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Abstract
Working memory training research has produced mixed results in terms of finding benefits beyond the trained tasks (i.e.,
transfer). One potential limitation is that the research thus far has failed to isolate the specific combination of factors that makes
working memory training work best. Individual differences in cognitive ability at pretest may be an important factor, suggesting
possible aptitude-by-treatment interactions. Baseline cognitive ability could be (a) positively related, (b) negatively related, or (c)
unrelated to training task improvements. The relationship between ability and training gains is important given the idea that larger
training improvements should lead to greater transfer. However, the majority of training studies tend to be under-powered to
examine individual differences. We pooled studies conducted in related labs to increase power while minimizing differences
between studies. In the studies that were identified for this project, young adults completed complex span training and working
memory and/or fluid intelligence as pretest measures. The combined samples from seven studies resulted in a sample of 192
participants. Analyses focused on the relationship between pretest cognitive ability and training performance across training days.
There was no evidence that individuals lower in cognitive ability improved more than high-ability subjects on the training tasks.
Instead, we found a positive relationship for both working memory and fluid intelligence measured at pretest with the amount of
training improvement. In addition, the association between pretest working memory and working memory training performance
appears to be domain-general—verbal and visuospatial content do not produce differential relationships.

Keywords Cognitive training .Workingmemory . Fluid intelligence

Working memory (WM) capacity is a construct involving
storage, active maintenance, and manipulation of information
(see Baddeley 2012; Cowan 2017, for reviews). Individuals
with high WM functioning often outperform individuals low
in WM on a plethora of laboratory tasks requiring cognitive
control. WM is also positively associated with educational
assessments, and negatively correlated with mind-wandering
frequency (Unsworth and Redick 2017). Due to positive rela-
tionships with many other higher-order cognitive constructs
including fluid intelligence (Gf) and language comprehension,
WM tasks have become a popular paradigm for cognitive
training. That is, because higher WM is often associated with

better outcomes in a variety of contexts, researchers have pur-
sued increasingWMvia training with the belief that suchWM
improvements will lead to concomitant benefits in related,
ecologically relevant behaviors (Shipstead et al. 2012).
These goals vary from decreasing symptoms of ADHD
(Klingberg et al. 2005) to helping reduce addictive tendencies
(Houben et al. 2011) to improving intelligence (Jaeggi et al.
2008).

Working Memory Training and Transfer

Generally, WM training paradigms involve a pretest ses-
sion, several days or weeks of training, and a posttest
session. In the case of WM training, training often in-
volves either complex span tasks or n-back tasks, both of
which have been heavily used in the broader WM liter-
ature. Complex span tasks interleave processing and stor-
age tasks. One commonly used complex span task, oper-
ation span, presents participants with math problems to
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solve and to-be- remembered letters. Later, they are
asked to report the letters in the order in which they
were presented. The n-back task requires participants to
update a running list of items, and respond whether the
current item matches the item presented a given number
(n) items back.

In WM training studies, the pretest and posttest ses-
sions include various cognitive assessments. Tasks that
are similar to the training programs, or thought to measure
the same construct (WM), are considered Bnear transfer^
tasks. For example, operation span training may include
reading span at pretest and posttest. These measures are
typically of interest to ensure the training Bworked,^ in
that the construct—WM—was trained, rather than perfor-
mance on the specific task—operation span—increasing
simply due to practice. Typically, the critical transfer re-
sults for those hoping to improve the lives of individuals
with alcohol use disorders or children with ADHD are the
assessments that are less similar to the WM training ma-
terials that are sometimes referred to as Bfar transfer^
tasks. Higher-order cognition tasks related to WM, such
as intelligence and language comprehension, fall into this
category.

Transfer results in WM training studies have been
mixed—most studies observe significant improvement in
tasks that are similar to the training materials, but not in
other outcomes (see Melby-Lervåg et al. 2016; Soveri
et al. 2017 for meta-analyses). There are several identified
methodological concerns about WM training studies that
must be accounted for, and could be the source of some of
the differing results (Morrison and Chein 2011; Redick
et al. 2015). One such limitation is that the research thus
far has failed to isolate the specific combination of factors
that would optimize WM training efficacy (Katz et al.
2016). One of the earliest WM training studies argued that
the dose, or amount of training, is an important factor in
determining whether far transfer is observed. Jaeggi et al.
(2008) assessed Gf with Raven’s Advanced Progressive
Matrices or Bochumer Matrizentest before and after par-
ticipants completed 8–19 sessions of dual n-back training.
Specifically, they concluded, BFurthermore, we demon-
strate that the extent of gain in intelligence critically de-
pends on the amount of training: the more training, the
more improvement in Gf^ (Jaeggi et al. 2008, p. 6829).
Stepankova et al. (2014) provided additional support for
this notion in a study of older adults, reporting that a
training group that performed 20 n-back sessions showed
more transfer to Gf compared to a group that completed
10 n-back sessions. However, meta-analyses have shown
no effect of length of training on far transfer (Au et al.
2015; Melby-Lervåg et al. 2016; Sala and Gobet 2017),
and Redick et al. (2013) discussed specific interpretative
challenges that apply to Jaeggi et al. (2008).

Individual Differences in Working Memory
Training Research

While methodological factors contributing to transfer in WM
training have been the focus of many reviews of the WM
training literature (e.g., Redick et al. 2015), individual differ-
ences may also play an important role in the amount of trans-
fer observed (Katz et al. 2016). Other research areas, particu-
larly education psychology, have shown that individual differ-
ences in cognitive ability influence the effectiveness of inter-
ventions (aptitude-by-treatment interactions). For example,
individual differences in WM moderated which of two types
of lesson plan was more effective for at-risk students learning
mathematical fractions (Fuchs et al. 2014). This type of inter-
action has the potential to be important for WM training effi-
cacy, too. These possibilities have been discussed in the cog-
nitive training literature as examples of the compensatory ver-
susmagnification accounts (Lövdén et al. 2012; Karbach et al.
2017). The compensatory perspective proposes that interven-
tions such as cognitive training might serve to minimize cog-
nitive ability differences by primarily benefitting individuals
who were lower in cognitive functioning before the treatment.
In contrast, the magnification account states that interventions
will exacerbate differences in cognitive abilities, such that
those high in ability will benefit even more from the interven-
tion than those lower in ability.

Indeed, although there is ongoing debate about the robust-
ness of transfer after WM training, one common finding
across WM training studies is that there is substantial
between-subject variability in the amount of WM training
improvement across sessions. Several recent studies have ex-
amined the interaction between pre-existing traits and subse-
quent training performance. Figure 1 depicts the three possi-
bilities when looking at training gains with respect to pretest
measures—they could be (a) positively related, (b) negatively
related, or (c) unrelated to training task improvements. Guye
et al. (2017) evaluated many non-cognitive factors including
personality, hobbies, experience with technology, and
cognition-related beliefs at pretest, but found that none of
them influenced WM training gains. Studer-Luethi et al.
(2012) found that young adults low in neuroticism and high
in conscientiousness, measured at pre-test, had higher means
on the n-back training task. Studer-Luethi et al. (2016) simi-
larly showed that children lower in neuroticism achieved
higher levels of performance on WM training tasks. Finally,
Bürki et al. (2014) investigated age differences in training and
found a positive relationship such that young adults showed
greater improvements in n-back training than older adults.

As noted elsewhere (von Bastian and Oberauer 2014), rel-
atively few studies have directly assessed the relationship be-
tween cognitive ability and training gains, which is particular-
ly important given the idea that larger training improvements
should lead to greater transfer (Jaeggi et al. 2011). Karbach
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et al. (2017) observed that individuals lower in WM at pretest
showed greater response time improvements across four ses-
sions of task-switching training, but the training did not in-
volve WM. With WM training, two studies are particularly
relevant for the analyses conducted in the current research.

Jaeggi et al. (2011) investigated changes in Gf after n-back
training with children. They found Bchildren with an initially
high level of Gf performance started with higher WM training
levels…but showed less gain in training^ (Jaeggi et al. 2011,
p. 10084). Thus, cognitive ability appeared to have a negative
relationship with WM training improvements (Fig. 1b). This
pattern is consistent with the notion that those lower in cogni-
tive ability have more room for improvement than those al-
ready high in cognitive ability (Titz and Karbach 2014).
Conversely, Foster et al. (2017) investigated near and far
transfer after complex span training with young adults.
Foster et al. found that those at pretest higher in WM, mea-
sured by complex span, improved more onWM training tasks
(Fig. 1a).

There are several potential reasons why the Jaeggi
et al. and Foster et al. studies show conflicting results.
1) Jaeggi et al. used Gf as the cognitive ability predictor,
whereas Foster et al. used WM. Although WM and Gf are
highly correlated (cf. Redick et al. 2016), they are not
identical constructs (Heitz et al. 2006; Shipstead et al.
2016), and thus may lead to different influences on WM
training gains. 2) Jaeggi et al. studied children and Foster
et al. studied young adults. Relationships between pretest
cognitive ability scores and WM training gains could vary
depending on the age of the sample. 3) Jaeggi et al. used
n-back training and Foster et al. used complex span train-
ing. Although n-back and complex span tasks are both
thought to measure WM functioning, the two tasks are
less correlated than one might expect of two tasks thought
to measure the same construct (Redick and Lindsey
2013). 4) Another factor to consider when interpreting
the results of these two studies is the relatively small
sample sizes of the relevant training groups; Jaeggi et al.
tested 32 children and Foster et al.’s final sample of com-
plex span training participants was n = 40. 5) Finally, the
analysis approach differs with Jaeggi et al. using a
median-split approach to create high- and low-Gf groups.
In contrast, Foster et al., used an extreme-groups design to
form high- and low-WM training groups based on partic-
ipants’ scores falling in the upper or lower quartile of
scores from a previous battery of complex span tests.

We note that prior investigations of the relationship
between individual differences in training improvement
and transfer improvement have frequently used correla-
tions of difference scores, and such an approach has
numerous statistical issues that render the results unin-
formative about causal relations (see Smoleń et al.
2018; Tidwell et al. 2014). However, despite the statis-
tical limitations, the idea that the amount of training
improvements is critical for transfer has pervaded the
literature. Accordingly, it is the general idea that this
pattern could be important for the efficacy of training
studies that we consider.

b Hypothetical negative pretest to training relationship

a Hypothetical positive pretest to training relationship

c Hypothetical null pretest to training relationship

Fig. 1 a Hypothetical positive pretest to training relationship. b
Hypothetical negative pretest to training relationship. c Hypothetical
null pretest to training relationship
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Current Study

As stated above, there has been little research on the role of
individual differences in cognitive ability and their impact on
WM training gains. In addition, the studies that have exam-
ined this topic have been rather limited in their designs and
analytical approaches, particularly as it relates to insufficient
sample sizes for individual differences analyses and the use of
correlated gain scores (Smoleń et al. 2018; Tidwell et al.
2014). In the present work, we do not investigate gain scores,
and we do not relate training-task improvements to posttest
performance. Rather, we use the pretest data only to predict
training improvements. For the training data, instead of
looking at the difference between starting and ending levels
in training, we use modeling to include all of the training days.
By doing so, we do not lose all the information from the
intervening sessions, which may be important for characteriz-
ing the trajectory of training improvements (viz., linear or
non-linear).

The current research uses a full, continuous, range of pre-
test scores, which can better answer the question of whether
and how pretest performance affects training performance,
instead of median-split or extreme-groups dichotomization
of the pretest data. We also increase the number of participants
compared to previous research by evaluating a multi-level
model that aggregates data from several studies. In the present
work, we specifically examine the degree to which pre-
existing individual differences in WM and Gf influence WM
training gains. In addition, we examined verbal and spatial
WM training separately; at least one training study has explic-
itly argued that Gf far transfer occurs specifically after WM
training with visuospatial tasks (Stephenson and Halpern
2013).

In the present work, we evaluate three possible patterns for
the relationship between baseline ability and training gains.
Following the logic of Jaeggi et al. (2011), we would expect
that with increased scores at pretest, training trajectories
would be flatter, showing less improvement, than for those
with lower scores at pretest (Fig. 1b). However, based on
Foster et al. (2017), we would expect the opposite pattern,
with participants who exhibit higher WM and Gf scores at
pretest producing greater training improvements compared
to those lower in WM and Gf (Fig. 1a). There is also a third
possibility, specifically that there is no relationship between
cognitive ability at pretest and training gains (Fig. 1c).

Method

The current analyses were conducted on a combined dataset of
seven separate WM training studies. Because most of the
studies used training programs based on either Chein and
Morrison (2010) or Harrison et al. (2013), the training task

procedures were very similar across studies. Samples of
healthy, young adults who had completed complex span
training and had pretest WM and/or Gf measures were identi-
fied for this project. Specifically, those studies that included
training tasks from Chein and Morrison (2010) or Harrison
et al. (2013) were targets due to the confidence in the similar-
ity of the training tasks. After identifying candidate studies,
we contacted the authors to obtain the necessary pretest and
training data; in some cases, authors were unable to provide
their data for use in this project, and subsequently could not be
included. The combined sample from seven studies resulted in
a total of N = 192 participants with between n = 20 to 39
coming from the complex span training group within each
study. The participants were generally university students,
though some included young adult community members
recruited through flyers or announcements made via campus
resources. Two studies included recruitment materials that
explicitly mentioned training. All participants were between
ages 18 to 30 years old and all samples included male and
female participants. Each study had 10 to 20 training sessions
between the pretest and posttest sessions, with four of the
studies having 20 training sessions. Each training session
was about 20 to 45 min long with the exception of Harrison
et al. (2013) who allowed up to 45 min for each of the two
training tasks. The studies are described in Table 1.

Measures

Although the pretest and trainingmaterials were similar across
the studies in the dataset, differences in the scoring and/or
number of tests meant that performance needed to be stan-
dardized a couple of ways. For the WM pretest, complex span
and runningmemory span tasks were included (Broadway and
Engle 2010). For the Gf pretest, only the matrix reasoning
tests Raven’s Advanced Progressive Matrices or Bochumer
Matrizentest were included. If the pretest battery included on-
ly a single WM or Gf task, a z-score was calculated. When
multiple WM tasks were administered at pretest, composites
were calculated by averaging the z-scores of the individual
tasks.1

For the training tasks, there was variation in the maximum
possible levels of performance, even across some of the stud-
ies using the same task and acquired from the same lab.
Therefore, the mean score for each participant for each day
was divided by the maximum score attained by any participant
within that study. This correction scales all scores into a pro-
portion score from 0 to 1 while maintaining the relationships
between the participants’ scores within a study and the rela-
tionships from one training day to the next.

1 No studies presented here used multiple Gf tasks; therefore, calculation of
composites was not necessary.

J Cogn Enhanc (2019) 3:174–185 177

Author's personal copy



The training tasks analyzed here are adaptive spatial and
verbal complex span tasks. Each study included criteria for
how participants could increase or decrease the list length of
processing-and-storage items performed within a session.
Three verbal complex span tasks were included. Three of the
studies used operation span (Unsworth et al. 2005), described
above. Two studies used a task we call verbal span (Chein and
Morrison 2010), which also requires remembering letters pre-
sented, but the processing task involves making lexical deci-
sions about strings of letters for 4 s. The third task used by the
remaining study is similar to the Chein & Morrison task but
instead presents two strings of letters and asks whether they
are both words or both non-words; accordingly we refer to this
task as verbal-comparison span (Richey et al. 2014). The spa-
tial complex span tasks are similar in structure but involve
remembering the locations of colored squares that appear in
a grid while making symmetry judgments of black and white
patterns. All but one used the typical version of symmetry
span with a single black and white pattern presented for the
symmetry judgment. The exception, which we called spatial-
comparison span, involved presenting two black and white
patterns simultaneously and asked whether they were both
symmetrical or both asymmetrical (Richey et al. 2014).

Analyses

Typically, in training studies, null-hypothesis testing analyses
involving training are restricted to gain scores or other singu-
lar achievement measures. However, there is a wealth of un-
tapped information in the training day data, and a multi-level
modeling approach allows for the inclusion of all of the daily
training information as well as characterization of potential
longitudinal trajectories. Multi-level modeling also allows
for the inclusion of participants who may have missing data
due to a technical error in a particular session, for example, as

well as the combination of these datasets despite the difference
in number of training sessions.

Analyses focus on the relationship between cognitive abil-
ities, measured at pretest, and training performance. For the
analyses with pretest WM as the predictor, four of the six
studies had spatial training tasks (N = 105), and five of the
six studies had verbal training tasks (N = 142). For the analy-
ses with pretest Gf as the predictor, four of the five studies had
spatial training tasks (N = 91), and four of the five studies had
verbal training tasks (N = 98). These two types of training are
analyzed separately for each pretest measure with an other-
wise identical model. The model for all four analyses was
specified as

TrainingAttainmentij ¼ b0 þ b0j ið Þ
� �þ b1 þ b1j

� �
TrainDay

þ b2ð ÞPretest
þ b3ð ÞTrainDayQuadratic
þ b4ð ÞPretest*TrainDay
þ b5ð ÞPretest*TrainDayQuadratic
þ rijk;

where i equals study, j equals participant, and k equals time.
The model is specified with participant nested in study. The
slope is allowed to vary by training day, grouped by partici-
pant, and there are fixed effects for pretest score and training
day and an interaction between pretest score and training day.
The main effect for training day and the interaction term are
included as both linear and quadratic. The inclusion of study
allows the model to adjust for differences between training
levels caused by differing difficulty as well as accounting for
the different numbers of sessions, without imputing data. This
also applies to subjects who had missing data for a given
session. For the spatial and verbal training, respectively,

Table 1 Information about included datasets

Authors N
subjects

N
sessions

Pretest WM Pretest Gf Spatial training Verbal training

Blacker et al. (2017) 25 20 Operation span BOMAT Symmetry span N/A

Chein and Morrison (2010) 20 20 Verbal span, Symmetry span RAPM Symmetry span Verbal span

Gunn et al. (2018) 39 15 Reading span, Rotation span, Running
letter span, Running matrix span

N/A Symmetry span Operation span

Harrison et al. (2013) 21 20 Reading span, Rotation span, Running
letter span, Running matrix span

RAPM Symmetry span Operation span

Minear et al. (2016) 32 20 Operation span, Symmetry span,
Reading span, Rotation span

RAPM N/A Verbal span

Redick et al. (under review) 30 10 Running letter span, Running spatial
span

N/A N/A Operation span

Richey et al. (2014) 25 10 NA RAPM Symmetry-comparison
span

Verbal-comparison
span

WM, working memory; Gf, fluid intelligence; RAPM, Raven’s Advanced Progressive Matrices; BOMAT, Bochumer Matrizentest; N/A, not applicable
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individual missing sessions accounted for 1% and < 1% of
total possible sessions. The models were run using the lme4
package in CRAN R software (Bates et al. 2015).2 To test the
hypothesis that individual differences in pretest performance
may affect attainment throughout training, the critical piece of
this model is the interaction term between pretest score and
training day.

Results

Working Memory Pretest

Figure 2a shows that the spatial training improvement slopes
are positive, and steeper for those at +1 SD at pretest than for
those at the mean WM score, both of which are steeper than
those at −1 SD. The positive slopes are supported by a signif-
icant fixed effect of training day, t(240.30) = 17.92, p < .001.
The positive estimate (E = 0.024, SE = 0.001) for this effect,
reported in Table 2, indicates that participants at mean pretest
level improved on the training about 2.4% per training day.
The significant main effect for the quadratic term, t(1690.2) =
−14.41, p < .001, with a negative estimate (E = −0.001, SE =
0.000) indicates that the slopes accelerate less over time,
forming the quadratic shape. There was a significant fixed
effect of pretest score, t(110.90) = 2.35, p = .020. The positive
estimate (E = 0.033, SE = 0.014) indicates that participants
who had higher WM scores at pretest achieved higher overall
levels on the training tasks, a roughly 3.3% increase in training
per 1 SD increase in pretest score. Critically, the interaction for
pretest scores and training day was significant for both linear
and quadratic estimates, t(229.9) = 3.39, p < .001, and
t(1677.40) = −2.32, p = .021, respectively. This linear interac-
tion term (E = 0.006, SE = 0.002) indicates that those who had
higher WM at pretest also improved more (i.e., had a steeper
slope) over the course of the training. The quadratic interac-
tion term (E = −0.0001, SE = 0.000) indicates that the acceler-
ation of gain across training days changes such that those with
higher pretest scores show slightly less increase as time goes
on. However, the overall pattern still suggests that high pretest
scorers consistently gain the most throughout the training pe-
riod. Predicted values calculated from these estimates for
training days at mean level of pretest score and at ±1 SD of
the pretest score are reported in Table 3. Compared to the 21%
improvement in training exhibited by those with a mean pre-
test WM score, those at −1 SD and +1 SD pretest WM score
improved 15% and 27%, respectively.

The data for the verbal training appear to have a very sim-
ilar pattern, shown in Fig. 2b, with steeper slopes for those
with higher pretest WM scores. Again, the positive slopes
were supported by a significant fixed effect of training day,
for both linear, t(268.80) = 19.60, p < .001, and quadratic
components, t(2126.90) = −15.86, p < .001. The positive esti-
mate (E = 0.030, SE = 0.002) indicates that participants at
mean WM pretest scores improved on training approximately
3.0% per training day, whereas the negative quadratic estimate
(E = −0.001, SE = 0.000) indicates that there is a small de-
crease in that linear estimate with each successive day,
forming the quadratic curve. There was a significant fixed
effect of pretest composite, t(162.20) = 4.96, p < .001. The
positive estimate (E = 0.059, SE = 0.012) indicates that partic-
ipants who had higherWM scores at pretest had higher overall
performance on the training tasks, about 5.9% for each 1 SD.
Critically, and again supporting the pattern in Fig. 2b, there
was a significant interaction for pretest composite scores and
training day with the linear component, t(267.40) = 5.20,
p < .001. This interaction (E = 0.011, SE = 0.002) indicates
that those who scored higher on WMmeasures at pretest also
improvedmore (i.e., had a steeper slope) over the course of the
training sessions. Additionally, there was again a significant

0 One of the four models, the WM pretest with verbal training model, was
initially inconclusive with the default lmer settings. A control option was
added with the Optimx package (Nash and Varadhan 2011) which allowed
the model to function properly, with minimal adjustments. Fixed effect esti-
mates were identical to the 7th decimal place. The mathematical model is
identical.

a Spatial training with WM pretest 

b Verbal training with WM pretest 

Fig. 2 a Spatial training with WM pretest. b Verbal training with WM
pretest
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interaction using the quadratic component, t(2139.30) =
−4.92, p < .001. This interaction (E = −0.0003, SE = 0.000)
indicates that for increasing pretest values there is a slightly
lower increase in slope with each day of training. Predicted
values for training days at mean level of pretest composite and
at ±1 SD of the pretest composite are reported in Table 3.
Similar to the spatial training, those at −1 SD at pretest im-
proved less (18%) than those at mean at pretest (25%) and
those at +1 SD at pretest (31%). The results with WM as a
predictor ofWM training changes are most consistent with the
predictions depicted in Fig. 1a.

General Fluid Intelligence Pretest

Figure 3a shows a pattern for spatial training that looks like the
patterns seen with the WM pretest analyses, with positive
slopes that are steeper in those at higher pretest Gf levels.
The positive slopes were supported by a significant linear
fixed effect of training day, t(141.20) = 16.06, p < .001. The
positive estimate (E = 0.028, SE = 0.002) indicates that partic-
ipants with mean pretest Gf scores improved on training about

2.8% per training day. The main effect of training day with the
quadratic component was also significant, t(1417.90) =
−12.32, p < .001, with the negative estimate (E = −0.001,
SE = 0.000) indicating the slight decrease in the estimate over
training days resulting in the quadratic curve. Unlike the WM
pretest composite, there was not a significant fixed effect of Gf
pretest score, t(96.90) = 1.05, p = .298. Despite this lack of
pretest main effect, there was a significant interaction for pre-
test scores and training day with both linear and quadratic
components, t(141.20) = 3.63, p < .001 and t(1417.90) =
−4.59, p < .001, respectively. These interactions (linear: E =
0.006, SE = 0.002; quadratic: E = −0.0002, SE = 0.000) indi-
cate, as with the WM analyses, that slopes are steeper and
accelerate slightly less with time for those with higher pretest
scores. Predicted values calculated from these estimates for
training days at mean level of Gf pretest score and at ±1 SD
of the pretest score are reported in Table 4. Those at −1 SD
improved around 27%, which is less than those at mean (30%)
and those at +1 SD (33%).

The verbal training slopes (Fig. 3b) for all levels of Gf
pretest score look slightly less distinct from one another than

Table 2 Model results
Spatial Training Verbal Training

Effect p Effect p

Working memory

Fixed effects SE SE

Intercept 0.2434 0.011 < .001 0.3030 0.009 < .001

Training day 0.0236 0.001 < .001 0.0303 0.002 < .001

Training day quadratic −0.0007 0.000 < .001 −0.0009 0.000 < .001

Pretest composite 0.0327 0.014 .020 0.0587 0.012 < .001

Interaction 0.0056 0.002 < .001 0.0105 0.002 < .001

Interaction quadratic −0.0001 0.000 .021 −0.0004 0.000 < .001

Random effects SD SD

Intercept - subject (study) 0.0042 0.065 0.0045 0.069

Intercept - subject 0.0073 0.086 0.0045 0.069

Training day 0.0001 0.010 0.0002 0.014

Residual 0.0027 0.052 0.0048 0.070

Fluid intelligence

Fixed effects SE SE

Intercept 0.2653 0.013 < .001 0.3086 0.012 < .001

Training day 0.0281 0.002 < .001 0.0234 0.001 < .001

Training day quadratic −0.0006 0.000 < .001 −0.0007 0.000 < .001

Pretest score 0.0134 0.013 .298 0.0290 0.012 .017

Interaction 0.0065 0.002 < .001 0.0019 0.001 .193

Interaction quadratic −0.0002 0.000 < .001 −0.0001 0.000 .020

Random effects SD SD

Intercept - subject (study) 0.0084 0.091 0.0076 0.087

Intercept - subject 0.0047 0.069 0.0041 0.064

Training day 0.0002 0.014 0.0001 0.010

Residual 0.0031 0.056 0.0042 0.065
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they have in the previous three models, all improving to nearly
the same place, though not necessarily at equivalent rates.
Confirming the positive direction of the slopes, there was a
significant fixed effect of training day, t(229.00) = 16.05,
p < .001. The positive estimate (E = 0.023, SE = 0.001) indi-
cates that participants’ training levels improved across train-
ing. Similar to all other models, there was also a significant
main effect of training day as a quadratic component,
t(1566.40) = −12.24, p < .001. The negative estimate (E =
−0.0007, SE = 0.000) indicates again that there is a slight de-
crease in the effect with time, creating the quadratic curve. The
highest Gf scorers at pretest achieved the highest training per-
formance, which was confirmed with a significant fixed effect
of Gf pretest, t(107.20) = 2.42, p = .017. The positive estimate
(E = 0.029, SE = 0.012) indicates that participants who had
higher scores at pretest had higher overall achievement on
training tasks, with about a 2.9% increase per 1 SD. Unlike
the previous three models, the interaction with the linear com-
ponent was not significant, t(229.30) = 1.30, p = .193.
However, the interaction between the Gf pretest score and
the quadratic training day component was significant,
t(1566.30) = −2.34, p = .020. The negative estimate (E =
−0.0001, SE = 0.000) indicates, as it does in all 3 other

models, that there is a slightly lower slope increase for the
higher pretest scores as training days progress. While the
higher and lower pretest performers start and end at nearly
the same levels, the trajectories differ. Predicted values for
training days at mean level of Gf pretest score and at ±1 SD
of the pretest score are reported in Table 4. All participants
improved very similarly, with those at −1 SD improving 21%,
those at mean improving 19%, and those at +1 SD improving
18%.

Discussion

In the present work, several datasets were combined to exam-
ine how individual differences in cognitive ability influence
WM training gains. We found that individuals high in WM
and Gf before undergoing WM training showed the greatest
training gains. None of the four analyses provide any evidence
that individuals lower in cognitive ability would improve
more on training tasks compared to those higher in cognitive
ability, similar to Fig. 1b. Three of the four models show
evidence for the opposite pattern, with individuals higher in
cognitive ability gaining more, similar to Fig. 1a. The fourth

Table 3 Predicted values for representative ranges of WM pretest

Training day

Spatial training Verbal training

Pretest composite range Pretest composite range

−1 SD Mean +1 SD −1 SD Mean +1 SD

1 0.21 0.24 0.28 0.24 0.30 0.36

2 0.23 0.27 0.30 0.26 0.33 0.40

3 0.24 0.29 0.33 0.28 0.36 0.44

4 0.26 0.31 0.36 0.30 0.39 0.47

5 0.27 0.33 0.38 0.31 0.41 0.50

6 0.29 0.34 0.40 0.33 0.43 0.53

7 0.30 0.36 0.42 0.34 0.45 0.56

8 0.31 0.38 0.44 0.36 0.47 0.58

9 0.32 0.39 0.46 0.37 0.49 0.61

10 0.33 0.40 0.47 0.38 0.50 0.63

11 0.34 0.41 0.49 0.39 0.51 0.64

12 0.34 0.42 0.50 0.40 0.53 0.66

13 0.35 0.43 0.51 0.40 0.53 0.67

14 0.35 0.44 0.52 0.41 0.54 0.68

15 0.36 0.44 0.53 0.41 0.55 0.68

16 0.36 0.45 0.54 0.42 0.55 0.69

17 0.36 0.45 0.54 0.42 0.55 0.69

18 0.36 0.45 0.54 0.42 0.55 0.69

19 0.36 0.45 0.55 0.42 0.55 0.68

20 0.36 0.45 0.55 0.42 0.55 0.67

Total change 0.15 0.21 0.27 0.18 0.25 0.31

a Spatial training with Gf pretest 

b Verbal training with Gf pretest 

Fig. 3 a Spatial training with Gf pretest. b Verbal training with Gf pretest
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model showed no linear interaction between cognitive ability
and training trajectory, though it did suggest the higher per-
formers maintain higher scores throughout training and gain
more quickly earlier in training. Further, the relationship be-
tween WM and Gf pretest scores and WM training appears to
be domain-general, in that we find essentially the same results
for both verbal and visuospatial training paradigms.

The current results show a Brich-get-richer^ effect as it
relates to individual differences inWM and Gf before training
(Redick et al. 2015; von Bastian and Oberauer 2014).
Notably, these results run counter to the aim of using WM
training as a compensatory strategy where those with lower
initial WM could expand their capacity. While not directly
examined in the present study, these results may also inform
which individuals are more likely to show far transfer from
WM training. It has been suggested that those who improve
most on the training tasks are also the ones most likely to
exhibit far transfer (e.g., Jaeggi et al. 2011). If this training-
transfer gain hypothesis put forth by Jaeggi et al. (2011) is
correct, according to our results, individuals who are already
higher in WM or Gf would be expected to show more far
transfer than those with lower baseline WM or Gf. This is
important because many of the commercial applications of

WM training are marketed toward helping those who are
low in WM (Redick et al. 2015).

Expectations about who will benefit from training and how
warrant further attention, though, when considering the rich
history of the skill-acquisition literature. Schmidt and Bjork
(1992) reviewed the literature on Bdesirable difficulty^ in
training and transfer, showing that variables such as schedules
of practice (e.g., variable) and frequency of feedback (e.g.,
intermittent) can depress training gains but lead to larger trans-
fer improvements at posttest. Therefore, one could make a
prediction that would contradict the hypothesis that larger
WM training improvements would be associated with greater
far transfer. That is, low-cognitive ability at pretest, predicting
lower training gains throughout training, may yet lead to larg-
er training gains. Most currently usedWM training paradigms
are adaptive, so everyone should be at a level that is difficult
for them, independent of their cognitive ability level. So, it is
possible that the role difficulty would play in the WM training
literature could be quite different from skill acquisition
research.

As Table 1 notes, not all studies have both pretest measures
and/or both training measures. Therefore, all four models are
based on different subsets of participants from the seven stud-
ies. However, all four samples are still each much larger than
the single-study analyses typical of the literature (for
exception, see Guye et al. 2017). We had anticipated incorpo-
rating study into the model, separated from participant to en-
sure that the influence of the slight variations in procedures
across studies was minimal. However, the models would not
converge with this variable. Our interpretation is that the var-
iance in study is too low to include in the model, and all
important variance is sufficiently captured by participant or
participant nested in study, both of which are included.

One further consideration involves the pretest measures
investigated. Foster et al. (2017) used WM pretest perfor-
mance, whereas Jaeggi et al. (2011) used Gf pretest perfor-
mance. The present work evaluated both pretest measures
separately, and the WM pretest results agree with the
extreme-groups results from Foster et al. However, the Gf
pretest results from the present work were not in line with
the results from Jaeggi et al. The Gf pretest in the current study
was predictive of performance on theWM training tasks but in
the opposite direction than shown by Jaeggi et al., and there
was no evidence of a negative relationship with training.

There are also a few reasons Jaeggi et al. might have found
a different pattern, as noted in the introduction. Particularly,
the statistical correlations between training gain scores and
transfer pretest-posttest difference scores has been discussed
elsewhere as inappropriate and uninformative (Smoleń et al.
2018; Tidwell et al. 2014), which could indicate that the im-
provements shown in studies using those methods are not
reflective of true improvements. Ignoring the statistical issues,
if the same results had been found with appropriate methods, a

Table 4 Predicted values for representative ranges of Gf pretest

Training day

Spatial training Verbal training

Pretest score range Pretest score range

−1 SD Mean +1 SD −1 SD Mean +1 SD

1 0.25 0.27 0.28 0.28 0.31 0.34

2 0.27 0.29 0.31 0.30 0.33 0.36

3 0.29 0.32 0.34 0.32 0.35 0.39

4 0.31 0.34 0.37 0.34 0.37 0.41

5 0.33 0.37 0.40 0.36 0.39 0.43

6 0.35 0.39 0.43 0.37 0.41 0.44

7 0.37 0.41 0.45 0.39 0.42 0.46

8 0.38 0.43 0.48 0.40 0.44 0.47

9 0.40 0.45 0.50 0.42 0.45 0.49

10 0.41 0.47 0.52 0.43 0.46 0.50

11 0.43 0.48 0.54 0.44 0.47 0.51

12 0.44 0.50 0.55 0.45 0.48 0.52

13 0.45 0.51 0.57 0.46 0.49 0.52

14 0.47 0.52 0.58 0.46 0.50 0.53

15 0.48 0.53 0.59 0.47 0.50 0.53

16 0.49 0.54 0.60 0.48 0.50 0.53

17 0.50 0.55 0.60 0.48 0.51 0.53

18 0.50 0.56 0.61 0.48 0.51 0.53

19 0.51 0.56 0.61 0.49 0.51 0.53

20 0.52 0.57 0.61 0.49 0.50 0.52

Total change 0.27 0.30 0.33 0.21 0.19 0.18
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direct comparison is still imperfect given Jaeggi et al. used n-
back training, rather than complex span training. As such,
there is a possibility that training on n-back and complex span,
though both thought to measure WM, could have different
relationships with Gf. We also note that our samples included
only healthy, young adults, while Jaeggi et al. (2011) tested
children. Future research is required to determine if the rela-
tionship between pre-existing cognitive ability and training
improvements is moderated by the age composition of the
sample.

The slightly weaker results for Gf pretest compared to
WM pretest may seem concerning given the positive rela-
tionship between WM and Gf. However, WM and Gf are
not isomorphic (Heitz et al. 2006) and it is, therefore, not
entirely surprising that Gf would not predict WM training
improvements as well as complex span tasks do. Because
the specific aspects of WM that are being trained in these
studies are not clear, it is then possible that the specific
aspects of WM that may be trainable, or that are targeted
by complex span training, are not those that overlap with
the processes driving matrix reasoning performance—the
measure of Gf in the present work.

Our results are incompatible with a compensatory ac-
count stating that the low performers should improve more
throughout training. Rather, the opposite pattern is found,
with the higher performers gaining more. This finding is
consistent for both WM and Gf pretest measures and for
both verbal and visuospatial training. This cumulative (as
opposed to compensatory) finding should not be entirely
surprising. Matthew effects, where lower performers show
slower gains or, in some extreme cases, worse performance
over time, have been documented in educational settings
for a long time. Shaywitz et al. (1995) found a significant
Matthew effect in IQ for children tested at kindergarten
through 6th grade. There are many situations in which
achievement begets higher achievement. However, our re-
sults, and other examples of this pattern do not necessarily
have direct implications for transfer if the assumptions of
Jaeggi et al. are not supported.

In the present work, we show that WM and Gf have
relationships to training gains regardless of domain (spatial
vs. verbal), but this does not imply that transfer would
occur. Specifically, we note that although Foster et al.
(2017) found that high-WM participants showed larger
training gains than low-WM participants, the participants’
pre-existing WM ability had no bearing on the amount and
presence of transfer. Regardless of how much pre-existing
ability aided training, transfer was not similarly affected. In
a study of third-grade children, Rode et al. (2014) came to
a similar conclusion—students initially higher in WM and
academic achievement produced larger WM training gains,
yet this did not translate into significant transfer on most
outcomes compared to a passive-control group. These

findings are not particularly surprising, given meta-
analyses that show transfer is minimal at best, and gener-
ally restricted to tasks very similar the training tasks (e.g.,
Melby-Lervåg et al. 2016; Sala and Gobet 2017). That is,
WM training generally leads to improved task performance
on the training task(s) and sometimes very similar tasks,
but has not modified the domain-general ability underlying
task performance. Participants’ effectiveness in improving
training task performance is less relevant if the underlying
ability is not really being improved, or if the strategies
developed to facilitate improvement during training are
not applicable to the transfer tests used (Dunning and
Holmes 2014; Morrison et al. 2016).

Intelligence researchers may be less surprised by our
results, which can be restated as showing that individuals
higher in cognitive ability (WM and Gf) are more able to
learn, consistent with numerous other examples showing
such a pattern outside of the cognitive training literature
(e.g., Daneman and Green 1986; Kyllonen and Stephens
1990; Shute 1991). Ideally, we would have comparable
data from multiple sessions of an active-control task in
order to investigate whether the same cognitive predictors
show the same relationship to training gains in a non-WM
training task. However, several of the datasets we included
here do not have comparable control groups that permit
such an analysis. Three of the studies use adaptive visual
search tasks (Gunn et al. 2018; Harrison et al. 2013;
Redick et al. under review), but the other four studies used
different active-control tasks or included only passive-
control groups. This remains a question for future research,
although we note that Foster et al. (2017) did not find a
differential amount of improvement over 20 days on adap-
tive visual-search control tasks for the high- and low-WM
participants.

To conclude, the current results show that individuals al-
ready higher in WM or Gf are the ones that show greater WM
training gains. This result is particularly concerning for those
who wish to train lower performing students up to the level of
their higher performing peers, under the assumption that indi-
viduals who show greater WM training gains should subse-
quently exhibit more transfer.
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