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topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent
homology have been established to connect persistent homology with machine learning techniques with
applicability on shape analysis, recognition and classification. We contribute a kernel construction for
multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We
prove that our kernel is stable and efficiently computable, which establishes a theoretical connection
between topological data analysis and machine learning for multivariate data analysis.
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1. Introduction

Topological data analysis (TDA) is an active area in data sci-
ence with a growing interest and notable successes in a number
of applications in science and engineering [1-8]. TDA extracts in-
depth geometric information in amorphous solids [5], determines
robust topological properties of evolution from genomic data sets
[2] and identifies distinct diabetes subgroups [6] and a new sub-
type of breast cancer [9] in high-dimensional clinical data sets, to
name a few. In the context of shape analysis, TDA techniques have
been used in the recognition, classification [10,11], summarization
[12], and clustering [13] of 2D/3D shapes and surfaces. Oftentimes,
such techniques capture and highlight structures in data that con-
ventional techniques fail to treat [11,13] or reveal properly [5].

TDA employs the mathematical notion of simplicial complexes
[14] to encode higher order interactions in the system, and at its
core uses the computational framework of persistent homology [15-
19] to extract multi-scale topological features of the data. In par-
ticular, TDA extracts a rich set of topological features from high-
dimensional and noisy data sets that complement geometric and
statistical features, which offers a different perspective for machine
learning. The question is, how can we establish and enrich the theo-
retical connections between TDA and machine learning?

Informally, homology was developed to classify topological
spaces by examining their topological features such as con-
nected components, tunnels, voids and holes of higher dimensions;
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persistent homology studies homology of a data set at multiple
scales. Such information is summarized by the persistence diagram,
a finite multi-set of points in the plane. A persistence diagram
yields a complete description of the topological properties of a data
set, making it an attractive tool to define features of data that take
topology into consideration. Furthermore, a celebrated theorem of
persistent homology is the stability of persistence diagrams [20] -
small changes in the data lead to small changes of the correspond-
ing diagrams, making it suitable for robust data analysis.

However, interfacing persistence diagrams directly with ma-
chine learning poses technical difficulties, because persistence
diagrams contain point sets in the plane that do not have the
structure of an inner product, which allows length and angle to
be measured. In other words, such diagrams lack a Hilbert space
structure for kernel-based learning methods such as kernel SVMs
or PCAs [21]. Recent work proposes several variants of feature maps
[21-23] that transform persistence diagrams into L2-functions over
R2. This idea immediately enables the application of topological
features for kernel-based machine learning methods as establish-
ing a kernel function implicitly defines a Hilbert space structure
[21].

A serious limit of standard persistent homology and its initial
interfacing with machine learning [21-25] is the restriction to
only a single scale parameter, thereby confining its applicability
to the univariate setting. However, in many real-world applica-
tions, such as data acquisition and geometric modeling, we often
encounter richer information described by multivariate data sets
[26-28]. Consider, for example, climate simulations where mul-
tiple physical parameters such as temperature and pressure are
computed simultaneously; and we are interested in understanding
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the interplay between these parameters. Consider another example
in multivariate shape analysis, various families of functions carry
information about the geometry of 3D shape objects, such as mesh
density, eccentricity [29] or Heat Kernel Signature [30]; and we
are interested in creating multivariate signatures of shapes from
such functions. Unlike the univariate setting, very few topological
tools exist for the study of multivariate data [29,31,32], let alone
the integration of multivariate topological features with machine
learning.

The active area of multi-parameter persistent homology
[26] studies the extension of persistence to two or more (in-
dependent) scale parameters. A complete discrete invariant such
as the persistence diagram does not exist for more than one
parameter [26]. To gain partial information, it is common to
study slices, that is, one-dimensional affine subspaces where all
parameters are connected by a linear equation. In this paper, we
establish, for the first time, a theoretical connection between topo-
logical features and machine learning algorithms via the kernel
approach for multi-parameter persistent homology. Such a theo-
retical underpinning is necessary for applications in multivariate
data analysis.

Our contribution. We propose the first kernel construction for
multi-parameter persistent homology. Our kernel is generic, sta-
ble and can be approximated in polynomial time. For simplicity, we
formulate all our results for the case of two parameters, although
they extend to more than two parameters.

Our input is a data set that is filtered according to two scale pa-
rameters and has a finite description size; we call this a bi-filtration
and postpone its formal definition to Section 2. Our main contribu-
tion is the definition of a feature map that assigns to a bi-filtration
X a function @y : A® — R, where A@) is a subset of R4. More-
over, ®% is integrable over A(?), effectively including the space of
bi-filtrations into the Hilbert space L2(A(®). Therefore, based on
the standard scalar product in [2(A(?)), a 2-parameter kernel is de-
fined such that for two given bi-filtrations x and Y we have

(X Vo = /M D dydu. 1)

We construct our feature map by interpreting a point of A(?) as a
pair of (distinct) points in R2 that define a unique slice. Along this
slice, the data simplifies to a mono-filtration (i.e., a filtration that
depends on a single scale parameter), and we can choose among
a large class of feature maps and kernel constructions of standard,
one-parameter persistence. To make the feature map well-defined,
we restrict our attention to a finite rectangle R.

Our inclusion into a Hilbert space induces a distance between
bi-filtrations as

do(X,Y) = | / (@ — ©y)2dp. )

We prove a stability bound, relating this distance measure to the
matching distance and the interleaving distance (see the paragraph
on related work below). We also show that this stability bound is
tight up to constant factors (see Section 4).

Finally, we prove that our kernel construction admits an effi-
cient approximation scheme. Fixing an absolute error bound ¢, we
give a polynomial time algorithm in 1/e and the size of the bi-
filtrations & and ) to compute a value r such that r < (X, V)¢ <
r+ €. On a high level, the algorithm subdivides the domain into
boxes of smaller and smaller width and evaluates the integral of
(1) by lower and upper sums within each subdomain, terminat-
ing the process when the desired accuracy has been achieved. The
technical difficulty lies in the accurate and certifiable approxima-
tion of the variation of the feature map when moving the argu-
ment within a subdomain.

Related work. Our approach heavily relies on the construction
of stable and efficiently computable feature maps for mono-
filtrations. This line of research was started by Reininghaus et al.
[21], whose approach we discuss in some detail in Section 2. Alter-
native kernel constructions appeared in [24,33]. Kernel construc-
tions fit into the general framework of including the space of
persistence diagrams in a larger space with more favorable proper-
ties. Other examples of this idea are persistent landscapes [22] and
persistent images [34], which can be interpreted as kernel con-
structions as well. Kernels and related variants defined on mono-
filtrations have been used to discriminate and classify shapes and
surfaces [21,25]. An alternative approach comes from the defini-
tion of suitable (polynomial) functions on persistence diagrams to
arrive at a fixed-dimensional vector in R? on which machine learn-
ing tasks can be performed; see [35-38].

As previously mentioned, a persistence diagram for multi-
parameter persistence does not exist [26]. However, bi-filtrations
still admit meaningful distance measures, which lead to the notion
of closeness of two bi-filtrations. The most prominent such dis-
tance is the interleaving distance [39], which, however, has recently
been proved to be NP-complete to compute and approximate [40].
Computationally attractive alternatives are (multi-parameter) bot-
tleneck distance [41] and the matching distance [42,43], which
compares the persistence diagrams along all slices (appropriately
weighted) and picks the worst discrepancy as the distance of the
bi-filtrations. This distance can be approximated up to a precision
€ using an appropriate subsample of the lines [42], and also com-
puted exactly in polynomial time [43]. Our approach extends these
works in the sense that not just a distance, but an inner product on
bi-filtrations, is defined with our inclusion into a Hilbert space. In
a similar spirit, the software library RIVET [44] provides a visual-
ization tool to explore bi-filtrations by scanning through the slices.

2. Preliminaries

We introduce the basic topological terminology needed in this
work. We restrict ourselves to the case of simplicial complexes
as input structures for a clearer geometric intuition of the con-
cepts, but our results generalize to more abstract input types (such
as minimal representations of persistence modules) without prob-
lems.

Mono-filtrations. Given a vertex set V, an (abstract) simplex is a
non-empty subset of V, and an (abstract) simplicial complex is a col-
lection of such subsets that is closed under the operation of taking
non-empty subsets. A subcomplex of a simplicial complex X is a
simplicial complex Y with YCX. Fixing a finite simplicial complex
X, a mono-filtration X of X is a map that assigns to each real num-
ber «, a subcomplex X («) of X, with the property that whenever
a< B, X(a) C X(B). The size of X is the number of simplices of X.
Since X is finite, X (o) changes at only finitely many places when «
grows continuously from —oo to +oo; we call these values critical.
More formally, « is critical if there exists no open neighborhood of
o such that the mono-filtration assigns the identical subcomplex
to each value in the neighborhood. For a simplex o of X, we call
the critical value of o the infimum over all @ for which o € X ().
For simplicity, we assume that this infimum is a minimum, so ev-
ery simplex has a unique critical value wherever it is included in
the mono-filtration.

Bi-filtrations. For points in R, we write (a, b)<(c, d) if a<c and
b <d. Similarly, we say (a, b)<(c, d) if a<c and b<d. For a fi-
nite simplicial complex X, a bi-filtration X of X is a map that as-
signs to each point p € RZ a subcomplex X(p) of X, such that
whenever p<q, X(p) € X(q). Again, a point p = (py, p2) is called
critical for x if, for any € > 0, both X(p; — €, py) and X (py, py — €)
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Fig. 1. The three black points mark the three critical points of some simplex ¢ in
X. The shaded area denotes the positions at which o is present in the bi-filtration.
Along the given slice (red line), the dashed lines denote the first position where
the corresponding critical point “affects” the slice. This position is either the upper-
vertical, or right-horizontal projection of the critical point onto the slice, depending
on whether the critical point is below or above the line. For o, we see that it enters
the slice at the position marked by the blue point.

are not identical to X(p). Note that unlike in the mono-filtration
case, the set of critical points might not be finite. We call a bi-
filtration tame if it has only finitely many such critical points. For
a simplex o, a point p € R? is critical for o if, for any €>0, o
is neither in X(p; — €, py) nor in X(py, p — €), whereas o is in
both X(p; + €, py) and X (p1, py + €). Again, for simplicity, we as-
sume that o € X(p) in this case. A consequence of tameness is
that each simplex has a finite number of critical points. Therefore,
we can represent a tame bi-filtration of a finite simplicial com-
plex X by specifying the set of critical points for each simplex in
X. The sum of the number of critical points over all simplices of
X is called the size of the bi-filtration. We henceforth assume that
bi-filtrations are always represented in this form; in particular, we
assume tameness throughout this paper.

A standard example to generate bi-filtrations is by an arbitrary
function F : X — R? with the property that if T co are two sim-
plices of X, F(t) <F(o'). We define the sublevel set XF(p) as

XF(p):={o eX|F(o) < p}.

and let xF denote its corresponding sublevel set bi-filtration. It is
easy to verify that XF yields a (tame) bi-filtration and F(o) is the
unique critical value of o in the bi-filtration.

Slices of a bi-filtration. A bi-filtration X contains an infinite collec-
tion of mono-filtrations. Let £ be the set of all non-vertical lines
in R? with positive slope. Fixing any line ¢ € £, we observe that
when traversing this line in positive direction, the subcomplexes
of the bi-filtration are nested in each other. Note that ¢ intersects
the anti-diagonal x = —y in a unique base point b. Parameterizing
¢ as b+ X -a, where a is the (positive) unit direction vector of ¢,
we obtain the mono-filtration

X(a) :=X(b+ao-a).

We will refer to this mono-filtration &, as a slice of & along ¢ (and
sometimes also call ¢ itself the slice, abusing notation). The crit-
ical values of a slice can be inferred by the critical points of the
bi-filtration in a computationally straightforward way. Instead of a
formal description, we refer to Fig. 1 for a graphical description.
Also, if the bi-filtration is of size n, each of its slices is of size at
most 1.

Persistent homology. A mono-filtration X' gives rise to a persistence
diagram. Formally, we obtain this diagram by applying the homol-
ogy functor to X, yielding a sequence of vector spaces and linear
maps between them, and splitting this sequence into indecompos-
able parts using representation theory. Instead of rolling out the

entire theory (which is explained, for instance, in [45]), we give an
intuitive description here.

Persistent homology measures how the topological features of a
data set evolve when considered across a varying scale parameter
«. The most common example involves a point cloud in R?, where
considering a fixed scale &« means replacing the points by balls of
radius «. As « increases, the data set undergoes various topological
configurations, starting as a disconnected point cloud for o = 0 and
ending up as a topological ball when « approaches oo; see Fig. 2(a)
for an example in R2.

The topological information of this process can be summarized
as a finite multi-set of points in the plane, called the persistence
diagram. Each point of the diagram corresponds to a topological
feature (i.e., connected components, tunnels, voids, etc.), and its
coordinates specify at which scales the feature appears and dis-
appears in the data. As illustrated in Fig. 2(a), all five (connected)
components are born (i.e., appear) at & = 0. The green component
dies (i.e., disappears) when it merges with the red component at
o = 2.5; similarly, the orange, blue and pink components die at
scales 3, 3.2 and 3.7, respectively. The red component never dies
as o goes to oo. The 0-dimensional persistence diagram is defined
to have one point per component with birth and death value as its
coordinates (Fig. 2(c)). The persistence of a feature is then merely
its distance from the diagonal. While we focus on the components,
the concept generalizes to higher dimensions, such as tunnels (1-
dimensional homology) and voids (2-dimensional homology). For
instance, in Fig. 2(a), a tunnel appears at o = 4.2 and disappears
at o = 5.6, which gives rise to a purple point (4.2, 5.6) in the 1-
dimensional persistence diagram (Fig. 2(c)).

From a computational point of view, the nested sequence of
spaces formed by unions of balls (Fig. 2(a)) can be replaced by
a nested sequence of simplicial complexes by taking their nerves,
thereby forming a mono-filtration of simplicial complexes that cap-
tures the same topological information but has a much smaller
footprint (Fig. 2(b)).

In the context of shape analysis, we apply persistent homology
to capture the topological information of 2D and 3D shape objects
by employing various types of mono-filtrations. A simple example
is illustrated in Fig. 3: we extract point clouds sampled from the
boundary of 2D shape objects and compute the persistence dia-
grams using Vietoris-Rips complex filtrations.

Stability of persistent homology. Bottleneck distance represents a
similarity measure between persistence diagrams. Let D, D’ be two
persistence diagrams. Without loss of generality, we can assume
that both contain infinitely many copies of the points on the diag-
onal. The bottleneck distance between D and D’ is defined as

dy(D. D) = infsup x — () . 3)

where y ranges over all bijections from D to D’. We will also
use the notation dg(X,Y) for two mono-filtrations instead of
dg(D(X), D()))

A crucial result for persistent homology is the stability theo-
rem proven in [46] and re-stated in our notation as follows. Given
two functions f,g:X — R whose sublevel sets form two mono-
filtrations of a finite simplicial complex X, the induced persistence
diagrams satisfy

dg(Df, Dg) < || f — &l :=su>13|f(o)fg(0)|. (4)

Feature maps for mono-filtrations. Several feature maps aimed at
the construction of a kernel for mono-filtrations have been pro-
posed in the literature [21-23]. We discuss one example: the
persistence scale-space kernel [21] assigns to a mono-filtration
X an [2-function ¢y defined on AM :={(x1,x;) e R? | x; < x2}.
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Fig. 2. Computing persistent homology of a point cloud in R2. (a) A nested sequence of topological spaces formed by unions of balls at increasing parameter values. (b) A
mono-filtration of simplicial complexes that captures the same topological information as in (a). (c) O-dimensional and 1-dimensional persistence diagrams combined.

The main idea behind the definition of ¢y is to define a sum of
Gaussian peaks, all of the same height and width, with each peak
centered at one finite off-diagonal point of the persistence diagram
D(X) of X. To make the construction robust against perturbations,
the function has to be equal to 0 across the diagonal (the boundary
of AM), This is achieved by adding negative Gaussian peaks at the
reflections of the off-diagonal points along the diagonal. Writing z
for the reflection of a point z, we obtain the formula,

x—z|12 x-2|12

Br() 1= Y et et (5)

zeD(X)

where t is the width of the Gaussian, which is a free parameter
of the construction. See Fig. 4(b) and (c) for an illustration of a
transformation of a persistence diagram to the function ¢y. The
induced kernel enjoys several stability properties and can be eval-
uated efficiently without explicit construction of the feature map;
see [21] for details.

More generally, in this paper, we look at the class of all feature
maps that assign to a mono-filtration X' a function in L2(A()). For
such a feature map ¢, we define the following properties:

o Absolutely boundedness. There exists a constant vy > 0 such
that, for any mono-filtration X of size n and any xe A1), 0 <
Px(x) <vp-n.

e Lipschitzianity. There exists a constant v, > 0 such that, for
any mono-filtration X of size n and any x, X' € A, |py(x) —
dx (XN <vy-n-|lx =X

o Internal stability. There exists a constant v3 > 0 such that, for
any pair of mono-filtrations X, of size n and any xe A1),
|px (x) — Py ()| <v3-n-dp(X, V).

« Efficiency. For any xe A(Y), ¢»(x) can be computed in polyno-
mial time in the size of X, that is, in O(n¥) for some k> 0.

It can be verified easily that the scale-space feature map from
above satisfies all these properties. The same is true, for instance, if
the Gaussian peaks are replaced by linear peaks (that is, replacing
the Gaussian kernel in (5) by a triangle kernel).

3. A feature map for multi-parameter persistent homology

Let ¢ be a feature map (such as the scale-space kernel) that
assigns to a mono-filtration a function in L2(A(1)). Starting from ¢,
we construct a feature map @ on the set of all bi-filtrations €2 that
has values in a Hilbert space.

The feature map & assigns to a bi-filtration X a function ®y :
A® _ R. We set

A® :={(p.q) | peR* qeR* p<q]

as the set of all pairs of points where the first point is smaller than
the second one. A(?) can be interpreted naturally as a subset of R4,
but we will usually consider elements of A(?) as pairs of points in
R2.

Fixing (p, q) € A®), let ¢ denote the unique slice through these
two points. Along this slice, the bi-filtration gives rise to a mono-
filtration X,, and consequently a function ¢x, : A — R using the
considered feature map for mono-filtrations. Moreover, using the
parameterization of the slice ¢ as b+ A - a from Section 2, there ex-
ist real values Ap, Aq such that b+ Apa = p and b+ Aqa = q. Since
p<q and Ap <Aq, hence (Ap, Aq)e A, We define @ (p, q) to be
the weighted function value of ¢, at (A,, Aq) (see also Fig. 4), that
is,

CI)X(p’ q) = W(p’q) '¢X£ (}\m)‘q)’ (6)

where w(p, q) is a weight function w : A® — R defined below.

The weight function w has two components. First, let R be a
bounded axis-aligned rectangle in R2; its bottom-left corner coin-
cides with the origin of the coordinate axes. We define w such that
its weight is 0 if p or g is outside of R. Second, for pairs of points
within R x R, we assign a weight depending on the slope of the in-
duced slices. Formally, let ¢ be parameterized as b+ A - a as above,
and recall that a is a unit vector with non-negative coordinates.
Write a = (a7, a;) and set 7 := min{a;, a,}. Then, we define

w(p.q) := xr(P) - xr(q) - L.

where xp is the characteristic function of R, mapping a point x to
1 if xeR and O otherwise.

The factor ¢ ensures that slices that are close to being horizon-
tal or vertical attain less importance in the feature map. The same
weight is assigned to slices in the matching distance [42]. £ is not
important for obtaining an L2-function, but its meaning will be-
come clear in the stability results of Section 4. We also remark that
the largest weight is attained for the diagonal slice with a value of
1/+/2. Consequently, w is a non-negative function upper bounded
by 1/v/2.

To summarize, our map ¢ depends on the choice of an
axis-aligned rectangle R and a choice of feature map for mono-
filtrations, which itself might have associated parameters. For in-
stance, using the scale-space feature map requires the choice of
the width t (see (5)). It is only left to argue that the image of the
feature map & is indeed an L2-function.

Theorem 1. If ¢ is absolutely bounded, then ®y is in [2(A(2)),

Proof. Let X be a bi-filtration of size n. As mentioned earlier, each
slice X, is of a size at most n. By absolute boundedness and the
fact that the weight function is upper bounded by % it follows
that |[®x(p, q)| < “17; for all (p, q). Since the support of ® 4 is com-

pact (R x R), the integral of ®% over A?) s finite, being absolutely
bounded and compactly supported. O

Note that Theorem 1 remains true even without restrict-
ing the weight function to R, provided we consider a weight
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Fig. 3. The persistence diagrams of 2D shape objects. Black and red points are 0-
dimensional and 1-dimensional features respectively (ignoring points with co per-
sistence).

function that is square-integrable over A(), We skip the (easy)
proof.

4. Stability

An important and desirable property for a kernel is its stability.
In general, stability means that small perturbations in the input
data imply small perturbations in the output data. In our setting,
small changes between multi-filtrations (with respect to matching
distance) should not induce large changes in their corresponding
feature maps (with respect to L2 distance).

Adopted to our notation, the matching distance is defined as

drnatch(X’ y) = Seu? (Z dB(Xb yl))v

where £ is the set of non-vertical lines with positive slope [47].

Theorem 2. Let X and Y be two bi-filtrations. If ¢ is absolutely
bounded and internally stable, we have

[®x — Pyll2 < C-n-area(R) - dpgeen (X, V),
for some constant C.

Proof. Absolute boundedness ensures that the left-hand side is
well-defined by Theorem 1. Now we use the definition of |- |2
and the internal stability of ¢ to obtain

|Id>x—<l>yllfz=/ (WP, Q) - $, Cp. g) —W(p. @) - by, (hp. Ag) | e

AR)

< / W(p.q) -3 - n - dp(X. V) dpe
AQR)

= (v3-n)? / W(p.q) - dg(Xp. ¥0))?dp

AQ)

Since w(p, q) is zero outside R x R, the integral does not change
when restricted to AN (R x R). Within this set, w(p, q) simpli-
fies to 7, with ¢ the line through p and q. Hence, we can further

bound

= (v3-n)? (C-dp(Xe, YVe))?dp
A®A(RXR)

N 2
< (v3-n)? / sup (- dg(Xe, V,)) dp
tel
A(Z)O(RxR)\E—r—’
=dinarcn (X,Y)

= (V3‘n'dmatch(X»y))2 / 1du.
A@N(RxR)

The claimed inequality follows by noting that the final integral is
equal to Jarea(R)2. O

As a corollary, we get the the same stability statement with
respect to interleaving distance instead of matching distance [48,
Thm.1]. Furthermore, we obtain a stability bound for sublevel set
bi-filtrations of functions X — R? [47, Thm.4]:

Corollary 3. Let F,G:X — R2 be two functions that give rise to
sublevel set bi-filtrations X and Y, respectively. If ¢ is absolutely
bounded and internally stable, we have

[®x — Pyllz <C-n-area(R) - |F — Gllw.
for some constant C.

We remark that the appearance of n in the stability bound is
not desirable as the bound worsens when the complex size in-
creases (unlike, for instance, the bottleneck stability bound in (4),
which is independent of n). The factor of n comes from the inter-
nal stability property of ¢, so we have to strengthen this condition
on ¢. However, we show that such an improvement is impossible
for a large class of “reasonable” feature maps.

For two bi-filtrations X,) we define X @Y by setting (X &
V) (p) := X (p)uY(p) for all p e R2. A feature map ® is additive if
Drgy = ©(X) + P(Y) for all bi-filtrations X, Y. & is called non-
trivial if there is a bi-filtration X such that || ®];» # 0. Additivity
and non-triviality for feature maps ¢ on mono-filtrations is de-
fined in the analogous way. Note that, for instance, the scale space
feature map is additive. Moreover, because (X ® V), = &, ® ), for
every slice ¢, a feature map @ is additive if the underlying ¢ is
additive.

For mono-filtrations, no additive, non-trivial feature map ¢ can
satisfy

lpx — Pyl <C-n®-dp(x, )

with &, Y mono-filtrations and 6 €[0, 1); the proof of this state-
ment is implicit in [21, Thm 3]. With similar ideas, we show that
the same result holds in the multi-parameter case.

Theorem 4. If ® is additive and there exists C>0 and 6 €[0, 1) such
that

”CI)X - q>y||1_z = C- n(S : dmatch(X’ y)
for all bi-filtrations X and Y, then @ is trivial.
Proof. Assume to the contrary that there exists a bi-filtration X
such that || ®x||;> > 0. Then, writing O for the empty bi-filtration,
by additivity we get | Pn P Dol =n||Px — Poll;2 > 0. On
i

the other hand, dpgecy (UL, X, O) = dpgren (X, O). Hence, with C and
§ as in the statement of the theorem,

||<I)u{':1X - cI)O”LZ . n”(bx — cbo”,_z
C-nd. dmatch ('—':‘L]X’ O) C-nd. dmatch (X7 O)

1-s |®x — Pollp oo o
C- dmatch(Xv O) '

a contradiction. O
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Fig. 4. An illustration of the construction of a feature map for multi-parameter persistent homology. (a) Given a bi-filtration X and a point (p, q) € A®@), the line ¢ passing
through them is depicted and the parameter A, and A, computed. (b) The point (A,, A4) is embedded in the persistence diagram of the mono-filtration X, obtained as the
slice of X along ¢. (c) The point (Ap, Ag) is assigned the value ¢y, (Ap, Aq) via the feature map ¢.

b 5%

y.1

B LA

4

Fig. 5. (a) The two given slices realize the largest and smallest possible slope among all slices traversing the pink box pair. It can be easily seen that the difference of the
unit vector of the center line to one of the unit vectors of these two lines realizes A for the given box pair. (b) Computing variations for the center slice and a traversing

slice of a box pair.

5. Approximability

We provide an approximation algorithm to compute the kernel
of two bi-filtrations X and Y up to any absolute error € > 0. Re-
call that our feature map ¢ depends on the choice of a bounding
box R. In this section, we assume R to be the unit square [0, 1] x
[0, 1] for simplicity. We prove the following theorem that shows
our kernel construction admits an efficient approximation scheme
that is polynomial in 1/€ and the size of the bi-filtrations.

Theorem 5. Assume ¢ is absolutely bounded, Lipschitz, internally
stable and efficiently computable. Given two bi-filtrations X and Y of
size n and € > 0, we can compute a number r such that r < (X, Y)¢ <
r+ € in polynomial time in n and 1/e.

The proof of Theorem 5 will be illustrated in the following para-
graphs, postponing most of the technical details to Appendix A.

Algorithm. Given two bi-filtrations X and Y of size n and € >0,
our goal is to efficiently approximate (X, ) by some number r.
On the highest level, we compute a sequence of approximation in-
tervals (with decreasing lengths) J;,J5, /3, ..., each containing the
desired kernel value (X, ))¢. The computation terminates as soon
as we find some J; of width at most €, in which case we return the
left endpoint as an approximation to r.

For s € N (N being the set of natural numbers), we compute Js
as follows. We split R into 25 x 2° congruent squares (each of side
length 2—%) which we refer to as boxes. See Fig. 5(a) for an example
when s = 3. We call a pair of such boxes a box pair. The integral
from (1) can then be split into a sum of integrals over all 2% box

pairs. That is,

(X Ve= [ Ortvan= Y [ rm
A (B1 By) AP (B xBy)

For each box pair, we compute an approximation interval for the
integral, and sum them up using interval arithmetic to obtain J;.

We first give some (almost trivial) bounds for (X, )). Let (By,
B;) be a box pair with centers located at c¢; and c,, respectively. By
construction, vol(B; x By) = 2~%. By the absolute boundedness of
¢, we have

1 1
O Dyd </ —vn-—vnld 7
fAmm(B]sz) vyl = (leBz)<ﬁ T2 ) a ")

v2n? v2n?
= 1TVO1(31 xBy) = ﬁ, (8)
. . . v2n?
where 1/+/2 is the maximal weight. Let U := 2gs+1. If ¢ <y, then

we can choose [0, U] as approximation interval. Otherwise, if ¢; £
cy, then A®@ N (By x By) = @; we simply choose [0,0] as approxi-
mation interval.

We can derive a second lower and upper bound for (X,))e
as follows. We evaluate ®, and &, at the pair of centers (cy,
c), which is possible due to the efficiency hypothesis of ¢. Let
vy = ®x(c1,c3) and vy = Oy(cy, ). Then, we compute varia-
tionsdy, 6y > 0 relative to the box pair, with the property that,
for any pair (p, q)e€B; xBy, ®x(p.q) € [Vx —8x, vy +8x], and
®y(p, q) € [vy — 8y, vy + 8y]. In other words, variations describe
how far the value of &y (or ®y) deviates from its value at (cq,
c») within By x B,. Combined with the derivations starting in (7),
we have for any pair (p, q) € By x By,

max {0, (Vy — 8x) (Vy — 8y)} 9)



R. Corbet, U. Fugacci and M. Kerber et al./ Computers & Graphics: X 2 (2019) 100005 7

<®x(p,)Py(p.q) (10)
§min{1}%2’ﬂ,(vx+8x)(vy+8y)}. (11)

By multiplying the bounds obtained in (9) by the volume of
AP N (B; x By), we get a lower and an upper bound for the integral
of &Py over a box pair (By, B,). By summing over all possible
box pairs, the obtained lower and upper bounds are the endpoints
of Js.

Variations. We are left with computing the variations relative to a
box pair. For simplicity, we set § := 8y and explain the procedure
only for X; the treatment of Y is similar.

We say that a slice ¢ traverses (By, By) if it intersects both boxes
in at least one point. One such slice is the center slice ¢., which
is the slice through c; and c,. See Fig. 5(b) for an illustration. We
set D to be the maximal bottleneck distance of the center slice and
every other slice traversing the box pair (to be more precise, of the
persistence diagrams along the corresponding slices). We set W as
the maximal difference between the weight of the center slice and
any other slice traversing the box pair, where the weight w is de-
fined as in Section 3. Write A, for the parameter value of ¢; along
the center slice. For every slice ¢ traversing the box pair and any
point pe¢NB;, we have a value A, yielding the parameter value
of p along ¢. We define L; as the maximal difference of A, and
Ac, among all choices of p and ¢. We define L, in the same way
for B, and set L:=max{L;, L,}. With these notations, we obtain
Lemma 6 below.

Lemma 6. For all (p, q) € B; x By,

U3n
(o) ,q) — Py(c1,0)| < =D +vnW +v,nlL.
|®x(p.q) x(€1,62)| 73 1 2

Proof. Plugging in (6) and using triangle inequality, we obtain

[DPx(p.q) — Pr(cr,C2)|
=0, (Ap, hg) = b, (hcy 1) |

< U, hp, Ag) = b, (Mp, hg) | + B (A, hg) [ €= L]
+le| b, (hp. g) = Bax, ey Dy |

and bound the three parts separately. The first summand is up-
per bounded by "f/”jD because of internal stability of the feature
map ¢ and because 7 < % for any slice ¢. The second sum-
mand is upper bounded by v;nW by the absolute boundedness of
¢. The third summand is bounded by v,nL, because ||(Ap, Aq) —
(Aeys Ae)ll2 = V2| (Ap, Ag) — (Ae; s Aey) oo < L and by ¢ being Lips-
chitz, |, (hp. Aq) — b, (Aey. Ac,)| < V2v2nL, and 7 < 5. The re-
sult follows. O

Next, we bound D by simple geometric quantities. We use the
following lemma, whose proof appeared in [48]:

Lemma 7. [48] Let ¢ and ¢’ be two slices with parameterizations b +
Aa and b’ + \d’, respectively. Then, the bottleneck distance of the two
persistence diagrams along these slices is upper bounded by

2|la —d'lloc + 1Ib = b'll
7
We define A as the maximal infinity distance of the directional
vector of the center slice ¢ and any other slice ¢ traversing the box

pair. We define B as the maximal infinity distance of the base point
of ¢, and any other ¢. Finally, we set M as the minimal weight

among all slices traversing the box pair. Using Lemma 7, we see
that
2A+B
< ~
- M,
and we set
v3n(2A + B)
8 = — V<

V2Mé,

It follows from Lemmas 6 and 7 that § indeed satisfies the required
variation property.

We remark that § might well be equal to oo, if the box pair
admits a traversing slice that is horizontal or vertical, in which
case the lower and upper bounds derived from the variation
are vacuous. While (12) looks complicated, the values vy, v, v3
are constants coming from the considered feature map ¢, and
all the remaining values can be computed in constant time using
elementary geometric properties of a box pair. We only explain
the computation of A in Fig. 5(a) and skip the details of the other
values.

D

s

+vnW + vpnl. (12)

Analysis. At this point, we have not made any claim that the algo-
rithm is guaranteed to terminate. However, its correctness follows
at once because J; indeed contains the desired kernel value. More-
over, handling one box pair has a complexity that is polynomial in
n, because the dominant step is to evaluate ®y at the center (cq,
c,). Hence, if the algorithm terminates at iteration sg, its complex-
ity is

> 0(2%poly(n)).

s=1

This is because in iteration s, 2% box pairs need to be consid-
ered. Clearly, the geometric series above is dominated by the last
iteration, so the complexity of the method is 0(2%o0poly(n)). The
last (and technically most challenging) step is to argue that sy =
O(logn+log%), which implies that the algorithm indeed termi-
nates and its complexity is polynomial in n and 1/e.

To see that we can achieve any desired accuracy for the value of
the kernel, i.e., that the interval width tends to 0, we observe that,
if the two boxes By, B, are sufficiently far away and the resolution
s is sufficiently large, the magnitudes A, B, W, and L in (12) are all
small, because the parameterizations of two slices traversing the
box pair are similar (see Lemmas 11-14 in Appendix A). Moreover,
if every slice traversing the box pair has a sufficiently large weight
(i.e., the slice is close to the diagonal), the value M in (12) is suffi-
ciently large. These two properties combined imply that the varia-
tion of such a box pair (which we refer to as the good type) tends
to 0 as s goes to oo. Hence, the bound based on the variation tends
to the correct value for good box pairs.

However, no matter how high the resolution, there are always
bad box pairs for which either By, B, are close, or are far but close
to horizontal and vertical, and hence yield a very large variation.
For each of these box pairs, the bounds derived from the variation
are vacuous, but we still have the trivial bounds [0, U] based on the
absolute boundedness of ¢. Moreover, the total volume of these
bad box pairs goes to 0 when s goes to oo (see Lemmas 9 and10
in Appendix A). So, the contribution of these box pairs tends to O.
These two properties complete the proof of Theorem 5.

A more careful investigation of our proof shows that the com-
plexity of our algorithm is O(n30+k(1/€)40), where k is the effi-
ciency constant of the feature map (Section 2). We made little ef-
fort to optimize the exponents in this bound.

6. Conclusions and future developments

We restate our main results for the case of a multi-filtration
X with d parameters: there is a feature map that associates to X
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a real-valued function ®y whose domain is of dimension 2d, and
introduces a kernel between a pair of multi-filtrations with a sta-
ble distance function, where the stability bounds depend on the
(2d-dimensional) volume of a chosen bounding box. The proofs of
these generalized results carry over from the results of this paper.
Moreover, assuming that d is a constant, we claim that the kernel
can be approximated in polynomial time to any constant (with the
polynomial exponent depending on d). A proof of this statement
requires to adapt the definitions and proofs of Appendix A to the
higher-dimensional case; we omit details.

Other generalizations include replacing filtrations of simplicial
complexes with persistence modules (with a suitable finiteness
condition), passing to sublevel sets of a larger class of (tame) func-
tions and replacing the scale-space feature map with a more gen-
eral family of single-parameter feature maps. All these generaliza-
tions will be discussed in subsequent work.

The next step is an efficient implementation of our kernel ap-
proximation algorithm. We have implemented a prototype in C++,
realizing a more adaptive version of the described algorithm. We
have observed rather poor performance due to the sheer number
of box pairs to be considered. Some improvements under consid-
eration are to precompute all combinatorial persistence diagrams
(cf. the barcode templates from [44]), to refine the search space
adaptively using a quad-tree instead of doubling the resolution and
to use techniques from numerical integration to handle real-world
data sizes. We hope that an efficient implementation of our kernel
will validate the assumption that including more than a single pa-
rameter will attach more information to the data set and improve
the quality of machine learning algorithms using topological fea-
tures.
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Appendix A. Details on the Proof of Theorem 5

Overview. Recall that our approximation algorithm produces an
approximation interval Js for s € N by splitting the unit square into
25 x 25 boxes. For notational convenience, we write u := 2~5 for the
side length of these boxes.

We would like to argue that the algorithm terminates after
O(logn +10g%) iterations, which means that after that many it-
erations, an interval of width € has been produced. The following
Lemma 8 gives an equivalent criterion in terms of u and n.

Lemma 8. Assume that there are constants eq, e; >0, such
that width(Js) = O(n®1u2). Then, width(Js)) <€ for some sy=
O(logn +log {).

Proof. Assume that width(Js) < cn®1u® for constants ¢ and s suf-
ficiently large. Since u =275, a simple calculation shows that

logc+e; logn+log L

cn®1u®2 < ¢ if and only if s > e
2

. Hence, choosing

1 1 log L
. { ogc+e; :gn+ oge—‘ :O(logn+log%>
2

ensures that width(Js,) < €. O

In the rest of this section, we will show that width(Js) =
O(n2u0.1 )

Classifying box pairs. For the analysis, we partition the box pairs
considered by the algorithm into 4 disjoint classes. We call a box
pair (B4, By):

null if ¢ %cy,

e close if ¢; <cy such that ||c; — a2 < VU,

« non-diagonal if ¢; <c, such that ||c; — ¢;||2 > +/u and any line ¢
that traverses (B;, B,) satisfies 7 < u%,

« good if it is of neither of the previous three types.

According to this notation, the integral from (1) can then be
split as

<X7 y><l> = (X, y)null + <X7 y)close + (X, y)non—diag + <X, y)guudv

where, (X, ¥)nyy is defined as 3=, ) nuit [a@ (s, <8,) PrPydiL.
and analogously for the other ones. We let J yu, Js.cioses Js,non—diag»
Js.gooa denote the four approximation intervals obtained from our
algorithm when summing up the contributions of the correspond-
ing box pairs. Then clearly, Js is the sum of these four intervals. For
simplicity, we will write J,,; instead of J;,,; when s is fixed, and
likewise for the other three cases.

We observe first that the algorithm yields J,,;; = [0, 0], so null
box pairs can simply be ignored. Box pairs that are either close
or non-diagonal are referred to as bad box pairs in Section 5. We
proceed by showing that the width of Jeese, Jnon—diag» aNd Jgooa are
all bounded by O(n?u%1),

Bad box pairs. We start with bounding the width of J,s. Let
Belose be the union of all close box pairs. Note that our algorithm
assigns to each box pair (By, By) an interval that is a subset of [0,
U]. Recall that U = UZ}S'L. U can be rewritten as @vol(Bl x By),
where vol(B; x By) is the 4-dimensional volume of the box pair (B4,
B,). It follows that

212

. vin
Wldth(]close) = 1TVOI(Bclose)~

(A1)
Lemma 9. For u < 1, vol(Bee) < 47ru.

Proof. Fixed a point peR, for each point geR such that (p,q)
Bgose and p < g, there exists a unique close box pair (B, B,) that
contains (p, q). By definition of close box pair, we have that:

Ip—=ally < llp=cilly + ller = cally + llez = qll, < Vu+v2u.

Moreover, for u < 4, ~2u </, and so ||p—q||, < 2u. Equiva-
lently, g belongs to the 2-ball B(p, 2+/u) centered at p and of radius
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2./u. Then,

vol(Beiose) :/ 1dlL S/ / ]d,bL
Belose peR JqeB(p,2y/u)

< 4drudu = 4mu.
peR

Consequently, combined with (A.1), we have

4w vin?

width(Jeese) < u=0(n*u®").

Note that u <1 and hence, u <u%1,

For the width of J,g,_giqs, We use exactly the same reasoning,
making use of the following Lemma 10. Let B;qn_giag De the union
of all non-diagonal box pairs.

Lemma 10. For u <23, Vol (Byon-diag) < V2us.

Proof. Fixed a point peR, for each point geR such that (p,q)
Bhon-diag and p < g, there exists a unique non-diagonal box pair (By,
B,) that contains (p, q). We have that g lies in:

o Triangle T;(p) of vertices p = (p1. p2). (1, p2), and (1, py + (1 —
pl)%), if the line ¢ of maximum slope passing through B; x B,
is such that £ = a, where a = (a;, a,) is the (positive) unit di-
rection vector of ¢;

« Triangle T,(p) of vertices p = (p1,p2), (p1, 1), and (p; + (1 -
pz)%, 1), if the line ¢ of minimum slope passing through
By x By is such that ¢ =a; where a = (a;, ay) is the (positive)
unit direction vector of ¢.

Let us bound the area of the two triangles. Since the calcula-
tions are analogous, let us focus on T;(p). By definition, the basis
of Ty(p) is smaller than 1 while its height is bounded by % The

maximum value for the height of T;(p) is achieved for a, = ub. So,
by exploiting the identity a? + a2 = 1, we have

2
(&) =15
a)  1-ub’

.. 5
Under the conditions u <272 and %u*

a 1
2 < V2us.
I

2
5 > 1 we have

Therefore, area(T;(p)) < 2yk Similarly, area(T;(p)) < gu% Fi-

2
nally,

VO](Bnon—diag) :/ 1dp

Bnon—diag

ol
peR JqeT; (p)UTz (p)

< | ~Y2usdu <v2us.

PeR
O

Good box pairs. For good box pairs, we use the fact that the
variation of a box pair yields a subinterval of [(vy —dx)(Vy —
8y)vol(By x By), (Vx + 8x)(vy + Sy)vol(By x By)] as an approxima-
tion, so the width is bounded by 2(vxdy + vy8x)vol(By x By). Let
Bgooq be the union of all good box pairs. Since the volumes of all
good box pairs sum up to at most one, that is, vol(Bgoeq) < 1, it
follows that the width of Jy04 is bounded by 2(vx8y + vydx). By
absolute boundedness, vy and vy are in O(n), and recall that by
definition,

v3n(2A + B) A+B
by =—"————+1 MW +1,nL=0|n +W+L
T ame ! 2 M2

based on the fact that 7> M. The same bound holds for &y.
Hence,

width (Jgeeq) = o<n2 (AA;;ZB FW L))

It remains to show that % +W +L=0("). Note that M > u$
because the box pair is assumed to be good. We will show in the
next lemmas that A, B, W, and L are all in O(J/u), proving that the
term is indeed in O(u%!). This completes the proof of the complex-
ity of the algorithm.

Lemma 11. Let (By, By) be a good box pair. Let a, a’ be the unit
direction vectors of two lines that pass through the box pair. Then,
lla — |l <2+/u. In particular, A = 0(Ju).

Proof. Since (By, B;) is a good box pair, the largest value for
la—d'|| is achieved when ¢ and ¢’ correspond to the lines pass-
ing through the box pair(B;, B;) with minimum and maximum
slope, respectively. By denoting as ¢ = (C1x, C1y), €2 = (C2x. C2y)
the centers of By, B,, we define ¢ to be the line passing through
the points c¢; + (=%, %), ¢z + (§,—%). Similarly, let us call ¢ the

line passing through the points ¢; + (5. -%). ca + (4. %). So, the

unit direction vector a of ¢ can be expressed as
_ (e+G -5 -+ (=5.3)
[+ G =) =@+ o),
Similarly, the unit direction vector a’ of ¢’ is described by
p_ e+ (5.9 -+ (G —3)
[+ L) =@+ & -9,
Then, by denoting as (-,-) the scalar product,
la—da'|2 < lla—a'll3 = llall3 + &'} - 2(a. @) = 2(1 - {a.@'))
Y C—C+(Uu, —u) G- +(-u,u)
le—ci+ @, —wlly" [lez—cr+(—u Wl
Y llez —cal3 — 202
llc2 — ¢+ (. —w)llyllcz — e + (—u. )|,

By an elementary calculation, one can prove that

llca — 1+ (w, —w)lyllcz — c1 + (—w, w) |l

= \/4u2 (142 + 2(Ca — 1) (C2y — C1y)) + 2 — ca 5.

Then,

2
lla—dllz
2
<211= ||C2_C1||2_2u2
\/4112 (U2 +2(cx—C1x)(Coy — CLy)) +lle2 =1l
2
-2 1+ 2u27||C27C‘1||2

A2 (12 + 2o - €10 @y~ 1) + lleo — a1

Since (B, By) is a good box pair, ||c; — 1], > Vu. So,

2u—1
\/4(u2 +2(Cox — Cr) (C2y — C1y)) + 1

la—d|2 <2| 1+

Since \/4(u2 +2(Cx — C10)(C2y — €1y)) + 1> 1, we have that

la—d|? <2(1+2u—1) =4u.
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Therefore,
la—dlle <2Vu.

Lemma 12. Let (B;, By) be a good box pair. Let ¢ =ah+b, ¢/ =
a’A + b’ be two lines that pass through the box pair such that a, a’ are
unit direction vectors and b, b’ are the intersection points with the di-
agonal of the second and the fourth quadrant. Then ||b— b || < 4.
In particular, B = 0(J/u).

Proof. Since (B;, By) is a good box pair, the largest value for ||b —
V|| is achieved when ¢ and ¢’ correspond to the lines passing
through the box pair(B;, By) with minimum and maximum slope,
respectively. By denoting the centers of B; and B, by ¢; and c,, we
define ¢ to be the line passing through the points c; + (=4, %),
¢ + (4. —%). Similarly, let us call ¢’ the line passing through the
points ¢; 4+ (4. —%). o + (=4, ). So, £ can be expressed as
e+ (5. -3)—a—-(=53) u u
(4 u2) ( u2 u2) t+c1+(_j’j>’
o+ -H-a-5 5],
where t is a parameter running on R. By intersecting ¢ with the
line y = —x, we get:
Cox + % _Cl,x‘i‘%
lea+ 5. =9 —ai = =5. 9],
—Gy+i+ay+i
= u _u u u t=Cy— 2’
”CZ +(3.-3)—a— (-3, j)”z
which can be written as
Cl,x + Cl,y —Cx — C2‘y
ez + (4 =5 - = (=5. 9,
letting us deduce that

t:(cl,x +C1,y)||C2 + (. -5 —a-(-4%, %)”2

Cl,x + C],y —Cx — C2,y

(x.y) = |

u
t+Cl.x_§

Cix + Cl,y =

So, by replacing t in the equation of ¢ we retrieve b:
G+ (5, -3)—ca—-(-5.5)
lea+ G =5 —a - 4.9,
Cxtapla+G.-H-a--59], uu
+Ch+\—5 5
Clx+Cly—Cx—Cy 2°2

b=

(W, —u)(erx+c1y)
Cix+ C],y —Cx— C2,y

+c1 4 (73 E)
1 535)
Similarly,

b = (_u’ u) (Cl,x + Cl,y)
C],x + C].y - C2,x - CZ,y

s+ (5.-3)
1 ' 2)
Cl,x+C1,y

I [ (T

Cilxt+Ciyt+Cx+Cy ‘ ” (u _u)”
Cx+Cy—Cx—Ciy ' *
4r
= u.
|C2.x + C2,y - C1,x - Cl.y|

Since (B4, By) is a good box pair,

(2 —cr)(Cra+Cry)
Cix+ Cl.y —Cx— CZ,y

(2 —cp)(crx+cry)
C],x + C],y - C2,x - C2,y

So,

o0

GQatay—Cx—CGy=la—cl;=la-al,= V.

Finally,

o4
lp-b], = Hu=ava

O

Lemma 13. Let (B, By) be a good box pair. Let 7, ¢’ be the weights of
two lines ¢ and ¢’ that pass through the box pair. Then | — ¢'| < 4J/u.
In particular, W = 0(J/u).

Proof. If { = a; and ¢’ = a}, then, by applying Lemma 11,
|6— 0| =|a; —d}| < ”a—a/HOC <2Vu.
On the other hand, if # = a; and ¢ = ), then there exists a line ¢”

passing through the box pair (B, By) such that a” = (@, ?). By
applying twice Lemma 11,

LA V2 V2
[6—¥|=lai =y < a1 — -+ |5 — ]
2 2
R P e P
<4Ju.
The cases = a,, ¢ =d), and ¢ = ay, ¢ = @} can be treated analo-
gously to the previous ones. O

Lemma 14. Let (p, q), (p/, q') be two points in a good box pair
(By, By) and let ¢, ¢’ be the lines passing through p, q and p/, ¢/,
respectively. In accordance with the usual parametrization, we have
that [Ap — Ay| < v2u+4vu and |Ag — Ay | < v2u+4/u. As a con-
sequence, L = O(/u).

Proof. Thanks to the definition of A, the triangular inequality and
Lemma 12, we have that:

Ap=Ilp—Dbll; < ||p—p’“2+ ||p’—b’||2+ ”b/_b“z
<V2u+ Ay +4Vu

So, we have that A, — A,y <v2u+4u, and, similarly, A, — Ap <
V2u + 4/u. Then,

|Ap— Ayl < vV2u+ 4V
Analogously, it can be proven that
g — Aq| < V2u+ 4V
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