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ARTICLE INFO ABSTRACT

Predation is a fundamental force exerting strong selective pressure on prey populations. Predators not only kill
prey, triggering lethal effects, but also hunt prey which can induce risk effects. Foundational research has
documented the importance of risk effects in predator-prey systems of arthropods, fish, birds, and rodents,
among others. Risk effects research in carnivore-ungulate systems has expanded in the last 20 years. Presently,
the degree to which this research mirrors the complexity of carnivore-ungulate trophic systems has been
questioned. We synthesized this literature to quantify the tendency of risk effects research in carnivore-ungulate
systems to be multispecies in design. Among the 170 studies that we reviewed, we found that on average just
1.26 (range = 1 to 5) carnivore species and 1.60 (range = 1 to 11) ungulate species were considered per study.
Furthermore, 63% (n = 107 of 170) of the studies featured single predator - single prey research designs. These
results contrast with the fact that all but one of the 82 carnivore-ungulate systems used this literature had
multiple species of carnivores and/or ungulates. Thus, we detected a tendency to simplify complex systems. We
relate these observations to the role of simplicity as: i) an underlying value of science (i.e., Occam's razor), ii) a
cornerstone of predator-prey theory (e.g., Lotka-Volterra equations), and iii) part of the origins of risk effects
research (i.e., experimental systems). Finally, we ground our discussion in the implications of this research for
the conservation of carnivores and ungulates in the dynamic 21st century.
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1. Introduction broadly, the general structure of trophic systems (Lindeman, 1942;

Kerfoot and Sih, 1987; Cohen et al., 2003; Jonsson et al., 2005; Brose

Trophic systems are a complex arrangement of biotic and abiotic
components that dynamically interact among and across perceived le-
vels of organization (Hairston et al., 1960; Polis and Strong, 1996). The
flow of nutrients and energy through these systems, coarsely consisting
of primary producers as well as first-, second-, third-, and fourth-order
consumers, has been called the Eltonian pyramid in acknowledgement of
Charles Elton's pioneering research in the early 20th century (see Elton,
1927). It is within this pyramid of numbers, ecological pyramid, or food
web that the interactions of floral and faunal species play out in a
producer-consumer paradigm (Pimm, 1982; Cohen and Newman, 1985;
Winemiller and Polis, 1996). These interactions have subsequent im-
plications for animal allometry, species population sizes, and, more
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et al., 2006; Barnes et al., 2010; McCauley et al., 2018). Furthermore,
whether these systems are dictated by bottom-up processes, top-down
processes, or, more likely, some combination of the two, governs the
ways in which the effects of the interspecific interactions can cascade
through the system (Paine, 1980; Pace et al., 1999; Schmitz et al., 2000;
Finke and Denno, 2004). In recognition of the tremendous importance
of these interactions on the natural world, research assessing the
principles of trophic ecology has been extensive (for reviews see Polis
et al., 1997; Estes et al., 2011; Layman et al., 2015).

Importantly, the mechanisms that underlie the interactions of con-
sumers and producers (i.e., predators and prey) within trophic systems
are not exclusively predicated upon direct predation. Lethal effects

E-mail addresses: montgl64@msu.edu (R.A. Montgomery), rjmoll@msu.edu (R.J. Moll), elise.say-sallaz@univ-lyonl.fr (E. Say-Sallaz),

marion.valeix@univ-lyonl.fr (M. Valeix), Iprugh@uw.edu (L.R. Prugh).

https://doi.org/10.1016/j.biocon.2019.02.001

Received 15 December 2018; Received in revised form 15 January 2019; Accepted 1 February 2019

0006-3207/ © 2019 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2019.02.001
https://doi.org/10.1016/j.biocon.2019.02.001
mailto:montg164@msu.edu
mailto:rjmoll@msu.edu
mailto:elise.say-sallaz@univ-lyon1.fr
mailto:marion.valeix@univ-lyon1.fr
mailto:lprugh@uw.edu
https://doi.org/10.1016/j.biocon.2019.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2019.02.001&domain=pdf

R.A. Montgomery, et al.

(also known as consumptive effects) occur when predators kill prey
(Paine, 1966; Taylor, 1984; Sih et al., 1985) and are integral to the
functioning of trophic systems. However, predators also influence
trophic systems along nonlethal pathways by inducing phenotypic
changes in prey. While physiological, morphological, and behavioral
modifications may reduce the predation risk experienced by prey, they
often come at a cost (Lima and Dill, 1990; Abrams, 1995; Brown et al.,
1999; Tollrian and Harvell, 1999; Peacor and Werner, 1997, 2001;
Schmitz et al., 2004; Creel and Christianson, 2008; Heithaus et al.,
2008). For example, prey might respond to prevailing predation risk by
increasing vigilance. This behavioral adjustment however, would cor-
respondingly reduce foraging effort. These costs of induced anti-
predator behavior are typically referred to as nonconsumptive (Brown
and Kotler, 2004; Peckarsky et al., 2008; Peacor et al., 2013) or risk
effects (Creel and Christianson, 2008; Heithaus et al., 2008). Though
lethal effects have historically received the bulk of the research atten-
tion in trophic ecology, the nature and strength of risk effects can be
equivalent to, or even greater than, lethal effects (Schmitz et al., 1997;
Creel et al., 2008; Pangle et al., 2007; Cresswell, 2008; Ford and
Goheen, 2015; Creel, 2018). Furthermore, the risk effects associated
with the decisions of individual prey can scale to have population-level
consequences (Mangel and Clark, 1988; Lima, 1998, 2002; Sih et al.,
1998).

Foundational research on trophic ecology and lethal and risk effects
has typically been associated with relatively small experimental sys-
tems featuring relatively small (e.g., < 1 kg) species (see Schmitz et al.,
2017). Take for example the research on optimal foraging theory con-
ducted by Werner and Mittelbach (1981) “in a small Michigan lake and
an artificial pond” (p. 820) of predatory fish between 101 and 150 mm
in length. Equally formative work on risk effects has been conducted
among systems featuring predators pursuing prey comprised of insects
(Schmitz et al., 1997; Schmitz, 1998), snails (Turner, 1996; Bernot and
Turner, 2001; Turner and Montgomery, 2003), birds (Cresswell, 1993,
1994), rodents (Brown et al., 1988; Kotler, 1984; Brown and Kotler,
2004), fish (Werner et al., 1983; Turner and Mittelbach, 1990), and
turtles (Heithaus et al., 2002, 2007). Much has been learned via this
work, but the extent to which the principles are generalizable to larger
species inhabiting vaster terrestrial systems has been called into ques-
tion (see Pearson and Dawson, 2003; Ricklefs, 2008; D'amen et al.,
2017; MacLeod et al., 2018). In addition to the focus on smaller or-
ganisms, the origins of predator-prey theory tended to focus on simple
systems or trophic structures featuring single predator-prey species
couplings (e.g., Lotka, 1925; Volterra, 1926; Nicholson and Bailey,
1935).

The context provided above helps explain why, until recently, re-
search on risk effects has not typically been situated in systems com-
prised of carnivores pursuing mobile and elusive ungulate prey. For
example, among a meta-analysis of risk effects in predator-prey inter-
actions published in 2005, only one of the 453 studies reviewed as-
sessed carnivores and ungulates (see Preisser et al., 2005). Risk effects
research in carnivore-ungulate systems has likely lagged behind that
conducted in smaller systems given important logistical, technological,
and ethical challenges of studying large and charismatic species (see
Estes, 1995). Over the last 20 years however, research on risk effects in
carnivore-ungulate systems has greatly increased (see Moll et al., 2017;
Say-Sallaz et al., this issue). The rapid expansion in this research may be
demonstrative of unsustainable growth as considerable methodological
variation among the carnivore-ungulate risk effects literature has been
observed (Moll et al., 2017). This has called into question the com-
parability of this research across study sites, leading to subsequent re-
commendations to standardize the methods used in this research (see
Moll et al., 2017; Prugh et al., 2019).

Such standardization is important given that it is these systems with
attacking carnivores and adept ungulate prey that present ideal can-
didates for research examining the nature and strength of risk effects
(Brown et al., 1999; Creel et al., 2008; Schmitz et al., 2017). Recent
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calls among the scientific community have questioned the extent to
which research on risk effects in carnivore-ungulate systems adequately
represents the complexity of these trophic systems (Cresswell and
Quinn, 2013; LaManna and Martin, 2016; Moll et al., 2017; Say-Sallaz
et al., this issue). The trophic dynamics of most carnivore-ungulate
systems are highly complex, where predation risk experienced by a
number of ungulate prey species dynamically derives from one or more
of several sympatric carnivore species. Consequently, what is needed is
studies from natural systems in which the complexity of multi-predator
effects is assessed (Cresswell and Quinn, 2013; LaManna and Martin,
2016; Creel et al., 2017; Northfield et al., 2017). In the absence of
multiple predator — multiple prey studies, it will be difficult to de-
termine whether the underlying predator-prey frameworks are applic-
able (Peckarsky and McIntosh, 1998; Thaker et al., 2011; Droge et al.,
2017; Schmitz et al., 2017).

Given this context, it is crucial to identify the degree to which risk
effects research in carnivore-ungulate systems has included multiple
species of predators and prey. We hypothesize that risk effects research
in carnivore-ungulate systems has tended not to assess multispecies
dynamics. In pursuit of this research hypothesis, we conducted an ex-
tensive survey of the peer-reviewed literature. We ground the discus-
sion of the implications of this research in the origins of predator-prey
theory and we highlight the ways in which multi-species experimental
designs may yield novel and original insights in carnivore-ungulate
ecology. Our analysis has important implications for conservation be-
cause overly simplistic research approaches will provide outputs that
are too general or too inaccurate to have a meaningful impact. This is
particularly important in carnivore-ungulate systems given the rates at
which large carnivores and their ungulate prey are declining the world
over. Thus, we comment on the ways in which simplicity in assessing
risk effects among carnivores and their ungulate prey might hinder the
development of progressive policies meant to conserve these animals in
a dynamic world.

2. Methods
2.1. Literature review

We conducted an extensive review of literature (completed in July
2018) evaluating risk effects in carnivore-ungulate systems. We con-
ducted this review in the Web of Science search engine using the fol-
lowing terms: (carnivore AND ungulate) AND (risk effects OR non-
consumptive OR predation risk OR nonlethal OR non-lethal OR trait-
mediated OR behaviorally-mediated OR landscape of fear). Our next
step was to assess all literature deriving from this review. We retained
those studies featuring objectives statements that were consistent with
our analysis and eliminated from consideration any unrelated studies.
Unrelated studies included those that did not center their assessment on
risk effects or those that assessed risk effects in systems not including
carnivores and ungulates. It is also important to note that our interest
here was in predation rather than depredation. Depredation refers to
instances in which predators hunt domestic animals including cats (Felis
silvestris catus), dogs (Canis familiaris), and a variety of livestock and
poultry (Ogada et al., 2003; Woodroffe et al., 2005). Given that de-
predation was not relevant to our assessment, the studies that we
evaluated in this review focused exclusively on predation risk effects on
wild ungulates. Among the resultant set of literature, we recorded: i)
the study objective, ii) the ecosystem in which the study was positioned,
and both the iii) predatory carnivore species and iv) ungulate prey
species evaluated in each study.

2.2. Trophic interactions studied
We evaluated each of the studies to identify the trophic interaction

(s) assessed. We grounded these interactions within the level of the
trophic system involving predation between species in the order
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Carnivora and infra-order Ungulata. As the nature and strength of risk
effects has been found to vary according to predator hunting mode (see
Preisser et al., 2007; Miller et al., 2014; Schmitz, 2008; Schmitz et al.,
2017) we subdivided Carnivora by hunting mode. Classically, there are
three hunting modes (active, sit-and-wait, and sit-and-pursue) by which
predators pursue prey (see Schmitz, 2003, 2008; Preisser et al., 2005).
In carnivore-ungulate systems, these three categories have typically
been presented as two hunting modes represented by active and ambush
strategies (see Hopcraft et al., 2005; Thaker et al., 2011; Middleton
et al., 2013; Moll et al., 2016; Petrunenko et al., 2016). Active carni-
vores are coursing predators that are regularly moving in pursuit of
prey whereas ambush carnivores (including both sit-and-wait and sit-
and-pursue styles) are those that wait in a location and attack when a
prey comes within a conventional chase distance. Thus, we designated
each carnivore species as either an active of ambush predator.
Though not yet widely assessed in the literature, we also anticipate
that the nature and strength of risk effects experienced by ungulate prey
should vary depending on whether the carnivore species functions as an
apex or mesopredator in the system. Here we use apex predator to mean
the top-ranking carnivore(s) in the system, whereas mesopredators are
species that are mid-ranking (see Prugh et al., 2009). We consider the
risk effects from apex predators to be persistent while we envision the
risk effects of mesopredators to be better described as intermittent
(Fig. 1). Though mesopredators can undoubtedly elicit risk effects in
ungulates (Lingle, 2002; Bastille-Rousseau et al., 2015), their effects
tend not to be consistent year round. Direct predation of ungulate prey
by mesopredators is often restricted to neonates (Paquet, 1992; Linnell
et al., 1995; Arjo et al., 2002; Berger et al., 2008), creating an annual
pulse in risk effects. Via the processes of mesopredator release, carni-
vore species that are traditionally mesopredators can ascend to apex
predator positions. Coyotes (Canis latrans) provide a classic example of
this premise (Ripple et al., 2013), because they function as mesopre-
dators in systems with larger carnivores, such as gray wolves (Canis
lupus; Berger et al., 2008), and as apex predators in systems where
larger carnivores have been extirpated (Crooks and Soulé, 1999;

—==- PERSISTENT

APEX PREDATORS e e« INTERMITTENT

MESOPREDATORS
Canis lupus  Ursus americanus
11\ \ / e ©
[ v ! Lynx*cahandensis
I\ v p
(I 1! .
‘ \ I l P [ J 4
v 1L ¢ by
S ..7 \\ Canis Iatraqs ~Lyﬁx rufus
) N L °
\_,/UNGULATEPREY S
oo Q\N‘ o — °
\\ .0 °
\\\ > =3

Alces alces

Odocoileus virginianus

Fig. 1. A depiction of the trophic complexity in the order Carnivora and infra-
order Ungulata in Hiawatha National Forest, Michigan, USA including apex
predators, mesopredators, and ungulate prey. The dashed black lines represent
potentially persistent risk effects deriving from the apex predators whereas the
dotted gray lines illustrate risk effects that could be described as being more
intermittent (i.e., seasonal) in nature.
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Roemer et al., 2009). Thus, the apex and mesopredator designations
that we made are trophic system specific (see Prugh et al., 2009; Ritchie
and Johnson, 2009; Fleming et al., 2017; Haidir et al., 2018). There
were a couple of species featured in this literature review (wild dogs -
Lycaon pictus and cheetahs — Acinonyx jubatus) that defy apex and me-
sopredator definitions given that they are technically mid-ranking
carnivores in the systems in which they reside and yet, have predation
risk effects that would best be described as persistent (FitzGibbon,
1993; Ford and Goheen, 2015). For the purposes of this analysis, we
considered these species to be apex predators.

2.3. Trophic level complexity

Next, we documented the potential trophic complexity in Carnivora-
Ungulata interactions among the top three most-studied systems fea-
tured in our review. To do so, we developed lists of the carnivore and
ungulate species commonly resident in these systems. Importantly
however, we did not consider all interactions of carnivores and un-
gulates to be capable of eliciting risk effects. Due to body size, hunting
mode, and sociality, there are many Carnivora-Ungulata interactions
that are inherently non-predatory. Take for instance, red foxes (Vulpes
vulpes) that pose no predation risk to moose (Alces alces). In this case,
we would not consider red fox as part of the carnivore assemblage
capable of eliciting risk effects in moose. Finally, we did not consider
prey preference within this assessment of trophic level complexity.

3. Results

Application of our search terms in Web of Science returned a total of
339 studies. Following examination of these studies, we retained 170
for analysis. These 170 studies directly assessed risk effects in carni-
vore-ungulate systems (see Supplementary Table S1). We identified 82
carnivore-ungulate study systems in 25 countries across five continents.
We found that 61% (n = 104 of 170) of these studies were centered in
North America, 19% (n = 33 of 170) in Africa, and 13% (n = 21 of 170)
in Europe. A minority of these studies were situated in South America
(5%, n = 8 of 170) and Asia (2%, n = 4 of 170). The majority (63%,
n =107 of 170) of these studies were single predator — single prey
research designs while only one system (Isle Royale National Park,
Michigan) among these studies that could be described as a single
predator - single prey system (i.e., gray wolf — moose). Just 6% (n = 11
of 170) were multiple predator — multiple prey designs. Over 82%
(n = 141 of 170) of the studies featured one carnivore species and 74%
(n = 125 of 170) of the studies featured one ungulate species. There
were 34 studies (20%) that were single predator - multiple prey designs
and 18 studies (11%) that were multiple predator - single prey designs.
There were 29 studies (~17%) that assessed =2 carnivore species
while 45 studies (26%) assessed =2 ungulate species. There were 11
studies (~6%) that assessed =3 carnivore species while 20 studies
(12%) assessed =3 ungulate species.

A total of 24 species of carnivores (Table 1) and 56 species of un-
gulates (Table 2) were assessed in this literature. There was an average
of 1.26 (SD = 0.66, range = 1 to 5) carnivore species researched per
study with carnivores being used a total of 214 times to assess ungulate
risk effects among this literature. The species of carnivore that was
most-commonly evaluated was the gray wolf, which occurred 96 times
(45%; Table 1). The second-ranked species was the African lion (Pan-
thera leo; 11%) followed by coyotes (7%), and cougars (Puma concolor;
7%; Table 1). Most of the time (84%, n = 180 of 214) these species
inhabited the apex predator position followed by mesopredators (8%,
n = 18 of 214). Coyotes were the species that could be either apex or
mesopredator depending on the system and they were considered 7%
(n = 16 of 214) of the time. Similarly, the majority (75%, n = 161 of
214) of the time, carnivores among this literature had an active hunting
mode with 25% (n = 53 of 214) having an ambush hunting mode.

There was an average of 1.60 (SD = 1.42, range = 1 to 11) ungulate
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Table 1

The carnivore species, rank, hunting mode, and the number of times that each
carnivore was considered among studies of risk effects in carnivore-ungulate
systems studies published between 1989 and 2018.
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Table 2

The ungulate species and the number of times that each ungulate was con-
sidered among studies of risk effects in carnivore-ungulate systems published
between 1989 and 2018.

Carnivore species Rank Hunting Count Proportion
mode
Canis lupus Apex predator Active 96 0.45
Panthera leo Apex predator Ambush 23 0.11
Canis latrans Mesopredator or Active 16 0.07
apex predator
Puma concolor Apex predator Ambush 15 0.07
Ursus arctos Apex predator Active 10 0.05
Lycaon pictus Apex predator Active 9 0.04
Ursus americanus Apex predator Active 8 0.04
Lynx lynx Mesopredator Ambush 7 0.03
Acinonyx jubatus Apex predator Active 6 0.03
Crocuta crocuta Apex predator Active 6 0.03
Vulpes vulpes Mesopredator Active 3 0.01
Panthera leo persica Apex predator Ambush 2 0.009
Panthera pardus Apex predator Ambush 2 0.009
Canis anthus Apex predator Active 1 0.005
Canis lupus signatus Apex predator Active 1 0.005
Canis mesomelas Mesopredator Active 1 0.005
Lycalopex culpaeus Mesopredator Active 1 0.005
Lynx canadensis Mesopredator Ambush 1 0.005
Lynx rufus Mesopredator Ambush 1 0.005
Neofelis diardi Mesopredator Ambush 1 0.005
Panthera onca Apex predator Ambush 1 0.005
Urocyon cinereoargenteus Mesopredator Active 1 0.005
Vulpes ferrilata Mesopredator Active 1 0.005
Vulpes rueppellii Mesopredator Active 1 0.005

species researched per study with ungulates being used a total of 272
times to assess risk effects among this literature. The species of ungulate
that was most-commonly evaluated was elk/red deer (Cervus elaphus) as
it was featured 66 times (24%; Table 2). The second-ranked species was
caribou/reindeer (Rangifer tarandus; 8%), followed by moose (6%), and
plains zebra (Equus quagga; 6%; Table 2). Among the 107 studies that
were single predator - single prey, the most commonly researched in-
teraction was gray wolf — elk/red deer occurring in 46% (n = 49 of 107)
of these studies (Table 3). The next most common interaction was
coyote — white-tailed deer (Odocoileus virginianus; 8%, n = 9 of 107),
followed by gray wolf — caribou/reindeer (7%, n = 7 of 107), and gray
wolf — moose (6%, n = 6 of 107; Table 3).

Evaluated in 23% (n =39 of 170) of the studies, the Greater
Yellowstone Ecosystem in the United States was the most-commonly
researched system overall. The next most-studied system was Banff
National Park, Canada (5%, n =9 of 170), followed by Hwange
National Park, Zimbabwe (4.7%, n =8 of 170). In the Greater
Yellowstone Ecosystem, there are eight ungulate species that are com-
monly resident and potentially experience predation risk from four
resident apex predators and four resident mesopredators (Fig. 2a).
Despite this complexity, the average number of carnivore species con-
sidered per study was 1.10 (SD = 0.38, range 1 to 3) and the average
number of ungulate species considered per study was 1.15 (SD = 0.54,
range 1 to 4; Fig. 2b). Banff National Park now has seven resident
ungulate species (with bison — Bison bison being restored in 2017) that
potentially experience predation risk from four apex predators and
three mesopredators (Fig. 3a). However, the only trophic interaction in
Banff National Park considered among these studies was gray wolf — elk
(Fig. 3b). In Hwange National Park, there are eleven ungulate species
that are commonly resident and potentially experience predation risk
from five resident apex predators and two resident mesopredators
(Fig. 4a). Among these studies, there was just one carnivore species
considered per study and the average number of ungulate species
considered per study was 2.88 (SD = 3.36, range 1 to 11; Fig. 4b).

Ungulate species Count Proportion
Cervus elaphus 66 0.24
Rangifer tarandus 21 0.08
Alces alces 15 0.06
Equus quagga 15 0.06
Connochaetes taurinus 14 0.05
Capreolus capreolus 13 0.05
Odocoileus virginianus 13 0.05
Aepyceros melampus 9 0.03
Tragelaphus strepsiceros 9 0.03
Odocoileus hemionus 8 0.03
Bison bison 6 0.02
Phacochoerus africanus 6 0.02
Sus scrofa 6 0.02
Syncerus caffer 5 0.02
Alcelaphus buselaphus 4 0.01
Bison bonasus 4 0.01
Eudorcas thomsonii 4 0.01
Giraffa camelopardalis 4 0.01
Lama guanicoe 4 0.01
Equus burchelli 3 0.01
Nanger granti 3 0.01
Axis axis 2 0.01
Hippotragus niger 2 0.01
Ourebia ourebi 2 0.01
Tragelaphus oryx 2 0.01
Vicugna vicugna 2 0.01
Antilocapra americana 1 0.004
Apennine chamois 1 0.004
Dama dama 1 0.004
Damaliscus korrigum 1 0.004
Gazella dorcas 1 0.004
Hippocamelus bisulcus 1 0.004
Hippotragus equinus 1 0.004
Kobus ellipsiprymnus 1 0.004
Madoqua guentheri 1 0.004
Mazama americana 1 0.004
Mazama gouazoubira 1 0.004
Muntiacus atherodes 1 0.004
Muntiacus muntjak 1 0.004
Oryx dammah 1 0.004
Oryx gazella 1 0.004
Ovis canadensis mexicana 1 0.004
Ovis canadensis sierrae 1 0.004
Ovis dalli dalli 1 0.004
Ovis dalli stonei 1 0.004
Pecari tajacu 1 0.004
Phacochoerus aethiopicus 1 0.004
Procapra przewalskii 1 0.004
Raphicerus campestris 1 0.004
Rusa unicolor 1 0.004
Sus barbatus 1 0.004
Sylvicapra grimmia 1 0.004
Taurotragus oryx 1 0.004
Tragelaphus buxtoni 1 0.004
Tragulus kanchil 1 0.004
Tragulus napu 1 0.004

4. Discussion

Broadly, we detected a tendency to simplify complex systems among
carnivore-ungulate risk effects research. The majority of the studies
reviewed (63%; n = 107 of 170) involved single predator - single prey
research designs, despite the fact that all but one system (e.g., Isle
Royale National Park, Michigan) had multiple resident carnivore and/
or ungulate species. It is a rare system where a prey species experiences
predation risk from just one predator (see Sih et al., 1998; Lima, 2002;
Vanak et al., 2013). Thus, the tendency to simplify often contrasted
with the complexity inherent to the systems in which these studies
occurred. For example, the three most-studied systems in our review
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Table 3
Trophic interactions among single predator — single prey studies of risk effects
in carnivore-ungulate systems studies published between 1989 and 2018.

Trophic interaction Count Proportion
Canis lupus - Cervus elaphus 49 0.46
Canis latrans - Odocoileus virginianus 9 0.08
Canis lupus - Rangifer tarandus 7 0.07
Canis lupus - Alces alces 6 0.06
Lynx lynx - Capreolus capreolus 5 0.05
Puma concolor - Odocoileus hemionus 4 0.04
Panthera leo - Equus quagga 3 0.03
Puma concolor - Lama guanicoe 2 0.02
Panthera leo persica - Axis axis 2 0.02
Ursus americanus - Rangifer tarandus 2 0.02
Canis lupus - Bison bison 2 0.02
Puma concolor - Hippocamelus bisulcus 1 0.01
Panthera leo - Syncerus caffer 1 0.01
Crocuta crocuta - Tragelaphus buxtoni 1 0.01
Canis mesomelas - Gazella thomsonii 1 0.01
Lycaon pictus - Madoqua guentheri 1 0.01
Puma concolor - Rangifer tarandus 1 0.01
Canis lupus - Sus scrofa 1 0.01
Canis lupus - Apennine chamois 1 0.01
Puma concolor - Mazama americana 1 0.01
Ursus arctos - Alces alces 1 0.01
Puma concolor - Vicugna vicugna 1 0.01
Canis lupus - Bison bonasus 1 0.01
Panthera leo - Connochaetes taurinus 1 0.01
Ursus arctos - Rangifer tarandus 1 0.01
Panthera leo - Aepyceros melampus 1 0.01
Panthera leo - Alcelaphus buselaphus 1 0.01

(Greater Yellowstone Ecosystem, Banff National Park, and Hwange
National Park) have a minimum of five carnivore species and seven
ungulate species per system (Figs. 2a, 3a, and 4a). Nevertheless, a small
fraction of this complexity tended to be assessed among the studies in
this review (Figs. 2b, 3b, and 4b). In interpreting these results, we
would first like to acknowledge how challenging it can prove to be to
study multispecies interactions and risk effects in carnivore-ungulate
systems. Though carnivore-ungulate systems are immensely valuable
for the study of risk effects, developing experiments that can elucidate
the nature and strength of those effects is non-trivial (see Creel et al.,
2017; Peers et al., 2018). The simultaneous assessment of numerous
species of ungulates under threat from several sympatric carnivore
species presents considerable experimental, financial, and logistic
constraints. Despite these considerations, and the fact that the majority

Biological Conservation 233 (2019) 1-11

of studies focused on a single species pair, there are some notable ex-
amples of carnivore-ungulate studies that did examine multispecies
interactions (see Valeix et al., 2009a, b; Thaker et al., 2011; Moll et al.,
2016; Creel et al., 2017; Droge et al., 2017).

The complexity that we discuss within this context should be in-
terpreted as the maximum complexity in a system. We acknowledge
that the strength of risk effects will importantly depend upon the rates
at which predators and prey encounter one another (i.e., Holling, 1959;
Lima and Dill, 1990; Middleton et al., 2013). These encounter rates
vary according to life history characteristics, movement ecology, ha-
bitat selection, and population dynamics of the predators and prey
(Hebblewhite et al., 2005a, b; Nilsen et al., 2009; Valeix et al., 2010;
Montgomery et al., 2013, 2014). Thus, local species rarity might make
risk effects deriving from a certain carnivore negligible. In Banff Na-
tional Park, Canada, for example, predation risk experienced by elk
predominantly derives from gray wolves (Hebblewhite et al., 2005a, b;
Hebblewhite and Merrill, 2007). Thus, predation risk from the sympa-
tric, but comparatively rare, grizzly bear (Ursus arctos) might not induce
strong effects. However, we have found that research in carnivore-un-
gulate systems to date has typically not been complex enough to
quantify the strength of risk effects deriving from multiple species of
carnivore. Instead, this research has tended to focus on more obvious or
dominant elements of the trophic system (i.e., gray wolves and elk/red
deer).

We also acknowledge that trophic complexity will continue to
change according to natural (e.g., immigration and emigration) or an-
thropogenic conditions. For instance, anthropogenic changes are on-
going in Banff National Park where bison were restored starting in 2017
(Steenweg et al., 2016). In Europe, recolonization of larger carnivores
to human-dominated landscapes is a very dynamic process (Chapron
et al., 2014). Reintroductions of large carnivores to systems in which
they once occurred is increasingly common, particularly among pro-
tected areas in Africa (Hayward et al., 2007; Davies et al., 2016; Makin
et al., 2017). It was beyond the scope of our assessment to consider the
ways in which trophic complexity might vary with space or time.

The studies in our assessment also tended to consider the risk effects
deriving from carnivores with an active hunting mode. Species with an
ambush style hunting mode were evaluated just 25% of the time
(n = 53 of 214). This result is in keeping with research that shows that
ambush hunters, which are generally less conspicuous than active
hunters, are three times less likely to be the focus of research than
active hunters despite the often times higher densities of ambush pre-
dators in ecological systems. Despite these trends, the strongest risk
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Fig. 2. The trophic complexity of potential carnivore-ungulate interactions in the Greater Yellowstone Ecosystem, United States (panel a) and the actual trophic
interactions studied (panel b) among the literature assessing risk effects in carnivore-ungulate systems between 1989 and 2018. This figure includes the common
ungulate species in the park. The dashed black line depicts persistent risk effects deriving from the apex predator(s) while the gray circle line depicts intermittent risk

effects deriving from the mesopredator.
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Fig. 3. The trophic complexity of potential carnivore-ungulate interactions in Banff National Park, Canada (panel a) and the actual trophic interactions studied (panel
b) among the literature assessing risk effects in carnivore-ungulate systems between 1989 and 2018. This figure includes the common ungulate species in the park.
However, bison (Bison bison) were only restored to the park in 2017. The dashed black line depicts persistent risk effects deriving from the apex predator.

effects are predicted to derive from ambush (i.e., sit-and-wait and sit-
and-pursue) predators given that their cues are indicative of imminent
predation risk (Lima and Bednekoff, 1999; Schmitz, 2005; Preisser
et al., 2007; Miller et al., 2014; Schmitz et al., 2017). In contrast, cues
from active predators are typically diffused by the almost constant
movement (Preisser et al., 2007; Miller et al., 2014; Schmitz et al.,
2017). Thus, it is possible that ambush carnivores are inducing even
greater risk effects in ungulate prey than are active carnivores. For
example, the habitat domain conceptual theory suggests that the nature
and strength of consumptive and non-consumptive effects can be pre-
dicted as a function of predator hunting mode and habitat domain
(Schmitz, 2008; Miller et al., 2014; Northfield et al., 2017). Here, ha-
bitat domain refers to the extent of microhabitat used by an animal in
support of their foraging where predator-prey interactions can occur
(Schmitz et al., 2004; Preisser et al., 2007; Schmitz et al., 2017).
Coarsely, animals can be broad or narrow habitat domain organisms
(Schmitz et al., 2004). Hunting mode determines the width of the
predator habitat domain, where ambush predators have narrow habitat
domains and active predators have broad habitat domains (Schmitz
et al., 2017). Prey habitat domain size is determined by life history
traits including dietary requirements and foraging mode (Northfield
et al., 2017; Schmitz et al., 2017). The amount of overlap among the

habitat domains of predators and prey might help predict whether
density-mediated or trait-mediated indirect effects predominate. Thus,
the dynamics of multiple predators and prey are suggested to be able to
be predicted across the spatial domain of their interactions to quantify
the mechanisms associated with trophic functioning (McCann et al.,
2005; Barraquand and Murrell, 2013; Northfield et al., 2017). This
demonstrates the potential power of studying multispecies interactions
in carnivore-ungulate systems. However, while this framework has
been suggested to be generalizable to large vertebrate communities (see
Schmitz et al., 2017) it has yet to be rigorously applied to these systems.
We see this as a potential area of growth in carnivore-ungulate re-
search.

We also acknowledge that risk effects might vary according to
predator rank. Specifically, we presented the risk effects of apex pre-
dators as persistent (i.e., relevant year-round) and the risk effects of
mesopredators to be intermittent (i.e., subject to seasonal variation;
Fig. 1). The current ability to attribute risk effects to carnivores with
specific ranks and hunting modes is limited (sensu Atwood et al., 2009)
given that only 17% of the studies considered multiple predators. Thus,
we recommend that researchers work to delineate and quantify the
nature and strength of risk effects deriving from both predator rank and
predator hunting mode. Importantly however, additional research is
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Fig. 4. The trophic complexity of potential carnivore-ungulate interactions in Hwange National Park, Zimbabwe (panel a) and the actual trophic interactions studied
(panel b) among the literature assessing risk effects in carnivore-ungulate systems between 1989 and 2018. This figure includes the common ungulate species in the
park. The dashed black line depicts persistent risk effects deriving from the apex predator(s).
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needed to determine whether the interactions of multiple carnivores is
best characterized by exploitative competition (e.g., sympatric pre-
dators consume the same prey), interference competition (e.g., the
territoriality of sympatric predators excludes one another from pur-
suing prey), or intraguild predation (e.g., sympatric predators prey
upon each other; see Gotelli, 2008; Schmitz et al., 2017). These di-
mensions have important implications for niche complementarity
among sympatric carnivores (sensu Schoener, 1974). Similarly, the in-
teractions of multiple sympatric ungulate species could modulate the
risk effects experienced by any one prey species. It is widely appre-
ciated, particularly on the African savanna, that inter-species grouping
can be an effective antipredator behavior (Fryxell, 1995; Krause et al.,
2002; Thaker et al., 2011; Schmitt et al., 2016). Not without its tra-
deoffs, species can co-mingle as a means of dispersing shared vigilance
across the group. However, here again, there are important connections
with predator hunting mode given that group size can alter the sus-
ceptibility of prey to either active or ambush predators (Parrish, 1993;
Scheel, 1993; Pays et al., 2007). This emphasizes the need for addi-
tional research to quantify the consequences of interspecific anti-
predator decisions on risk effects.

The tendency to simplify complex carnivore-ungulate systems that
we observed is striking, but not greatly surprising. Here we discuss the
ways in which simplicity is a cornerstone value in science, predator-
prey theory has largely been developed via examinations of single
predator - single prey interactions, and risk effects research was
founded on examinations of small organisms in small systems.

4.1. The value of simplicity in science

Simplicity has been an enduring value in science for centuries
(Forster and Sober, 1994). This value is often encapsulated by Occam's
Razor, which postulates that when competing hypotheses explain a
phenomenon equally well, the simplest among them is to be preferred
(Sober, 2015). Occam's Razor is variously restated and often referred to
as the principle of parsimony in ecological literature (Tukey, 1961; Box
and Jenkins, 1970; Burnham and Anderson, 2002). Widely accepted in
ecology (e.g., Kimmins et al., 2008; Engstrom et al., 2016) as having
value in building reliable knowledge (cf. Evans et al., 2013), the central
challenge of Occam's Razor relates to the determination that competing
hypotheses explain the data “equally well” (Baker, 2007). In statistical
modeling, such decisions are often carried out via information theoretic
approaches that compare predictive accuracy with model complexity
(Akaike, 1974; Burnham and Anderson, 2002). In broader practice
however, there is often considerable debate regarding contexts in which
more complex models are preferable to their simpler counterparts (see
Merow et al., 2014).

The complexity inherent to carnivore-ungulate interactions, for
example, is difficult to capture. A key challenge then becomes ap-
proximating (i.e., the ‘art of approximation’) this complexity well en-
ough to generate useful inference (Akaike, 1974; Burnham and
Anderson, 2002; Holt and Slade, 2004). One heuristic strategy is to
begin with simple approaches or models and increase their complexity
only after it is demonstrated that they fail to explain or predict phe-
nomena well (Rosindell et al., 2012). Here we have documented that
the first ~25years of risk effects in carnivore-ungulate systems has
been relatively simple. Thus, now may be the launching point to de-
velop more sophisticated and multi-species approaches building on top
of these comparatively simple designs.

4.2. Single species dynamics in predator prey theory

It is important to note that the inception of predator prey theory
involved deterministic and often reductive measures (Chesson, 1978).
Take for example, the differential equations of Lotka (1925), Volterra
(1926), and Nicholson and Bailey (1935) which were all originally fit
using the input of data from a single predator and single prey species.
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Though these models have been instrumental in our collective under-
standing of predator-prey ecology, they have been widely criticized for
being oversimplified (Ayala et al., 1973; Tilman, 1987; Berryman,
1992). In addition to being overly simple in terms of the number of
species considered, they also tend to lack a spatial dimension. Spatial
variation is, of course, integral to risk effects research (Heithaus and
Dill, 2002; Mitchell and Lima, 2002; Wirsing et al., 2007; Laundré,
2010). Risk effects depend on both the amount of resources and refugia
in the system and the tradeoffs that prey make herein (e.g. McNamara
and Houston, 1987; Peacor, 2003; Schmitz et al., 2004). Prey have to
choose between foraging in a situation where risk of predation is high,
to abandon foraging, or to forage in habitat where resource quality is
lower so as to reduce predation risk (Abrams, 1984; Brown, 1999; Lima
and Dill, 1990; Peacor, 2003; Schmitz et al., 2004).

The interactions of carnivores and ungulates are complex and de-
pend on a diversity of factors including characteristics of: i) the prey
(Creel, 2011), ii) the environment (Acebes et al., 2013; Riginos, 2015),
and/or iii) the predator (e.g. hunting mode; see Creel et al., 2014;
Schmitz et al., 2017). These factors can affect the rates at which species
encounter one another in space and time (Middleton et al., 2013).
Further, empirical evidence on the simultaneous and dynamic nature of
the movement tactics of both predators and prey in large vertebrate
systems has accumulated with recent demonstration of large-scale
flights (a few kilometres) of zebras to avoid the risk of predation by
African lions both proactively (Courbin et al., 2019) and reactively
(Courbin et al., 2016), in parallel to an active rotation of hunting
grounds by lions at the landscape scale (Valeix et al., 2011). Thus,
spatio-temporal variation should be integral to models explaining risk
effects in carnivore-ungulate systems. For example, circumstances that
affect the local abundance or occurrence of one prey species, might lead
to prey switching among a generalist carnivore (e.g. Patterson et al.,
1998; Garrott et al., 2007). Research demonstrates that the functional
response of predators changes in line with temporal variation in prey
abundance (e.g. Honer et al., 2002). Furthermore, spatial variation can
lead directly and indirectly impact inter-species interactions. In the
Greater Yellowstone Ecosystem, elk have been found to shift to habitats
that have more complex structure to reduce predation risk from wolves
(active predators) which increases their predation risk from cougars
(sit-and-wait predators; Atwood et al., 2009). Within this context, as-
sessing only the gray wolf — elk interaction would obscure the im-
portant indirect effects associated with cougars.

The simplistic origins of predator-prey theory are likely one of the
reasons why Isle Royale National Park has become such a celebrated
and textbook example of carnivore-ungulate interactions. Isle Royale
was the only system in our review that could be described as a single
predator — single prey system (Peterson and Page, 1988; Montgomery
et al., 2013, 2014). Importantly, Isle Royale is an island system with a
fairly unique carnivore — ungulate history. For instance, the fact that the
system is an island mean that immigration and emigration of the two
species (gray wolves and moose) is negligible (Adams et al., 2011).
Consequently, the gray wolves on the island experienced high rates of
inbreeding which, in addition to a number of other factors, led to the
demise of the population (Riikkonen et al., 2009; Hedrick et al., 2014,
2016). Via a series of reintroductions, gray wolves are now being re-
stored to the island and so the single predator — single prey nature of
this island ecosystem will continue (see Mlot, 2018). However, the
unique simplicity of carnivore-ungulate trophic interactions on Isle
Royale, does not necessarily translate to other systems with broader
guilds of sympatric carnivores and ungulates.

4.3. Small species origins of risk effects research

Risk effects research, in particular, has been established via the
study of predator-prey interactions of relatively small species inhabiting
relatively small systems (Schmitz et al., 2017). The intent of risk effects
research is often to determine if antipredator behaviors have fitness-
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based consequences (Creel and Christianson, 2008; Preisser et al., 2005;
Schmitz et al., 1997). These nonconsumptive effects are non-trivial to
assess and often require experimental and longitudinal components to
the study design. For example, it can take only a few days to implement
an experiment assessing the effect of predation risk on the growth rate
of an aphid population (Nelson et al., 2004), whereas 10 years were
needed to assess the risk effects of a mammalian carnivore on the
snowshoe hare (Lepus americanus; Boonstra et al., 1998). Furthermore,
experimental designs that manipulate the lethal ability of predators
(e.g. Peckarsky et al., 1993; Schmitz et al., 1997; Werner and Peacor,
2006) have been commonly deployed to disentangle the role of lethal
and risk effects. These techniques are neither practical nor ethical in the
case of carnivores hunting ungulates in vast terrestrial systems. Thus,
experimentation remains an enduring challenge of risk effects research
in carnivore-ungulate systems (Sih et al., 1998; Schmitz et al., 2004;
Creel et al., 2008; Creel, 2011; Gehr et al., 2018; Peers et al., 2018).

Furthermore, much of the risk effects research in carnivore-ungulate
systems has been positioned in North America and Africa. Though there
is tremendous spatial variation, these two continents continue to
maintain comparatively high levels of carnivore-ungulate species di-
versity (Ripple et al., 2014, 2016). We acknowledge that South America
and Australia were underrepresented in our analysis given that our
interest was to specifically assess the risk effects that might derive from
the interactions of carnivores and their ungulate prey. Undoubtedly,
there are many systems around the world where the primary prey of
large carnivores are not ungulate species. Take for example jaguars
hunting capybara (Hydrochoerus hydrochaeris) in South America
(Schaller and Vasconcelos, 1978) or predation of red kangaroos (Mac-
ropus rufus) by dingos in Australia (Corbett and Newsome, 1987). These
exclusions in no way diminish the importance of these interactions in
risk effects research, but rather that they were not integral to our as-
sessment of carnivore-ungulate research.

5. Implications for conservation

The simplicity inherent to the risk effects research in carnivore-
ungulate systems raises two primary concerns for conservation. First,
via the omission of one or more species, the oversimplification of these
systems might generate results that are misleading or too general to be
particularly useful. By excluding species that might contribute to- or
modulate risk effects, important dynamics driven by the omitted species
are being missed. This means that we don't yet have a full under-
standing of the ways in which risk effects impact carnivore-ungulate
systems. The second important issue regarding simplicity relates to the
generalization of results from a specific carnivore-ungulate trophic in-
teraction to carnivore-ungulate systems more broadly. For example, it is
doubtful whether the behavioral risk dynamics of wolves and elk in
Yellowstone National Park can be extrapolated to other wolf-ungulate
systems in other landscapes (Schmidt and Kuijper, 2015), let alone
systems with different species of large carnivores (Moll et al., 2017).
Via the simplification of complex systems we have the potential to
misunderstand and misrepresent the mechanisms that govern carni-
vore-prey interactions. This is particularly concerning given the po-
tential fitness ramifications of risk effects. In combination with lethal
effects, the nature and strength of risk effects alter the population dy-
namics of prey with subsequent implications for predator populations.
Thus, failure to appropriately comprehend the interspecies interactions
that lead to these population-level consequences can lead to the for-
mation of inappropriate policies meant to be conserving these carni-
vore-ungulate systems. This is particularly concerning within the con-
text of carnivore-ungulate systems given that over three-quarters of the
31 species of large carnivores remaining on the planet have populations
that are declining (Gittleman et al., 2001; Ripple et al., 2014). Fur-
thermore, ungulate population declines present one of the greatest
conservation challenges of the 21st century (Ripple et al., 2016; Wolf
and Ripple, 2016). Thereby, we encourage researchers to consider
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examining multispecies effects in complex carnivore-ungulate systems
to quantify the ways in which these interactions may provide unique
insights into the functioning of these systems. As risk effects may scale
to have population-level consequences, this research can be expected to
be directly applicable to prevailing conservation practice and should
inform the implementation of progressive and effective policies de-
signed to protect these species.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2019.02.001.
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