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ABSTRACT

Scientific data analysis pipelines face scalability bottlenecks when
processing massive datasets that consist of millions of small files.
Such datasets commonly arise in domains as diverse as detecting
supernovae and post-processing computational fluid dynamics sim-
ulations. Furthermore, applications often use inference frameworks
such as TensorFlow and PyTorch whose naive I/O methods exacer-
bate I/O bottlenecks. One solution is to use scientific file formats,
such as HDF5 and FITS, to organize small arrays in one big file.
However, storing everything in one file does not fully leverage the
heterogeneous data storage capabilities of modern clusters.

This paper presents Henosis, a system that intercepts data ac-
cesses inside the HDF5 library and transparently redirects I/O to
the in-memory Redis object store or the disk-based TileDB array
store. During this process, Henosis consolidates small arrays into
bigger chunks and intelligently places them in data stores. A critical
research aspect of Henosis is that it formulates object consolida-
tion and data placement as a single optimization problem. Henosis
carefully constructs a graph to capture the I/O activity of a work-
load and produces an initial solution to the optimization problem
using graph partitioning. Henosis then refines the solution using a
hill-climbing algorithm which migrates arrays between data stores
to minimize I/O cost. The evaluation on two real scientific data
analysis pipelines shows that consolidation with Henosis makes
I/0 300x faster than directly reading small arrays from TileDB and
3.5% faster than workload-oblivious consolidation methods. More-
over, jointly optimizing consolidation and placement in Henosis
makes I/O 1.7x faster than strategies that perform consolidation
and placement independently.

1 INTRODUCTION

The data volume processed by scientific pipelines is increasing
rapidly. Scientific pipelines in various domains, such as plasma
simulation [9], climate modeling [16], transient detection [19], and
computational fluid dynamics, analyze massive amounts of array
data that range up to petabytes. For example, the Large Hadron
Collider produces approximately 15 petabytes of data annually, and
the Sloan Digital Sky Survey (SDSS) [7] archives terabytes of data
for hundreds of millions of astronomical objects.
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Although the aggregate data volume of many datasets is enor-
mous, individual observations are often stored as independent small
files for downstream processing. The supernovae detection pipeline
in the ASAS-SN sky survey stores detected transient stars in sepa-
rate 1.7 KB files [19]; a vortex prediction pipeline on the simulation
of a Mach 1.3 jet produces vortices with average size 8 KB [36];
sequencing the human genome produces nearly 30 million files av-
eraging 190 KB each [8]; and 20 million images served by SDSS are
less than 1 MB on average [7]. These files are small compared with
the typical block sizes of modern file systems. For example, the de-
fault block size of the Hadoop Distributed File System (HadoopFS)
is 64 MB and the default stripe size of the Lustre parallel file system
is 1 MB. Achieving respectable I/O performance when accessing
a large number of small files is particularly challenging for a dis-
tributed file system. In addition, it is cumbersome and error-prone
for users to organize large collections of small files manually.

One solution that has been embraced by scientists is storing
such datasets in array-centric file formats like HDF5, netCDF and
FITS. These file formats arrange collections of objects in an inter-
nal hierarchy, offer richer metadata support than file systems, and
store entire collections of objects as a single file. However, these
file format libraries adopt a monolithic design that tightly couples
an array-centric API with a particular physical data layout. This
monolithic design is not well-suited to the heterogeneous I/O ca-
pabilities of modern clusters. Storing everything in one file in the
parallel file system does not fully utilize nodes with large memory
or nodes with locally attached flash-based storage. A large mem-
ory node would be an ideal deployment setting for an in-memory
key/value store such as Redis, while fast locally-attached storage
can be utilized with a locality-conscious file system in user space,
such as HadoopFS. Unfortunately, established array-centric file
format libraries do not support multiple storage backends with
heterogeneous I/O capabilities.

This paper describes Henosis, an I/O library that allows HDF5-
based programs to consolidate, place and read small arrays on
heterogeneous data stores. The prototype implementation of Heno-
sis that we describe in this paper supports two storage backends:
(1) Redis [25], an in-memory object store with a key/value interface,
and (2) TileDB [28], an array management system for distributed
file systems such as HadoopFS. By leveraging the recent virtual
object (VOL) interface of the HDFS5 library, existing HDF5 applica-
tions can benefit from the I/O optimizations of Henosis without
recompilation, as Henosis makes no modifications to the public
HDF5 API and can be dynamically loaded at runtime.

The research question that naturally arises when supporting
multiple storage backends is how one should physically lay out
array data across data stores with heterogeneous I/O capabilities.
Consider, for example, the Redis and TileDB data stores mentioned
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Figure 1: Read throughput of Redis, an in-memory object
store, and TileDB, a disk-based array store, when accessing
small (1.7 KB) and large (1.7 MB) objects. Redis is nearly 100x
faster than TileDB with small objects, but read throughput
is statistically indistinguishable with large objects.

earlier. If one stores small objects that are 1.7 KB each, the read
throughput of Redis outperforms TileDB by nearly 100X, as shown
in Figure 1. This is an instance of the data placement problem on
heterogeneous storage systems, a topic which has been well-studied
in prior literature [11-13, 24, 31, 38]. Yet, if one stores objects that
are 1.7 MB each, the read throughputs of TileDB and Redis become
statistically indistinguishable. Although consolidation is less ex-
plored in prior research, the results clearly show that it has the
potential to equalize I/O performance as long as the requested
small objects can be consolidated into sufficiently big chunks. How-
ever, consolidation and placement are not orthogonal optimizations:
A consolidation-oblivious placement algorithm misses opportuni-
ties to place data in a manner that benefits from sequential I/O.
Conversely, a placement-oblivious consolidation algorithm cannot
differentiate between fast and slow I/O devices that often co-exist
in modern HPC systems.

This paper describes how Henosis formulates consolidation and
placement as a single optimization problem. Henosis carefully con-
structs a graph to capture the I/O activity and produces an ini-
tial solution to the optimization problem using graph partitioning.
Henosis then uses a hill-climbing algorithm to iteratively refine
the solution by migrating arrays between data stores to minimize
an I/O cost metric. Experimental results from Henosis on two real
scientific pipelines, transient star detection and vortices prediction,
show that Henosis speeds up I/O by 300x compared with native
TileDB (which doesn’t support consolidation) and 3.5X compared
with workload-oblivious consolidation methods. The iterative re-
finement procedure in Henosis speeds up I/O performance by nearly
3% compared with the initial solution from graph partitioning and
1.7x compared with two strategies that perform consolidation and
placement independently.

The main contributions of this paper are:

(1) We formulate array consolidation and placement as a single op-
timization problem that allows both techniques to be considered
simultaneously.

(2) We design a heuristic method to optimize the array storage plan
that consists of two steps. The first step devises an initial stor-
age plan by creating and partitioning a query-weighted graph.
The plan is then iteratively refined by moving arrays between
TileDB and Redis based on an I/O cost metric.
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(3) We design and implement an I/O library prototype, Henosis,
to transparently consolidate, place and read small arrays for
HDF5 applications. The evaluation, based on two real workloads,
shows that Henosis accelerates I/O by 300x compared with
native TileDB and 1.7X over workload-oblivious consolidation
and placement strategies.

The remainder of the paper is structured as follows. Section 2 pres-
ents necessary background on the HDFS5 library. Section 3 describes
two application drivers that process small arrays. Section 4 de-
scribes the Henosis architecture. Section 5 formulates consolidation
and placement as a single optimization problem, and proposes a
heuristic method to optimize the array storage plan based on graph
partitioning and the hill climbing technique. Section 6 follows with
more details about the implementation. Section 7 describes the ex-
perimental setup and presents the performance evaluation, Section
8 presents related work, and Section 9 concludes.

2 BACKGROUND

This section first introduces the array model which is prevalent
in scientific computing. It then describes two new features of the
HDFS5 array library, namely the virtual dataset (VDS) and the virtual
object layer (VOL), which allow Henosis to transparently store and
consolidate arrays on different storage backends. Although this
paper focuses on the HDF5 library, the consolidation and placement
techniques are also applicable to other array formats.

Scientific datasets in various domains such as astronomy, physics,
and medicine can be represented by arrays. Arrays are said to be
dense when every cell has an associated value, or sparse when
the majority of the cells are empty. Sparse arrays are sometimes
stored as dense arrays after filling all empty cells with a null value.
Dense arrays are commonly stored in a chunked layout. A chunk
is a subarray bounded by a (hyper-)rectangle that covers adjacent
cells. Chunks commonly have a fixed user-defined size, although
research prototypes like ArrayStore support irregular chunks that
cover a different volume of the coordinate space [34].

HDF5 is a prominent scientific data format used to manage arrays
and is the one we have developed Henosis on. The two HDF5
operations of interest are read and write. The read operation returns
the values of any subset of the cells in an array. Inversely, the
write operation updates a subset of the cells in an array. In both
operations, users define the accessed cells either as a set of (hyper-
)rectangles or as a list of points.

Virtual object layer: The virtual object layer (VOL) is a new ab-
straction layer in HDF5 that allows one to intercept and inject I/O
operations without modifying the application-facing public HDF5
interface. VOL intercepts all the function calls that manipulate data
and routes them to a custom, user-defined virtual object driver. The
driver is a C program that performs user-defined operations, such
as storing data in another representation. Henosis implements a
VOL driver that redirects I/O operations to other storage backends.
This allows existing HDF5 applications to leverage the Henosis
functionality without modification.

Virtual datasets: The virtual dataset (VDS) is a recent feature
of the HDFS5 library that allows one to construct non-materialized
array views on HDF5 datasets. A virtual dataset defines a mapping
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Figure 2: Transient star detection in ASAS-SN.

from a set of (hyper-)rectangles in one or more source datasets to a
contiguous target address space. After a virtual dataset has been cre-
ated, applications access the target address space using the standard
HDF5 programming interface. When the target address space is ac-
cessed, the data corresponding to this access will be retrieved from
the source locations defined in the mapping. The virtual dataset
feature allows Henosis to physically store data contiguously in a
large array but present the logical view of many small objects to
existing HDF5 applications. By defining these virtual datasets, reads
or writes to small arrays will be transparently redirected by the
HDF5 library to a large chunk that consolidates many small arrays.

3 APPLICATION DRIVERS

Henosis is motivated by the complex I/O patterns of modern appli-
cations that use data mining and machine learning techniques on
large complex datasets. Many ML-centric data processing pipelines
operate on a large number of small arrays that are processed and
managed individually. These small arrays are typically produced
once, often by a classification and segmentation procedure from a
much larger dataset. Then the small arrays are analyzed multiple
times. In-place updates to individual small arrays are rare and are
usually done manually by scientists. We observed this pattern in
two scientific application drivers that analyze observational and
simulation data, respectively.

Supernovae detection in large-scale astronomy sky surveys. Large-
scale systematic astronomy sky surveys search for transient, vari-
able stars at multiple optical frequencies. One such project is ASAS-
SN [19]. During transient detection in ASAS-SN, the sky survey
image data are segmented into many small 21 X 21 pixel images,
each 1.7 KB in size, shown as ay, ay, ..., ag in Figure 2. The pipeline
analyzes these arrays by a Convolutional Neural Network-based
classifier in TensorFlow to detect supernova. Because the images
are classified independently, the pipeline can be executed on several
nodes concurrently to process disjoint subsets of the sky survey im-
ages. Figure 2 shows three nodes evaluating the detection pipeline
independently, each of which processes two images.

Vortices prediction in computational fluid dynamics simulations.
The need to manage small arrays also arises during the analysis of
simulations of complex phenomena, such as computational fluid
dynamics. One such analysis focuses on vortex prediction in tur-
bulent flows. Turbulent flows are characterized by a broad range
of spatial and temporal fluctuations. Vortices are fluctuations that
occur across larger scales, and retain their signature over prolonged
durations in space and time. Vortices prediction isolates coherent
structures from the fluid flow and predicts their dynamics [41].
In this pipeline, density-based spatial clustering (DBSCAN) and
machine learning (LSTM) are used to predict acoustic emissions
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Figure 3: Vortices prediction in a Mach 1.3 jet.

of a supersonic jet. This pipeline accesses a large number of vor-
tices that are stored as independent small arrays when identifying
vortices in each timestamp. Figure 3 shows arrays ay, az, a3 from
simulation timestamp ¢ = 1,2, 3, respectively. The vortices that
were identified in the three simulation timestamps are bounded by
rectangles with solid lines. There are two types of queries in this
pipeline which are indicated with a dashed box in Figure 3. The
first query type tracks vortices between timestamps and accesses
files that intersect a spatio-temporal box. For example, node 1 in
Figure 3 reads vortices where 3.5 < X < 4.25,04 <Y < 0.7 and
1 < t < 2. The second query type accesses all vortices in a given
timestamp for visualization. For example, node 2 in Figure 3 reads
all vortices for timestamp ¢ = 3.

4 SYSTEM OVERVIEW

Henosis facilitates small array management by consolidating and
placing small arrays on data stores with heterogeneous I/O capa-
bilities. Henosis stores arrays in two data stores, TileDB and Redis.
Henosis stores an array either as a single key/value item in Redis or
it consolidates multiple small arrays into a chunk in a TileDB array.
Henosis does not currently replicate arrays across data stores.

One required parameter to create a TileDB array is the chunk
size. When the TileDB chunk size is small, more I/O requests are
sent to the underlying file system. When the chunk size is large,
more data are transferred if users only request a subset of small
arrays in a chunk. The impact of this configuration parameter is
evaluated in Section 7.2.3.

Figure 4 shows the Henosis optimization workflow. Henosis
first monitors and logs the access patterns of HDF5 applications to
produce a workload specification. A workload specification tracks

Henosis observes
access pattern

Optimization

Workload
specification

Storage plan

Consolidation
and placement

Figure 4: The Henosis optimization workflow.
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Figure 5: The Henosis system architecture.

which small arrays are requested by each process of the observed
application. Sections 5.1 formally defines the workload specification.
Henosis then generates a storage plan through the optimization pro-
cess described in Sections 5.2 and 5.3. The storage plan determines
how small arrays will be consolidated and placed on TileDB and
Redis. An offline process performs consolidation and placement of
the data based on the storage plan.

Henosis intercepts I/O to small arrays and redirects them to the
appropriate data store at runtime. Figure 5 shows the architecture
of the Henosis system. If one looks at the software stack of HDF5
applications, Henosis sits below the HDF5 library and above the
Redis and TileDB data stores. Henosis is composed of four main
components, namely the I/O Interceptor, the Storage Tuner, and two
backend drivers for TileDB and Redis. The I/O Interceptor is virtual
object layer (VOL) driver for the HDFS5 library that intercepts I/O-
related function calls, such as the read method (H5Dread) of the
HDF5 APL When a process requests to read a small array, Henosis
transparently forwards the I/O request to the appropriate data store
and logs the access pattern. The Storage Tuner finds a storage plan
based on the observed access pattern. It then consolidates and places
small arrays based on the storage plan. The TileDB Driver and the
Redis Driver read data from TileDB and Redis respectively.

Henosis is a first step towards data independence for scientific
data analysis. With Henosis, applications can remain agnostic to the
underlying data storage layout and program against the standard
array-centric HDF5 interface. The main advantage of designing
Henosis to work behind an array file format library interface is easy
adoption by existing applications. This way Henosis can optimize
data placement and accelerate I/O without additional effort from
application developers.

5 THE STORAGE OPTIMIZATION PROBLEM

5.1 Preliminary Definitions

Capacity constraints. Redis and TileDB cannot store an unlimited
number of small arrays due to the finite space of disk and memory.
We denote Cyy as the maximal number of small arrays that Redis
can store. TileDB stores up to C.py, ks chunks. The consolidation
factor Cy is the number of small arrays that can be consolidated
into a TileDB chunk. Hence, Henosis stores at most Ccpynis X Cf
small arrays in TileDB.

Storage plan. Given a set of small arrays A = {aj,az2, - ,an},
a storage plan is a partitioning over A. One partition, referred to
as the Redis partition, contains small arrays stored in Redis, and
all other partitions contain small arrays that are consolidated in
TileDB chunks. Due to the capacity constraints, the size of the

395

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

Redis partition cannot be greater than Cg s and the sizes of the
other partitions cannot be greater than Cy. A storage plan (S, L) is
represented as two 0/1 variables, a matrix S and a vector L, which
are defined as follows:

S = 1, if array a; is stored in TileDB chunk i
B 0, otherwise

L=1{"
] 0,

Workload specification. Assume Henosis observes P processes
accessing N small arrays. The workload specification W isa P X N
matrix that is constructed as such:

W= L
i,j 0.

Example. Figure 6 shows an example of the I/O optimization in
Henosis. Figure 6a shows seven processes, p1, ..., p7, accessing eight
small arrays ay, ..., ag. The workload specification W is shown in
Figure 6b. Suppose that the I/O optimization procedure determines
that a4 and a5 will be stored in Redis, and two TileDB chunks
will consolidate {ay, az, a3} and {ag¢, a7, ag} respectively. Figure 6¢
shows the storage plan (S, L) for this configuration.

if array aj is stored in Redis

otherwise

if process p; reads array a; @

otherwise

5.2 Problem Definition

Let Tepynk and Ty, be the time to access a TileDB chunk and a
Redis key/value item. Given a a storage plan (S, L) and a workload
specification W, which represents P processes accessing N arrays,
we define the cost function cost(S, L, W) as:

cost(S, L, W) = Tupyni X count(SWT)

®)
+ Tgey X sum(WL)

The count(-) function counts the number of non-zero elements
in the input matrix, and the sum(-) function returns the sum of all
elements in the input matrix. Cell (i, j) of the matrix SWT is the
number of arrays process p; reads from TileDB chunk i. Element j
of the vector WL is the number of arrays that process p; will read
from Redis. For TileDB, it suffices to count non-zero elements in
SWT because all arrays in a chunk are retrieved in a single I/O
operation regardless of how many are actually accessed. For Redis,
it is necessary to sum all accesses because arrays are stored as
separate key/value items which require multiple I/O requests.

Consider the workload specification W and the storage plan
(S, L) shown in Figure 6. The model estimates a total of two TileDB
chunk accesses, as count(SWT) = 2, and twelve Redis key/value ac-
cesses, as sum(WL) = 12. Therefore from Formula 3, cost(S, L, W) =
2Tepunk + 12 Tkey-

There are three constraints a valid solution must meet. Due to
limited memory for Redis, the number of non-zero elements in
L, sum(L), cannot be larger than Cys. Similarly for TileDB, the
number of non-zero elements in each row i in S, sum(S; .), cannot
exceed Cy. Given that Henosis does not replicate data, array a;
must be stored exactly once, hence either L;j = 1 or sum(S. ;) = 1.
We now define the Storage Optimization problem:



ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

D. Kang, V. Patel, A. Nair, S. Blanas, Y. Wang, S. Parthasarathy

Requested arrays ay ayazagasagayag TileDB
p1 = {a1, az, a3, as} [11110000] Stored arrays ayagasaqasaga; ag
p2 = {as, ag, a7, as} 00001111 Chunk 1 | {ai,az, a3} S=[11100000]
p3 = {aq,as} 00011000 Chunk 2 | {as, a7, as} 00000111
p4:{a4,a5} W=[{00011000
ps = {as,as} 00011000 Redis
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(a) Access pattern. (b) Workload specification W.

(c) Storage plan (S, L).

Figure 6: Example of the storage optimization in Henosis.

STORAGE OPTIMIZATION PROBLEM. Given a workload specification
W find a storage plan (S, L) that minimizes cost(S, L, W):

argmin cost(S, L, W)
(s.L)
such that  sum(S;,.) < Cr
sum(L) < Creys
sum(S.j)+Lj =1

Vie [1’ Cchunks] (4)

Vj € [1,N]

5.3 Optimization Procedure

Finding the optimal storage plan is not easy. The number of 0/1
variables is N X (C¢pynks +1) and both N and C.py, ks can be in the
millions even for modestly-sized datasets. In addition, the objective
function of the Storage Optimization Problem is non-polynomial.
Henosis uses a heuristic optimization procedure, shown in Al-
gorithm 1, to obtain an initial solution and then iteratively refine
the solution to lower the total cost. The algorithm proceeds in two
phases. The algorithm first obtains an initial storage plan (S°, L°)
by graph partitioning, as described in Section 5.3.1. This initial stor-
age plan is then iteratively refined to reduce its cost by migrating
arrays between Redis and TileDB, as described in Section 5.3.2. The
iterative refinement stops when no migrations are possible.

Algorithm 1: Henosis I/O optimization algorithm

(8%, L% « initialize a storage plan by graph partitioning;
repeat
u « a set of TileDB arrays in S*~! with the largest
benefit that take less than the free space in Redis;
if benefit(u) > 0 then
‘ (Si, Li) < migrate all arrays in u to Redis;
foreach Redis array k in L' do
¢ « the TileDB chunk that can store k and achieves
the largest cost reduction from migration;
if cost reduction > 0 then
‘ (S%, L) « migrate k to TileDB chunk c;
until (S¢, LE) = (§i71, 71y,

5.3.1 Initial storage plan. Intuitively, the cost is minimized when
small arrays with high co-access frequency are stored in the same
TileDB chunk, because these arrays can be retrieved using a single
I/O operation. In the example shown in Figure 6, process p; needs
to only issue a single I/O request to read small arrays aj, az and as,
because they are consolidated into one chunk. In contrast, p; would
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issue multiple I/O requests if the three small arrays were stored in
different chunks or in Redis. Based on this empirical observation,
Henosis obtains the initial storage plan by solving a partitioning
problem to group co-accessed arrays together.

Graph partitioning has been used in prior work such as Schism
[15] to minimize cross-partition transactions in transaction process-
ing workloads. Schism builds an object-weighted graph to represent
small arrays and workloads. Nodes in the graph are objects and an
edge connects two nodes if the two objects are co-accessed by the
same processes. The weight of the edge is the number of processes
that co-access the two objects. Figure 7a shows the object-weighted
graph that will be constructed for the example shown in Figure 6a.
The graph is partitioned such that the partition sizes are balanced
and the sum of the weights of the edges that are cut is minimized.
The problem with partitioning an object-weighted graph is that it
is agnostic to the number of accesses a process performs. Hence, it
is often prone to scattering co-accessed arrays to different chunks.
Consider how to create two equally-sized partitions in Figure 7a.
The minimum cut splits a4 and a5 to different partitions, although
they are co-accessed by all but two processes.

Henosis uses a query-weighted graph to guide partitioning. The
query-weighted graph represents small arrays as nodes and con-
nects two nodes if the arrays are co-accessed by the same process.
However, the edge weight calculation is different: edge weights are
initialized to zero and increase as processes are added to the graph.
Assume process p; accesses |p;| arrays and is added to the graph.
Edge e connects two arrays which are both accessed by p;. In the
query-weighted graph, the weight of e increases by m
Thus, the sum of edge weights increases by 1 for each process re-
gardless of how many arrays the process accesses. Figure 7b shows
how the query-weighted graph is partitioned. Any minimum cut
that produces two equal partitions keeps arrays a4 and a5 in the
same partition, as the query-weighted graph has reduced the edge
weights for all other node pairs from 1 to %.

Partition A

Partition B Partition B

Partition A

(a) Object-weighted graph. (b) Query-weighted graph.

Figure 7: Graph representation of accesses in Henosis.
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5.3.2  lIterative refinement. Once the initial storage plan has been
obtained from graph partitioning, Henosis iteratively refines the
storage plan to reduce the anticipated I/O cost by migrating arrays
between Redis and TileDB chunks. Migrating arrays from TileDB to
Redis reduces the access frequency to TileDB chunks, but increases
the access frequency to key/value items. Migrating arrays from
Redis to TileDB conversely impacts the frequencies. The trade-off
is that although accessing an individual array is much faster in
Redis than in TileDB, TileDB can retrieve multiple arrays more
efficiently than Redis. Henosis balances this trade-off through the
cost model and migrates in both directions, from TileDB to Redis
and from Redis to TileDB, in each iteration. The iterative refinement
procedure reaches the final, optimize storage plan when no arrays
have migrated on either direction during an iteration.

In each iteration Henosis moves a set of arrays from TileDB to
Redis with the aim of reducing the TileDB chunk access frequency.
Let u; j be the set of arrays stored in TileDB chunk i that is accessed
by process pj. Moving all arrays in u; ; to Redis reduces the access
frequency of TileDB chunk i at least by 1. If the storage plan before
and after migration is (S, L) and (S”, L"), the benefit of moving u; ;
to Redis is defined as:

bene fit(ur;) = cost(S, L, W) — cost(S’,L", W) )
|ui,jl

Henosis decides which arrays to migrate to Redis by computing
the benefit score for the set u; ;j for every TileDB chunk i and
process pj. A set u; j will be migrated to Redis if (1) no other set
has a higher benefit score, and (2) it fits in the Redis free space, and
(3) its benefit score is positive. Henosis may not move any array to
Redis in an iteration if no array satisfies all conditions.

For example, consider the initial storage plan shown in Figure
7b. Initially, all partitions are stored in TileDB. For partition A,
ua,1 = {as,aa}, uap = {as,a¢} and uyg 3 = --- = ug 7 = {aq,as}.
For partition B, ug 1 = {a1, a2} and ug s = {ag,a7}. In the first
iteration, the set {a4, a5} will be migrated to Redis because it has
the highest positive benefit score.

Henosis also migrates arrays from Redis to TileDB in each itera-
tion. Henosis considers each Redis array a; individually. For each
aj array, Henosis computes the reduction of the estimated cost if
aj is moved to TileDB chunk i. TileDB chunks that are full (that is,
already contain Cy arrays) are ignored during this pass. Henosis
migrates a; to the TileDB chunk with the highest positive reduction.

Henosis may not move any array to TileDB in an iteration if no
migration results in a cost reduction.

5.3.3  Algorithm comparison. The Henosis optimization procedure
jointly considers array consolidation and placement. Performing
consolidation and placement in two independent steps is also a
viable strategy that deserves additional consideration.

One strategy is to consolidate first to chunks and then optimize
the chunk placement. This consolidate-then-place strategy may store
arrays with low access frequencies in Redis. The consolidation
algorithm only considers the co-access frequency between small
arrays. Consequently, small arrays with low access frequencies may
be stored in Redis if they are often co-accessed with small arrays
which have high access frequencies. Assume there are 4 arrays
{a1, a2, a3, a4} and 8 processes. Let 3 processes read az, 3 processes
read a4, 1 process read {aj,az} and 1 process read {as,as}. Let
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{a1, a2} be consolidated into one chunk and {as, a4} into a different
chunk. Then, assume {aj, az} is placed in Redis. This means that
array a; has been placed in Redis although a4 is accessed more
frequently. In contrast, the Henosis optimization algorithm places
ay and ay4 in Redis that are accessed by 8 processes. 2 processes will
access the {ai, as} chunk in TileDB.

Another strategy is optimizing placement first and then consoli-
dating. This place-then-consolidate strategy spreads arrays which
are frequently co-accessed across data stores, because co-access
frequencies are not considered during data placement. Assume,
again, that there are 4 arrays and 8 processes. Let 3 processes read
{a1, az}, 3 processes read {as, a4}, 1 process read az and 1 process
read ay4. Placing first would store arrays a2 and a4 in Redis. Con-
solidation would then bring a; and a3 into one TileDB chunk. This
strategy breaks the frequently co-accessed array pairs {aj, a2} and
{as, a4} and results in 6 accesses to the TileDB chunk. In contrast,
the Henosis optimization algorithm could place a; and a3 in Redis,
and require 4 accesses to the {as, a4} chunk in TileDB.

6 THE HENOSIS PROTOTYPE
6.1 Access Pattern Monitoring

Henosis first generates the workload specification based on the mon-
itored access pattern of HDF5 applications. Henosis logs the set of
arrays read by each of an HDF5 application. An array is uniquely
identified by its path. A process in a large cluster is uniquely iden-
tified by its node identifier (hostname) and the process identifier
(PID). Hence, for each access Henosis collects the node identifier,
process identifier and the paths of the arrays that were requested
by the process.

A process first registers the three drivers that were introduced
in Section 4, namely the I/O Interceptor, the Redis Driver and the
TileDB Driver. Array accesses are tracked by the I/O interceptor
when calling the HDF5 functions H5Fopen and H5Dopen to open
files and datasets, respectively, before reading. When the process
is terminated, the three Henosis drivers are unregistered. When
the I/O interceptor is unregistered, it flushes the access log to the
parallel file system such as Lustre, if available, or else to HadoopFS.

Two straightforward ways to log workload specification infor-
mation have drawbacks. One way is to append all data to a single
log file. However, the log file becomes the point of contention when
multiple processes concurrently write to the file. Another way is
writing information about each process to a different file. Although
there is no contention, managing many small files is inefficient as
it entails substantial metadata operations. Henosis uses a hybrid
strategy where a process logs to a temporary file and, periodically,
a spooler process merges temporary log files and appends them to
a permanent log. This hybrid strategy allows full I/O concurrency
during the active phase and constructs a single log offline.

6.2 Array Storage

Henosis stores arrays in two data stores, TileDB and Redis. In Redis,
an array is stored as a key/value item, where the key is the array
path and the value is the array content. In TileDB, Henosis creates
a merged array by placing multi-dimensional arrays sequentially
along their first dimension, as shown in Figure 8. Let Ny be the
maximum number of small arrays consolidated in a TileDB chunk.
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Figure 8: Consolidation in TileDB.

The length of the first dimension of the merged TileDB chunk is
Nf % dy, where d; is the first-dimension length of the individual
arrays. Let N.p,nks be the number of rows in S which have at
least one non-zero element. The length of the first dimension of
the merged array is Nepynks X Ny X dy. For each row in S, Henosis
stores the arrays whose corresponding elements are non-zero in
one chunk. Figure 8 shows how the example from Figure 6 would
be stored in TileDB.

In addition to the raw data, Henosis stores additional metadata
in Redis. Specifically, Henosis records where a small array is stored.
Henosis creates a tuple <small array path, data store, storage array
path, offset>for each small array. The data store indicates which data
store the small array is located in. If an array is stored in Redis, the
storage array path is the key of the corresponding key/value item,
and the offset is 0. If an array is stored in TileDB, the storage array
path is the merged array path and the offset is the first-dimension
offset of the small array in the merged array. For example, the offset
of array ae in Figure 8 is 3d;.

6.3 Read procedure

When a process reads an array through the HDF5 function H5Dread,
Henosis intercepts the function and forwards the request to the
corresponding data store. Henosis stores small arrays which have
been loaded by the process in a cache. Henosis directly returns the
requested small array if the array is in the cache. Otherwise, Henosis
retrieves the metadata tuple of the small array and reads from the
corresponding data store. When the array is in Redis, Henosis
caches the loaded array. When the array in in TileDB, Henosis

lHSDread(array path, selection)

no

retrieve metadata
tuple of the array

’ read the array ‘

return the selected
data from cache

TileDB

read the merged
chunk from TileDB

1 !}
l place read data in the cache ‘7

Figure 9: The Henosis read procedure.

from Redis
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reads a TileDB chunk which contains the requested small array
and caches all the arrays contained in the chunk. The workflow of
the Henosis read procedure is shown in Figure 9. Assume process
p1 in Figure 6 requests the arrays a1, ag, as, a4 sequentially and the
arrays are consolidated as shown in Figure 8. Henosis first reads
TileDB chunk 1, caches aq, az and a3, and returns a;. When a3 and
a3 are then requested, Henosis directly returns arrays from the
cache. When ay is requested, Henosis reads a4 from Redis, stores
the array in the cache and returns the array.

7 EXPERIMENTAL EVALUATION

This section experimentally evaluates the optimization algorithm
in Henosis. We perform the experiments in a shared cluster where
each node is equipped with a 14-core 2.4 GHz Intel Xeon E5-2680
CPU, 0.5 TB DRAM, and three 2 TB HDDs. We use nine nodes in our
evaluation, unless otherwise noted. The two underlying data stores
are TileDB 1.1.0 and Redis 5.0.3. TileDB has been configured to store
data in the Hadoop distributed file system (HadoopFS). Our cluster
deploys Hadoop 2.8.3. The replication factor for both HadoopFS
and Redis has been fixed to three. We repeat each experiment ten
times and report the average of the measured values. We also report
the standard deviation as error bars when it is distinguishable. We
consider the following questions:

(1) What is the I/O improvement from consolidation over di-
rectly reading small arrays for real scientific pipelines? Does
generating the initial storage plan by partitioning a query-
weighted graph outperform other partitioning methods?

(2) Does the iterative refinement method improve the initial stor-
age plan? What is the improvement compared to performing
consolidation and placement independently?

7.1 Datasets

All experiments use the two I/O-bound scientific application drivers,
transient detection and vortices prediction, that were described in
Section 3. Both pipelines analyze a large number of small arrays
(astronomy images and vortices, respectively). Henosis stores small
arrays in TileDB on HadoopFS and Redis.

There are 11,889 astronomy images in the transient detection
pipeline. Each image contains 5 arrays, and the size of each array
is 21x21. The analytical operation is classification using a convolu-
tional neural network (CNN) in TensorFlow. Each image is analyzed
independently.

The vortices prediction pipeline contains 164,599 vortices, which
are identified by the DBSCAN algorithm in 2040 fluid flow snap-
shots. A vortex is represented as a small 2D array, with size 8.4
KB and 42 x 50 cells. Each vortex is represented by a timestamp
and a bounding box showing its temporal and spatial locations
respectively. Queries in the vortices prediction pipeline retrieve a
subset of all vortices. There are three types of query workloads in
this pipeline: (1) a Time workload consists of queries that read all
vortices at a given timestamp chosen at random; (2) a Space-Time
workload consists of queries that access all vortices that intersect
with a spatiotemporal query box; (3) a Composite query workload
is a mixture of the previous two workloads: 90% of the queries are
Space-Time queries and 10% of the queries are Time queries.
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Figure 10: Throughput with and without consolidation in
the two pipelines. Henosis, reading from merged TileDB ar-
ray, is almost 300X faster than directly reading small arrays
in TileDB.

7.2 Effectiveness of object consolidation

This section evaluates the impact of consolidation on performance
without considering the effect of the iterative refinement technique.
Thus, only the query-weighted graph partitioning algorithm (the
initial storage plan) is evaluated in this section. In these experiments
Henosis only consolidates small arrays and stores data exclusively
in the TileDB data store.

We compare Henosis with native TileDB, which stores small
arrays independently. The initial storage plan is also compared
with the other two storage plans, generated by object-weighted
graph partitioning and range partitioning. These two storage plans
also store all the data in the TileDB data store. We use METIS [21]
to partition the query-weighted and object-weighted graphs.

7.2.1  Comparison with native TileDB. We first compare Henosis
with native TileDB in the transient detection pipeline. This ex-
periment uses a single node. In Henosis, a chunk in the merged
array contains 1024 images, or 5120 small arrays. Figure 10a shows
the number of inferred images per second in the transient detec-
tion pipeline, reading from native TileDB and Henosis respectively.
Henosis is almost 300 times faster than TileDB.

We now compare Henosis with native TileDB in the vortices
prediction pipeline. In Henosis, 164,599 vortices are consolidated
into 1646 chunks, hence each chunk contains roughly 100 vortices.
Figure 10b shows the number of small arrays read per second when
vortices are consolidated based on the initial storage plan. We com-
pare Henosis with TileDB when users execute the three types of
queries. Henosis improves the throughput by as much as 135x for
Time queries, and by at least 17x for Composite queries. We con-
clude from the two experiments that Henosis, when consolidating
small arrays only based on the initial storage plan, improves the
performance by as much as 300% over directly reading small arrays
from TileDB.

7.2.2  Comparison with alternative consolidation algorithms. Heno-
sis constructs and partitions a query-weighted graph to create the
initial storage plan. We compare the effectiveness of this algorithm
in the vortices prediction pipeline with two baselines: range parti-
tioning and object-weighted graph partitioning. Range partitioning
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Figure 11: Time and data volume with different queries. The
query-weighted graph is 3.5x faster than range partitioning,
2x faster than object-weighted graph, and 136X faster than

TileDB.

consolidates on a single dimension. For this experiment, we consol-
idate vortices with the same timestamp into one chunk.

Figure 11a and 11b shows the impact of different query types.
We report the read performance when evaluating 1000 queries of
each query type. With Time queries, range partitioning performs
best because the consolidation dimension is the query dimension.
However, object-weighted graph partitioning and query-weighted
graph partitioning (denoted as Object and Query, respectively) are
only slightly slower than range partitioning. With Space-Time que-
ries, range partitioning reads 3.6x more vortices than the two graph
partitioning algorithms. This is because Space-Time queries also
filter on spatial locations, while range partitioning only splits on the
timestamp dimension and thus returns redundant data in each I/O
operation. With the Composite query, the query-weighted graph
outperforms the other two partitioning algorithms. Time queries on
average access 80 vortices, which is much more than the 20 vortices
that Space-Time queries roughly access. As a result, partitioning
the object-weighted graph splits vortices mostly based on their
timestamps, impeding the Space-Time type queries which are 90%
of the Composite query mix. Native TileDB never reads redundant
data for any query. However, all three partitioning algorithms are
faster than reading small arrays in native TileDB. This suggests that
picking a sub-optimal storage plan can still be orders of magnitude
faster than reading from native TileDB.

7.2.3  Impact of chunk sizing. The size of the merged array is an-
other factor impacting performance. We evaluate the three partition-
ing algorithms with different chunk sizes. We use the Space-Time
queries and vary the number of vortices that are stored per chunk
to 10, 100 and 1000. Figure 12a shows the query response time and
Figure 12b plots the total number of vortices accessed. First, we
observe that the range partitioning strategy reads more vortices
and takes more time than the other two alternatives. Second, the
number of loaded vortices decreases with smaller chunks. However,
the chunk size is not the only factor impacting I/O performance.
The chunk size 100 gives the lowest query response time but reads
more vortices than chunk size 10 and fewer vortices than chunk
size 1000. Selecting the optimal chunk size for an entire workload
is a promising avenue for future work.
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Figure 12: Time and I/O volume for different chunk sizes
with Space-Time queries in the vortices prediction pipeline.
Query-weighted graph partitioning is over 3.5x faster than
range partitioning, and statistically indistinguishable from
object-weighted graph partitioning.

7.3 Effectiveness of placement optimization

This section evaluates the effectiveness of the iterative refinement
algorithm. We first compare with performing consolidation and
placement independently. Specifically, we compare with the consoli-
date-then-place and place-then-consolidate strategies which perform
consolidation first and placement first, respectively. We also evalu-
ate the optimization effectiveness by comparing the final storage
plan after iterative refinement with the initial storage plan from
query-weighted graph partitioning. In the following experiments,
P1 denotes the initial storage plan from the query-weighted graph
partitioning algorithm, C-P denotes consolidation-then-placement,
P-C denotes placement-then-consolidation, and PO denotes the
optimized storage plan from the iterative refinement algorithm.

We evaluate the data placement optimization on the vortices
prediction pipeline. Space-Time queries are created on a grid. Each
query is a box with dimension lengths I;, I and I, corresponding
to the time, x, and y dimensions respectively. A Space-Time query
is created by picking a random grid cell and extending the grid cell
in all directions by I; to accommodate vortex movement between
timestamps. For example, if grid cells are 40 x 40 big and I; = 3, a
space-time query will have the same center as a randomly chosen
grid cell, but Iy = ly = 46.

7.3.1 Impact of limited memory. This experiment varies the Redis
capacity limit Cy,s which controls the number of objects that can
be stored in Redis. The grid size is 40 X 40 and Henosis consolidates
45 arrays into a TileDB chunk. In this experiment, we limit Redis
to 10K, 20K, 40K and 80K small arrays. (We stop at 80K because the
vortices prediction pipeline has 165K small arrays in total and we
desire Redis to store no more than 50% of the dataset.)

Figure 13a shows the time it takes to complete the query work-
load. Storing arrays in Redis improves I/O performance. Reading
from the optimized storage plan after iterative refinement (PO) is
at most 2.8x faster than the initial storage plan (P1). The optimized
storage plan is also up to 1.7X faster than the consolidate-then-
place (C-P) and the place-then-consolidate (P-C) strategies, even
with very limited memory for Redis (10K objects). To understand
where the speedup comes from, Figure 13b shows the number of
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Figure 14: Time and number of TileDB accesses with differ-
ent grid sizes. The final, optimized storage plan (PO) is up to
1.75% faster than the initial storage plan (P1), and up to 1.5X
faster than the consolidate-then-place (C-P) and the place-

then-consolidate (P-C) strategies.

accesses to TileDB. Reading from the optimized storage plan PO has
fewer accesses than the other strategies: PO has up to 6.2 fewer
accesses than P1 and up to 2.4X fewer accesses than performing
consolidation and placement independently (P-C and C-P).

7.3.2  Impact of query size. In this experiment, we limit Redis stor-
age to 20K vortices and vary the size of the uniform grid which
is used to build queries. The grid cell length in spatial dimensions
ranges from 10 X 10 to 40 X 40. As a result, the number of vortices
read in a query increases as the cell size increases. Figure 14a shows
the query response time with the four storage plans. Reading from
the optimized storage plan (PO) outperforms other storage plans.
Compared with the initial storage plan (P1), the optimized storage
plan PO improves the read performance by up to 1.75X when the
grid cell size is 40 x 40. Reading from the optimized storage plan
is 1.5% faster than the consolidate-then-place (C-P) and the place-
then-consolidate (P-C) strategies. Figure 14b shows the number
of accesses to TileDB, which aligns with the query response time
observations.
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7.3.3  Runtime overhead of optimization. Although the optimiza-
tion is performed once and is amortized over multiple queries, it is
fair to ask how long does the optimization procedure take. The op-
timization time is proportional to the Redis capacity and inversely
proportional to the query size. For the experiments shown in Fig-
ure 13, optimization takes 36 seconds when Redis stores up to 10K
vortices, and 342 seconds when Redis stores 80K vortices. The time
decreases from 109 seconds to 68 seconds when the grid size in-
creases from 10 X 10 to 40 X 40 in Figure 14. It is important to note
that the current prototype performs optimization serially. Paralleliz-
ing the optimization process would reduce its runtime overhead,
and is an interesting direction for future work.

8 RELATED WORK

This section presents related work in distributed array management
systems, object consolidation and data placement.

Distributed array management. Increasing data volumes pose
a big challenge for scientific data management. Many scientific
pipelines usually analyze arrays stored in file formats such as HDF5
and netCDF in high-performance computers with a shared paral-
lel file system. However, shared-nothing commodity clusters are
getting more popular. Several array database systems have been
developed to facilitate large array management in shared-nothing
clusters. ArrayStore [34] and SciDB [10] are distributed systems,
storing arrays across the local file system of multiple nodes. Other
systems, such as TileDB [28], take advantage of a distributed file
system to enable large scale array storage.

Prior research has identified drawbacks when using these sys-
tems in existing scientific pipelines. First, these systems are inef-
ficient in managing small arrays as they issue a large number of
small I/O requests. Speculative loading [4, 14] speeds up analysis
by overlapping the I/O time and the compute time. Moreover, ex-
isting systems either store data in a single file system or request
users to explicitly manage the placement of arrays in the storage
hierarchy. Manual data placement is onerous for users and often
underutilizes heterogeneous clusters. In addition, these systems
cannot be seamlessly integrated with existing scientific pipelines.
In situ array processing [6, 22, 40] allows applications to process
array data without loading, but does not optimize for manipulating
small arrays in heterogeneous data stores.

Small object consolidation. Recent work aims to accelerate
I/O to small objects. A common solution is consolidating multiple
small objects into larger ones. Systems and file formats such as
HAR [18], MapkFile [39], Haystack [5] and Ambry [26] consolidate
small objects into few files. However, the consolidation in these
systems does not exploit access correlations between small objects.

Henosis consolidates small arrays which are frequently accessed
together into a chunk to eliminate small I/O requests. Data man-
agement research has utilized similar strategies to enhance query
performance by data partitioning for OLTP [29] or OLAP [27, 33]
workloads. Many advanced consolidation techniques [2, 32, 42] as-
sume knowledge of the database schema and offer limited support
for complex access patterns. Schema-free partitioning algorithms
[1, 3, 15, 35] partition a database based on workload monitoring.
These solutions observe the similarity between tuples directly from
the issued queries and build partitions according to the co-access
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frequency of tuples. Another example of a system that mines cor-
relation patterns in I/O activity to optimize I/O performance with
consolidation is Pacaca [20]. The consolidation algorithm in Heno-
sis is based on graph partitioning but is aware of queries with
different sizes. While Henosis partitions at a single granularity,
prior work has investigated more complex partitioning methods
that shard at multiple granularities [17, 37].

Data placement. Intelligent data placement in heterogeneous
storage systems has been investigated for years as a mechanism to
optimize I/O performance. The key idea is to automatically place
data items based on the data access pattern. Some works [12, 24, 31]
dynamically tune the data placement at runtime by placing the hot
data in and evicting cold data out of the fast data store. Other work
models the data placement problem as a static optimization problem.
CAST [13] formulates data placement as a non-linear optimization
problem that maximizes the tenant utility for heterogeneous cloud
storage services. ProfDP [38] calculates a moving factor for each
data object based on its latency sensitivity and bandwidth sensi-
tivity, and determines data placement by ranking all objects based
on their moving factor score. Canim [11] models data placement
between SSD and HDD devices as the 0-1 knapsack problem and in-
vestigates dynamic programming and greedy techniques to obtain
good placement strategies. These prior solutions are agnostic to the
opportunity to consolidate objects into larger groups. Systems like
SPAR [30] and related efforts [17, 23] rely on payload-aware data
aggregation and placement strategies (in some cases with statistical
guarantees [37]). Henosis entails a much simpler design that is
agnostic of payload characteristics.

9 CONCLUSION

This paper highlights the problem of accessing small arrays in sci-
entific data analysis workloads. Although scientific file formats
such as HDF5 can consolidate small objects in one big file, their
monolithic design is oblivious to the heterogeneous I/O capabil-
ities of modern clusters. This paper introduces Henosis, an I/O
library that allows HDF5-based programs to consolidate, place and
read small arrays on different storage backends, specifically TileDB
and Redis. Henosis accelerates I/O by performing consolidation
and placement optimization simultaneously. We evaluate Heno-
sis in two real-world scientific pipelines. Henosis speeds up the
I/O performance by 300X compared with directly reading small
arrays from TileDB. By simultaneously performing consolidation
and placement, Henosis produces a storage plan that is 1.7x faster
than workload-oblivious strategies which perform consolidation
and placement independently.

Henosis does not handle highly dynamic workloads where the
historical access pattern is not reflective of future access patterns.
Henosis also cannot efficiently grow existing arrays to append new
data. As part of ongoing work, we will enhance Henosis to alleviate
these issues.
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