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Abstract

Monolayer transition-metal dichalcogenide crystals (TMDC) can be combined with other 

functional materials, such as organic molecules, to from a wide range of heterostructures with 

tailorable properties. Although a number of works have shown that ultrafast charge transfer (CT) 

can occur at organic-TMDC interfaces, conditions that would facilitate the separation of interfacial 

CT excitons into free carriers remain unclear. Here, time-resolved and steady-state photoemission 

spectroscopy are used to study the potential energy landscape, charge transfer and exciton 

dynamics at the zinc phthalocyanine (ZnPc)/monolayer (ML) MoS2 and ZnPc/bulk MoS2 

interfaces. Surprisingly, although both interfaces have a type-II band alignment and exhibit sub-

100 femtosecond CT, the CT excitons formed at the two interfaces show drastically different 

evolution dynamics. The ZnPc/ML-MoS2 behaves like typical donor-acceptor interfaces in which 

CT excitons dissociate into electron-hole pairs. On the contrary, back electron transfer occur at 

ZnPc/bulk-MoS2, which results in the formation of triplet excitons in ZnPc. The difference can be 

explained by the different amount of band bending found in the ZnPc film deposited on ML-MoS2 

and bulk-MoS2. Our work illustrates that the potential energy landscape near the interface plays 

an important role in the charge separation behavior. Therefore, considering the energy level 

alignment at the interface alone is not enough for predicting whether free charges can be generated 

effectively from an interface.
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INTRODUCTION

Layered two-dimensional (2D) materials such as transition metal dichalcogenide crystals 

(TMDCs) have attracted much attention recently because they allow materials properties to be 

tailored by stacking different atomically thin crystals together.1-3 This “stackability” is enabled by 

the weak van der Waals (vdW) bonding between layers and the absence of dangling bonds at the 

interface. Similar to TMDCs, organic molecules are bonded together by vdW forces. Hence, 

organic molecules can be combined readily with TMDCs to produce heterostructures that possess 

advantages of both materials.4-7 For instance, organic molecules are excellent light absorbers and 

the thickness of an organic film can be controlled easily. They can be combined with TMDCs, 

which have outstanding and gate-tunable carrier mobility, to produce sensitive detectors and gate-

tunable p-n junctions.8-14 More excitingly, the hybrid system can realize new properties and 

functionalities that neither materials can provide. For example, atomically-thin lateral15 and 

vertical p-n junctions16 can be fabricated in a scalable fashion by doping TMDCs with organic 

molecules. Combining organic molecules with other layered materials such as Bi2Se3 can create 

exotic systems such as lateral topological p-n junctions.17,18 Moreover, organic molecules can 

passivate defects in TMDCs via either physical19 or chemical adsorption,20,21 which is important 

for improving the carrier mobility in TMDCs. Technically, large area organic-TMDC 

heterostructures can be synthesized readily in a scalable fashion. 

Recent works have shown that femtosecond (fs) to picosecond (ps) charge transfer (CT) 

can occur across some organic-TMDC interfaces.22-27 However, CT across the interface is only the 

first step for generating free carriers from bound excitons.  The CT process will likely produce 

Coulombic-bound electron-hole pairs at the interface (commonly known as CT excitons or indirect 

excitons).28 The relaxation and dissociation mechanisms of these CT excitons at the interface are 
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not well-understood. In most applications, it is desired that these CT excitons can dissociate 

effectively into free electron-hole pairs. However, other competing electronic processes would 

occur prior to the exciton dissociation. In fact, the separation of CT excitons into free carriers is 

known to be a process that would limit the performance of organic photovoltaics29,30 and possibly 

optoelectronic devices made with other excitonic materials. Therefore, identifying conditions that 

would favor effective exciton dissociation is of paramount importance for fabricating effective 

devices based on organic-TMDC heterostructures.

Although a type-II band alignment generally enables effective CT across the interface, the 

subsequent evolution of the CT exciton, which plays an important role in the generation of free 

charges, is a more complicated process that depends critically on the potential energy landscape 

near the interface. Unfortunately, very few works directly measure both the energy landscape near 

the interface and the evolution dynamics of the CT exciton. Without knowing the correlation 

between the two at the molecular level, designing interfaces for effective exciton dissociation 

remains a trial-and-error task. Here, by using zinc phthalocyanine (ZnPc)/MoS2 interface as a 

prototype system, we illustrate the importance of the band bending, in addition to the interfacial 

energy level alignment, on the spatial range of coherent CT and the evolution of the CT exciton. 

In particular, we compare the exciton dynamics at ZnPc/monolayer (ML)-MoS2 and ZnPc/bulk-

MoS2 interfaces. Surprisingly, the two seemingly similar interfaces show distinctly different 

charge separation behaviors. Although both interfaces has a type-II band alignment, our 

photoemission spectroscopy measurement shows that the two possess different amount of band 

bending in the ZnPc film near the interface. Because of the differences in the band bending and 

the spin lifetime in ML-MoS2 and bulk-MoS2,31,32 CT excitons at the ZnPc/bulk-MoS2 interface 

recombine to form triplet (T1) exciton via back electron transfer, while CT excitons at the 
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ZnPc/ML-MoS2 interface can separate into free carriers. Despite both interfaces exhibit sub-100 

fs CT, the very different evolution dynamics of the CT exciton implies that the two interfaces can 

be suitable for different applications. For instance, the ZnPc/bulk-MoS2 interface can be used for 

triplet sensitization,33 while the ZnPc/ML-MoS2 interface can be used for effective charge 

separation.

EXPERIMENTAL METHODS

Sample Preparation. Commercially available, high quality, CVD-grown ML-MoS2 on 

SiO2/Si (6Carbon Technology, Shenzhen) was used. The ML-MoS2 layer has a continuous 

coverage and a microscopy image of these samples is shown in the supporting information (Fig. 

S1). For bulk-MoS2, a cm-sized single crystal purchased from SPI supplies was used. Before the 

measurement, the MoS2 samples were annealed at 400°C for 12 hours in an ultrahigh vacuum 

chamber (UHV) with a base pressure of 1  10-10 Torr. The quality of our bulk-MoS2 sample was 

reported previously in Ref. [24]. For the ML-MoS2 sample, angle-resolved photoemission 

spectroscopy (ARPES) was used to characterize the band structure of the material. A clear band-

structure was observed in the ARPES experiment (supporting information, Fig. S2), indicating that 

the ML-MoS2 has a continuous coverage, good crystallinity and a clean surface. The valence band 

(VB) edge at the  point is located at a slightly higher energy than the VB edge at the  point, 

which is a characteristic feature of ML-MoS2.34,35 The ML-MoS2 has a photoluminescence (PL) 

peak at ~ 660 nm (supporting information, Fig. S3), which is consistent to the properties of ML-

MoS2.36  Furthermore, the CVD-grown ML-MoS2 has an exciton decay dynamics that is 

comparable to that of a mechanically exfoliated ML-MoS2 sample obtained from a bulk-MoS2 

crystal (supporting information, Fig. S4).

After the bare MoS2 surface was annealed, it was then transferred in-situ to another UHV 

chamber with a base pressure of 1  10-9 Torr for ZnPc deposition. The nominal thickness of the 

ZnPc film was monitored by a quartz crystal microbalance. The uncertainty in the nominal 

thickness measured by this method was ~ 5 - 10 %, which was mainly originated from the 

uncertainty in determining the mass density of the film. A film density of 1.55 g cm-3 was used to 

calculate the film thickness. For thicknesses up to 4 nm, a substrate temperature of 90 °C and a 

deposition rate of 0.3 Å/min were used. These conditions are known to produce a uniform ZnPc 
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film with molecules having a face-on orientation.37 The ZnPc orientation can be verified using 

ultraviolet photoemission spectroscopy (UPS)38,39 and we found that ZnPc molecules in our films 

have a face-on orientation (supporting information, Fig. S5). For film thicknesses larger than 4 

nm, a faster deposition rate of 0.8 Å/min was used and the sample was kept at room temperature. 

After ZnPc deposition, the sample was transferred back to the photoemission chamber where the 

photoemission experiments were performed. 

ARPES and UPS Spectroscopy. In the UPS and ARPES measurements, UV light 

generated from a standard UV lamp was used to ionize electrons from the sample. The He-I 

emission line with a photon energy of 21.22 eV was used. The energy and the emission angle of 

photoelectrons were measured using a hemispherical analyzer equipped with an imaging detector 

(Phoibos 100, SPECS).

Time-resolved Two Photon Photoemission (TR-TPPE) Spectroscopy. TR-TPPE 

spectroscopy was used to measure the excited state dynamics of the sample. The details of the TR-

TPPE setup can be found in our previous publication.40 In short, the TR-TPPE is a pump-probe 

spectroscopy technique in which the energy and population of excited electrons were measured by 

using photoemission spectroscopy. In this work, the pump and probe beam have a photon energy 

of 1.77 eV and 4.68 eV respectively. The pump and probe beams were generated by using the 

outputs of two non-collinear optical parametric amplifiers (NOPA), which were pumped by a 

Yb:KGW regenerative amplifier running at 125 kHz (Pharos, 10 W, Light Conversion). The pump 

and probe beams have a pulse duration of 25 fs and 65 fs respectively. The beams have a Gaussian 

profile with a full width half maxima (fwhm) size of ~ 0.8 mm. The kinetic energy of the 

photoelectrons ionized by the probe beam was measured by the aforementioned hemispherical 

electron analyzer. The measurement was done at room temperature. 

Transient Absorption Measurement. In the transient absorption measurements, an 80-

MHz Ti:sapphire oscillator produces ~100 fs pulses at about 840 nm. Part of this beam was focused 

to a BBO crystal to generate its second harmonic at 420 nm, which is used as the probe pulse. The 

rest of the 840-nm beam was coupled to a photonic crystal fiber to generate a broadband 

supercontinuum. A bandpass filter with a bandwidth of 10 nm was used to select the 710 nm 

component of the supercontinuum, which serves as the pump pulse. The two pulses are combined 

by a beam splitter and co-focused by a microscope objective lens to the sample surface with a spot 

size of about 2 µm. We measured differential reflection of the probe as a function of the probe 
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delay. The differential reflection is defined as ΔR/R0 = (R-R0)/R0, where R and R0 are the reflection 

coefficient of the sample at the probe wavelength. To measure this quantity, the probe beam 

reflected by the sample was send to a silicon photodiode, which output was detected by a lock-in 

amplifier. A mechanical chopper was used in the pump arm to modulate the pump intensity at 

about 2 kHz, for the lock-in detection. The time delay between the pump and probe pulses was 

controlled by changing the path length of the pump beam by using a linear stage. All measurements 

were performed with the sample at room temperature.

RESULTS AND DISCUSSION

Interfacial band alignment and band bending

Because the interfacial band alignment and the band bending play important roles in the 

CT and exciton dissociation dynamics, we will first discuss the band structure of the ZnPc/ML-

MoS2 and the ZnPc/bulk-MoS2 interfaces measured by the UPS experiment. One of the major 

differences in the band structure between ML-MoS2 and bulk-MoS2 is that the energy of the 

valence band (VB) edge at the  point increases with the number of MoS2 layers because of the 

interlayer electronic coupling.34,41 The energy upshift, from ML to bulk, of the VB-edge at the  

point results in the well-known transition from a direct to an indirect gap semiconductor.36  Figure 

1a compares the UPS spectra of our ML-MoS2 and bulk-MoS2 samples measured at the  point. 

The energy is referenced with respect to the Fermi level (Ef). The VB-edge at the  point of the 

bulk-MoS2 is ≈ 0.65 eV higher than that of the ML-MoS2, which agrees well with first principle 

calculation34 and micro-ARPES measurement.35 The positions of the VB-edges with respect to the 

Ef for ML- and bulk-MoS2 are shown in Fig. 1b. We further note that both samples have similar 

workfunctions (ML: 4.55 eV; bulk: 4.65 eV). Hence, a similar energy upshift in the VB-edges can 

be obtained if the energy is referenced with respect to the vacuum level. For bulk-MoS2, the VB-

edge at the  point is the valence band maxima (VBM). For the ML-MoS2 sample, we found that 
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the band edge at the  point is slightly lower than that at the  point, which is consistent with 

previous theoretical and experimental works.34,35,41 The angle-resolved spectra are shown in the 

Fig. S2 in the supporting information. Figure 1b summarizes the key differences between the band-

structure of our ML and bulk MoS2 samples. Positions of the conduction band minimum (CBM) 

are assigned based on reported transport gaps of ML and bulk MoS2.34,42

Figure 1: (a) The UPS spectra for ML and bulk MoS2 at the  point.  The VB-edges are 
indicated by the vertical bars. (b) A comparison between the band structure of ML and bulk 
MoS2. (c) The UPS spectra for ZnPc/ML-MoS2 with various ZnPc’s thickness. The position of 
the ZnPc’s HOMO peak is indicated be the vertical bars. For comparison, the spectrum for the 
ML-MoS2 is also shown (red line). The spectra for the ZnPc/ML-MoS2 samples are plotted in a 
log scale such that features from both layers can show up clearly in the 0.5 nm and 1 nm spectra. 
(d) The HOMO-VB edge offset at ZnPc/ML-MoS2 and ZnPc/bulk-MoS2 interfaces as a function 
of the ZnPc’s thickness.

If all the energy levels are aligned using a common vacuum level, one would anticipate 

that the energy offsets between the MoS2’s VB-edge and the ZnPc’s HOMO would be very 

different for the ZnPc/ML-MoS2 and the ZnPc/bulk MoS2 interfaces. This is because the energy 

of the VBM of ML and bulk MoS2 differs by ≈ 0.6 eV (Fig. 1b).  However, surprisingly, a very 
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similar energy offset (in the range of 0.2 - 0.3 eV) is observed for both interfaces (ZnPc/ML-MoS2, 

ZnPc/bulk-MoS2). Figure 1c shows the UPS spectra of the ML-MoS2 sample with various ZnPc 

thicknesses as ZnPc molecules are deposited consecutively on the MoS2 surface. The ZnPc’s 

HOMO peaks (vertical bars) can be identified for a nominal thickness as small as 0.5 nm. For 

comparison, the spectrum for the bare ML-MoS2 is also shown (red line). The first major peak in 

the MoS2 valence band (dashed line) is still visible in the ZnPc/MoS2 spectra for small ZnPc 

thicknesses. The offset between the ZnPc’s HOMO and the MoS2’s VB-edge at the -point is 0.26 

eV. With an increase in the ZnPc thickness, the HOMO peak shifts to a slightly lower energy (i.e. 

a larger binding energy). The energy offset (EHOMO – EVB-) as a function of ZnPc thickness is 

plotted in Fig. 1d. For comparison, we have also included the energy offset for the ZnPc/bulk-

MoS2 interface that are reported in our pervious study.24 

Two important observations stem from the above comparison. First, for small ZnPc 

thicknesses (0.5 – 1 nm), both interfaces show a very similar energy offset. As mentioned earlier, 

this is rather surprising because the energy of the VB-edge at the  point for ML MoS2 is 

significantly lower than that for bulk MoS2 (Fig. 1b). The physical origin of this observed 

“pinning” in the VB-HOMO offset is not clear, but we speculate that it would be resulted from the 

orbital mixing between MoS2 and ZnPc considering that the MoS2 orbit at the -point has a strong 

out-of-plane character.34 Based on this offset, both ZnPc/ML-MoS2, ZnPc/bulk-MoS2 interfaces 

have a type-II band alignment. The type-II band alignment is consistent with other reports on the 

metal-Pc/ML-MoS2 interface.27,43-45 Second, there is a much stronger band bending in the ZnPc 

film deposited on bulk-MoS2 than on ML-MoS2. It is known that ZnPc molecules on MoS2 have 

a face-on orientation.46 For this orientation, our previous studies47 found that the position of the 

HOMO peak is in the range of 1.2 - 1.5 eV below the Ef and the workfunction is in the range of 
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4.3 - 4.5 eV. Comparing these numbers with the VB-edge position of the bulk-MoS2 (Fig. 1b), one 

can find that if the energy offset between ZnPc’s HOMO and MoS2’s VB-edge is pinned at ~0.2 - 

0.3 eV, the Ef of ZnPc would be much higher than that of bulk-MoS2. Thus, ground state electron 

transfer from ZnPc to bulk-MoS2 needs to occur in order to produce the observed energy level 

alignment. The expected ground state electron transfer is indeed consistent with the strong band 

bending observed in ZnPc deposited on bulk-MoS2. The direction of the band bending indicates 

that net positive charges are accumulated in the ZnPc layer.48 The different amount of the band 

bending for ZnPc/ML-MoS2 and ZnPc/bulk-MoS2 interfaces should have a strong influence on the 

CT and the subsequent evolution of the CT states. 

Charge Transfer Excitons at the ZnPc/ML-MoS2 interface

The ZnPc/ML-MoS2 interface has a type-II band alignment, which should allow ultrafast 

electron transfer from ZnPc to ML-MoS2. Figure 2a shows the TR-TPPE spectrum of a 1 nm 

ZnPc/ML-MoS2 sample. In the TR-TPPE experiment, the sample is excited by a 1.77 eV pump 

beam. This photon energy is enough to excite the S1 state of ZnPc,49 but it is below the optical 

band gap of the ML-MoS2.36 One of the unique advantages of the TR-TPPE spectroscopy is that 

it measures the energy of excited states directly. On the vertical axis in Fig. 2a, the energy of 

excited states is referenced with respect to the ZnPc’s HOMO position determined from our UPS 

experiment. The pseudocolor represents the pump-induced photoemission intensity. At delay time 

t ≈ 0 ps, a peak at ≈ 1.75 eV is observed. Figure 2b shows the spectra at various delay times and 

the peak at E – EHOMO ≈ 1.75 eV is apparent in the 0.01 ps and 0.03 ps spectra. We attribute this 

peak to the S1 state of ZnPc because the peak position agrees well with the energy of the S1 exciton. 

Note that it cannot be originated from excitons in ML-MoS2 because in a control experiment 

conducted on the bare MoS2 sample, we observe negligible TR-TPPE signal (supporting 
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information, Fig. S6). This is reasonable because the pump photon energy is less than the bandgap 

of ML-MoS2. This S1 state decays rapidly on a sub-100 fs timescale (Fig. 2c, open squares). The 

decay of the S1 population can be attributed to the electron transfer from ZnPc to MoS2.24,50 In our 

TR-TPPE setup, the pump-probe cross-correlation has a fwhm width of 70 fs (Fig. 2c, solid black 

line). Fitting the S1 decay to a single exponential decay convoluted with the widths of the pump 

and probe pulses yields a CT time of 40 fs (dashed line). 

Figure 2: (a) TR-TPPE spectrum of the 1 nm-ZnPc/ML-MoS2 sample. The pump beam excites 
the ZnPc film selectively and the interfacial CT exciton is produced by electron transfer from ZnPc 
to MoS2. The time axis is split at 0.5 ps in order to show the dynamics on two different timescales. 
The inset is a schematic diagram showing the energy level alignment at the interface, ZnPc’s S1 
exciton and CT excitons. (b) TPPE spectra at some selected pump-probe delay times. The positions 
for the S1, CTh and CT0 states are shown. (c) The intensity of the S1, CTh and CT0 states as a 
function of time. The solid black line shows the pump-probe cross-correlation. The lifetime of the 
S1 state is fit by a rate equation model that accounts for the pulse width of pump and probe pulses 
(black dashed line). The blue and red dashed line are fits to single exponential decay and single 
exponential rise respectively.

Another peak located at ≈ 0.2 eV below the S1 peak can be found in the spectrum. This 

state has a slightly delayed intensity rise (Fig. 2c, solid circle) and a longer lifetime as compared 
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to the S1 peak. A fit to an exponential decay yields a lifetime of 120 fs (Fig 2c, blue dashed line). 

We assign this state to a hot charge transfer state (CTh) that consists of a pair of Coulombic-bound 

electron and hole in MoS2 and ZnPc respectively (inset in Fig. 2a). Similar CT exciton states 

unveiled by optical absorption spectroscopy has been reported recently for the CuPc/MoS2 

interface.45  The CT state can be populated by the CT from ZnPc to MoS2. The energy of this state 

is ≈ 1.7 eV above the MoS2’s VBM (1.44 eV with respect to the ZnPc’s HOMO). This energy is 

slightly lower compared to the A-exciton energy of ML-MoS2 (1.87 eV), but it is within our 

experimental uncertainty (~ ± 0.1 eV). In our experiment, error would be introduced in determining 

the relative energy position of the HOMO (in the UPS spectrum) and the excited state (in the TPPE 

spectrum) because different light sources used in the two experiments would introduce different 

sample charging conditions. The slightly lower energy of the CT exciton indicates that it would 

have a larger binding energy as compared to the A-exciton of MoS2, which can be resulted from 

the more localized nature of the molecular orbit. Finally, a state at E – EHOMO ≈ 1.22 eV can be 

found, which clearly shows a delayed population rise. The rise time of this state is 200 fs (Fig. 2c, 

red dashed line). This state can be populated from the relaxation of the CTh state. Following 

previous TR-TPPE works on other donor-acceptor interfaces,51-53 we assign this peak to a relaxed, 

localized CT state (CT0). 

Moreover, we note that the probe photons (4.68 eV) used in our experiment do not have a 

large enough in-plane momentum to ionize excited electrons residing at the -valleys of MoS2 via 

a direct optical process.54,55 However, as mentioned earlier, it is likely that the electron in these CT 

excitons localizes spatially and do not have a well-defined momentum vector in the k-space. 

Hence, the momentum conservation requirement for photoionization cannot be applied to this case. 

We will come back to this point when the lifetime of the CT0 state is discussed.  
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Comparison of the coherent CT range between ZnPc/ML-MoS2 and ZnPc/bulk-MoS2

Previously, we have reported that sub-100 fs electron transfer from ZnPc to MoS2 can also 

occur at the ZnPc/bulk-MoS2 interface.24 Hence, ultrafast CT can occur at both ZnPc/ML-MoS2 

and ZnPc/bulk-MoS2 interfaces, which is consistent with the similar ZnPc-HOMO/MoS2-VBM 

offset found for both interfaces. However, when the ZnPc film becomes thicker, we find that there 

is a subtle difference in the spatial range of the CT, i.e. the distance from the interface in which 

the ultrafast CT would still occur.  Figure 3a and 3b show the temporal evolution of the normalized 

S1 peak intensity for ZnPc/ML-MoS2 and ZnPc/bulk MoS2 samples with various ZnPc film 

thicknesses. Because photoemission is a surface sensitive technique, it mainly probes the 

population of excitons near the ZnPc surface. By varying the thickness of the ZnPc layer, we can 

estimate the distance from the interface in which the sub-100 fs CT would still occur. Previously, 

we have used this method to study the transport mechanism and the delocalization size of excitons 

in organic thin films.40,56 For an ultrathin (0.5 nm) ZnPc layer, the S1 peak intensity shows an 

ultrafast decay in both ZnPc/ML-MoS2 and ZnPc/bulk MoS2 samples. By fitting the data to a single 

exponential decay convoluted with the laser pulse widths (Fig. 3a and b, dashed lines), we found 

that the ZnPc’s S1 exciton has lifetimes of 40 fs and 55 fs for ZnPc/ML-MoS2 and ZnPc/bulk MoS2 

respectively, which are attributed to the CT times.  

As the ZnPc thickness is increased to 1 ~ 2 nm, the S1 peak intensity starts to show a slower 

decay for the bulk-MoS2 sample (Fig. 3b). By contrast, the decay dynamics is independent of 

thickness (in the range of 0.5 – 2 nm) for the ML-MoS2 samples (Fig. 3a). Eventually, when the 

ZnPc thickness is beyond 4 nm, the S1 exciton shows a much slower and thickness-independent 

decay for both samples. Thicker samples show a much slower decay because S1 excitons near the 

ZnPc surface need to transport to the interface via slow incoherent diffusion before the interfacial 
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CT can occur.24,50 However, if the average thickness of the film is roughly equal to or less than the 

delocalization size of the S1 exciton in the ZnPc film, fast population quenching due to the coherent 

CT can still be observed.  The results in Fig. 3a and 3b imply that the S1 exciton in the ZnPc film 

deposited on the bulk-MoS2 has a smaller delocalization size because the ultrafast quenching can 

no longer be observed in samples with a ZnPc layer as thin as 2 nm. The difference in the 

delocalization size can be correlated to the amount of band bending found in the UPS measurement 

(Fig. 1d). For the ZnPc/bulk-MoS2, the amount of the band bending (~ 0.6 eV) is larger than the 

electronic coupling between neighboring phthalocyanine molecules (~0.1 eV).57,58 This uneven 

energy landscape would limit the coherent size of the S1 exciton. Moreover, the direction of the 

electric field associated with the band bending pushes the electron away from the interface. These 

key differences between the two interfaces are summarized schematically in Fig. 3d. For 

ZnPc/bulk-MoS2, a S1 exciton slightly farther away from the interface can no longer transfer its 

electron coherently to the MoS2. On the other hand, the lesser band bending in ZnPc on ML-MoS2 

results in the larger delocalization size of the S1 exciton, which can enable coherent CT even 

though the exciton is farther away from the interface. For practical applications, this larger 

coherent CT range is important because it will allow the interface to dissociate a larger amount of 

S1 excitons on the sub-ps timescale.  
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Figure 3: The S1 peak intensity as a function of time for samples with various ZnPc thicknesses.  
Panel (a) and (b) show the results from the ML and bulk MoS2 respectively. The dashed lines show 
the fit to an exponential decay. (c) The temporal evolution of the intensity for the CT0 and T1 states 
in the 1 nm ZnPc/ML-MoS2 and the 1 nm ZnPc/bulk-MoS2 samples respectively. (d) A schematic 
diagram shows that a large band bending in ZnPc on bulk MoS2 can limit the extent of exciton 
delocalization and prohibit electron injection. These two factors limit the spatial range of the 
coherent CT. (e) Large band bending in ZnPc on bulk MoS2 can trap the hole of the CT exciton 
near the interface. The hole trapping together with the faster spin flipping rate in bulk-MoS2 favor 
back electron transfer (BET) and T1 formation at the ZnPc/bulk-MoS2 interface.

Competition between Back Electron Transfer and Exciton Dissociation

After the initial CT process, the CT exciton formed at the interface needs to be dissociated 

in order to generate free carriers. However, other electronic processes can compete with the 

dissociation of the CT exciton. Indeed, for bulk-MoS2/ZnPc, we have reported that triplet (T1) 

exciton can be formed in the ZnPc film via spin-flipping in MoS2 and subsequent back electron 

transfer (BET) from bulk-MoS2 to ZnPc.24 For ZnPc/bulk-MoS2, the population of the T1 exciton 

was found to increase on the 10 – 100 ps timescales. The T1 formation kinetics for 1 nm-ZnPc/bulk-

MoS2 is reproduced in Fig. 3c (the black curve). The spectral signature of the T1 exciton is rather 

distinctive in the TPPE spectrum24 because the signal intensity is larger compared to other states 
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and it has a very long lifetime. However, such a T1 state is not observed for the ZnPc/ML-MoS2 

interface. The longest-lived state identifiable in the 1 nm ZnPc/ML-MoS2 spectrum (Fig. 2) is the 

CT0 state. For comparison, the intensity evolution of this state is shown in Fig. 3c (red curve). 

After the intensity is peaked at ~ 1 ps, it decreases monotonically with time. Hence, we do not 

observe the signature for the BET and T1 formation at the ZnPc/ML-MoS2 interface. 

For the ZnPc/bulk-MoS2 interface, two factors that favor the T1 formation can be identified. 

First, the spin lifetime is supposed to be longer in ML-MoS2 as compared to bulk-MoS2 because 

of the spin-momentum locking in ML-MoS2.31,32 Indeed, recent works on ML-TMDC 

heterostructures have shown that CT excitons in these heterostructures can have a very long spin 

lifetime.59 Second, the large band bending in the ZnPc film on bulk-MoS2 can essentially trap the 

hole of the CT exciton very close to the interface (Fig. 3e). The close proximity of the hole in ZnPc 

to the electron in MoS2 can increase the chance of the BET. Indeed, the exchange interaction that 

provides the energetic driving force for the T1 formation is a very short range interaction (within 

the size of a molecule). Hence, hole trapping at the interface would be a crucial step for T1 

formation via the BET. We note that band bending has also been invoked recently to explain the 

triplet formation at the CuPc/GaAs interface.60 

We do not observe significant T1 formation at ZnPc/ML-MoS2. Instead, the CT0 intensity 

is found to decay on the order of 10s of ps (Fig. 3c). The disappearance of the CT0 state can be 

explained by two different scenarios. In the first scenario, the interfacial CT exciton simply 

recombines at the interface. However, this seems to be unlikely because a number of recent time-

resolved studies found that the CT states or separated carriers in similar organic-TMDC interfaces 

have much longer lifetimes.23,25,26 In the second scenario, the localized CT exciton dissociates into 

an electron-hole pair with the hole in ZnPc and the electron in MoS2. However, the signal 
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disappears because our TR-TPPE probe is not sensitive to both delocalized electrons in MoS2 and 

holes in ZnPc. The TR-TPPE cannot probe the hole in ZnPc because it can only measure excited 

electrons. For separated electrons in ML-MoS2, they are resided at  valleys in the momentum 

space, which has a large in-plane momentum. To detect these electrons, momentum conservation 

will need to be fulfilled in the photoionization process61 (the probe process) and a probe photon 

energy of ~ 10 – 20 eV is required.54,55 Our probe photons only have an energy of 4.68 eV, which 

is not enough to ionize electrons in the  valleys through a direct optical process. As a result, our 

probe is not sensitive to the separated electrons in MoS2. Indeed, our control experiments on bare 

ML-MoS2 (supporting information) shows that the TPPE signal is an order of magnitude weaker 

compared to the ZnPc/MoS2 samples even when the ML-MoS2 is excited resonantly at ≈ 1.88 eV. 

Similarly, in bare bulk-MoS2, the primary photo-excited species is free electron and no TPPE 

signal can be observed.24  These control experiments shows that our TPPE probe cannot detect 

free electrons at the  valleys in MoS2. Therefore, the gradual decrease in the CT0 intensity can 

be explained by the dissociation of localized CT excitons (which do not have a well-defined k-

vector) into delocalized electrons in the ML-MoS2 with a well-defined momentum.  

To distinguish the above two scenarios, another time-resolved probe is used to detect long-

lived excited states that may have been missed out by the TR-TPPE experiment. Transient 

absorption measurement is done on the 2 nm ZnPc/ML-MoS2 sample to find out whether long-

lived states exist.  In this experiment, the sample is pumped at 710 nm (1.75 eV, similar to the 

pump wavelength used in the TPPE experiment) and the transient change in reflectance at 420 nm 

is measured. As mentioned above, the pump photons selectively excite ZnPc and no significant 

signal is observed in the bare ML-MoS2 sample (Supporting information, Fig. S7). The choice of 

the probe wavelength is limited by the experimental setup. In particular, we did not choose a probe 
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wavelength of 660 nm (which can probe the A-exciton bleaching in MoS2 directly) because it 

would be too close to the pump wavelength. Nevertheless, this probe wavelength (420 nm) can 

detect excitation in both ZnPc and MoS2. In Fig. 4, the transient change in the reflectance (R/R) 

for the ZnPc/ML-MoS2 sample is shown (solid square), which is compared to the data obtained 

from a 10 nm ZnPc/SiO2/Si sample (open circle). For comparison, the signal from the ZnPc-only 

sample is divided by a factor of 5 to account for its larger thickness. It is clear that the positive 

signal in both traces is originated from the ZnPc layer, which can be attributed to the 

photobleaching of the ZnPc’s B-band (an increase in R can be resulted from a decrease in 

absorption). The measured dynamics for the ZnPc-only sample is comparable to the S1 exciton 

population in the same sample measured by TR-TPPE (solid line).  

Figure 4: The transient absorption of the 2 nm ZnPc/ML-MoS2 and 10 nm ZnPc samples measured 
at 420 nm. The samples are pumped at 710 nm, which selectively excites the ZnPc’s S1 exciton. 
For comparison, the signal for the ZnPc-only sample is divided by 5 to account for the difference 
in the ZnPc film thickness.  Panel (a) and (b) show the dynamics on two different timescales. In 
panel (a), the instrumental response function (IRF), which is the integral of a Gaussian function 
with a fwhm of 400 fs, is indicated by the dashed line. In panel (b), the S1 peak intensity of the 
ZnPc-only sample measured by the TR-TPPE experiment (solid line) is shown for comparison.

The initial signal rise overlaps with the instrumental response (~ 400 fs) indicated by the 

dashed line in Fig. 4a. Hence, the positive signal near time zero is originated from the optically-
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excited S1 exciton in ZnPc. For the ZnPc/ML-MoS2 sample, the positive signal decreases rapidly 

in the first 1 – 2 ps, which is consistent to the annihilation of the S1 exciton via ultrafast CT 

discussed above. Then, the signal changes to negative after a few ps, which magnitude decays on 

a 100 ps time scale.  The decay time of the positive signal is similar to that of the CT0 population 

observed in the TR-TPPE experiment (Fig. 3c). Following the decay of the positive signal, a long-

lived negative signal appears at t ~ 20 ps. We attribute the long-lived negative signal to the 

population of electrons in ML-MoS2 resulted from the dissociation of CT excitons. The probe 

photon energy is close to the C-exciton resonance of MoS2.62 Hence, the signal originates from the 

change of the C-exciton resonance by these electrons. The decay time of several 100 ps is also 

consistent with lifetime of electrons in MoS2 when they are spatially separated from holes by a 

vdW interface in TMDC heterobilayers.63,64 Unlike excitons, which reduce transient absorption of 

exciton resonances mainly by phase space state filling effect and thus produce photobleaching, 

electrons as charged particles can alter the exciton resonance effectively by screening effect, which 

mainly cause a shift of the resonance. Hence, the sign of the signal (photoinduced absorption or 

photobleaching) depends on the direction of the shift. In the measurement, we found the signal to 

be negative. Based on both the transient absorption and the TR-TPPE measurements, we conclude 

that the CT0 exciton does not recombine. Instead, they dissociate into free electrons in MoS2 and 

holes in ZnPc. 

Compared to typical organic-organic interfaces, the time taken for the dissociation of the 

CT exciton at the ZnPc/MoS2 interface is relatively short (~ 10 ps). For example, bound CT 

excitons at the ZnPc/C60 interface dissociate on the ~1 ns timescale.53,65 The relatively fast CT 

exciton dissociation dynamics can be explained by a smaller exciton binding energy. Moreover, 

the delocalized nature of electrons in MoS2 should increase the density of less-localized and 
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loosely bound CT states. A larger number of available CT states with small binding energies and 

large spatial extents should favor the CT exciton dissociation driven by the entropy.66-68 

CONCLUSION

A major conclusion that can be drawn from our work is that although the type-II band 

alignment is necessary for enabling ultrafast interfacial CT, it is not a decisive factor in determining 

whether free electrons and holes can be generated effectively from the interface. In particular, we 

demonstrate that the potential energy landscape near the interface, together with the spin lifetime 

in the TMDC, can govern the spatial range of the coherent interfacial CT process and the 

subsequent evolution of the CT exciton. Both ZnPc/ML-MoS2 and ZnPc/bulk-MoS2 interfaces are 

found to have a type-II band alignment with a similar MoS2-VBM/ZnPc-HOMO energy offset at 

the interface. However, the VBM of bulk-MoS2 has a higher energy than that of the ML-MoS2, 

which results in the much stronger band bending found in the ZnPc film deposited on the bulk-

MoS2. This band bending not only limits the spatial range of the coherent CT, it also determines 

the eventual fate of CT excitons. For ZnPc/bulk-MoS2, CT excitons transition into triplet excitons 

in ZnPc via faster spin flipping in bulk-MoS2 and more effective back electron transfer to ZnPc. 

We attribute the more effective back electron transfer process to the larger band bending in ZnPc 

because the hole in ZnPc is likely to be trapped at the interface by the large potential gradient 

associated with the band bending. By contrast, the flatter band structure at the ZnPc/ML-MoS2 

interface and the longer spin lifetime in ML-MoS2 favor the dissociation of the CT excitons. The 

very different exciton dynamics found at the two interfaces shows that the interfacial energy level 

alignment, by itself, is not a good predictor in determining whether free charges can be generated 

effectively from these interfaces.  

Page 19 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

ASSOCIATED CONTENT
Supporting Information

Data on the characterization of the monolayer MoS2, additional UPS, TR-TPPE and 
transient absorption data for control experiments. 

AUTHOR INFORMATION
Corresponding Authors
*wlchan@ku.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENT 
This work is primarily supported by the U.S. National Science Foundation, grant DMR-1351716. 
This investigation was also supported by the University of Kansas General Research Fund 
allocation #2151080. H.Z. acknowledges the support from U.S. National Science Foundation, 
grant DMR-1505852.

REFERENCES

(1) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C., 2D materials and van der 
Waals heterostructures, Science, 353, 461 (2016).
(2) Zhang, W. J.; Wang, Q. X.; Chen, Y.; Wang, Z.; Wee, A. T. S., Van der Waals stacked 2D 
layered materials for optoelectronics, 2D Mater., 3, 022001 (2016).
(3) Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M., Beyond Graphene: Progress 
in Novel Two-Dimensional Materials and van der Waals Solids, Annu. Rev. Mater. Res., 45, 1-27 
(2015).
(4) Jariwala, D.; Marks, T. J.; Hersam, M. C., Mixed-dimensional van der Waals 
heterostructures, Nat. Mater., 16, 170-181 (2017).
(5) Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y., The organic-2D 
transition metal dichalcogenide heterointerface, Chem. Soc. Rev., 47, 3241-3264 (2018).
(6) Wang, H. M.; Li, C. H.; Fang, P. F.; Zhang, Z. L.; Zhang, J. Z., Synthesis, properties, and 
optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures, Chem. 
Soc. Rev., 47, 6101-6127 (2018).
(7) Sun, J.; Choi, Y.; Choi, Y. J.; Kim, S.; Park, J.-H.; Lee, S.; Cho, J. H., 2D-Organic Hybrid 
Heterostructures for Optoelectronic Applications, Adv. Mater., 1803831 (2019).
(8) Velez, S.; Ciudad, D.; Island, J.; Buscema, M.; Txoperena, O.; Parui, S.; Steele, G. A.; 
Casanova, F.; van der Zant, H. S. J.; Castellanos-Gomez, A.; Hueso, L. E., Gate-tunable diode and 
photovoltaic effect in an organic-2D layered material p-n junction, Nanoscale, 7, 15442-15449 
(2015).

Page 20 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

(9) Liu, F. C.; Chow, W. L.; He, X. X.; Hu, P.; Zheng, S. J.; Wang, X. L.; Zhou, J. D.; Fu, Q. D.; Fu, 
W.; Yu, P.; Zeng, Q. S.; Fan, H. J.; Tay, B. K.; Kloc, C.; Liu, Z., Van der Waals p-n Junction Based on 
an Organic-Inorganic Heterostructure, Adv. Funct. Mater., 25, 5865-5871 (2015).
(10) Pak, J.; Jang, J.; Cho, K.; Kim, T. Y.; Kim, J. K.; Song, Y.; Hong, W. K.; Min, M.; Leec, H.; Lee, 
T., Enhancement of photodetection characteristics of MoS2 field effect transistors using surface 
treatment with copper phthalocyanine, Nanoscale, 7, 18780-18788 (2015).
(11) Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J. M.; Sangwan, V. K.; Filippone, S. A.; Turrisi, 
R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C., Hybrid, Gate-Tunable, van der Waals p-n 
Heterojunctions from Pentacene and MoS2, Nano Lett., 16, 497-503 (2016).
(12) Liu, X.; Gu, J.; Ding, K.; Fan, D. J.; Hu, X. E.; Tseng, Y. W.; Lee, Y. H.; Menon, V.; Forrest, S. 
R., Photoresponse of an Organic Semiconductor/Two-Dimensional Transition Metal 
Dichalcogenide Heterojunction, Nano Lett., 17, 3176-3181 (2017).
(13) Huang, Y.; Zhuge, F. W.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y., Van der 
Waals Coupled Organic Molecules with Monolayer MoS2 for Fast Response Photodetectors with 
Gate-Tunable Responsivity, ACS Nano, 12, 4062-4073 (2018).
(14) Cho, Y.; Park, J. H.; Kim, M.; Jeong, Y.; Yu, S.; Lim, J. Y.; Yi, Y.; Im, S., Impact of Organic 
Molecule-Induced Charge Transfer on Operating Voltage Control of Both n-MoS2 and p-MoTe2 
Transistors, Nano Lett., 19, 2456-2463 (2019).
(15) Choi, M. S.; Qu, D.; Lee, D.; Liu, X.; Watanabe, K.; Taniguchi, T.; Yoo, W. J., Lateral MoS2 
p-n Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics, ACS 
Nano, 8, 9332-9340 (2014).
(16) Li, H. M.; Lee, D.; Qu, D. S.; Liu, X. C.; Ryu, J. J.; Seabaugh, A.; Yoo, W. J., Ultimate thin 
vertical p-n junction composed of two-dimensional layered molybdenum disulfide, Nat. 
Commun., 6, 6564 (2015).
(17) Tu, N. H.; Tanabe, Y.; Satake, Y.; Huynh, K. K.; Tanigaki, K., In-plane topological p-n junction 
in the three-dimensional topological insulator Bi2-xSbxTe3-ySey, Nat. Commun., 7, 13763 (2016).
(18) Kim, S. H.; Jin, K. H.; Kho, B. W.; Park, B. G.; Liu, F.; Kim, J. S.; Yeom, H. W., Atomically 
Abrupt Topological p-n Junction, ACS Nano, 11, 9671-9677 (2017).
(19) Park, J. H.; Sanne, A.; Guo, Y. Z.; Amani, M.; Zhang, K. H.; Movva, H. C. P.; Robinson, J. A.; 
Javey, A.; Robertson, J.; Banerjee, S. K.; Kummel, A. C., Defect passivation of transition metal 
dichalcogenides via a charge transfer van der Waals interface, Sci. Adv., 3, 1701661 (2017).
(20) Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. 
G.; Sun, L. T.; Wang, J. L.; Zhang, G.; Zhang, Y. W.; Shi, Y.; Wang, X. R., Towards intrinsic charge 
transport in monolayer molybdenum disulfide by defect and interface engineering, Nat. 
Commun., 5, 5290 (2014).
(21) Li, Q.; Zhao, Y. H.; Ling, C. Y.; Yuan, S. J.; Chen, Q.; Wang, J. L., Towards a Comprehensive 
Understanding of the Reaction Mechanisms Between Defective MoS2 and Thiol Molecules, 
Angew Chem. Int. Ed., 56, 10501-10505 (2017).
(22) Petoukhoff, C. E.; Krishna, M. B. M.; Voiry, D.; Bozkurt, I.; Deckoff-Jones, S.; Chhowalla, 
M.; O'Carroll, D. M.; Dani, K. M., Ultrafast Charge Transfer and Enhanced Absorption in MoS2-
Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces, ACS Nano, 10, 9899-9908 
(2016).

Page 21 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

(23) Homan, S. B.; Sangwan, V. K.; Balla, I.; Bergeron, H.; Weiss, E. A.; Hersam, M. C., Ultrafast 
Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der 
Waals Heterojunction, Nano Lett., 17, 164-169 (2017).
(24) Kafle, T. R.; Kattel, B.; Lane, S. D.; Wang, T.; Zhao, H.; Chan, W. L., Charge Transfer Exciton 
and Spin Flipping at Organic-Transition-Metal Dichalcogenide Interfaces, ACS Nano, 11, 10184-
10192 (2017).
(25) Zhong, C. M.; Sangwan, V. K.; Wang, C.; Bergeron, H.; Hersam, M. C.; Weiss, E. A., 
Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS2 van der Waals 
Heterojunction, J. Phys. Chem. Lett., 9, 2484-2491 (2018).
(26) Zhu, T.; Yuan, L.; Zhao, Y.; Zhou, M. W.; Wan, Y.; Mei, J. G.; Huang, L. B., Highly mobile 
charge-transfer excitons in two-dimensional WS2/tetracene heterostructures, Sci. Adv., 4, 3104 
(2018).
(27) Canton-Vitoria, R.; Gobeze, H. B.; Blas-Ferrando, V. M.; Ortiz, J.; Jang, Y.; 
Fernández-Lázaro, F.; Sastre-Santos, Á.; Nakanishi, Y.; Shinohara, H.; D'Souza, F.; Tagmatarchis, 
N., Excited-State Charge Transfer in Covalently Functionalized MoS2 with a Zinc Phthalocyanine 
Donor–Acceptor Hybrid, Angew. Chem. Int. Ed., 131, 5768-5773 (2019).
(28) Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A., Charge 
Transfer Excitons at van der Waals Interfaces, J. Am. Chem. Soc., 137, 8313-8320 (2015).
(29) Yao, J. Z.; Kirchartz, T.; Vezie, M. S.; Faist, M. A.; Gong, W.; He, Z. C.; Wu, H. B.; Troughton, 
J.; Watson, T.; Bryant, D.; Nelson, J., Quantifying Losses in Open-Circuit Voltage in Solution-
Processable Solar Cells, Phys. Rev. Appl., 4, 014020 (2015).
(30) Rand, B. P.; Burk, D. P.; Forrest, S. R., Offset energies at organic semiconductor 
heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, Phys. Rev. 
B, 75, 115327 (2007).
(31) Yang, L. Y.; Sinitsyn, N. A.; Chen, W. B.; Yuan, J. T.; Zhang, J.; Lou, J.; Crooker, S. A., Long-
lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2, 
Nat. Phys., 11, 830-834 (2015).
(32) Wang, L.; Wu, M. W., Electron spin relaxation due to D'yakonov-Perel' and Elliot-Yafet 
mechanisms in monolayer MoS2: Role of intravalley and intervalley processes, Phys. Rev. B, 89, 
115302 (2014).
(33) Nienhaus, L.; Correa-Baena, J. P.; Wieghold, S.; Einzinger, M.; Lin, T. A.; Shulenberger, K. 
E.; Klein, N. D.; Wu, M. F.; Bulovic, V.; Buonassisi, T.; Baldo, M. A.; Bawendi, M. G., Triplet-
Sensitization by Lead Halide Perovskite Thin Films for Near-Infrared-to- Visible Upconversion, ACS 
Energy Lett., 4, 888-895 (2019).
(34) Padilha, J. E.; Peelaers, H.; Janotti, A.; Van de Walle, C. G., Nature and evolution of the 
band-edge states in MoS2: From monolayer to bulk, Phys. Rev. B, 90, 205420 (2014).
(35) Yeh, P. C.; Jin, W. C.; Zaki, N.; Zhang, D. T.; Liou, J. T.; Sadowski, J. T.; Al-Mahboob, A.; 
Dadap, J. I.; Herman, I. P.; Sutter, P.; Osgood, R. M., Layer-dependent electronic structure of an 
atomically heavy two-dimensional dichalcogenide, Phys. Rev. B, 91, 041407 (2015).
(36) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically Thin MoS2: A New Direct-Gap 
Semiconductor, Phys. Rev. Lett., 105, 136805 (2010).
(37) England, C. D.; Collins, G. E.; Schuerlein, T. J.; Armstrong, N. R., Epitaxial Thin-Films of 
Large Organic-Molecules - Characterization of Phthalocyanine and Coronene Overlayers on the 
Layered Semiconductors MoS2 and SnS2, Langmuir, 10, 2748-2756 (1994).

Page 22 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23

(38) Chen, W.; Huang, H.; Chen, S.; Huang, Y. L.; Gao, X. Y.; Wee, A. T. S., Molecular Orientation-
Dependent Ionization Potential of Organic Thin Films, Chem. Mater., 20, 7017-7021 (2008).
(39) Duhm, S.; Heimel, G.; Salzmann, I.; Glowatzki, H.; Johnson, R. L.; Vollmer, A.; Rabe, J. P.; 
Koch, N., Orientation-dependent ionization energies and interface dipoles in ordered molecular 
assemblies, Nat. Mater., 7, 326-332 (2008).
(40) Wang, T.; Chan, W. L., Dynamical Localization Limiting the Coherent Transport Range of 
Excitons in Organic Crystals, J. Phys. Chem. Lett., 5, 1812-1818 (2014).
(41) Yuan, H. T.; Liu, Z. K.; Xu, G.; Zhou, B.; Wu, S. F.; Dumcenco, D.; Yan, K.; Zhang, Y.; Mo, S. 
K.; Dudin, P.; Kandyba, V.; Yablonskikh, M.; Barinov, A.; Shen, Z. X.; Zhang, S. C.; Huang, Y. S.; Xu, 
X. D.; Hussain, Z.; Hwang, H. Y.; Cui, Y.; Chen, Y. L., Evolution of the Valley Position in Bulk 
Transition-Metal Chalcogenides and Their Monolayer Limit, Nano Lett., 16, 4738-4745 (2016).
(42) Zahid, F.; Liu, L.; Zhu, Y.; Wang, J.; Guo, H., A generic tight-binding model for monolayer, 
bilayer and bulk MoS2, AIP Adv., 3 (2013).
(43) Choi, J.; Zhang, H. Y.; Choi, J. H., Modulating Optoelectronic Properties of Two 
Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer, 
ACS Nano, 10, 1671-1680 (2016).
(44) Liu, X. Y.; Xie, X. Y.; Fang, W. H.; Cui, G. L., Theoretical Insights into Interfacial Electron 
Transfer between Zinc Phthalocyanine and Molybdenum Disulfide, J. Phys. Chem. A, 122, 9587-
9596 (2018).
(45) Amsterdam, S. H.; Stanev, T. K.; Zhou, Q.; Lou, A. J. T.; Bergeron, H.; Darancet, P.; Hersam, 
M. C.; Stern, N. P.; Marks, T. J., Electronic Coupling in Metallophthalocyanine–Transition Metal 
Dichalcogenide Mixed-Dimensional Heterojunctions, ACS Nano, 13, 4183-4190 (2019).
(46) England, C.; Collins, G.; Schuerlein, T.; Armstrong, N. R., Epitaxial thin films of large organic 
molecules: characterization of phthalocyanine and coronene overlayers on the layered 
semiconductors MoS2 and SnS2, Langmuir, 10, 2748-2756 (1994).
(47) Wang, T.; Kafle, T. R.; Kattel, B.; Liu, Q. F.; Wu, J.; Chan, W. L., Growing Ultra-flat Organic 
Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction, Sci. 
Rep., 6, 28895 (2016).
(48) Oehzelt, M.; Akaike, K.; Koch, N.; Heimel, G., Energy-level alignment at organic 
heterointerfaces, Sci. Adv., 1, 1501127 (2015).
(49) Davidson, A. T., The Effect of the Metal Atom on the Absorption-Spectra of 
Phthalocyanine Films, J. Chem. Phys., 77, 168-172 (1982).
(50) Wang, T.; Liu, Q. F.; Caraiani, C.; Zhang, Y. P.; Wu, J.; Chan, W. L., Effect of Interlayer 
Coupling on Ultrafast Charge Transfer from Semiconducting Molecules to Mono- and Bilayer 
Graphene, Phys. Rev. Appl., 4, 014016 (2015).
(51) Wang, T.; Kafle, T. R.; Kattel, B.; Chan, W.-L., A Multidimensional View of Charge Transfer 
Excitons at Organic Donor–Acceptor Interfaces, J. Am. Chem. Soc., 139, 4098-4106 (2017).
(52) Jailaubekov, A. E.; Willard, A. P.; Tritsch, J. R.; Chan, W. L.; Sai, N.; Gearba, R.; Kaake, L. G.; 
Williams, K. J.; Leung, K.; Rossky, P. J.; Zhu, X. Y., Hot charge-transfer excitons set the time limit 
for charge separation at donor/acceptor interfaces in organic photovoltaics, Nat. Mater., 12, 66-
73 (2013).
(53) Kafle, T. R.; Kattel, B.; Wang, T.; Chan, W.-L., The relationship between the coherent size, 
binding energy and dissociation dynamics of charge transfer excitons at organic interfaces, J. 
Phys.: Condens. Matter, 30, 454001 (2018).

Page 23 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24

(54) Johannsen, J. C.; Ulstrup, S.; Cilento, F.; Crepaldi, A.; Zacchigna, M.; Cacho, C.; Turcu, I. C. 
E.; Springate, E.; Fromm, F.; Raidel, C.; Seyller, T.; Parmigiani, F.; Grioni, M.; Hofmann, P., Direct 
View of Hot Carrier Dynamics in Graphene, Phys. Rev. Lett., 111, 027403 (2013).
(55) Wallauer, R.; Reimann, J.; Armbrust, N.; Gudde, J.; Hofer, U., Intervalley scattering in MoS2 
imaged by two-photon photoemission with a high-harmonic probe, Appl. Phys. Lett., 109, 162102 
(2016).
(56) Wang, T.; Kafle, T. R.; Kattel, B.; Chan, W. L., Observation of an Ultrafast Exciton Hopping 
Channel in Organic Semiconducting Crystals, J. Phys. Chem. C, 120, 7491-7499 (2016).
(57) Norton, J. E.; Bredas, J. L., Theoretical characterization of titanyl phthalocyanine as a p-
type organic semiconductor: Short intermolecular pi-pi interactions yield large electronic 
couplings and hole transport bandwidths, J. Chem. Phys., 128, 034701 (2008).
(58) Tant, J.; Geerts, Y. H.; Lehmann, M.; De Cupere, V.; Zucchi, G.; Laursen, B. W.; Bjornholm, 
T.; Lemaur, V.; Marcq, V.; Burquel, A.; Hennebicq, E.; Gardebien, F.; Viville, P.; Beljonne, D.; 
Lazzaroni, R.; Cornil, J., Liquid crystalline metal-free phthalocyanines designed for charge and 
exciton transport, J. Phys. Chem. B, 109, 20315-20323 (2005).
(59) Jin, C. H.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y. X.; Shinner, 
M. J.; Sengupta, A.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Wang, F., Imaging of pure 
spin-valley diffusion current in WS2-WSe2 heterostructures, Science, 360, 893-896 (2018).
(60) Lim, H.; Kwon, H.; Kim, S. K.; Kim, J. W., Delayed Triplet-State Formation through Hybrid 
Charge Transfer Exciton at Copper Phthalocyanine/GaAs Heterojunction, J. Phys. Chem. Lett., 8, 
4763-4768 (2017).
(61) Hufner, S. Photoemission Spectroscopy: Principles and Applications; Springer-Verlag: 
Berlin, 2003.
(62) Liu, H. L.; Shen, C. C.; Su, S. H.; Hsu, C. L.; Li, M. Y.; Li, L. J., Optical properties of monolayer 
transition metal dichalcogenides probed by spectroscopic ellipsometry, Appl. Phys. Lett., 105, 
201905 (2014).
(63) Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H., Ultrafast Charge Separation and Indirect 
Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure, ACS Nano, 8, 12717-12724 
(2014).
(64) Peng, B.; Yu, G. N.; Liu, X. F.; Liu, B.; Liang, X.; Bi, L.; Deng, L. J.; Sum, T. C.; Loh, K. P., 
Ultrafast charge transfer in MoS2/WSe2 p-n Heterojunction, 2D Mater., 3, 025020 (2016).
(65) Kattel, B.; Qin, L.; Kafle, T. R.; Chan, W. L., Graphene Field-Effect Transistor as a High-
Throughput Platform to Probe Charge Separation at Donor-Acceptor Interfaces, J. Phys. Chem. 
Lett., 9, 1633-1641 (2018).
(66) Gregg, B. A., Entropy of Charge Separation in Organic Photovoltaic Cells: The Benefit of 
Higher Dimensionality, J. Phys. Chem. Lett., 2, 3013-3015 (2011).
(67) Clarke, T. M.; Durrant, J. R., Charge Photogeneration in Organic Solar Cells, Chem. Rev., 
110, 6736-6767 (2010).
(68) Monahan, N. R.; Williams, K. W.; Kumar, B.; Nuckolls, C.; Zhu, X. Y., Direct Observation of 
Entropy-Driven Electron-Hole Pair Separation at an Organic Semiconductor Interface, Phys. Rev. 
Lett., 114, 247003 (2015).

Page 24 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

TOC figure

Page 25 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 1 

Page 26 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 2 

Page 27 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 3 

Page 28 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 4 

Page 29 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

TOC figure 

Page 30 of 30

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




