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Abstract
The quantum relative entropy is a measure of the distinguishability of
two quantum states, and it is a unifying concept in quantum information
theory: many information measures such as entropy, conditional entropy,
mutual information, and entanglement measures can be realized from it.
As such, there has been broad interest in generalizing the notion to further
understand its most basic properties, one of which is the data processing
inequality. The quantum f-divergence of Petz is one generalization of the
quantum relative entropy, and it also leads to other relative entropies,
such as the Petz—Rényi relative entropies. In this paper, I introduce the
optimized quantum f-divergence as a related generalization of quantum
relative entropy. I prove that it satisfies the data processing inequality, and
the method of proof relies upon the operator Jensen inequality, similar
to Petz’s original approach. Interestingly, the sandwiched Rényi relative
entropies are particular examples of the optimized f-divergence. Thus,
one benefit of this paper is that there is now a single, unified approach
for establishing the data processing inequality for both the Petz—Rényi
and sandwiched Rényi relative entropies, for the full range of parameters
for which it is known to hold. This paper discusses other aspects of the
optimized f-divergence, such as the classical case, the classical-quantum
case, and how to construct optimized f-information measures.
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1. Introduction

The quantum relative entropy [Ume62] is a foundational distinguishability measure in
quantum information theory. It is a function of two quantum states and measures how well
one can tell the two states apart by a quantum-mechanical experiment. It is well known by
now to be a parent quantity for many other information measures, such as entropy, mutual
information, conditional entropy, and entanglement measures (see, e.g. [Datl1, Will7]). One
important reason for why it has found such widespread application is that it satisfies a data-
processing inequality [Lin75, Uhl77]: it does not increase under the action of a quantum
channel on the two states. This can be interpreted as saying that two quantum states do not
become more distinguishable if the same quantum channel is applied to them, and a precise
interpretation of this statement in terms of quantum hypothesis testing is available in [HP91,
ONO0O0, BSS12]. Naturally, the notion of quantum relative entropy generalizes its classical
counterpart [KL51], which enjoyed a rich and illustrious history prior to the development of
quantum relative entropy.

The wide interest in relative entropy sparked various researchers to generalize and study
it further, in an attempt to elucidate the fundamental properties that govern its behavior. One
notable generalization is Rényi’s relative entropy [Rén61], but this was subsequently general-
ized even further in the form of the f~divergence [Csi67, AS66, Mor63]. For probability distri-
butions {p(x)}, and {g(x)}, and a convex function f, the f-divergence is defined as

> ) f(p(x)/q(x)). (1.1)

in the case that p(x) = 0 for all x such that g(x) = 0. The resulting quantity is then non-
increasing under the action of a classical channel r(y|x) (a conditional probability distribu-
tion), that produces the output distributions Y _r(y|x) p(x) and > r(y|x)g(x). Some years
after these developments, a quantum generalization of f-divergence appeared in [Pet85,
Pet86a], going under the name of ‘quasi-entropy’ as used in [Weh79]. In [Pet85, Pet86a] and
a later development [TCR09], the quantum data-processing inequality was proved in full gen-
erality for arbitrary quantum channels, whenever the underlying function fis operator convex.
A relatively large literature on the topic of quantum f-divergence has now developed, so much
that there are now many reviews and extensions of the original idea [OP93, PR98, NPO5,
PS09, TCRO9, Shal0, Pet10b, Pet10a, HMPB11, HP12, Mat13, HM17].

Interestingly, when generalizing a notion from classical to quantum information theory,
there is often more than one way to do so, and sometimes there could even be an infinite num-
ber of ways to do so. This has to do with the non-commutativity of quantum states, and for
states of many-particle quantum systems, entanglement is involved as well. For example, there
are several different ways that one could generalize the relative entropy to the quantum case,
and two prominent formulas were put forward in [Ume62] and [BS82]. This added complex-
ity for the quantum case could potentially be problematic, but the typical way of determining
on which generalizations we should focus is to show that a given formula is the answer to a
meaningful operational task. The papers [HP91, ONOO] accomplished this for the quantum
relative entropy of [Ume62], and since then, researchers have realized more and more just how
foundational the formula of [Ume62] is. As a consequence, the formula of [Ume62] is now
known as quantum relative entropy.

The situation becomes more intricate when it comes to quantum generalizations of Rényi
relative entropy. For many years, the Petz—Rényi relative entropy of [Pet85, Pet§86a] has been
widely studied and given an operational interpretation [Nag06, Hay07], again in the context
of quantum hypothesis testing (specifically, the error exponent problem). However, in recent
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years, the sandwiched Rényi relative entropy of [MLDS'13, WWY14] has gained promi-
nence, due to its role in establishing strong converses for communication tasks [WWY 14,
GWI15, TWW17, CMW16, DW15, WTB17]. The result of [MO15] solidified its fundamen-
tal meaning in quantum information theory: these authors proved that it has an operational
interpretation in the strong converse exponent of quantum hypothesis testing. As such, the
situation we are faced with is that there are two generalizations of Rényi relative entropy
that should be considered in quantum information theory, due to their operational role men-
tioned above. There are further generalizations of the aforementioned quantum Rényi relative
entropies [AD15], but their operational meaning (and thus their role in quantum information
theory) is unclear.

The same work that introduced the Petz—Rényi relative entropy also introduced a quantum
generalization of the notion of f-divergence [Pet85, Pet86a] (see also [HMPB11]), with the
Petz—Rényi relative entropy being a particular example. Since then, other quantum f-diver-
gences have appeared [PR98, HM17], now known as minimal and maximal f-divergences
[Mat13, HM17]. However, hitherto it has not been known how the sandwiched Rényi relative
entropy fits into the paradigm of quantum f-divergences. In fact, the authors of [HMPB11]
declared in their example 2.11 that a particular instance of the sandwiched Rényi relative
entropy is not a quantum f-divergence, suggesting that it would not be possible to express it
as such.

In this paper, I modify Petz’s definition of quantum f-divergence [Pet85, Pet86a, HMPB11],
by allowing for a particular optimization (see definition 1 for details of the modification). As
such, I call the resulting quantity the optimized quantum f-divergence. I prove that it obeys
a quantum data processing inequality, and as such, my perspective is that it deserves to be
considered as another variant of the quantum f-divergence, in addition to the original, the
minimal, and the maximal. Interestingly, the sandwiched Rényi relative entropy is directly
related to the optimized quantum f-divergence, thus bringing the sandwiched quantity into the
f-divergence formalism.

One benefit of the results of this paper is that there is now a single, unified approach for
establishing the data-processing inequality for both the Petz—Rényi relative entropy and the
sandwiched Rényi relative entropy, for the full Rényi parameter ranges for which it is known
to hold. This unified approach is based on Petz’s original approach that employed the operator
Jensen inequality [HPO3], which is the statement that

FVIXV) < VIFX)V, (1.2)

where f'is an operator convex function defined on an interval /, X is a Hermitian operator with
spectrum in /, and V is an isometry. This unified approach is useful for presenting a succint
proof of the data processing inequality for both quantum Rényi relative entropy families.

In the rest of the paper, I begin by defining the optimized quantum f-divergence and then
discuss various alternative ways of writing it, including its representation in terms of the rela-
tive modular operator formalism. In section 3, I prove that the optimized f-divergence satis-
fies the quantum data processing inequality whenever the underlying function f is operator
anti-monotone with domain (0, co) and range R. The proof of quantum data processing has
two steps: I first prove that the optimized quantum f-divergence is invariant under isometric
embeddings and then show that it is monotone non-increasing under the action of a partial
trace. By the Stinespring dilation theorem [Sti55], these two steps establish data processing
under general quantum channels. The core tool underlying both steps is the operator Jensen
inequality [HPO3]. The proof of monotonicity under partial trace features some novel aspects



J. Phys. A: Math. Theor. 51 (2018) 374002 M M Wilde

for handling non-invertible operators. In section 4, I show how the quantum relative entropy
and the sandwiched Rényi relative entropies are directly related to the optimized quantum
J-divergence. Section 5 then discusses the relation between Petz’s f-divergence and the optim-
ized one. Section 6 shows how the optimized f-divergence simplifies when the operators
involved have a classical or classical-quantum form. In section 7, I discuss how to construct
several information measures from the optimized f-divergence, which could potentially find
application in quantum information theory or resource theories. I finally conclude in section 8
with a summary and some open directions.

2. Optimized quantum f-divergence

Let us begin by formally defining the optimized quantum f-divergence:

Definition 1 (Optimized quantum f-divergence). Let f be a function with domain
(0, 00) and range R. For positive semi-definite operators X and Y acting on a Hilbert space Hs,
we define the optimized quantum f-divergence as

éf(XHY) = sup éf(X”Y—l-&HL;T), 2.1)
7>0, Tr{7}<1, >0 ’

where éf(X ||Z; 7) is defined for positive definite Z and 7 acting on Hyg as
Or(X[1Z:7) = (¢"|sf (75" @ Z5)le")ss: 22)
1/2
)55 = (X5 @ IT) g5 23)

In the above, [T denotes the projection onto the kernel of Y, H; is an auxiliary Hilbert space
isomorphic to H,

IS]

D)5 = Z li)sli)s s (2.4)
i=1

, and {|i) S}\SI and the T superscript indicates transpose with

i=1

for orthonormal bases {|i) s},li
respect to the basis {|i)}:.

Remark 2. Note that the expression in (2.1) simplifies considerably in the case that Y is
positive definite. That is, it reduces to the following simpler expression in the case that ¥ > 0:

@f(XHY) = sup <‘PX|sSf(T§1 ® Y3T)|90X>s§- (2.5)
>0, Tr{7}<1

As such, the optimized f-divergence in (2.1) represents a modification of Petz’s quantum f-
divergence, a topic that I discuss in more detail in section 5. The intention of the more general
definition in (2.1) is to provide a consistent way of defining the optimized f-divergence in the
case that Y is not positive semi-definite.

The case of greatest interest for us here is when the underlying function f'is operator anti-
monotone; i.e. for Hermitian operators A and B, the function fis such that A < B = f(B) <
f(A) (see, e.g. [Bha97]). This property is rather strong, but there are several functions of
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interest in quantum-physical applications that obey it (see section 4). One critical property of
an operator anti-monotone function with domain (0, co) and range R is that it is also operator
convex and continuous (see, e.g. [Han13]). In this case, we have the following proposition:

Proposition 3. Let f be an operator anti-monotone function with domain (0, o) and range
R. For positive semi-definite operators X and Y acting on a Hilbert space Hs, the following
equality holds

O (X||Y) = su lim Oy (X Y + elly:7),
Or(X||Y) T>O,Tr{p7'}:18\0Qf( | yiT) (2.6)

and furthermore, the function éf(X |Y + elly; 7) is concave in 7. Finally, for positive semi-
definite Y; and Y, such that Yy < Y,, we have that

0r(X||Y1) > Qs (X[ Y2). 2.7)

Proof. To see that we can restrict the optimization over 7 to 7 satisfying Tr{7} = 1, let 7 be
such that 7 > 0 and Tr{7} < 1. Then

1 T -1 T -1
eyl = 5 Yr > 5 Yl 2.8
OO TRy Ty O 7 Ty B (2.8)
and so
Or(X||Y + elly; 7) < Qp(X||Y + elly; 7/Tr{r}) (2.9)

from the operator anti-monotonicity of f. Changing sup,, to lim.\ o follows as well from
operator anti-monotonicity of f. Let €, > e; > 0. Then Y + slﬂﬁ < Y—|—52H§ and so
O (X||Y + &113; 7) < Qp(X||Y + &1 115; 7). So then the highest value of Oy (X||Y + ellj;7)
is achieved in the limit as € ™\, 0, where we have also invoked the continuity of f. We note that
this limit could evaluate to infinity.

Concavity in 7 follows because

firs ey :f([TS® (YST)"}1>, (2.10)

and the function f{x~!) is operator monotone on (0, 00), given that it is the composition of the
operator anti-monotone function x ! with domain (0, 0o) and range (0, o0) and the function £,
taken to be operator anti-monotone on (0, co) by hypothesis. Since f(x~!) is operator mono-
tone on (0, 00), it is operator concave (see, e.g. [Han13]).

The dominating property in (2.7) follows from the fact that fis operator anti-monotone on
(0, 00), which implies the following for a fixed € > 0 and 75 such that 75 > 0 and Tr{7s} < L:

flrs 't @ (V1 +elly )§) > f(r5" @ (Ya + eIy, )f). (2.11)
We arrive at the inequality in (2.7) after sandwiching by |¢*) ¢, taking the limit as € \, 0, and
taking a supremum over 7. [ |

For X positive semi-definite and Y and 7 positive definite, with spectral decompositions of
Y and 7 given as
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Y= ZM}|¢y><¢y|’ T= Z V") ('], (2.12)
we can write

XHY 7) Zf PyVe DTe{X'2|¢") (¢ |X /20 (0]} (2.13)
= Zf HyVy ¢}|X1/2|¢ >| (2.14)

by using the facts that
f(rg ®YT Zf vy W) ¢|S®‘¢y><¢y|s’ (2.15)
(Is ® Z))|0) g5 = (Zs @ Ig)|T) g5 (2.16)
(T]s5(Zs @ Ig)|T) g5 = Tr{Zs}, 2.17)

for any square operator Z acting on Hs. The formula in (2.13) is helpful in some parts of our
analysis below.

We can also phrase definition 1 in terms of the relative modular operator formalism, which
is employed in many of the works on quasi-entropy (many details of this formalism in the con-
text of quasi-entropies are available in [HMPB11]). Let P be a positive semi-definite operator,
and let R be a positive definite operator. Defining the action of the relative modular operator
A(P/R) on an operator X as

A(P/R)(X) = PXR™!, (2.18)

and the Hilbert-Schmidt inner product (W,Z) = Tr{W'Z}, we can write the quantity
Or(X||Y;7) underlying Qy(X||Y) in terms of the relative modular operator as

Or(X|[Ys7) = (X2 F(A(Y/7))(X/?)). (2.19)

The definition of optimized quantum f-divergence following from plugging (2.19) into (2.1)
can be used in more general contexts than those considered in the present paper (for example,
in the context of von Neumann algebras). However, in this work, we find it more convenient to
work with the expression in (2.2) (see [TCR09, Shal0] for a similar approach), and through-
out this paper, we work in the setting of finite-dimensional quantum systems.

3. Quantum data processing

Our first main objective is to prove that éf (X]|Y) deserves the name ‘f -divergence’ or ‘f-rela-
tive entropy’, i.e. that it is monotone non-increasing under the action of a completely positive,
trace-preserving map N:

Or(X[Y) = QN (X) N (Y)). 3.1)

Such a map N is also called a quantum channel, due to its purpose in quantum physics as
modeling the physical evolution of the state of a quantum system. In quantum information-
theoretic contexts, the inequality in (3.1) is known as the quantum data processing inequality.
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According to the Stinespring dilation theorem [Sti55], every quantum channel can be realized
by an isometric embedding of its input into a tensor product of the channel’s output Hilbert
space and an auxiliary Hilbert space, followed by a partial trace over the auxiliary Hilbert
space. That is, to every quantum channel Ns_, , there exists an isometry Ug\g ge Such that

t
Nsp(Xs) = TrE{Ug‘\i)BEXS (Ué\/—mE) }- (3.2)
As such, we can prove the inequality in (3.1) in two steps:

1. Isometric invariance: First show that
Or(X||Y) = op(UXUT||UYUT) (33)

for any isometry U and any positive semi-definite X and Y'.
2. Monotonicity under partial trace: Then show that

éf(XABHYAB) > éf(XA”YA) (3.4)

for positive semi-definite operators X,p and Y4p acting on the tensor-product Hilbert
space Ha @ Hp, with X, = TI‘B{XAB} and Yy = TI'B{YAB}.

So we proceed and first prove isometric invariance:

Proposition 4 (Isometric invariance). Let U : Hs — Hg be an isometry, let X and Y be
positive semi-definite operators, and let f be an operator anti-monotone function with domain
(0, 00) and range R. Then the following equality holds

0(X||Y) = 0r(UXU'||UYUY). (3.5)

Proof. In the case that dim(Hs) = dim(Hg), the statement holds trivially because
U is a unitary and then Hg and Hpy are isomorphic. So we focus on the case in which
dim(Hs) < dim(Hg). First suppose that Y is invertible when acting on Hs. The operator X is
generally not invertible, and with respect to the decomposition of Hg as supp(X) @ ker(X), we
can write X and each eigenprojection |¢”){¢”| of ¥ respectively as

O[] 6
0 0 o P '
Let 7 acting on Hg be such that 7 > 0 and Tr{7} = 1. Suppose that its spectral decomposition

is given by lezl] v (¢'], with each v, € (0,1) and [¢) a unit vector such that > v, = 1.

We can then write each eigenprojection |1)") (¢)'| with respect to the decomposition of Hg as
supp(X) @ ker(X) as

h ﬂ’iz}
' | 3.7
[wﬂ h, 67

Applying definitions and (2.13), we then find that

! The importance of establishing isometric invariance of quasi-entropies has been stressed in [TCR09] and [Tom12,
appendix B].
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Zf v Hoﬂ 8] L:; JZ] {oﬁ 8] Lz); w;j}
e ), v

Now consider éf for UXU' and UYU'. Without loss of generality, we can consider
the isometry U to be the trivial embedding of g into the larger Hilbert space Hg, with
it decomposed as Hg = Hs B HSL, so that with respect to the decomposition of Hg as
Hg = supp(X) @ ker(X) @ Hg, we can write X and each eigenprojection |¢”)(#| of ¥ in the
larger Hilbert space Hpy as

X 0 0 WG 0
0 0 0f, Sodh, 0. (3.10)
0 00 0 0 0

We use the notation Xy to denote the operator X embedded into Hg. Let w acting on Hg
be such that w > 0 and Tr{w} = 1. Suppose that its spectral decomposition is given by
ZIR‘ Xsl@*) (¢°], with each A, € (0,1) and |¢*) a unit vector such that ) A, = 1. We can
then write each eigenprojection |¢*){¢*| as

Pl Pl i3

Pa P P - (.11

O3 Pn P
Since Y is no longer invertible after the embedding, we need to instead consider the operator
Yr + sH% for some ¢ € (0, 1), where we use the notation Y to denote the operator ¥ embed-
ded into H. Then the eigenprojections of Yz + ll; are now represented in this larger space
as

ﬁl ’1’2 0 0 0 O
by by 0], 0 0 0f. (3.12)
0 0 0 0 0 I

Applying definitions, we then find that, in the larger Hilbert space Hg,

05 (Xg||Yr + €1l ; w)

VX 0 0] [4), ¢, 0] [VX 0 0] [¢, ¢ ¢

:Zf (s )T 0 0 Of [é3 ¢ O 0 0 Of [¥o ¥y ¥
Vs 0 00/ L0 0 ofLo 0 0flg, ¢ ¢ (3.13)

VX 0 0] [0 0 0] [VX 0 0] [¢], ¢, ¢

+) fEXN)Tc | 0 0 0f |00 O [0 0 0] [¢ ¢ @

v 0 0 0J[0 0 1]J]L0 0 0f ley, ¢ 5%
fo AT )T VX, VXS, ) (3.14)

We now compare the expressions in (3.9) and (3.14). For a given 7 > 0 with spectral decom-
position lezll vy (¢ and § € (0, 1), we can choose w(d) > 0 as
8
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Lo, 0 0 0 0
W) =(1=08)> v ¢ ¢y 0| +35]0 0 0 . (3.19)
' 0 0 O 0 0 I/dim(Hg)

and then, by the above reasoning, we have that

Oy (Xell Ve + el1y:w(8) = Y f oy [(1 = 8l ™ ITR{VXS VEULL}. 5 16)

Taking the limit 6 \, 0 and applying the continuity of fthen gives

lim Or (Xel|Yr + Tl s (9)) = Oy (X||Y37), 3.17)

So it is clear that the following inequality holds for all 7:

Or(X||YiT) < sup  Op(Xel|Yr + elly s w). (3.18)

w>0, Tr{w}=1
We can thus conclude that

sup  Q(X||Y;7T) < sup  Qp(Xg||Yr + eIl w), (3.19)
>0, Tr{7}=1 w>0, Tr{w}=1

which is the same as the inequality

0 (X||Y) < Of(UXUT||UYUY). (3.20)

This establishes the inequality @f(X IY) < éf(UXU fJUYUT) in the case in which Y is invert-
ible when acting on H.

Given that the function x~! is operator anti-monotone on (0, c0) and has range (0, 00), it
follows that f(ix~") = g(x) is operator monotone on (0, 00) and thus operator concave [Han13].
Defining the embedding isometry V = Vg @ Vi = >, [Dr(ils ® 3, [)z (s, we then
have by a direct application of the operator Jensen inequality [HP03] and the fact that g is
operator concave that

Oy (XIIY +elly ;) = (¥ af (Wi ® [V + 1] )le") e (3.21)
71!
= <<pX|SSVTf<[wR ® [Yi;l +a—'Hﬂ } ) V]eH)ss (3.22)
T
= (p¥ Vg (wR ® {YR—‘ + s—lnﬂ ) V]e¥) s (3.23)
< (¢3¢ (VT [WR ® |v;! + e | T] v) %) (3.24)
X ! —1 T X
= (¢"Iss8 (ws ® [75"] ) )53 (3.25)
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= (" s5f (wh) ™ @ YD) M) g5 (3.26)
= Op(X||Y;w}) (3.27)
< Or(X||Y), (3.28)

where wg = (VSHR)T wrVs_r is an operator acting on Hg such thatwg > 0 and Tr{ws} < 1.1In
the above, the notation Y !indicates the inverse on the support of Y, !, and we have employed

—1 -1 _ 1 -1 — —1
the facts that [V +elly| =Y.' +e 'y and (Vg_z) (Yiz +e 'H%) Vi i =Yg
Since the inequality holds for all w > 0 such that Tr{w} = 1, we conclude that

o,(UxUt|uYUT) < 0/(X]|Y). (3.29)

We have now established the claim for invertible Y.
If Y is not invertible when acting on Hg, then the definition in (2.1) applies, which in fact
forces Y to become invertible when acting on Hg. So then, in this case, we can conclude that

O (X||Y + eTly) = Qp(UXUT(|U [Y + eTly | UT + eIl ). (3.30)

So the quantities are the same for all € € (0, 1), and then the equality follows by taking a su-
premum over € > 0. [ |

Remark 5. The above proof establishes the inequality Qy(X||Y) < Qy(UXU'||UYUT) for
any continuous function f with domain (0, co) and range R, but for the opposite inequality
éf(UXU Huyut) < @f(X ||Y), the proof given requires f to be operator anti-monotone with
domain (0, c0) and range R.

We now complete the second step toward quantum data processing, as mentioned above:

Proposition 6 (Monotonicity under partial trace). Given positive semi-definite oper-
ators Xap and Yap acting on the tensor-product Hilbert space Ha ® Hp, the optimized quant-
um f-divergence does not increase under the action of a partial trace, in the sense that

O (Xap|Yap) = O (Xa||Ya), (3.31)

where XA = TrB{XAB} and YA = TrB{YAB}-

Proof. Throughout the proof, we take Y45 to be invertible on H4 ® Hp. We can do so be-
cause the supremum over € > 0 can be placed on the very outside, as in definition 1, and then
we can optimize over € > 0 at the very end once the monotonicity inequality has been estab-
lished. There are three cases to consider:

1. when X5 > 0,
2. when X4 > 0, but X4 is not invertible, and
3. when X} is not invertible.

Here I show a proof for the first two cases, and the last case is shown in detail in the appendix
for the interested reader.

10
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Case X 5 > 0: We establish the claim when X4 is invertible, and so Xy is as well. This is
the simplest case to consider and thus has the most transparent proof (it is
fruitful to understand this case well before considering the other cases). The
quantities of interest are as follows:

O (Xagl|Yan: mag) = (™| ygiaf (Tap ® Yi)|o™) smise (3.32)

O (XallYaswn) = (™ af (i © VI )i (333)
where 745 and wy are invertible density operators and, by definition,

€ zaz = (X35 ©1ia) IDai @ D (3.34)

The following map, acting on an operator Zy, is a quantum channel known as the Petz
recovery channel [Pet86b, Pet88] (see also [BK02, HIPW04, LS13]):

Zy - X\ ([X_1/2Z X‘I/Q] ®13) x\2. (3.35)

It is completely positive because it consists of the serial concatenation of three completely
positive maps: sandwiching by XA_I/ 2 tensoring in the identity /p, and sandwiching by
le/f. It is trace preserving because

e (s ) ) 1 e (2 )

(3.36)

—Tr {XA [X 127 X‘l/ﬂ} (3.37)

=T {X; XX 22, ) (3.38)

=Tr{Zs}. (3.39)

The Petz recovery channel has the property that it perfectly recovers Xup if X, is input
because

X X8 (XX @ 1) X4 = Xan. (3.40)

Every completely positive and trace preserving map A has a Kraus decomposition,
which is a set {K;}; of operators such that

_ ZK,.(.)K;, ZK}K,- =1 (3.41)

A standard construction for an isometric extension of a channel is then to pick an ortho-
normal basis {|i)g}; for an auxiliary Hilbert space Hg and define

V= ZK,- ® i) (3.42)

One can then readily check that N'(-) = Trg{V(-)V'} and VIV = I. (See, e.g. [Will7]
for a review of these standard notions.) For the Petz recovery channel, we can figure out a

1
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Kraus decomposition by expanding the identity operator Iz = Z}i'l ) {j|s, with respect
to some orthonormal basis {|/)z};, so that

X1/2 ([XA_VZZAXA_VZ] ®IB) X/iéz _ jlzj;lez/az ([X_1/2Z X_lﬂ ® li><j|B) XA{f (3.43)
|B|

1/2 [x=1/2 o —1 1/2
=3x8 [ el 2 X e s X G4
j=1
Thus, Kraus operators for the Petz recovery channel are given by
- |B|
{X/L/sz {X 2@ (s ” g (3.45)
J:

According to the standard recipe in (3.42), we can construct an isometric extension of the
Petz recovery channel as

Bl Bl

1/2 [v—1/2 o | . 1/24—1/2 T
S X [ @] s = XX Y sliva (3.46)
j=1 j=1
XX T g (3.47)
We can then extend this isometry to act as an isometry on a larger space by tensoring it
with the identity operator I3, and so we define

1/2 [v—1/2
Vaiaiss —X/ {XA / ®IA} ) g3 (3.48)

- X, X :
We can also see that V,; .45 acting on [¢*4) 1 generates [¢©*#) , 15

|9 apis = Vaisaassl ™ ai- (3.49)
This can be interpreted as a generalization of (3.40) in the language of quantum informa-
tion: an isometric extension of the Petz recovery channel perfectly recovers a purification
|*4#) ,piz Of Xap from a purification [¢*4) ,; of X4. Since the Petz recovery channel is
indeed a channel, we can pick 745 as the output state of the Petz recovery channel acting
on an invertible state wy:

ap = X2 ([x;l/z waX 1/2} ®13) x\2. (3.50)
Observe that 74p is invertible. Then consider that

V(g @Y1V

_ _ _ (3.51)

= (s X2 0 1| X3 (it © ¥3y) (X087 [0 @ 13 1))
= (s (X3 PXaE 7 X0 P @ Y8 IT) g (3.52)
= (Vg (wi' ©Y{3) T s (3.53)

12
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= wy' @ (T)aY 15055 (3.54)

=w,' @Y. (3.55)

For the fourth equality, we used the fact that 7, = XA_B] / 2([le/ 2wA_lX/;/ 1@ IB)XA_Bl /2

for the choice of 745 in (3.50). With this setup, we can now readily establish the desired
inequality by employing the operator Jensen inequality [HP0O3] and operator convexity of
the function f

Or (Xl Yan: Tan) = (& |Lypasf (a5 @ Vi)™ ) apas (3.56)
= (M Vif (15 @ YipVIe™) (3.57)
> (" i (VI TTas @ VIV ™) aa (3.58)
= (P af (Wi @ Y™ i (3.59)
= 07 (Xa||Yas wa). (3.60)

Taking a supremum over 745 such that 745 > 0 and Tr{745} = 1, we conclude that the
following inequality holds for all invertible states wy:

O (Xas||Yas) = O (Xal|Yas wa). (3.61)

After taking a supremum over invertible states wy, we find that the inequality in (3.31)
holds when X, is invertible.

Case X4 > 0, but Xz not invertible: Consider the following isometry:

1/2 [y—1/2
Viiosis = X5 X2 @ 1] Dy (3.62)
The operator V,,;_, 4455 1s indeed an isometry because
—-1/2 1/2 172 [y—1/2
viv = (<F|Bia {XA / ®IA} XA/B) (XAI/B {XA / ®IA} |F>BB) (3.63)
—-1/2 -1/2
= s X0 @ 3] X [0 @ 13 ] IT) 5 (3.64)
= X2 @ ] (TlpXanlDgs X, @0 13 (3.65)
= [XA“/Z@IA] X, [XA‘W@IA} (3.66)
—-1/2 —1/2
=X, "XuX, "I (3.67)
=1 ®I;. (3.68)

Then, for § € (0,1) and w, an invertible density operator, take 745 to be the following
invertible density operator:

13



J. Phys. A: Math. Theor. 51 (2018) 374002 M M Wilde

s = (1 )X (5 ny ]  15) XU 6
where &4 is some invertible density operator. We then find that

Vg @YV

1212 1/25—1/2 (3.70)
= (UlpsXs / XA1/3 ( ABI ® YAT;_?;)XA{? Xa / 1) 53
= (TlaaXy ' *Xap Tap X Xx 2 © Vi3I0 (3.71)
= (Dlggwn Py X PR X X PP P o YD) (372)
12 || 12— 1/2x1/2_~151/25=1/2, 1/2 —12
< (g 2 |od X X0 X 20| wr? @ VI g
(3.73)
“1/231/25—1/2  =1/231/2_—1/2
= HTAB/ X Xy Ponx xS H (Tlgpwi’ © Vi3I 3 (3.74)
1 _
<15 [wi'® Y]], (3.75)
The last equality follows because ||ZTZ|| = ||ZZ||o for any operator Z (here we set
Z="Tp 1/ZXI/ZXA 1/2 1/2) The last inequality follows because
HTA;l/zxjéz 1/2 waX ;1/2 /iéz A;1/2H
(3.76)
= inf {M TABI/ZX]/ZX Y 1/2 1141/92 A_B/ “IAB}
_ inf{ XXVl x X < TAB} (3.77)
= inf {u XV xR < [(1 — &) Xy2X XX + 5§AB} } (3.78)
1
< —. 3.79
=5 (3.79)
Then consider that
<‘PXAB|ABABf(TA;31 ® Y;B)l‘PXABMBAB = <‘PXA laa VTf(T;BI ® YZB)V|90XA>AA (3.80)
= <§0XA |AAf(VT [Tf@l ® Y}\"B] V)|§0XA>AA (381)
-1 _
> (M af (1 =01 [wi ' @ YIDIe™) 4 (3.8

where the first inequality is a consequence of the operator Jensen inequality and the
second follows from (3.70)—(3.75) and operator anti-monotonicity of the function f.
Taking a supremum over invertible density operators 74p, we then conclude that the fol-
lowing inequality holds for all 6 € (0, 1) and for all invertible density operators wy:

14
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Oy (XaglYan) = (¢ af (1= 07" [wi' @ YI])]e™) 5. (3.83)

Since this inequality holds for all § € (0, 1) and for all invertible density operators wy,
we can appeal to continuity of the function f (taking the limit d \, 0) and then take a
supremum over all invertible density operators w4 to conclude the desired inequality for
the case X4 > 0, but X, is not invertible:

Or(Xag|Yan) = Or(Xal|Ya), (3.84)

as claimed. [ |

Remark 7. 1 stress once again here that if X5 and Yap are invertible, then we only require
operator convexity of the function f in order to arrive at the inequality in (3.31). One can ex-
amine the steps in (3.56)—(3.60) to see this.

Based on propositions 4 and 6 and the Stinespring dilation theorem [Sti55], we conclude
the following data-processing theorem for the optimized quantum f-divergences:

Theorem 8 (Quantum data processing). Let X5 and Ys be positive semi-definite op-
erators acting on a Hilbert space Hs, and let Ns_,p be a quantum channel taking operators
acting on Hg to operators acting on a Hilbert space Hp. Let f be an operator anti-monotone
Sunction with domain (0, 00) and range R. Then the following inequality holds

@f(XSHYS) > éf(NSHB(XS)HNSﬁB(YS)) (3.85)

4. Examples of optimized quantum f-divergences

I now show how several known quantum divergences are particular examples of an optimized
quantum f-divergence, including the quantum relative entropy [Ume62] and the sandwiched
Rényi relative quasi-entropies [MLDS ™13, WWY 14]. The result will be that theorem 8 recov-
ers quantum data processing for the sandwiched Rényi relative entropies for the full range of
parameters for which it is known to hold. Thus, one benefit of theorem 8 and earlier work of
[Pet85, Pet86a, TCRO9] is a single, unified approach, based on the operator Jensen inequality
[HPO3], for establishing quantum data processing for all of the Petz— and sandwiched Rényi
relative entropies for the full parameter ranges for which data processing is known to hold.

4.1. Quantum relative entropy as optimized quantum f-divergence

Let 7 be an invertible state, £ > 0, and X and Y positive semi-definite. Let X = X/Tr{X}. Pick
the function

f(x) = —logx, 4.1)

which is an operator anti-monotone function with domain (0, co) and range R, and we find
that

15
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ﬁ«pxm [— log(ry ' @ (¥ + sH#)gT)] |0%) 3 w
= (s [log(rs) @ Iy — Is @ log (¥ + =113 )¢ | [¢¥) |

= (¢l loa(rs) © L% 55 — (¢ lssls @ log (Y +ellf)g [¥)gs  (43)
= Tr{Xlog 7} — Tr{Xlog(¥ + eIl )} 4.4)
< Tr{Xlog X} — Tr{X log(Y + eII; )} (4.5)
= D(X||Y + eII3). (4.6)

The inequality is a consequence of Klein’s inequality [Kle31] (see also [Rus02]), establishing
that the optimal 7 is set to X2. Now taking a supremum over ¢ > 0, we find that

O 105() (X[|Y) = TH{X}D(X]|Y), 4.7)
where the quantum relative entropy D(X||Y) is defined as [Ume62]

D(X|)Y) = Tr{X [logX — log Y|} (4.8)
if supp(X) C supp(Y) and D(X||Y) = +oo otherwise.

4.2. Sandwiched Rényi relative quasi-entropy as optimized quantum f-divergence
Take 7, €, X, and Y as defined in section 4.1. For a € [1/2, 1), pick the function
S = =, 4.9)

which is an operator anti-monotone function with domain (0, co) and range R. Note that this
is a reparametrization of —x” for 3 € (0, 1]. I now show that

é,(_)m—wa(XIIY) _ ‘ y(l-a)/2ayy(i-a)/2a

) (4.10)

[e3%

which is the known expression for sandwiched Rényi relative quasi-entropy for @ € [1/2, 1)
[MLDS ™13, WWY14]. To see this, consider that

B T (1—a)/a
g [ e (e g
@.11)
a—1)/a m (1-a)/a
= _<99X|s§7—s( i ® ((Y+ 5H#)3) |90X>s§
a—1)/c ™ (1—a)/a
= (D] X2V ekl ((Y + EH%‘)§> D) g5 (4.12)

2 Technically, we would require an invertible 7 that approximates X arbitrarily well in order to achieve equality in
Klein’s inequality. One can alternatively establish the inequality Tr{X log X} > Tr{Xlog 7} by employing the non-
negativity of quantum relative entropy D(X||7) > 0 for quantum states.

16
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— Ty {XI/ZT(a—l)/aXI/Z(Y+EHﬁ)(l—a)/a} (4.13)

- Ty {XI/Z(Y+&_H#)(l—a)/aX]/ZT(a—l)/a}‘ 4.14)

The formulas in the above development are related to those given in the proof of [MLDS 13,
lemma 19]. Now optimizing over invertible states 7 and employing Holder duality [Bha97], in
the form of the reverse Holder inequality and as observed in [MLDS"13], we find that

bli%) [—Tr {XI/Z(Y+eni)(l—a)/axl/27_(a—l)/a}i| _ “Xl/z(Y+SH¢)(1—a)/aX1/z
Tr{7}=I

«

(4.15)
where for positive semi-definite Z, we define

2]l = [Te{ze ). (4.16)
Now taking the limit € N\, 0, we get that

O_(yr-wo/e (XI|Y) = = |[x!/2y 1= x1 /2 4.17)

_ HY(lfa)/Zaxy(lfa)/Za

«

which is the sandwiched Rényi relative quasi-entropy for the range « € [1/2, 1). The sand-
wiched Rényi relative entropy itself is defined up to a normalization factor as [MLDS™13,
WWY14]

Y o —a)/2a —a)/2a
Da(X||Y):ﬁlogHY(l )/2axy(1-a)/2 (4.18)

«

Thus, theorem 8 implies quantum data processing for the sandwiched Rényi relative entropy
Do(X[[Y) > Da(N(X)[IN(Y)), (4.19)
for the parameter range « € [1/2, 1), which is a result previously established in [FL13].
For « € (1, o0}, pick the function
flx) = xtm/e (4.20)
which is an operator anti-monotone function with domain (0, o) and range R. Note that this
is a reparametrization of x” for 8 € [—1,0). I now show that
HY(I*O‘)/MXYU*O‘)/ZO‘HQ if supp(X) C supp(Y)
400 else

i

Oy-eex1) = {
4.21)

which is the known expression for sandwiched Rényi relative quasi-entropy for o € (1, 0]
[MLDS 13, WWY14]. To see this, consider that the same development as above gives that

(gm0 (Y + EH#)g)(lfa)/a‘@X%S —Tr {X1/2(Y I EH#)(lfa)/aXlﬂT(afl)/a} . 422)
Again employing Holder duality, as observed in [MLDS"13], we find that

sup Tr {Xl/2(Y+EH#)(lfa)/aXl/ZT(afl)/a} _ HX1/2(Y+€H¢)(1705)/05X1/2
7>0,Tr{7}=1

«

(4.23)
Now taking the limit € N\, 0, we get that

17
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Q(‘)(I*a)/a (XH Y) = HX1/2y(l—a)/aX1/z

_ HYU—Q)/zaXYU—a)/za (4.24)

where the equalities hold if supp(X) C supp(Y) and otherwise é(.)(l—a) /a(X||Y) = +o0, as
observed in [MLDS"13]. The sandwiched Rényi relative entropy itself is defined up to a
normalization factor as in (4.18) if supp(X) C supp(Y) and otherwise Dq(X]||Y) = +oo for
a € (1,00] [MLDS*13, WWY 14]. Thus, theorem 8 implies quantum data processing for the
sandwiched Rényi relative entropy

Da(X[[Y) > Da(NX)|IN(Y)), (4.25)

for the parameter range « € (1, 0o}, which is a result previously established in full by [FL13,
Beil3, MO15] and for « € (1,2] by [MLDS*13, WWY14].

4.3. Optimized a-divergence: monotonicity under partial trace for invertible density operators
Interestingly, for « € [1/3,1/2], the function
flx) = xme/e (4.26)

is operator convex on the domain (0, 00) and with range R. Note that this is a reparametri-
zation of x for 8 € [1,2]. Thus, by following the same development as before, for positive
definite X and Y we find that

<¢X|S§(TS_I ® YST)B\QDX)SS =Tr {Xl/zYﬂXl/szﬁ} . 4.27)
Now optimizing over 7, we find that the following function
O (XIY) = swp  Tr{x'2yix1/2-=6} 4.28)
7>0,Tr{7}=1 )

is monotone with respect to partial trace for 8 € [1,2]. That is, the inequality

0(ye (Xap|| Yag) = Qs (Xal|Ya) (4.29)

holds for 8 € [1,2] and positive definite X, and Y4p, by applying remark 7.

Take note that é(,)ﬁ (X]|Y) for 8 € [1,2]is not a sandwiched Rényi relative quasi-entropy
because the optimization over 7 goes the opposite way when compared to that for the sand-
wiched Rényi relative entropy for « € [1/3,1/2]. This is consistent with the fact that data
processing is known not to hold for the sandwiched Rényi relative entropy for @ € (0,1/2)
[MLDS*13, DL14, BFT17].

5. On Petz’s quantum f-divergence

I now discuss in more detail the relation between the optimized quantum f-divergence and the
Petz quantum f-divergence from [Pet85, Pet86a]. In brief, we find that the Petz f-divergence
can be recovered by replacing 7 in definition 1 with X + o7y .

Definition 9 (Petz quantum f-divergence). Letfbe a continuous function with domain
(0, 00) and range R. For positive semi-definite operators X and Y acting on a Hilbert space H,
the Petz quantum f-divergence is defined as
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0/ (x1|) = sup lim (¥ ([Xs + 0m] " © [¥5+eT13]") |¥)gs (s
>0 00

where 3 = I3 /Tr{II; } is the maximally mixed state on the kernel of X and the rest of the
notation is the same as in definition 1. If the kernel of X is equal to zero, then we set 73 = 0.

Let spectral decompositions of positive semi-definite X and positive definite ¥ be given as
X = Z/\X|7/1X><1/)X|’ Y = Zﬂ)’|¢y><¢y|- (5.2)
x y

By following the same development needed to arrive at (2.13), we see that Q(X||Y) can be
written for non-invertible X and invertible Y as

Qf(XIIY)=§i§%Z D AT DTe{X 2t (w X2 ) (@}

y x: 070
+f (i Tr{TIg }o~ ) Tr{X' 2 X' 2]¢7) (6]} (5.3)
= %I{%Z Z f .“y TI{X1/2‘¢X> <¢X‘X1/2|¢y> <¢y|} (5.4)
Y A0 ’
Yo xiAF#0

Note that we get the same formula for Qr(X||Y) if X is invertible. For non-invertible ¥, we just
substitute ¥ + I3 and take the supremum over £ > 0 at the end.

The next concern is about quantum data processing with the Petz f~divergence as defined
above. To show this, we take fto be an operator anti-monotone function with domain (0, co)
and range R. As discussed in section 3, one can establish data processing by showing isomet-
ric invariance and monotonicity under partial trace. Isometric invariance of Qy(X||Y) follows
from the same proof as given in proposition 4. Monotonicity of Qy(Xag||Yas) under partial
trace breaks down into three cases depending on invertibility of Xsp or Xy, as discussed in
the proof of proposition 6. For the proof, we assume as previously done that Y4p is invertible
throughout. If it is not, then definition 9 forces it to be invertible and then a supremum over
€ > 0 is finally taken at the end.

1. The case when Xy is invertible is already handled by Petz’s proof from [Pet85, Pet86a],
which relies on the operator Jensen inequality [HPO3]. In this case, the operator
Xap + 0735 reduces to X,p because 113, = 0.

2. The case when X4 is not invertible but Xy is can be understood as an appeal to continuity,
as discussed in remark A.1. For this case, we take the operator 745 for some §; € (0, 1)
to be (1 —0) Xap + 617r)%w, which is a positive definite operator. The rest of the proof
proceeds the same and then the monotonicity under partial trace holds for this case.

3. As far as I can tell, the case when Xy is not invertible was not discussed in several papers
of Petz et al [Pet85, Pet86a, PS09, Pet10b, Pet10a], and it was only considered recently in
[HM17, proposition 3.12]. However, the method I have given in the proof of proposition
6 appears to be different. Also, remark A.1 in the appendix discusses how this approach
arguably extends beyond a mere appeal to continuity. For this case, we take the channel
in (A.1) to be
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Zy — X\ ([x; VgzxiY 2} ® 13) X352+ Te{I1E Zy it . (5.6)

Inputting X4 + dm then leads to the output Xap + dm3p, which is a positive definite
operator. The rest of the proof proceeds the same and then the monotonicity under partial
trace holds for this case.

Special and interesting cases of the Petz f-divergence are found by taking

f(x) = —logux, 5.7
fx)=—x*  for B e (0,1], (5.8)
fx)=x"  for g e[-1,0). (5.9)

Each of these functions are operator anti-monotone with domain (0, c0) and range R. By
following similar reasoning as in section 4 to simplify Oy and by applying the above argu-
ments for data processing, we find that all of the following quantities obey the data processing
inequality:

Q- 10g(» (X[[Y) = Te{X}D(X] ), (5.10)
0y (X[Y) = =Tr{X'=Y"}, for 5 € (0,1], (5.11)
Tr{X'=PY#} if supp(X) C supp(Y
Qs (X[|Y) { {—i-oo } ( glse ( ) for g € [-1,0),
(5.12)

where again X = X/Tr{X}. By a reparametrization « = 1 — 3, we find that the latter two
quantities are directly related to the Petz Rényi relative entropy, defined as

Do(X|Y) = { —Lolog Tr{X*Y'=*} if supp(X) C supp(Y) and a@ > 1
+00 else
(5.13)
Thus, the data processing proof establishes the data processing inequality for D, (X||Y) for
a € [0,1) U (1, 2], which is the range for which it was already known to hold from prior work

[Pet86a, TCRO9].

Remark 10. One beneficial aspect of the present paper is that we now see that there is a
single, unified approach, based on the operator Jensen inequality, for establishing the data
processing inequality for both the Petz—Rényi relative entropy for « € [0, 1) U (1,2] and the
sandwiched Rényi relative entropy for « € [1/2,1) U (1, 00}, the full ranges of « for which
the data processing inequality is already known from [Pet85, Pet86a, TCR09, MLDS"13,
WWY14, FL13, Beil3, MO15] to hold for these quantities. Prior to the present paper, there
were a variety of different ways for establishing the data processing inequality for the sand-
wiched Rényi relative entropy, which can be found in [MLDS"13, WWY 14, FL13, Beil3,
MO15].

Interestingly, for 8 € [1, 2], the function

flx) =" (5.14)
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is operator convex on the domain (0, co) and with range R. Thus, for positive definite X and
Y we find that

Qe (X||Y) = Tr {X'~7y”} (5.15)
is monotone with respect to partial trace for 8 € [1,2]. That is, the inequality

O(ye (XapllYap) = Qs (XallYa) (5.16)

holds for 8 € [1, 2] and positive definite X5 and Y4p, by applying remark 7. By reparametriz-
ing with & = 1 — 3, we find that the following inequality holds for positive definite X,z and
Yspand « € [—1,0]:

Do (Xag||YaB) < Da(Xal|Ya). (5.17)

Note that there is trivially an equality when o = 0, under the assumption that X,z and Y5 are
positive definite, because

DO(XABHYAB) = — logTr{YAB} = — logTr{YA} = DO(XAHYA) (518)

5.1. Inequality for sandwiched and Petz—Rényi relative entropies

The development above motivates the following inequality relating the sandwiched and Petz—
Rényi relative entropies. The same inequality was shown in [Jen18] when X and Y are normal
states of an arbitrary von Neumann algebra and for o > 1, whereas the following proposition
considers the case when X and Y are positive semi-definite operators acting on a finite-dimen-
sional Hilbert space and the range o € [1/2,1) U (1, 00).

Proposition 11. Ler X and Y be positive semi-definite operators such that X,Y # 0. Then
the following inequality holds for o € [1/2,1) U (1, 00):

Do (X||Y) = Daa—1)/a(X]|Y) — log Tr{X}. (5.19)
Proof. Without loss of generality, let us assume that X and Y are invertible. The above in-

equality follows simply by picking the state 7 = X/Tr{X}. Indeed, let & € [1/2, 1). Consider
that

-~ HXI/Zy(l—a)/aXl/Z — sup [—Tr {Xl/zy(l—a)/axl/zT(a—l)/a}] (5.20)
« >0,
Tr{r}=1
> _Tr {X‘/zy“—@)/axl/2 (X/Tr{X})("‘*”/‘”‘} (5.21)
= —Tr { () ox@amn/o L refxy) 1m0/ (5.22)

This inequality implies that

1 -«

IOgHXI/ZY(Ifa)/aXl/2

glogTr{X(ZC“*')/O‘Y('*a)/a} + log Tr{X}.
«

(5.23)
Multiplying by — leads to
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Do (X|Y) = Ll log Hxl/zyﬂ—a)/axl/2 (5.24)
o — a
> @ Clog Tr {X(ZO‘_')/C’Y“_O‘)/O‘} ~ log Tr{X} (5.25)
o —
1 _ _
= W log Tr {X(za ])/Ocy(l a)/a} — logTr{X} (526)
«
= Doz (X[|Y) — log Tr{X}. (5.27)
This establishes the claim for o € [1/2, 1). The proof for a € (1, 00) is very similar. [ ]

6. Classical and classical-quantum cases
When the operators X and Y commute, the optimized f-divergence takes on a simpler form, as
stated in the following proposition:

Proposition 12 (Classical case). Let f be an operator anti-monotone function with
domain (0,00) and range R. Let X and Y be positive semi-definite operators that commute,

having spectral decompositions
L Y=) wl)
Z

X = Z A:z)(z

for a common eigenbasis {|z)},. Then

’ 6.1)

O(X||Y) = sup { Z M (pe/72) + Z )\Zf(é/TZ)ZTZ>OVZ,ZTZ:1}. (6.2)

{7}, €>0 71 70 z:p=0

Proof. For simplicity, we prove the statement for the case in which Y is invertible, and
then the extension to non-invertible Y is straightforward. For a spectral decomposition of 7 as
T = >, v|¢:) (¢ | and by applying (2.13), we find that

O (XY ) = > flpe/v)| (=X 6) 2 6.3)
=" A/ ) ™Al el ) P (6.4)
< Zf((Tz/Nz)_l))‘Zs (6.5)

where 7, = 3" |(z|¢,)|*vs = (z|7|z). The inequality follows because the function fix~') is
concave, due to the assumption that f is operator anti-monotone with domain (0, c0) and
range R. [ |
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If X and Y have a classical-quantum form, as follows
Xx=YlGex, Y= [)Eer, (6.6)
z Z

where {|z)}, is an orthonormal basis and {X*}, and {Y?}, are sets of positive semi-definite
operators, then the optimized f-divergence simplifies as well, generalizing proposition 12.
That is, it suffices to optimize over positive definite states 7 respecting the same classical-
quantum form:

Proposition 13 (Classical-quantum case). Let f be an operator anti-monotone func-
tion with domain (0, 00) and range R. Let X and Y be positive semi-definite, having the clas-
sical-quantum form in (6.6). Then

O(X[Y)= sup D QXY +elly: 7).
¢ (X|Y) {%Z}Z’DOZZ: (X7 5 79) 67

where each 7° is positive definite such that ) Tr{7°} = 1.

Proof. The main idea here is to show that the optimal 7 takes on a classical-quantum form
as well, as 7 = ) _|z)(z| ® 7% This follows from an application of the operator Jensen ine-
quality [HPO3], as shown below. We focus on the case in which each Y* is invertible. We adopt
system labels Z for the classical system and A for the quantum system. For a given positive
definite 7 with Tr{7} = 1, we have that

Or(X11Y57) = (| oal (7 @ YL)I9%) i (6.8)
= (¢" | azaf (Tml ® Y [2)(zlz ® (YE\)T> 0%) 2424 (6.9)
= (¥ )l ©f (Tz}l ® (Yg)T) %) 24z (6.10)

Consider that |z)(z|, is invariant under the action of the decoherence or ‘pinching’ channel

() = Dy() =D 12)(zlz()2) a5 6.11)

This implies that

(6.12)

By (2.16), the fact that Xz4 = Dz(Xz4), and defining g(x) = fix~!), we find that
("1 202207 [f (28" © Y21 19%) aza = (0"l aza Dz [f (724 © Y] 10) paza (6.13)
= (¢ 24Dz [8(rza © (Yz) "] 19" ) 24 (6.14)

< |z [8(Dz(r4) @ (Y2) D] 16XV uza (6.15)
= (0" zaf ((Dz(720)] " ® Y2)16%) aza- (6.16)
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The inequality follows from the operator Jensen inequality [HP03] and the fact that g(x) is
operator concave with domain (0, co) and range R. Consider that

) =Y ) (dlz @ 7, (6.17)

for some {7°};, where each 7 is positive definite and ) Tr{7;} = 1. Now consider that
(¥ zazaf ((Dz(r2a)) ™" @ V)l ) 2aza
=§jWﬂmm@ﬂawz®kxz&@f@ﬁr*®ugf)Wﬂmm (19

2,7/

Z af ( ® ( f,)T) " aa (6.19)
= 20X, (6.20)
z
where the second-to-last line follows because

) 2z = (X © La)ID) 251 45 6.21)

= Z |2 (2lz © (X5)"2|T) 21T 4 (6.22)

= Z [2)212) 2 (X3)"/*T) 05 (6.23)

= )212)21¢* Vs (6.24)

Z

This completes the proof after optimizing over {7} satisfying > 7 Tr{7%} = 1. We handle the
case of non-invertible Y by taking a supremum over € > 0 at the end. [ |

7. Optimized quantum f-information measures

It is well known that the quantum relative entropy is a parent quantity for many information
measures used in quantum information theory (see, e.g. [Datl1] or [Will7, chapter 11]). As
such, once one has a base relative entropy or divergence to work with, there is now a rela-
tively standard recipe for generating other information measures, such as entropy, conditional
entropy, coherent information, mutual information, entanglement measures, and more gener-
ally resource measures. This method has been used in many works now [VP98, Dat09, Shal0,
MHI11, WWY14, MLDS 13, Beil3, GW15, TWW17, WTB17, KW17]. Each of the resulting
quantities then satisfies a particular kind of quantum data processing inequality, which follows
as a consequence of the monotonocity of the underlying relative entropy.

With the above in mind, we now mention some different information measures that can be
derived from the optimized f-divergence and we state the data processing inequality that they
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satisfy. In what follows, pap is a density operator acting on a tensor-product Hilbert space
Ha @ Hp, pa = Trp{pap}, and f is an operator anti-monotone function with domain (0, co)
and range R. Let Wa_,a denote a subunital channel, satisfying Wy (I4) < Iy, and let
Na_a and Mp_,p be quantum channels. All statements about data processing follow from
theorem 8 and some slight extra reasoning (see, e.g. [Will7, section 11.9]). One can find
various operational interpretations of entropic quantities discussed in [Will7, Hay06, Hol12].

1. The optimized f-entropy is defined as
85:(A)p = S5(pa) = —Os(pallln)- (7.1)
It does not decrease under the action of a subunital channel YW4_,4, in the sense that

Si(A)p < SHA)w(p)- (7.2)

2. The optimized f~mutual information is defined as

I1(A;B), = inf Or(pasllpa ® o). (7.3)
It does not increase under the action of the product channel Nissp @ Mp_,pr, in the
sense that

I1(AsB), = It (A"s B)) (waom) (p)- (7.4)

3. The optimized conditional f~entropy is defined as
Si(A|B), = — inf Or(pas||lx @ op). (71.5)
It does not decrease under the action of the product channel Wy_,4» @ Mp_,p"

Sr(AIB), < SHAIB) e (p)- (7.6)

4. Related to the above, the optimized f-coherent information is defined as

I:(A)B), = —S;(A|B),. (1.7)
and we have that
I(A)B), = It(A)B) ey (p)- (7.8)

5. In recent years, there has been much activity surrounding quantum resource theories
[BG15, Fril5, dRKR15, KdR16, CG18]. Such a resource theory consists of a few basic
elements. There is a set F of free quantum states, i.e., those that the players involved are
allowed to access without any cost. Related to these, there is a set of free channels, and
they should have the property that a free state remains free after a free channel acts on it.
Once these are defined, it follows that any state that is not free is considered resourceful,
i.e., useful in the context of the resource theory. We can also then define a measure of
the resourcefulness of a quantum state, and some fundamental properties that it should
satisfy are that 1) it should be monotone non-increasing under the action of a free channel
and 2) it should be equal to zero when evaluated on a free state. A typical choice of a
resourcefulness measure of a state p satisfying these requirements is the relative entropy
of resourcefulness, defined in terms of relative entropy as inf,cr D(p||o). We can thus
consider an optimized f-relative entropy of resourcefulness as
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R = inf O
y(p) = inf Os(pllo), (1.9)
and it thus satisfies the following data processing inequality

R;(p) = Ry(N(p)). (7.10)

whenever N is a free channel as described above.

6. We can extend all of the above measures to quantum channel measures by optimizing
over inputs to the channel. For example, optimized f~mutual information of a channel
Na_p is defined as

Zup?}(R;B)w, (7.11)

where wrp = Ma—p(thra) and tra is a pure bipartite state. Due to the Schmidt decompo-
sition theorem and data processing, it suffices to optimize over pure bipartite states tga
with the reference system R isomorphic to the channel input system A.

71. Duality of optimized conditional f-entropy

This paper’s final contribution is the following proposition, which generalizes a well known
duality relation for conditional quantum entropy:

Proposition 14 (Duality). Ler f be an operator anti-monotone function with domain
(0, 0) and range R. For a pure state |) (1) |apc, we have that

SH(AIB)y = —Sk(AIC)y., (7.12)
where k(x) = —f(x").

Proof. The method of proof is related to that given in [Beil3, MLDS'13]. Set
pap = Tre{|¥) (¥ |apc} and consider that

$y(AIB)y = —inf Or(pas|lla © o) (7.13)
= —infsup(p™ |aasf (Tas © Ii ® 0)|0"") 4pi (7.14)
TAB
= = supinf(™ | pf (Tay' © I © 03) 10" ami (7.15)
TAB
. 1 T
= —sup 1£1Bf<<p“3 Ligisf (a ® 0 ® (TAE ) )Ne™) aBas (7.16)
TAB
. _I\NT
= —supinf (Y |ascf (Ih ® 05 @ (7c') ") W) asc. (7.17)
TC B

The first two equalities follow by definition. For simplicity, we consider op to be an in-
vertible density operator. The third equality follows from an application of the minimax
theorem [Sio58], considering that f(x) is operator convex and fix"!) is operator concave.
The fourth equality follows by applying (2.13)—(2.17). The fifth equality follows because
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|P48) spip and [¢)apc are purifications of pap and all purifications are related by an isom-
etry (see, e.g. [Will7]). Furthermore, we have isometric invariance of the optimized
(P, panf Iy ® 0 ® (TA;)T)WPAB)ABAE by the same reasoning as given in the proof of
proposition 4. Continuing,

= —supinf [—(¥lase k(Is ® 0" @ 78)[) arc] (7.18)
= infsup(¢lasc k(lx @ oy ' @ 7)) asc (7.19)
= inf Qu(vacllla © c) (7.20)
= —Si(A|C),. (7.21)

The first equality follows from the definition of the function k. The second equality follows
from propagating the inside minus sign to the outside. The last equalities follow from applying
similar steps as in the beginning of the proof and then the definitions of Qx(pac||ls ® 7¢) and

Sk(A[C)y. [ |

When f(x) = x(1=®)/* for o € (1, 0c], we recover a duality relation similar to that for
sandwiched Rényi relative entropy [Beil3, MLDS"13]. Duality relations for conditional
entropy and the data processing inequality are known to be closely related to entropic uncer-
tainty relations [CCYZ12], so there could be interesting new ones to develop by choosing
more general operator anti-monotone functions.

8. Conclusion

The main contribution of the present paper is the definition of the optimized quantum f-diver-
gence and the proof that the data processing inequality holds for it whenever the function f'is
operator anti-monotone with domain (0, co) and range R. The proof of the data processing
inequality relies on the operator Jensen inequality [HP03], and it bears some similarities to
the original approach from [Pet85, Pet86a, TCR09]. Furthermore, I showed how the sand-
wiched Rényi relative entropies are particular examples of the optimized quantum f-diver-
gence. As such, one benefit of this paper is that there is now a single, unified approach, based
on the operator Jensen inequality [HPO3], for establishing the data processing inequality for
the Petz—Rényi and sandwiched Rényi relative entropies, for the full range of parameters for
which it is known to hold. In the remainder of the paper, I considered other aspects such as the
classical case, the classical-quantum case, and information measures that one could construct
from the optimized f-divergence.

There are several directions that one could pursue going forward. Equation (2.19) rep-
resents the function underlying the optimized f-divergence in the relative modular operator
formalism—this should be helpful in understanding the optimized f-divergence in more gen-
eral contexts. Combined with the methods of [Pet85, Pet86a] and the approach in this paper,
it is clear that the data processing inequality will hold in more general contexts. It would also
be interesting to show that the data processing inequality holds for maps beyond quantum
channels, such as the Schwarz and stochastic maps considered in [HMPB11]. I suspect that
the methods of [HMPB11] and the present paper could be used to establish the data processing
inequality for more general classes of maps.
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Appendix. Final case for proposition 6

A.1. Case X4 not invertible

We now discuss how to extend the proof detailed in the main text to the case in which X,
is not invertible (and thus X,p is not invertible either). In this case, with X;l/ 2 understood
as a square-root inverse of X4 on its support, the Petz recovery map in (3.35) is no longer

a quantum channel, but it is instead a completely positive and trace non-increasing map. A
standard method for producing a quantum channel from the map in (3.35) is to specify an
additional action on the kernel of Xy, as

Zy — X\12 ([X; V2zx Y 2] ® IB) X2 4 Te{ITE Z4 }eas, (A1)

where we take &4p to be an invertible density operator (see, e.g. [Will7, chapter 12] for this
standard construction). One can check that the map in (A.1) is completely positive and trace
preserving, and furthermore, an invertible input state leads to an invertible output state. Our
goal is now to find a Kraus decomposition for the above quantum channel, so that we can work
with its isometric extension as we did previously. To begin with, suppose that the invertible
state {45 has a spectral decomposition as

Al

éap = Z Pl|¢>l> <¢I|AB’ (A.2)

=1

where { p;}; is a probability distribution and {|¢;)ap}; is an orthonormal basis. Then we can
write the channel in (A.1) as

|B| Al

1/2 —1/2 —1/2 o/ 1/2
Sox (X0 22ax ) @ 1) Ule) X4l + D (KT ZaTT, )agan
j=1 k=1

|B|
1/2 [y—1/2 . —1/2 . 1/2
- ZXAl/i [XA / ® l/)B} Zs |:XA / ® <J|B} XA/B
j=1
Al |A]1B|

+ 30> V/pilS)anklaTlz, ZaTIg, [K)a(bilan /i (A3)

k=1 I=1

Thus, Kraus operators for it are as follows:
|B|
1/2 [v—1/2 .
{{XAI/? {XA 2 U)B} },-:1 AVPilé) as (KlaTly, },E{],_“JA”B}’ke{lwlA}} : (A.4)

We now define an enlarged Hilbert space C to be the direct sum of B and A, and thus with
dimension |B| + |A[, and an orthonormal basis for it as
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{De s lider- o [1BDe 1Bl + Do 1Bl + K 1Bl + A&} (AS)
We also define an auxiliary Hilbert space E with orthonormal basis
{le)e, D). .- NIAlIB)e} (A.6)
and we represent a purification |¢%#) 4 of the state £4p as
|A]1B]
%) ap = Z VPilonas|lE- (A7)

=1

Thus, an isometric extension of the Petz recovery channel in (A.1), according to the standard
recipe in (3.42), is given by

18] AL JAI|B]

SOXE X @ ] lhelede + 30 D AlonastkaT, @ K+ Bl
j=1 k=1 I=1
= X35 Xx P10 eleds + 19%) ane Uy I,
(A.8)
where we set
|B|
Dhpe = D slies (A.9)
j=1
and we define the embedding map
JA|
Upoo =Dk + |B)a(kla. (A.10)
So we set the isometry V,_, pep as
1/2,—1/2
Vasser =Xa ; B X4 / ) pele)e + |<P€AB>ABEUAH@H)J(;- (A.11)

By construction, the operator V,_, ¢ is an isometry, but we can verify by the following alter-
native calculation that this operator is indeed an isometry:

VIV = ((ClgeeleXy X000 + T, (Usse)' (0% ase)

(A.12)
1/2+,—1/2
% (XX3 D pelede + 165 ane U, 14, )
—1/2+,1/2+,1/2+—1/2
= (DlpeleleXy X0 X0 X 2|0 pelede
1/2+,—1/2
+ 1, (Uye) (0% aseXy X P D) pele)
12y e i (A.13)
+ (Dlpe{eleXy 3 9> ) apeU, L elly,
t
+ 10y, (Uy_e) ' (0% |asel 0% ase U, o1y,
= (eleX;y P (Dl peXan D) e Xy le)e + 104, (A.14)
:X;1/2 1/2+HXA (A.15)
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=TIy, + I, (A.16)

=I,. (A.17)
In the above, we have used the fact that {e|z|p5# )z = 0. Now we extend V to

Vaispee = Vasper © Lis (A.18)

and observe that

1/2
Vaasserle™)as = 165 aancle)e = (5 @ L))l Dgelede.  (A19)
Let 745 be the output of the Petz recovery channel when the invertible state wy is input:

o= X4 (X3 Penxy '] @ 15) X4+ Te{T1 con ben, (A20)

Note that 745 is invertible because we chose 45 to be invertible. Consider the positive definite
operator Y;;, whose B system we embed into span{|1)s, ..., )¢ -, ||B|)¢} of system C,
calling the embedded operator Y;;.. We then have that YATé U,_ ¢ =0, and so we find that

Vi(rp @ YT @ Ig) v
—1/21/2 t e
— [(<F\Bc<e|EXA X+ T (U, ) <¢,£B‘ABE) @14 X

— 1/2y—1/2 »
(TABI ® Y§C®IE) [(XAé X, / |F>Bé|e>E + ‘(pf >ABEUA—>6'H)J(;) ®IA} (A.21)

1/2,1/2

_ _ 1/2v,—1/2
= <F‘Bé<e‘EXA Xup (TABI ® YAT@ ®]E) XA{? Xy / |F>Bé|e>E
T n — 1/2y,—1/2
+ H)J(; (UA—>6) <‘P£ |aBE (TABI ® Yf{é ®]E) XA{a X4 / |F>Bé|e>E
+ (DlpeleleXy X405 (T © Y1 @ 1) |99 appU, el

t _
+10x, (Ussye) ' (0% |ase (a5 @ Yip @ Ie) |9 )ape Uy 61l - (A.22)

The last three terms are equal to zero because (p%#|spgle)r =0 and YAT@UA e=0.
Continuing, the last expression above is equal to

—121/2  — 1/25—1/2
(T pe-(el Xy /XAI/3 (a5 ® YAT5®IE) XAJ/B Xy / D) pele)e

A.23)
—1/2 1/24—1/21/2 [ — 1/24—1/2 1/2 —1/2 (
= <F|BCWA WA/ Xy / XAl/i (TAB1 @ Y[{@) XA1/9 X4 / ("JA/ Wa / |F>BC

12 1/29-1/201/2 _—1u1/2—1/2 1/2] —1/2
= ([ (WA / {WA/ Xy /XAI/3 TABIXAI/? Xy /WA/ } Wy / ®Y/1T@> 1) ge:
(A.24)

12 5—1/251/2 1 o1/2o—1/2 1/2 12 —1)2
< HWA/ Xy / XA1/9 TABIXAé’ X4 / WA/ HOO (Llge (WA / Wa 7 Y;;T@) 1) ge
(A.25)

C1/291/29—-1/2  o—1/241/2_—1/2 _
= HTAB/ XA{i Xy / waXy / XA1/9 7'AB/ HOO (Llge (WA '® YAT@) D) ge (A.26)

< (Tlpe (Wi ' @ Yie) D) ge (A.27)
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=uwi'®7]. (A.28)

The third equality follows because|| ZTZ|| = . foran operator Z. The lastinequality fol-
lows because for a positive semi-definite operator W, we have that||W/|| _ = inf {p : W < pl}.
Applying this, we find that

inf{,u 7_ABl/z 1/2X 1/2 —1/2 JU/EZTA_B/ ,UIAB}
(A.29)
- inf{,u x\2x; Vzwaf/zle? < ,”AB}

f{u X1/2 /2 —1/2 1/2 ,u[Xl/z _l/zwAXXI/ZX/iéz+Tr{H§AoJA}§AB}} (A.30)

<1 (A.31)
Let P; be the embedding of the identity operator 4 into the subspace of C spanned by
{I1B] + g o s [IBl KD r - ||ia\ + A&} (A.32)
That is, Py = ZlAl |B| + k)& |B| + k| )pe = 0, we have that
Vit @@ P ®1IE) V
= [(Clpeteles 542 + T, (Uy0) (01 @ 1] ¢
(s ® I ® Pe @ I) [(X‘/ X720 e le)e + |¢5AH>ABEUA%HXA) oI, } (A33)

<F|BC< |EX 1/2X1/2< ®I ®P ®IE) XI/ZX 1/2|F>BC| >
5 x1/2 1 2
+ 1y, (UA—>C) (%% (Ta5 @13 © P ® 1) X, / / L) pele)e

1/2+,1/2
+ (DlgeleleXy X0 (T © 1 @ Pe @ 1) lsofAB>ABEUH@H>%A

I (U Le) (09 e (i © 1 © Pe @ ) |65 ) ape U, o1 (A34)
=10, (Uye) (0% ase (T ® I @ Pe @ Ii) |0) s U, o113, (A.35)
= Iy, @ I; (9" |aseTig 9% ane (A.36)
=TIy, @ I; Tr{éasTes }- (A37)

Observe that
g @YL) = (el [f (Tap @ Y1) @ Ig] |e)e (A.38)
= (ele [f (145 ©@ Y1, @ Ir)] |e)e. (A.39)

Furthermore, consider that for an £ € (0, 1), we have that

éf(XAB” Yag; Tag)

_ (A.40)
= <‘PXAB |aissf (TABI ® YAT[;) |<PXAB>AABE
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= (o™ | yagplele [f (a5 © Yip @ Ip)] [¢™) samale)s (A41)
= (™ papelele [f (Tas @ (Yie + [I3 ® Pe]) @ I6) ] [¢%) apele) e (A42)
= (VI [f (s © (Yie +e [l @ Pe]) @ Ip) | VIg™) (A43)
> (" aaf (V' s @ (Ve +e (o Pe]) @ IE] V) [6™) 44 (Ad4)
> (" af (wi' @ Y] +e [y, © I Tr{éanmig }]) [9™) s (A.45)

The third equality follows because the term & [I 1 ® PC] gets zeroed out due to the sandwich

by |¢*48) 3 5> given that |pX1#) - . only has support in span{| 1)z, ..., )¢ - -, ||B|)¢} (this
can be seen explicitly by examining the proof of proposition 4). Furthermore, note that the

operator YATé +e [I i ® P@} is invertible. The first inequality follows from the operator Jensen
inequality [HPO3]. The next inequality follows because

Virg @ (Yia+e [l ®P]) @Ig) V a6
=V 15 @Y. QIg| V+ VI [ @e [ @ Pe] @1g| V '
Swy' @Y] +elly, @ I; Tr{&upTyy ). (A.47)

and by applying operator anti-monotonicity of f. This establishes the inequality for all
€ € (0, 1). Thus, we can apply continuity of f and take the limit € \ O to find that

O (Xagl|Yan: mag) = (0™ [aaf (wi' @ YD) [%) 1 = Or(XallYaswa). (A48)

We can now take the supremum over all invertible states 745 to get the following inequality
holding for all invertible states wy:

O (Xas||Yas) = O (Xal|Yas wa). (A.49)

After taking a supremum over invertible states wy, we find that the inequality in (3.31) holds
when X} is not invertible.

Remark A.1. Several of the works [Pet86a, PS09, Pet10a, Shal0] on quantum f-divergence
consider only invertible density operators and then appeal to continuity in order to extend
proofs to the whole set of density operators. This is often understood as simply adding €/ to a
density operator and then taking the limit € — 0 later. In the second case given in the proof of
theorem 8, in which X,z is not invertible but X4 is, the method can be understood as falling un-
der an appeal to continuity. However, in the last case detailed above, when X} is not invertible,
the method arguably goes beyond a mere appeal to continuity, given the construction of the
channel in (A.1), the corresponding isometric extension in (A.11), and the ensuing analysis.
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