applications to leverage the Henosis

functionality without modification.

Virtual datasets: The virtual dataset (VDS) is a recent feature

of the HDF5 library that allows one to construct non-materialized

array views on HDF5 datasets. A virtual dataset defines a mapping
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Figure 2: Transient star detection in ASAS-SN.

from a set of (hyper-)rectangles in one or more source datasets to a

contiguous target address space. After a virtual dataset has been cre-

ated, applications access the target address space using the standard

HDF5 programming interface. When the target address space is ac-

cessed, the data corresponding to this access will be retrieved from

the source locations defined in the mapping. The virtual dataset

feature allows Henosis to physically store data contiguously in a

large array but present the logical view of many small objects to

existing HDF5 applications. By defining these virtual datasets, reads

or writes to small arrays will be transparently redirected by the

HDF5 library to a large chunk that consolidates many small arrays.

3 APPLICATION DRIVERS
Henosis is motivated by the complex I/O patterns of modern appli-

cations that use data mining and machine learning techniques on

large complex datasets. Many ML-centric data processing pipelines

operate on a large number of small arrays that are processed and

managed individually. These small arrays are typically produced

once, often by a classification and segmentation procedure from a

much larger dataset. Then the small arrays are analyzed multiple

times. In-place updates to individual small arrays are rare and are

usually done manually by scientists. We observed this pattern in

two scientific application drivers that analyze observational and

simulation data, respectively.

Supernovae detection in large-scale astronomy sky surveys. Large-
scale systematic astronomy sky surveys search for transient, vari-

able stars at multiple optical frequencies. One such project is ASAS-

SN [19]. During transient detection in ASAS-SN, the sky survey

image data are segmented into many small 21 × 21 pixel images,

each 1.7 KB in size, shown as a1,a2, ...,a6 in Figure 2. The pipeline

analyzes these arrays by a Convolutional Neural Network-based

classifier in TensorFlow to detect supernova. Because the images

are classified independently, the pipeline can be executed on several

nodes concurrently to process disjoint subsets of the sky survey im-

ages. Figure 2 shows three nodes evaluating the detection pipeline

independently, each of which processes two images.

Vortices prediction in computational fluid dynamics simulations.
The need to manage small arrays also arises during the analysis of

simulations of complex phenomena, such as computational fluid

dynamics. One such analysis focuses on vortex prediction in tur-

bulent flows. Turbulent flows are characterized by a broad range

of spatial and temporal fluctuations. Vortices are fluctuations that

occur across larger scales, and retain their signature over prolonged

durations in space and time. Vortices prediction isolates coherent

structures from the fluid flow and predicts their dynamics [41].

In this pipeline, density-based spatial clustering (DBSCAN) and

machine learning (LSTM) are used to predict acoustic emissions

Figure 3: Vortices prediction in a Mach 1.3 jet.

of a supersonic jet. This pipeline accesses a large number of vor-

tices that are stored as independent small arrays when identifying

vortices in each timestamp. Figure 3 shows arrays a1,a2,a3 from
simulation timestamp t = 1, 2, 3, respectively. The vortices that

were identified in the three simulation timestamps are bounded by

rectangles with solid lines. There are two types of queries in this

pipeline which are indicated with a dashed box in Figure 3. The

first query type tracks vortices between timestamps and accesses

files that intersect a spatio-temporal box. For example, node 1 in

Figure 3 reads vortices where 3.5 ≤ X ≤ 4.25, 0.4 ≤ Y ≤ 0.7 and

1 ≤ t ≤ 2. The second query type accesses all vortices in a given

timestamp for visualization. For example, node 2 in Figure 3 reads

all vortices for timestamp t = 3.

4 SYSTEM OVERVIEW
Henosis facilitates small array management by consolidating and

placing small arrays on data stores with heterogeneous I/O capa-

bilities. Henosis stores arrays in two data stores, TileDB and Redis.

Henosis stores an array either as a single key/value item in Redis or

it consolidates multiple small arrays into a chunk in a TileDB array.

Henosis does not currently replicate arrays across data stores.

One required parameter to create a TileDB array is the chunk

size. When the TileDB chunk size is small, more I/O requests are

sent to the underlying file system. When the chunk size is large,

more data are transferred if users only request a subset of small

arrays in a chunk. The impact of this configuration parameter is

evaluated in Section 7.2.3.

Figure 4 shows the Henosis optimization workflow. Henosis

first monitors and logs the access patterns of HDF5 applications to

produce a workload specification. A workload specification tracks

Figure 4: The Henosis optimization workflow.
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Figure 5: The Henosis system architecture.

which small arrays are requested by each process of the observed

application. Sections 5.1 formally defines the workload specification.

Henosis then generates a storage plan through the optimization pro-

cess described in Sections 5.2 and 5.3. The storage plan determines

how small arrays will be consolidated and placed on TileDB and

Redis. An offline process performs consolidation and placement of

the data based on the storage plan.

Henosis intercepts I/O to small arrays and redirects them to the

appropriate data store at runtime. Figure 5 shows the architecture

of the Henosis system. If one looks at the software stack of HDF5

applications, Henosis sits below the HDF5 library and above the

Redis and TileDB data stores. Henosis is composed of four main

components, namely the I/O Interceptor, the Storage Tuner, and two

backend drivers for TileDB and Redis. The I/O Interceptor is virtual
object layer (VOL) driver for the HDF5 library that intercepts I/O-

related function calls, such as the read method (H5Dread) of the
HDF5 API. When a process requests to read a small array, Henosis

transparently forwards the I/O request to the appropriate data store

and logs the access pattern. The Storage Tuner finds a storage plan
based on the observed access pattern. It then consolidates and places

small arrays based on the storage plan. The TileDB Driver and the

Redis Driver read data from TileDB and Redis respectively.

Henosis is a first step towards data independence for scientific
data analysis. With Henosis, applications can remain agnostic to the

underlying data storage layout and program against the standard

array-centric HDF5 interface. The main advantage of designing

Henosis to work behind an array file format library interface is easy

adoption by existing applications. This way Henosis can optimize

data placement and accelerate I/O without additional effort from

application developers.

5 THE STORAGE OPTIMIZATION PROBLEM
5.1 Preliminary Definitions

Capacity constraints. Redis and TileDB cannot store an unlimited

number of small arrays due to the finite space of disk and memory.

We denoteCkeys as the maximal number of small arrays that Redis

can store. TileDB stores up to Cchunks chunks. The consolidation
factor Cf is the number of small arrays that can be consolidated

into a TileDB chunk. Hence, Henosis stores at most Cchunks ×Cf
small arrays in TileDB.

Storage plan. Given a set of small arrays A = {a1,a2, · · · ,aN },
a storage plan is a partitioning over A. One partition, referred to

as the Redis partition, contains small arrays stored in Redis, and

all other partitions contain small arrays that are consolidated in

TileDB chunks. Due to the capacity constraints, the size of the

Redis partition cannot be greater than Ckeys and the sizes of the

other partitions cannot be greater than Cf . A storage plan ⟨S, L⟩ is
represented as two 0/1 variables, a matrix S and a vector L, which
are defined as follows:

Si , j =

{
1, if array aj is stored in TileDB chunk i

0, otherwise

Lj =

{
1, if array aj is stored in Redis

0, otherwise

(1)

Workload specification. Assume Henosis observes P processes

accessing N small arrays. The workload specificationW is a P × N
matrix that is constructed as such:

Wi , j =

{
1, if process pi reads array aj

0, otherwise

(2)

Example. Figure 6 shows an example of the I/O optimization in

Henosis. Figure 6a shows seven processes, p1, ...,p7, accessing eight
small arrays a1, ...,a8. The workload specificationW is shown in

Figure 6b. Suppose that the I/O optimization procedure determines

that a4 and a5 will be stored in Redis, and two TileDB chunks

will consolidate {a1,a2,a3} and {a6,a7,a8} respectively. Figure 6c
shows the storage plan ⟨S, L⟩ for this configuration.

5.2 Problem Definition
Let Tchunk and Tkey be the time to access a TileDB chunk and a

Redis key/value item. Given a a storage plan ⟨S, L⟩ and a workload

specificationW , which represents P processes accessing N arrays,

we define the cost function cost(S, L,W ) as:

cost(S, L,W ) = Tchunk × count(SW
T)

+ Tkey × sum(WL)
(3)

The count(·) function counts the number of non-zero elements

in the input matrix, and the sum(·) function returns the sum of all

elements in the input matrix. Cell (i, j) of the matrix SW T
is the

number of arrays process pj reads from TileDB chunk i . Element j
of the vectorWL is the number of arrays that process pj will read
from Redis. For TileDB, it suffices to count non-zero elements in

SW T
because all arrays in a chunk are retrieved in a single I/O

operation regardless of how many are actually accessed. For Redis,

it is necessary to sum all accesses because arrays are stored as

separate key/value items which require multiple I/O requests.

Consider the workload specification W and the storage plan

⟨S, L⟩ shown in Figure 6. The model estimates a total of two TileDB

chunk accesses, as count(SW T) = 2, and twelve Redis key/value ac-

cesses, as sum(WL) = 12. Therefore from Formula 3, cost(S, L,W ) =
2Tchunk + 12Tkey .

There are three constraints a valid solution must meet. Due to

limited memory for Redis, the number of non-zero elements in

L, sum(L), cannot be larger than Ckeys . Similarly for TileDB, the

number of non-zero elements in each row i in S , sum(Si ,:), cannot
exceed Cf . Given that Henosis does not replicate data, array aj
must be stored exactly once, hence either Lj = 1 or sum(S : , j ) = 1.

We now define the Storage Optimization problem:
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(a) Access pattern.

Requested arrays a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8

p1 = {a1,a2,a3,a4}

W =



1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0



p2 = {a5,a6,a7,a8}
p3 = {a4,a5}
p4 = {a4,a5}
p5 = {a4,a5}
p6 = {a4,a5}
p7 = {a4,a5}

(b) Workload specificationW .

TileDB
Stored arrays a

1
a
2
a
3
a
4
a
5
a
6
a
7
a
8

Chunk 1 {a1,a2,a3} S =

[
1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1

]
Chunk 2 {a6,a7,a8}

Redis
Stored arrays a

1
a
2
a
3
a
4
a
5
a
6
a
7
a
8

{a4,a5} LT = ⟨0, 0, 0, 1, 1, 0, 0, 0⟩

(c) Storage plan ⟨S , L⟩.

Figure 6: Example of the storage optimization in Henosis.

Storage Optimization Problem. Given a workload specification
W find a storage plan ⟨S, L⟩ that minimizes cost(S, L,W ):

argmin

⟨S ,L⟩
cost(S, L,W )

such that sum(Si ,:) ≤ Cf ∀i ∈ [1,Cchunks ]

sum(L) ≤ Ckeys

sum(S:, j ) + Lj = 1 ∀j ∈ [1,N ]

(4)

5.3 Optimization Procedure
Finding the optimal storage plan is not easy. The number of 0/1

variables is N ×(Cchunks +1) and both N andCchunks can be in the
millions even for modestly-sized datasets. In addition, the objective

function of the Storage Optimization Problem is non-polynomial.

Henosis uses a heuristic optimization procedure, shown in Al-

gorithm 1, to obtain an initial solution and then iteratively refine

the solution to lower the total cost. The algorithm proceeds in two

phases. The algorithm first obtains an initial storage plan ⟨S0, L0⟩
by graph partitioning, as described in Section 5.3.1. This initial stor-

age plan is then iteratively refined to reduce its cost by migrating

arrays between Redis and TileDB, as described in Section 5.3.2. The

iterative refinement stops when no migrations are possible.

Algorithm 1: Henosis I/O optimization algorithm

⟨S0, L0⟩ ← initialize a storage plan by graph partitioning;

repeat
u ← a set of TileDB arrays in Si−1 with the largest

benefit that take less than the free space in Redis;

if bene f it(u) > 0 then
⟨Si , Li ⟩ ← migrate all arrays in u to Redis;

foreach Redis array k in Li−1 do
c ← the TileDB chunk that can store k and achieves

the largest cost reduction from migration;

if cost reduction > 0 then
⟨Si , Li ⟩ ← migrate k to TileDB chunk c;

until ⟨Si , Li ⟩ = ⟨Si−1, Li−1⟩;

5.3.1 Initial storage plan. Intuitively, the cost is minimized when

small arrays with high co-access frequency are stored in the same

TileDB chunk, because these arrays can be retrieved using a single

I/O operation. In the example shown in Figure 6, process p1 needs
to only issue a single I/O request to read small arrays a1,a2 and a3,
because they are consolidated into one chunk. In contrast, p1 would

issue multiple I/O requests if the three small arrays were stored in

different chunks or in Redis. Based on this empirical observation,

Henosis obtains the initial storage plan by solving a partitioning
problem to group co-accessed arrays together.

Graph partitioning has been used in prior work such as Schism

[15] to minimize cross-partition transactions in transaction process-

ing workloads. Schism builds an object-weighted graph to represent

small arrays and workloads. Nodes in the graph are objects and an

edge connects two nodes if the two objects are co-accessed by the

same processes. The weight of the edge is the number of processes

that co-access the two objects. Figure 7a shows the object-weighted

graph that will be constructed for the example shown in Figure 6a.

The graph is partitioned such that the partition sizes are balanced

and the sum of the weights of the edges that are cut is minimized.

The problem with partitioning an object-weighted graph is that it

is agnostic to the number of accesses a process performs. Hence, it

is often prone to scattering co-accessed arrays to different chunks.

Consider how to create two equally-sized partitions in Figure 7a.

The minimum cut splits a4 and a5 to different partitions, although

they are co-accessed by all but two processes.

Henosis uses a query-weighted graph to guide partitioning. The

query-weighted graph represents small arrays as nodes and con-

nects two nodes if the arrays are co-accessed by the same process.

However, the edge weight calculation is different: edge weights are

initialized to zero and increase as processes are added to the graph.

Assume process pi accesses |pi | arrays and is added to the graph.

Edge e connects two arrays which are both accessed by pi . In the

query-weighted graph, the weight of e increases by 2

|pi |×( |pi |−1)
.

Thus, the sum of edge weights increases by 1 for each process re-

gardless of how many arrays the process accesses. Figure 7b shows

how the query-weighted graph is partitioned. Any minimum cut

that produces two equal partitions keeps arrays a4 and a5 in the

same partition, as the query-weighted graph has reduced the edge

weights for all other node pairs from 1 to
1

6
.

(a) Object-weighted graph. (b) Query-weighted graph.

Figure 7: Graph representation of accesses in Henosis.
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5.3.2 Iterative refinement. Once the initial storage plan has been

obtained from graph partitioning, Henosis iteratively refines the

storage plan to reduce the anticipated I/O cost by migrating arrays

between Redis and TileDB chunks. Migrating arrays from TileDB to

Redis reduces the access frequency to TileDB chunks, but increases

the access frequency to key/value items. Migrating arrays from

Redis to TileDB conversely impacts the frequencies. The trade-off

is that although accessing an individual array is much faster in

Redis than in TileDB, TileDB can retrieve multiple arrays more

efficiently than Redis. Henosis balances this trade-off through the

cost model and migrates in both directions, from TileDB to Redis

and from Redis to TileDB, in each iteration. The iterative refinement

procedure reaches the final, optimize storage plan when no arrays

have migrated on either direction during an iteration.

In each iteration Henosis moves a set of arrays from TileDB to

Redis with the aim of reducing the TileDB chunk access frequency.

Letui , j be the set of arrays stored in TileDB chunk i that is accessed
by process pj . Moving all arrays in ui , j to Redis reduces the access

frequency of TileDB chunk i at least by 1. If the storage plan before

and after migration is ⟨S, L⟩ and ⟨S ′, L′⟩, the benefit of moving ui , j
to Redis is defined as:

bene f it(ui , j ) =
cost(S, L,W ) − cost(S ′, L′,W )

|ui , j |
(5)

Henosis decides which arrays to migrate to Redis by computing

the benefit score for the set ui , j for every TileDB chunk i and
process pj . A set ui , j will be migrated to Redis if (1) no other set

has a higher benefit score, and (2) it fits in the Redis free space, and

(3) its benefit score is positive. Henosis may not move any array to

Redis in an iteration if no array satisfies all conditions.

For example, consider the initial storage plan shown in Figure

7b. Initially, all partitions are stored in TileDB. For partition A,
uA,1 = {a3,a4}, uA,2 = {a5,a6} and uA,3 = · · · = uA,7 = {a4,a5}.
For partition B, uB,1 = {a1,a2} and uB,2 = {a6,a7}. In the first

iteration, the set {a4,a5} will be migrated to Redis because it has

the highest positive benefit score.

Henosis also migrates arrays from Redis to TileDB in each itera-

tion. Henosis considers each Redis array aj individually. For each
aj array, Henosis computes the reduction of the estimated cost if

aj is moved to TileDB chunk i . TileDB chunks that are full (that is,

already contain Cf arrays) are ignored during this pass. Henosis

migrates aj to the TileDB chunk with the highest positive reduction.

Henosis may not move any array to TileDB in an iteration if no

migration results in a cost reduction.

5.3.3 Algorithm comparison. The Henosis optimization procedure

jointly considers array consolidation and placement. Performing

consolidation and placement in two independent steps is also a

viable strategy that deserves additional consideration.

One strategy is to consolidate first to chunks and then optimize

the chunk placement. This consolidate-then-place strategymay store

arrays with low access frequencies in Redis. The consolidation

algorithm only considers the co-access frequency between small

arrays. Consequently, small arrays with low access frequencies may

be stored in Redis if they are often co-accessed with small arrays

which have high access frequencies. Assume there are 4 arrays

{a1,a2,a3,a4} and 8 processes. Let 3 processes read a2, 3 processes
read a4, 1 process read {a1,a2} and 1 process read {a3,a4}. Let

{a1,a2} be consolidated into one chunk and {a3,a4} into a different
chunk. Then, assume {a1,a2} is placed in Redis. This means that

array a1 has been placed in Redis although a4 is accessed more

frequently. In contrast, the Henosis optimization algorithm places

a2 and a4 in Redis that are accessed by 8 processes. 2 processes will

access the {a1,a3} chunk in TileDB.

Another strategy is optimizing placement first and then consoli-

dating. This place-then-consolidate strategy spreads arrays which

are frequently co-accessed across data stores, because co-access

frequencies are not considered during data placement. Assume,

again, that there are 4 arrays and 8 processes. Let 3 processes read

{a1,a2}, 3 processes read {a3,a4}, 1 process read a2 and 1 process

read a4. Placing first would store arrays a2 and a4 in Redis. Con-

solidation would then bring a1 and a3 into one TileDB chunk. This

strategy breaks the frequently co-accessed array pairs {a1,a2} and
{a3,a4} and results in 6 accesses to the TileDB chunk. In contrast,

the Henosis optimization algorithm could place a1 and a2 in Redis,

and require 4 accesses to the {a3,a4} chunk in TileDB.

6 THE HENOSIS PROTOTYPE
6.1 Access Pattern Monitoring
Henosis first generates the workload specification based on the mon-

itored access pattern of HDF5 applications. Henosis logs the set of

arrays read by each of an HDF5 application. An array is uniquely

identified by its path. A process in a large cluster is uniquely iden-

tified by its node identifier (hostname) and the process identifier

(PID). Hence, for each access Henosis collects the node identifier,

process identifier and the paths of the arrays that were requested

by the process.

A process first registers the three drivers that were introduced

in Section 4, namely the I/O Interceptor, the Redis Driver and the

TileDB Driver. Array accesses are tracked by the I/O interceptor
when calling the HDF5 functions H5Fopen and H5Dopen to open

files and datasets, respectively, before reading. When the process

is terminated, the three Henosis drivers are unregistered. When

the I/O interceptor is unregistered, it flushes the access log to the

parallel file system such as Lustre, if available, or else to HadoopFS.

Two straightforward ways to log workload specification infor-

mation have drawbacks. One way is to append all data to a single

log file. However, the log file becomes the point of contention when

multiple processes concurrently write to the file. Another way is

writing information about each process to a different file. Although

there is no contention, managing many small files is inefficient as

it entails substantial metadata operations. Henosis uses a hybrid

strategy where a process logs to a temporary file and, periodically,

a spooler process merges temporary log files and appends them to

a permanent log. This hybrid strategy allows full I/O concurrency

during the active phase and constructs a single log offline.

6.2 Array Storage
Henosis stores arrays in two data stores, TileDB and Redis. In Redis,

an array is stored as a key/value item, where the key is the array

path and the value is the array content. In TileDB, Henosis creates

a merged array by placing multi-dimensional arrays sequentially

along their first dimension, as shown in Figure 8. Let Nf be the

maximum number of small arrays consolidated in a TileDB chunk.
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chunk 1 chunk 2

merged array

Consolidation Engine

a6 a7 a8a1 a2 a3

S1=<1,1,1,0,0,0,0,0>

a1 a2 a3 a6 a7 a8

S2=<0,0,0,0,0,1,1,1>
d1

d2

d2

3 d1

Figure 8: Consolidation in TileDB.

The length of the first dimension of the merged TileDB chunk is

Nf × d1, where d1 is the first-dimension length of the individual

arrays. Let Nchunks be the number of rows in S which have at

least one non-zero element. The length of the first dimension of

the merged array is Nchunks ×Nf ×d1. For each row in S , Henosis
stores the arrays whose corresponding elements are non-zero in

one chunk. Figure 8 shows how the example from Figure 6 would

be stored in TileDB.

In addition to the raw data, Henosis stores additional metadata

in Redis. Specifically, Henosis records where a small array is stored.

Henosis creates a tuple <small array path, data store, storage array
path, offset> for each small array. The data store indicates which data
store the small array is located in. If an array is stored in Redis, the

storage array path is the key of the corresponding key/value item,

and the offset is 0. If an array is stored in TileDB, the storage array
path is the merged array path and the offset is the first-dimension

offset of the small array in the merged array. For example, the offset
of array a6 in Figure 8 is 3d1.

6.3 Read procedure
When a process reads an array through the HDF5 function H5Dread,
Henosis intercepts the function and forwards the request to the

corresponding data store. Henosis stores small arrays which have

been loaded by the process in a cache. Henosis directly returns the

requested small array if the array is in the cache. Otherwise, Henosis

retrieves the metadata tuple of the small array and reads from the

corresponding data store. When the array is in Redis, Henosis

caches the loaded array. When the array in in TileDB, Henosis

H5Dread(array path, selection)

array in the cache

retrieve metadata 

tuple of the array

data store

read the array 

from Redis
read the merged 

chunk from TileDB

place read data in the cache

return the selected 

data from cache

yes

no

Redis TileDB

Figure 9: The Henosis read procedure.

reads a TileDB chunk which contains the requested small array

and caches all the arrays contained in the chunk. The workflow of

the Henosis read procedure is shown in Figure 9. Assume process

p1 in Figure 6 requests the arrays a1,a2,a3,a4 sequentially and the

arrays are consolidated as shown in Figure 8. Henosis first reads

TileDB chunk 1, caches a1,a2 and a3, and returns a1. When a2 and
a3 are then requested, Henosis directly returns arrays from the

cache. When a4 is requested, Henosis reads a4 from Redis, stores

the array in the cache and returns the array.

7 EXPERIMENTAL EVALUATION
This section experimentally evaluates the optimization algorithm

in Henosis. We perform the experiments in a shared cluster where

each node is equipped with a 14-core 2.4 GHz Intel Xeon E5-2680

CPU, 0.5 TB DRAM, and three 2 TB HDDs.We use nine nodes in our

evaluation, unless otherwise noted. The two underlying data stores

are TileDB 1.1.0 and Redis 5.0.3. TileDB has been configured to store

data in the Hadoop distributed file system (HadoopFS). Our cluster

deploys Hadoop 2.8.3. The replication factor for both HadoopFS

and Redis has been fixed to three. We repeat each experiment ten

times and report the average of the measured values. We also report

the standard deviation as error bars when it is distinguishable. We

consider the following questions:

(1) What is the I/O improvement from consolidation over di-

rectly reading small arrays for real scientific pipelines? Does

generating the initial storage plan by partitioning a query-

weighted graph outperform other partitioning methods?

(2) Does the iterative refinementmethod improve the initial stor-

age plan? What is the improvement compared to performing

consolidation and placement independently?

7.1 Datasets
All experiments use the two I/O-bound scientific application drivers,

transient detection and vortices prediction, that were described in

Section 3. Both pipelines analyze a large number of small arrays

(astronomy images and vortices, respectively). Henosis stores small

arrays in TileDB on HadoopFS and Redis.

There are 11,889 astronomy images in the transient detection

pipeline. Each image contains 5 arrays, and the size of each array

is 21×21. The analytical operation is classification using a convolu-

tional neural network (CNN) in TensorFlow. Each image is analyzed

independently.

The vortices prediction pipeline contains 164,599 vortices, which

are identified by the DBSCAN algorithm in 2040 fluid flow snap-

shots. A vortex is represented as a small 2D array, with size 8.4

KB and 42 × 50 cells. Each vortex is represented by a timestamp

and a bounding box showing its temporal and spatial locations

respectively. Queries in the vortices prediction pipeline retrieve a

subset of all vortices. There are three types of query workloads in

this pipeline: (1) a Time workload consists of queries that read all

vortices at a given timestamp chosen at random; (2) a Space-Time
workload consists of queries that access all vortices that intersect

with a spatiotemporal query box; (3) a Composite query workload

is a mixture of the previous two workloads: 90% of the queries are

Space-Time queries and 10% of the queries are Time queries.
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Figure 10: Throughput with and without consolidation in
the two pipelines. Henosis, reading from merged TileDB ar-
ray, is almost 300× faster than directly reading small arrays
in TileDB.

7.2 Effectiveness of object consolidation
This section evaluates the impact of consolidation on performance

without considering the effect of the iterative refinement technique.

Thus, only the query-weighted graph partitioning algorithm (the

initial storage plan) is evaluated in this section. In these experiments

Henosis only consolidates small arrays and stores data exclusively

in the TileDB data store.

We compare Henosis with native TileDB, which stores small

arrays independently. The initial storage plan is also compared

with the other two storage plans, generated by object-weighted
graph partitioning and range partitioning. These two storage plans

also store all the data in the TileDB data store. We use METIS [21]

to partition the query-weighted and object-weighted graphs.

7.2.1 Comparison with native TileDB. We first compare Henosis

with native TileDB in the transient detection pipeline. This ex-

periment uses a single node. In Henosis, a chunk in the merged

array contains 1024 images, or 5120 small arrays. Figure 10a shows

the number of inferred images per second in the transient detec-

tion pipeline, reading from native TileDB and Henosis respectively.

Henosis is almost 300 times faster than TileDB.

We now compare Henosis with native TileDB in the vortices

prediction pipeline. In Henosis, 164,599 vortices are consolidated

into 1646 chunks, hence each chunk contains roughly 100 vortices.

Figure 10b shows the number of small arrays read per second when

vortices are consolidated based on the initial storage plan. We com-

pare Henosis with TileDB when users execute the three types of

queries. Henosis improves the throughput by as much as 135× for

Time queries, and by at least 17× for Composite queries. We con-

clude from the two experiments that Henosis, when consolidating

small arrays only based on the initial storage plan, improves the

performance by as much as 300× over directly reading small arrays

from TileDB.

7.2.2 Comparison with alternative consolidation algorithms. Heno-
sis constructs and partitions a query-weighted graph to create the

initial storage plan. We compare the effectiveness of this algorithm

in the vortices prediction pipeline with two baselines: range parti-
tioning and object-weighted graph partitioning. Range partitioning
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Figure 11: Time and data volume with different queries. The
query-weighted graph is 3.5× faster than range partitioning,
2× faster than object-weighted graph, and 136× faster than
TileDB.

consolidates on a single dimension. For this experiment, we consol-

idate vortices with the same timestamp into one chunk.

Figure 11a and 11b shows the impact of different query types.

We report the read performance when evaluating 1000 queries of

each query type. With Time queries, range partitioning performs

best because the consolidation dimension is the query dimension.

However, object-weighted graph partitioning and query-weighted

graph partitioning (denoted as Object and Query, respectively) are
only slightly slower than range partitioning. With Space-Time que-

ries, range partitioning reads 3.6×more vortices than the two graph

partitioning algorithms. This is because Space-Time queries also

filter on spatial locations, while range partitioning only splits on the

timestamp dimension and thus returns redundant data in each I/O

operation. With the Composite query, the query-weighted graph

outperforms the other two partitioning algorithms. Time queries on

average access 80 vortices, which is much more than the 20 vortices

that Space-Time queries roughly access. As a result, partitioning

the object-weighted graph splits vortices mostly based on their

timestamps, impeding the Space-Time type queries which are 90%

of the Composite query mix. Native TileDB never reads redundant

data for any query. However, all three partitioning algorithms are

faster than reading small arrays in native TileDB. This suggests that

picking a sub-optimal storage plan can still be orders of magnitude

faster than reading from native TileDB.

7.2.3 Impact of chunk sizing. The size of the merged array is an-

other factor impacting performance.We evaluate the three partition-

ing algorithms with different chunk sizes. We use the Space-Time

queries and vary the number of vortices that are stored per chunk

to 10, 100 and 1000. Figure 12a shows the query response time and

Figure 12b plots the total number of vortices accessed. First, we

observe that the range partitioning strategy reads more vortices

and takes more time than the other two alternatives. Second, the

number of loaded vortices decreases with smaller chunks. However,

the chunk size is not the only factor impacting I/O performance.

The chunk size 100 gives the lowest query response time but reads

more vortices than chunk size 10 and fewer vortices than chunk

size 1000. Selecting the optimal chunk size for an entire workload

is a promising avenue for future work.
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Figure 12: Time and I/O volume for different chunk sizes
with Space-Time queries in the vortices prediction pipeline.
Query-weighted graph partitioning is over 3.5× faster than
range partitioning, and statistically indistinguishable from
object-weighted graph partitioning.

7.3 Effectiveness of placement optimization
This section evaluates the effectiveness of the iterative refinement

algorithm. We first compare with performing consolidation and

placement independently. Specifically, we compare with the consoli-
date-then-place and place-then-consolidate strategies which perform

consolidation first and placement first, respectively. We also evalu-

ate the optimization effectiveness by comparing the final storage

plan after iterative refinement with the initial storage plan from

query-weighted graph partitioning. In the following experiments,

P1 denotes the initial storage plan from the query-weighted graph

partitioning algorithm, C-P denotes consolidation-then-placement,

P-C denotes placement-then-consolidation, and PO denotes the

optimized storage plan from the iterative refinement algorithm.

We evaluate the data placement optimization on the vortices

prediction pipeline. Space-Time queries are created on a grid. Each

query is a box with dimension lengths lt , lx and ly corresponding

to the time, x , and y dimensions respectively. A Space-Time query

is created by picking a random grid cell and extending the grid cell

in all directions by lt to accommodate vortex movement between

timestamps. For example, if grid cells are 40 × 40 big and lt = 3, a

space-time query will have the same center as a randomly chosen

grid cell, but lx = ly = 46.

7.3.1 Impact of limited memory. This experiment varies the Redis

capacity limit Ckeys which controls the number of objects that can

be stored in Redis. The grid size is 40× 40 and Henosis consolidates

45 arrays into a TileDB chunk. In this experiment, we limit Redis

to 10K, 20K, 40K and 80K small arrays. (We stop at 80K because the

vortices prediction pipeline has 165K small arrays in total and we

desire Redis to store no more than 50% of the dataset.)

Figure 13a shows the time it takes to complete the query work-

load. Storing arrays in Redis improves I/O performance. Reading

from the optimized storage plan after iterative refinement (PO) is

at most 2.8× faster than the initial storage plan (P1). The optimized

storage plan is also up to 1.7× faster than the consolidate-then-

place (C-P) and the place-then-consolidate (P-C) strategies, even

with very limited memory for Redis (10K objects). To understand

where the speedup comes from, Figure 13b shows the number of
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Figure 13: Time and number of TileDB accesses with differ-
ent Redis capacity limits. Reading from the optimized stor-
age plan (PO) is 2.8× faster than the initial storage plan (P1),
and 1.7× faster than the consolidate-then-place and place-
then-consolidate strategies (C-P and P-C, respectively).
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Figure 14: Time and number of TileDB accesses with differ-
ent grid sizes. The final, optimized storage plan (PO) is up to
1.75× faster than the initial storage plan (P1), and up to 1.5×

faster than the consolidate-then-place (C-P) and the place-
then-consolidate (P-C) strategies.

accesses to TileDB. Reading from the optimized storage plan PO has

fewer accesses than the other strategies: PO has up to 6.2× fewer

accesses than P1 and up to 2.4× fewer accesses than performing

consolidation and placement independently (P-C and C-P).

7.3.2 Impact of query size. In this experiment, we limit Redis stor-

age to 20K vortices and vary the size of the uniform grid which

is used to build queries. The grid cell length in spatial dimensions

ranges from 10 × 10 to 40 × 40. As a result, the number of vortices

read in a query increases as the cell size increases. Figure 14a shows

the query response time with the four storage plans. Reading from

the optimized storage plan (PO) outperforms other storage plans.

Compared with the initial storage plan (P1), the optimized storage

plan PO improves the read performance by up to 1.75× when the

grid cell size is 40 × 40. Reading from the optimized storage plan

is 1.5× faster than the consolidate-then-place (C-P) and the place-

then-consolidate (P-C) strategies. Figure 14b shows the number

of accesses to TileDB, which aligns with the query response time

observations.
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7.3.3 Runtime overhead of optimization. Although the optimiza-

tion is performed once and is amortized over multiple queries, it is

fair to ask how long does the optimization procedure take. The op-

timization time is proportional to the Redis capacity and inversely

proportional to the query size. For the experiments shown in Fig-

ure 13, optimization takes 36 seconds when Redis stores up to 10K

vortices, and 342 seconds when Redis stores 80K vortices. The time

decreases from 109 seconds to 68 seconds when the grid size in-

creases from 10 × 10 to 40 × 40 in Figure 14. It is important to note

that the current prototype performs optimization serially. Paralleliz-

ing the optimization process would reduce its runtime overhead,

and is an interesting direction for future work.

8 RELATED WORK
This section presents related work in distributed array management

systems, object consolidation and data placement.

Distributed arraymanagement. Increasing data volumes pose

a big challenge for scientific data management. Many scientific

pipelines usually analyze arrays stored in file formats such as HDF5

and netCDF in high-performance computers with a shared paral-

lel file system. However, shared-nothing commodity clusters are

getting more popular. Several array database systems have been

developed to facilitate large array management in shared-nothing

clusters. ArrayStore [34] and SciDB [10] are distributed systems,

storing arrays across the local file system of multiple nodes. Other

systems, such as TileDB [28], take advantage of a distributed file

system to enable large scale array storage.

Prior research has identified drawbacks when using these sys-

tems in existing scientific pipelines. First, these systems are inef-

ficient in managing small arrays as they issue a large number of

small I/O requests. Speculative loading [4, 14] speeds up analysis

by overlapping the I/O time and the compute time. Moreover, ex-

isting systems either store data in a single file system or request

users to explicitly manage the placement of arrays in the storage

hierarchy. Manual data placement is onerous for users and often

underutilizes heterogeneous clusters. In addition, these systems

cannot be seamlessly integrated with existing scientific pipelines.

In situ array processing [6, 22, 40] allows applications to process

array data without loading, but does not optimize for manipulating

small arrays in heterogeneous data stores.

Small object consolidation. Recent work aims to accelerate

I/O to small objects. A common solution is consolidating multiple

small objects into larger ones. Systems and file formats such as

HAR [18], MapFile [39], Haystack [5] and Ambry [26] consolidate

small objects into few files. However, the consolidation in these

systems does not exploit access correlations between small objects.

Henosis consolidates small arrays which are frequently accessed

together into a chunk to eliminate small I/O requests. Data man-

agement research has utilized similar strategies to enhance query

performance by data partitioning for OLTP [29] or OLAP [27, 33]

workloads. Many advanced consolidation techniques [2, 32, 42] as-

sume knowledge of the database schema and offer limited support

for complex access patterns. Schema-free partitioning algorithms

[1, 3, 15, 35] partition a database based on workload monitoring.

These solutions observe the similarity between tuples directly from

the issued queries and build partitions according to the co-access

frequency of tuples. Another example of a system that mines cor-

relation patterns in I/O activity to optimize I/O performance with

consolidation is Pacaca [20]. The consolidation algorithm in Heno-

sis is based on graph partitioning but is aware of queries with

different sizes. While Henosis partitions at a single granularity,

prior work has investigated more complex partitioning methods

that shard at multiple granularities [17, 37].

Data placement. Intelligent data placement in heterogeneous

storage systems has been investigated for years as a mechanism to

optimize I/O performance. The key idea is to automatically place

data items based on the data access pattern. Some works [12, 24, 31]

dynamically tune the data placement at runtime by placing the hot

data in and evicting cold data out of the fast data store. Other work

models the data placement problem as a static optimization problem.

CAST [13] formulates data placement as a non-linear optimization

problem that maximizes the tenant utility for heterogeneous cloud

storage services. ProfDP [38] calculates a moving factor for each
data object based on its latency sensitivity and bandwidth sensi-

tivity, and determines data placement by ranking all objects based

on their moving factor score. Canim [11] models data placement

between SSD and HDD devices as the 0-1 knapsack problem and in-

vestigates dynamic programming and greedy techniques to obtain

good placement strategies. These prior solutions are agnostic to the

opportunity to consolidate objects into larger groups. Systems like

SPAR [30] and related efforts [17, 23] rely on payload-aware data

aggregation and placement strategies (in some cases with statistical

guarantees [37]). Henosis entails a much simpler design that is

agnostic of payload characteristics.

9 CONCLUSION
This paper highlights the problem of accessing small arrays in sci-

entific data analysis workloads. Although scientific file formats

such as HDF5 can consolidate small objects in one big file, their

monolithic design is oblivious to the heterogeneous I/O capabil-

ities of modern clusters. This paper introduces Henosis, an I/O

library that allows HDF5-based programs to consolidate, place and

read small arrays on different storage backends, specifically TileDB

and Redis. Henosis accelerates I/O by performing consolidation

and placement optimization simultaneously. We evaluate Heno-

sis in two real-world scientific pipelines. Henosis speeds up the

I/O performance by 300× compared with directly reading small

arrays from TileDB. By simultaneously performing consolidation

and placement, Henosis produces a storage plan that is 1.7× faster

than workload-oblivious strategies which perform consolidation

and placement independently.

Henosis does not handle highly dynamic workloads where the

historical access pattern is not reflective of future access patterns.

Henosis also cannot efficiently grow existing arrays to append new

data. As part of ongoing work, we will enhance Henosis to alleviate

these issues.
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