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Abstract
The quantum relative entropy is a measure of the distinguishability of 
two quantum states, and it is a unifying concept in quantum information 
theory: many information measures such as entropy, conditional entropy, 
mutual information, and entanglement measures can be realized from it. 
As such, there has been broad interest in generalizing the notion to further 
understand its most basic properties, one of which is the data processing 
inequality. The quantum f-divergence of Petz is one generalization of the 
quantum relative entropy, and it also leads to other relative entropies, 
such as the Petz–Rényi relative entropies. In this paper, I introduce the 
optimized quantum f-divergence as a related generalization of quantum 
relative entropy. I prove that it satisfies the data processing inequality, and 
the method of proof relies upon the operator Jensen inequality, similar 
to Petz’s original approach. Interestingly, the sandwiched Rényi relative 
entropies are particular examples of the optimized f-divergence. Thus, 
one benefit of this paper is that there is now a single, unified approach 
for establishing the data processing inequality for both the Petz–Rényi 
and sandwiched Rényi relative entropies, for the full range of parameters 
for which it is known to hold. This paper discusses other aspects of the 
optimized f-divergence, such as the classical case, the classical-quantum 
case, and how to construct optimized f-information measures.
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1.  Introduction

The quantum relative entropy [Ume62] is a foundational distinguishability measure in 
quantum information theory. It is a function of two quantum states and measures how well 
one can tell the two states apart by a quantum-mechanical experiment. It is well known by 
now to be a parent quantity for many other information measures, such as entropy, mutual 
information, conditional entropy, and entanglement measures (see, e.g. [Dat11, Wil17]). One 
important reason for why it has found such widespread application is that it satisfies a data-
processing inequality [Lin75, Uhl77]: it does not increase under the action of a quantum 
channel on the two states. This can be interpreted as saying that two quantum states do not 
become more distinguishable if the same quantum channel is applied to them, and a precise 
interpretation of this statement in terms of quantum hypothesis testing is available in [HP91, 
ON00, BSS12]. Naturally, the notion of quantum relative entropy generalizes its classical 
counterpart [KL51], which enjoyed a rich and illustrious history prior to the development of 
quantum relative entropy.

The wide interest in relative entropy sparked various researchers to generalize and study 
it further, in an attempt to elucidate the fundamental properties that govern its behavior. One 
notable generalization is Rényi’s relative entropy [Rén61], but this was subsequently general-
ized even further in the form of the f-divergence [Csi67, AS66, Mor63]. For probability distri-
butions {p(x)}x and {q(x)}x and a convex function f, the f-divergence is defined as

∑
x

q(x) f ( p(x)/q(x)),� (1.1)

in the case that p(x) = 0 for all x such that q(x) = 0. The resulting quantity is then non-
increasing under the action of a classical channel r(y|x) (a conditional probability distribu-
tion), that produces the output distributions 

∑
x r(y|x) p(x) and 

∑
x r(y|x)q(x). Some years 

after these developments, a quantum generalization of f-divergence appeared in [Pet85, 
Pet86a], going under the name of ‘quasi-entropy’ as used in [Weh79]. In [Pet85, Pet86a] and 
a later development [TCR09], the quantum data-processing inequality was proved in full gen-
erality for arbitrary quantum channels, whenever the underlying function f is operator convex. 
A relatively large literature on the topic of quantum f-divergence has now developed, so much 
that there are now many reviews and extensions of the original idea [OP93, PR98, NP05, 
PS09, TCR09, Sha10, Pet10b, Pet10a, HMPB11, HP12, Mat13, HM17].

Interestingly, when generalizing a notion from classical to quantum information theory, 
there is often more than one way to do so, and sometimes there could even be an infinite num-
ber of ways to do so. This has to do with the non-commutativity of quantum states, and for 
states of many-particle quantum systems, entanglement is involved as well. For example, there 
are several different ways that one could generalize the relative entropy to the quantum case, 
and two prominent formulas were put forward in [Ume62] and [BS82]. This added complex-
ity for the quantum case could potentially be problematic, but the typical way of determining 
on which generalizations we should focus is to show that a given formula is the answer to a 
meaningful operational task. The papers [HP91, ON00] accomplished this for the quantum 
relative entropy of [Ume62], and since then, researchers have realized more and more just how 
foundational the formula of [Ume62] is. As a consequence, the formula of [Ume62] is now 
known as quantum relative entropy.

The situation becomes more intricate when it comes to quantum generalizations of Rényi 
relative entropy. For many years, the Petz–Rényi relative entropy of [Pet85, Pet86a] has been 
widely studied and given an operational interpretation [Nag06, Hay07], again in the context 
of quantum hypothesis testing (specifically, the error exponent problem). However, in recent 
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years, the sandwiched Rényi relative entropy of [MLDS+13, WWY14] has gained promi-
nence, due to its role in establishing strong converses for communication tasks [WWY14, 
GW15, TWW17, CMW16, DW15, WTB17]. The result of [MO15] solidified its fundamen-
tal meaning in quantum information theory: these authors proved that it has an operational 
interpretation in the strong converse exponent of quantum hypothesis testing. As such, the 
situation we are faced with is that there are two generalizations of Rényi relative entropy 
that should be considered in quantum information theory, due to their operational role men-
tioned above. There are further generalizations of the aforementioned quantum Rényi relative 
entropies [AD15], but their operational meaning (and thus their role in quantum information 
theory) is unclear.

The same work that introduced the Petz–Rényi relative entropy also introduced a quantum 
generalization of the notion of f-divergence [Pet85, Pet86a] (see also [HMPB11]), with the 
Petz–Rényi relative entropy being a particular example. Since then, other quantum f-diver-
gences have appeared [PR98, HM17], now known as minimal and maximal f-divergences 
[Mat13, HM17]. However, hitherto it has not been known how the sandwiched Rényi relative 
entropy fits into the paradigm of quantum f-divergences. In fact, the authors of [HMPB11] 
declared in their example 2.11 that a particular instance of the sandwiched Rényi relative 
entropy is not a quantum f-divergence, suggesting that it would not be possible to express it 
as such.

In this paper, I modify Petz’s definition of quantum f-divergence [Pet85, Pet86a, HMPB11], 
by allowing for a particular optimization (see definition 1 for details of the modification). As 
such, I call the resulting quantity the optimized quantum f-divergence. I prove that it obeys 
a quantum data processing inequality, and as such, my perspective is that it deserves to be 
considered as another variant of the quantum f-divergence, in addition to the original, the 
minimal, and the maximal. Interestingly, the sandwiched Rényi relative entropy is directly 
related to the optimized quantum f-divergence, thus bringing the sandwiched quantity into the 
f-divergence formalism.

One benefit of the results of this paper is that there is now a single, unified approach for 
establishing the data-processing inequality for both the Petz–Rényi relative entropy and the 
sandwiched Rényi relative entropy, for the full Rényi parameter ranges for which it is known 
to hold. This unified approach is based on Petz’s original approach that employed the operator 
Jensen inequality [HP03], which is the statement that

f (V†XV) � V†f (X)V ,� (1.2)

where f is an operator convex function defined on an interval I, X is a Hermitian operator with 
spectrum in I, and V  is an isometry. This unified approach is useful for presenting a succint 
proof of the data processing inequality for both quantum Rényi relative entropy families.

In the rest of the paper, I begin by defining the optimized quantum f-divergence and then 
discuss various alternative ways of writing it, including its representation in terms of the rela-
tive modular operator formalism. In section 3, I prove that the optimized f-divergence satis-
fies the quantum data processing inequality whenever the underlying function f is operator 
anti-monotone with domain (0,∞) and range R . The proof of quantum data processing has 
two steps: I first prove that the optimized quantum f-divergence is invariant under isometric 
embeddings and then show that it is monotone non-increasing under the action of a partial 
trace. By the Stinespring dilation theorem [Sti55], these two steps establish data processing 
under general quantum channels. The core tool underlying both steps is the operator Jensen 
inequality [HP03]. The proof of monotonicity under partial trace features some novel aspects 
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for handling non-invertible operators. In section 4, I show how the quantum relative entropy 
and the sandwiched Rényi relative entropies are directly related to the optimized quantum 
f-divergence. Section 5 then discusses the relation between Petz’s f-divergence and the optim
ized one. Section  6 shows how the optimized f-divergence simplifies when the operators 
involved have a classical or classical-quantum form. In section 7, I discuss how to construct 
several information measures from the optimized f-divergence, which could potentially find 
application in quantum information theory or resource theories. I finally conclude in section 8 
with a summary and some open directions.

2.  Optimized quantum f-divergence

Let us begin by formally defining the optimized quantum f-divergence:

Definition 1 (Optimized quantum f-divergence).  Let f be a function with domain 
(0,∞) and range R . For positive semi-definite operators X and Y acting on a Hilbert space HS, 
we define the optimized quantum f-divergence as

Q̃f (X‖Y) ≡ sup
τ>0, Tr{τ}�1, ε>0

Q̃f (X‖Y + εΠ⊥
Y ; τ),� (2.1)

where Q̃f (X‖Z; τ) is defined for positive definite Z and τ acting on HS as

Q̃f (X‖Z; τ) ≡ 〈ϕX|SŜf (τ−1
S ⊗ ZT

Ŝ )|ϕ
X〉SŜ,� (2.2)

|ϕX〉SŜ ≡ (X1/2
S ⊗ IŜ)|Γ〉SŜ.� (2.3)

In the above, Π⊥
Y  denotes the projection onto the kernel of Y, HŜ is an auxiliary Hilbert space 

isomorphic to HS,

|Γ〉SŜ ≡
|S|∑
i=1

|i〉S |i〉Ŝ ,� (2.4)

for orthonormal bases {|i〉S}
|S|
i=1 and {|i〉Ŝ}

|Ŝ|
i=1, and the T superscript indicates transpose with 

respect to the basis {|i〉Ŝ}i.

Remark 2.  Note that the expression in (2.1) simplifies considerably in the case that Y is 
positive definite. That is, it reduces to the following simpler expression in the case that Y  >  0:

Q̃f (X‖Y) = sup
τ>0, Tr{τ}�1

〈ϕX|SŜf (τ−1
S ⊗ YT

Ŝ )|ϕ
X〉SŜ.� (2.5)

As such, the optimized f-divergence in (2.1) represents a modification of Petz’s quantum f-
divergence, a topic that I discuss in more detail in section 5. The intention of the more general 
definition in (2.1) is to provide a consistent way of defining the optimized f-divergence in the 
case that Y is not positive semi-definite.

The case of greatest interest for us here is when the underlying function f is operator anti-
monotone; i.e. for Hermitian operators A and B, the function f is such that A � B ⇒ f (B) �
f (A) (see, e.g. [Bha97]). This property is rather strong, but there are several functions of 
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interest in quantum-physical applications that obey it (see section 4). One critical property of 
an operator anti-monotone function with domain (0,∞) and range R  is that it is also operator 
convex and continuous (see, e.g. [Han13]). In this case, we have the following proposition:

Proposition 3.  Let f be an operator anti-monotone function with domain (0,∞) and range 
R . For positive semi-definite operators X and Y acting on a Hilbert space HS, the following 
equality holds

Q̃f (X‖Y) = sup
τ>0, Tr{τ}=1

lim
ε↘0

Q̃f (X‖Y + εΠ⊥
Y ; τ),� (2.6)

and furthermore, the function Q̃f (X‖Y + εΠ⊥
Y ; τ) is concave in τ. Finally, for positive semi-

definite Y1 and Y2 such that Y1 � Y2, we have that

Q̃f (X‖Y1) � Q̃f (X‖Y2).� (2.7)

Proof.  To see that we can restrict the optimization over τ to τ satisfying Tr{τ} = 1, let τ be 
such that τ > 0 and Tr{τ} < 1. Then

τ−1
S ⊗ YT

Ŝ =
1

Tr{τS}

[
τS

Tr{τS}

]−1

⊗ YT
Ŝ �

[
τS

Tr{τS}

]−1

⊗ YT
Ŝ ,� (2.8)

and so

Q̃f (X‖Y + εΠ⊥
Y ; τ) � Q̃f (X‖Y + εΠ⊥

Y ; τ/Tr{τ})� (2.9)

from the operator anti-monotonicity of f. Changing supε>0 to limε↘0 follows as well from 
operator anti-monotonicity of f. Let ε2 � ε1 > 0. Then Y + ε1Π

⊥
Y � Y + ε2Π

⊥
Y  and so 

Q̃f (X‖Y + ε2Π
⊥
Y ; τ) � Q̃f (X‖Y + ε1Π

⊥
Y ; τ). So then the highest value of Q̃f (X‖Y + εΠ⊥

Y ; τ) 
is achieved in the limit as ε ↘ 0, where we have also invoked the continuity of f. We note that 
this limit could evaluate to infinity.

Concavity in τ follows because

f (τ−1
S ⊗ YT

Ŝ ) = f
([

τS ⊗
(
YT

Ŝ

)−1
]−1

)
,� (2.10)

and the function f(x−1) is operator monotone on (0,∞), given that it is the composition of the 
operator anti-monotone function x−1 with domain (0,∞) and range (0,∞) and the function f, 
taken to be operator anti-monotone on (0,∞) by hypothesis. Since f(x−1) is operator mono-
tone on (0,∞), it is operator concave (see, e.g. [Han13]).

The dominating property in (2.7) follows from the fact that f is operator anti-monotone on 
(0,∞), which implies the following for a fixed ε > 0 and τS such that τS > 0 and Tr{τS} � 1:

f (τ−1
S ⊗ (Y1 + εΠ⊥

Y1
)T

Ŝ ) � f (τ−1
S ⊗ (Y2 + εΠ⊥

Y1
)T

Ŝ ).� (2.11)

We arrive at the inequality in (2.7) after sandwiching by |ϕX〉SŜ, taking the limit as ε ↘ 0, and 
taking a supremum over τ.� ■ 

For X positive semi-definite and Y and τ positive definite, with spectral decompositions of 
Y and τ given as
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Y =
∑

y

µy|φy〉〈φy|, τ =
∑

t

νt|ψt〉〈ψt|,� (2.12)

we can write

Q̃f (X‖Y; τ) =
∑

y,t

f (µyν
−1
t )Tr{X1/2|φy〉〈φy|X1/2|ψt〉〈ψt|}� (2.13)

=
∑

y,t

f (µyν
−1
t )|〈φy|X1/2|ψt〉|2,� (2.14)

by using the facts that

f (τ−1
S ⊗ YT

Ŝ ) =
∑

y,t

f (µyν
−1
t )|ψt〉〈ψt|S ⊗ |φy〉〈φy|TŜ ,� (2.15)

(IS ⊗ ZT
Ŝ )|Γ〉SŜ = (ZS ⊗ IŜ)|Γ〉SŜ,� (2.16)

〈Γ|SŜ(ZS ⊗ IŜ)|Γ〉SŜ = Tr{ZS},� (2.17)

for any square operator Z acting on HS. The formula in (2.13) is helpful in some parts of our 
analysis below.

We can also phrase definition 1 in terms of the relative modular operator formalism, which 
is employed in many of the works on quasi-entropy (many details of this formalism in the con-
text of quasi-entropies are available in [HMPB11]). Let P be a positive semi-definite operator, 
and let R be a positive definite operator. Defining the action of the relative modular operator 
∆(P/R) on an operator X as

∆(P/R)(X) = PXR−1,� (2.18)

and the Hilbert–Schmidt inner product 〈W, Z〉 = Tr{W†Z}, we can write the quantity 
Q̃f (X‖Y; τ) underlying Q̃f (X‖Y) in terms of the relative modular operator as

Q̃f (X‖Y; τ) = 〈X1/2, f (∆(Y/τ))(X1/2)〉.� (2.19)

The definition of optimized quantum f-divergence following from plugging (2.19) into (2.1) 
can be used in more general contexts than those considered in the present paper (for example, 
in the context of von Neumann algebras). However, in this work, we find it more convenient to 
work with the expression in (2.2) (see [TCR09, Sha10] for a similar approach), and through-
out this paper, we work in the setting of finite-dimensional quantum systems.

3.  Quantum data processing

Our first main objective is to prove that Q̃f (X‖Y) deserves the name ‘f -divergence’ or ‘f-rela-
tive entropy’, i.e. that it is monotone non-increasing under the action of a completely positive, 
trace-preserving map N :

Q̃f (X‖Y) � Q̃f (N (X)‖N (Y)).� (3.1)

Such a map N  is also called a quantum channel, due to its purpose in quantum physics as 
modeling the physical evolution of the state of a quantum system. In quantum information-
theoretic contexts, the inequality in (3.1) is known as the quantum data processing inequality. 
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According to the Stinespring dilation theorem [Sti55], every quantum channel can be realized 
by an isometric embedding of its input into a tensor product of the channel’s output Hilbert 
space and an auxiliary Hilbert space, followed by a partial trace over the auxiliary Hilbert 
space. That is, to every quantum channel NS→B, there exists an isometry UN

S→BE  such that

NS→B(XS) = TrE{UN
S→BEXS

(
UN

S→BE

)†}.� (3.2)

As such, we can prove the inequality in (3.1) in two steps:

	 1.	�Isometric invariance: First show that

Q̃f (X‖Y) = Q̃f (UXU†‖UYU†)� (3.3)

		 for any isometry U and any positive semi-definite X and Y1.
	 2.	�Monotonicity under partial trace: Then show that

Q̃f (XAB‖YAB) � Q̃f (XA‖YA)� (3.4)

		 for positive semi-definite operators XAB and YAB acting on the tensor-product Hilbert 
space HA ⊗HB, with XA = TrB{XAB} and YA = TrB{YAB}.

So we proceed and first prove isometric invariance:

Proposition 4 (Isometric invariance).  Let U : HS → HR be an isometry, let X and Y be 
positive semi-definite operators, and let f be an operator anti-monotone function with domain 
(0,∞) and range R . Then the following equality holds

Q̃f (X‖Y) = Q̃f (UXU†‖UYU†).� (3.5)

Proof.  In the case that dim(HS) = dim(HR), the statement holds trivially because 
U is a unitary and then HS and HR are isomorphic. So we focus on the case in which 
dim(HS) < dim(HR). First suppose that Y is invertible when acting on HS. The operator X is 
generally not invertible, and with respect to the decomposition of HS as supp(X)⊕ ker(X), we 
can write X and each eigenprojection |φy〉〈φy| of Y respectively as

[
X 0
0 0

]
,

[
φy

11 φy
12

φy
21 φy

22

]
.� (3.6)

Let τ acting on HS be such that τ > 0 and Tr{τ} = 1. Suppose that its spectral decomposition 

is given by 
∑|S|

t=1 νt|ψt〉〈ψt|, with each νt ∈ (0, 1) and |ψt〉 a unit vector such that 
∑

t νt = 1. 
We can then write each eigenprojection |ψt〉〈ψt| with respect to the decomposition of HS as 
supp(X)⊕ ker(X) as

[
ψt

11 ψt
12

ψt
21 ψt

22

]
.� (3.7)

Applying definitions and (2.13), we then find that

1 The importance of establishing isometric invariance of quasi-entropies has been stressed in [TCR09] and [Tom12, 
appendix B].
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Q̃f (X‖Y; τ) =
∑

y,t

f (µyν
−1
t )Tr

{[√
X 0

0 0

] [
φy

11 φy
12

φy
21 φy

22

] [√
X 0

0 0

] [
ψt

11 ψt
12

ψt
21 ψt

22

]}

� (3.8)
=

∑
y,t

f (µyν
−1
t )Tr{

√
Xφy

11

√
Xψt

11}.� (3.9)

Now consider Q̃f  for UXU† and UYU†. Without loss of generality, we can consider 
the isometry U to be the trivial embedding of HS into the larger Hilbert space HR, with 
it decomposed as HR = HS ⊕H⊥

S , so that with respect to the decomposition of HR as 
HR = supp(X)⊕ ker(X)⊕H⊥

S , we can write X and each eigenprojection |φy〉〈φy| of Y in the 
larger Hilbert space HR as




X 0 0
0 0 0
0 0 0


 ,



φy

11 φy
12 0

φy
21 φy

22 0
0 0 0


 .� (3.10)

We use the notation XR to denote the operator X embedded into HR. Let ω acting on HR 
be such that ω > 0 and Tr{ω} = 1. Suppose that its spectral decomposition is given by ∑|R|

s=1 λs|ϕs〉〈ϕs|, with each λs ∈ (0, 1) and |ϕs〉 a unit vector such that 
∑

s λs = 1. We can 
then write each eigenprojection |ϕs〉〈ϕs| as



ϕs

11 ϕs
12 ϕs

13

ϕs
21 ϕs

22 ϕs
23

ϕs
31 ϕs

32 ϕs
33


 .� (3.11)

Since Y is no longer invertible after the embedding, we need to instead consider the operator 
YR + εΠ⊥

Y  for some ε ∈ (0, 1), where we use the notation YR to denote the operator Y embed-
ded into HR. Then the eigenprojections of YR + εΠ⊥

Y  are now represented in this larger space 
as



φy

11 φy
12 0

φy
21 φy

22 0
0 0 0


 ,




0 0 0
0 0 0
0 0 I


 .� (3.12)

Applying definitions, we then find that, in the larger Hilbert space HR,

Q̃f (XR‖YR + εΠ⊥
Y ;ω)

=
∑
y,s

f (µyλ
−1
s )Tr






√

X 0 0
0 0 0
0 0 0





φy

11 φy
12 0

φy
21 φy

22 0
0 0 0





√

X 0 0
0 0 0
0 0 0





ϕs

11 ϕs
12 ϕs

13

ϕs
21 ϕs

22 ϕs
23

ϕs
31 ϕs

32 ϕs
33






+
∑

t′
f (ελ−1

s )Tr






√

X 0 0
0 0 0
0 0 0






0 0 0
0 0 0
0 0 I





√

X 0 0
0 0 0
0 0 0





ϕs

11 ϕs
12 ϕs

13

ϕs
21 ϕs

22 ϕs
23

ϕs
31 ϕs

32 ϕs
33






� (3.13)

=
∑
y,s

f (µyλ
−1
s )Tr{

√
Xφy

11

√
Xϕs

11}.� (3.14)

We now compare the expressions in (3.9) and (3.14). For a given τ > 0 with spectral decom-

position 
∑|S|

t=1 νt|ψt〉〈ψt| and δ ∈ (0, 1), we can choose ω(δ) > 0 as
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ω(δ) = (1 − δ)
∑

t

νt



ψt

11 ψt
12 0

ψt
21 ψt

22 0
0 0 0


+ δ




0 0 0
0 0 0
0 0 I/ dim(H⊥

S )


 ,� (3.15)

and then, by the above reasoning, we have that

Q̃f (XR‖YR + εΠ⊥
Y ;ω(δ)) =

∑
y,t

f (µy [(1 − δ)νt]
−1

)Tr{
√

Xφy
11

√
Xψt

11}.� (3.16)

Taking the limit δ ↘ 0 and applying the continuity of f then gives

lim
δ↘0

Q̃f (XR‖YR + εΠ⊥
Y ;ω(δ)) = Q̃f (X‖Y; τ).� (3.17)

So it is clear that the following inequality holds for all τ:

Q̃f (X‖Y; τ) � sup
ω>0, Tr{ω}=1

Q̃f (XR‖YR + εΠ⊥
Y ;ω).� (3.18)

We can thus conclude that

sup
τ>0, Tr{τ}=1

Q̃f (X‖Y; τ) � sup
ω>0, Tr{ω}=1

Q̃f (XR‖YR + εΠ⊥
Y ;ω),� (3.19)

which is the same as the inequality

Q̃f (X‖Y) � Q̃f (UXU†‖UYU†).� (3.20)

This establishes the inequality Q̃f (X‖Y) � Q̃f (UXU†‖UYU†) in the case in which Y is invert-
ible when acting on HS.

Given that the function x−1 is operator anti-monotone on (0,∞) and has range (0,∞), it 
follows that f(x−1)  =  g(x) is operator monotone on (0,∞) and thus operator concave [Han13]. 
Defining the embedding isometry V ≡ VS→R ⊗ VŜ→R̂ ≡

∑
i |i〉R〈i|S ⊗

∑
j |j〉R̂〈 j|Ŝ , we then 

have by a direct application of the operator Jensen inequality [HP03] and the fact that g is 
operator concave that

Q̃f (X‖Y + εΠ⊥
Y ;ω) = 〈ϕX|RR̂f (ω−1

R ⊗
[
YR̂ + εΠ⊥

Y

]T
)|ϕX〉RR̂� (3.21)

= 〈ϕX|SŜV†f

([
ωR ⊗

[
Y−1

R̂
+ ε−1Π⊥

Y

]T
]−1

)
V|ϕX〉SŜ� (3.22)

= 〈ϕX|SŜV†g
(
ωR ⊗

[
Y−1

R̂
+ ε−1Π⊥

Y

]T
)

V|ϕX〉SŜ� (3.23)

� 〈ϕX|SŜg
(

V†
[
ωR ⊗

[
Y−1

R̂
+ ε−1Π⊥

Y

]T
]

V
)
|ϕX〉SŜ� (3.24)

= 〈ϕX|SŜg
(
ω′

S ⊗
[
Y−1

Ŝ

]T
)
|ϕX〉SŜ� (3.25)
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= 〈ϕX|SŜf ((ω′
S)

−1 ⊗ YT
Ŝ )|ϕ

X〉SŜ� (3.26)

= Q̃f (X‖Y;ω′
S)� (3.27)

� Q̃f (X‖Y),� (3.28)

where ω′
S ≡ (VS→R)

†
ωRVS→R  is an operator acting on HS such that ω′

S > 0 and Tr{ω′
S} � 1. In 

the above, the notation Y−1
R̂

 indicates the inverse on the support of Y−1
R̂

, and we have employed 

the facts that 
[
YR̂ + εΠ⊥

Y

]−1
= Y−1

R̂
+ ε−1Π⊥

Y  and 
(
VŜ→R̂

)† (
Y−1

R̂
+ ε−1Π⊥

Y

)
VŜ→R̂ = Y−1

R̂
. 

Since the inequality holds for all ω > 0 such that Tr{ω} = 1, we conclude that

Q̃f (UXU†‖UYU†) � Q̃f (X‖Y).� (3.29)

We have now established the claim for invertible Y.
If Y is not invertible when acting on HS, then the definition in (2.1) applies, which in fact 

forces Y to become invertible when acting on HS. So then, in this case, we can conclude that

Q̃f (X‖Y + εΠ⊥
Y ) = Q̃f (UXU†‖U

[
Y + εΠ⊥

Y

]
U† + εΠH⊥

S
).� (3.30)

So the quantities are the same for all ε ∈ (0, 1), and then the equality follows by taking a su-
premum over ε > 0.� ■ 

Remark 5.  The above proof establishes the inequality Q̃f (X‖Y) � Q̃f (UXU†‖UYU†) for 
any continuous function f with domain (0,∞) and range R , but for the opposite inequality 
Q̃f (UXU†‖UYU†) � Q̃f (X‖Y), the proof given requires f to be operator anti-monotone with 
domain (0,∞) and range R .

We now complete the second step toward quantum data processing, as mentioned above:

Proposition 6 (Monotonicity under partial trace).  Given positive semi-definite oper-
ators XAB and YAB acting on the tensor-product Hilbert space HA ⊗HB, the optimized quant
um f-divergence does not increase under the action of a partial trace, in the sense that

Q̃f (XAB‖YAB) � Q̃f (XA‖YA),� (3.31)

where XA = TrB{XAB} and YA = TrB{YAB}.

Proof.  Throughout the proof, we take YAB to be invertible on HA ⊗HB. We can do so be-
cause the supremum over ε > 0 can be placed on the very outside, as in definition 1, and then 
we can optimize over ε > 0 at the very end once the monotonicity inequality has been estab-
lished. There are three cases to consider:

	 1.	�when XAB  >  0,
	 2.	�when XA  >  0, but XAB is not invertible, and
	 3.	�when XA is not invertible.

Here I show a proof for the first two cases, and the last case is shown in detail in the appendix 
for the interested reader.
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	Case XAB  >  0 :	� We establish the claim when XAB is invertible, and so XA is as well. This is 
the simplest case to consider and thus has the most transparent proof (it is 
fruitful to understand this case well before considering the other cases). The 
quantities of interest are as follows:

Q̃f (XAB‖YAB; τAB) = 〈ϕXAB |ABÂB̂f (τ−1
AB ⊗ YT

ÂB̂)|ϕ
XAB〉ABÂB̂,� (3.32)

Q̃f (XA‖YA;ωA) = 〈ϕXA |AÂf (ω−1
A ⊗ YT

Â )|ϕ
XA〉AÂ,� (3.33)

		 where τAB and ωA are invertible density operators and, by definition,

|ϕXAB〉ABÂB̂ =
(

X1/2
AB ⊗ IÂB̂

)
|Γ〉AÂ ⊗ |Γ〉BB̂.� (3.34)

		 The following map, acting on an operator ZA, is a quantum channel known as the Petz 
recovery channel [Pet86b, Pet88] (see also [BK02, HJPW04, LS13]):

ZA → X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ IB

)
X1/2

AB .� (3.35)

		 It is completely positive because it consists of the serial concatenation of three completely 

positive maps: sandwiching by X−1/2
A , tensoring in the identity IB, and sandwiching by 

X1/2
AB . It is trace preserving because

Tr
{

X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ IB

)
X1/2

AB

}
= Tr

{
XAB

([
X−1/2

A ZAX−1/2
A

]
⊗ IB

)}

� (3.36)

= Tr
{

XA

[
X−1/2

A ZAX−1/2
A

]}
� (3.37)

= Tr
{

X−1/2
A XAX−1/2

A ZA

}
� (3.38)

= Tr{ZA}.� (3.39)

		 The Petz recovery channel has the property that it perfectly recovers XAB if XA is input 
because

XA → X1/2
AB

([
X−1/2

A XAX−1/2
A

]
⊗ IB

)
X1/2

AB = XAB.� (3.40)

		 Every completely positive and trace preserving map N  has a Kraus decomposition, 
which is a set {Ki}i of operators such that

N (·) =
∑

i

Ki(·)K†
i ,

∑
i

K†
i Ki = I.� (3.41)

		 A standard construction for an isometric extension of a channel is then to pick an ortho-
normal basis {|i〉E}i for an auxiliary Hilbert space HE and define

V =
∑

i

Ki ⊗ |i〉E.� (3.42)

		 One can then readily check that N (·) = TrE{V(·)V†} and V†V = I. (See, e.g. [Wil17] 
for a review of these standard notions.) For the Petz recovery channel, we can figure out a 
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Kraus decomposition by expanding the identity operator IB =
∑|B|

j=1 |j〉〈 j|B, with respect 

to some orthonormal basis {|j〉B}j , so that

X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ IB

)
X1/2

AB =

|B|∑
j=1

X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ |j〉〈 j|B

)
X1/2

AB

�

(3.43)

=

|B|∑
j=1

X1/2
AB

[
X−1/2

A ⊗ |j〉B

]
ZA

[
X−1/2

A ⊗ 〈 j|B
]

X1/2
AB .� (3.44)

		 Thus, Kraus operators for the Petz recovery channel are given by
{

X1/2
AB

[
X−1/2

A ⊗ |j〉B

]}|B|

j=1
.� (3.45)

		 According to the standard recipe in (3.42), we can construct an isometric extension of the 
Petz recovery channel as

|B|∑
j=1

X1/2
AB

[
X−1/2

A ⊗ |j〉B

]
|j〉B̂ = X1/2

AB X−1/2
A

|B|∑
j=1

|j〉B|j〉B̂� (3.46)

= X1/2
AB X−1/2

A |Γ〉BB̂.� (3.47)

		 We can then extend this isometry to act as an isometry on a larger space by tensoring it 
with the identity operator IÂ, and so we define

VAÂ→AÂBB̂ ≡ X1/2
AB

[
X−1/2

A ⊗ IÂ

]
|Γ〉BB̂.� (3.48)

		 We can also see that VAÂ→AÂBB̂ acting on |ϕXA〉AÂ generates |ϕXAB〉ABÂB̂:

|ϕXAB〉ABÂB̂ = VAÂ→AÂBB̂|ϕ
XA〉AÂ.� (3.49)

		 This can be interpreted as a generalization of (3.40) in the language of quantum informa-
tion: an isometric extension of the Petz recovery channel perfectly recovers a purification 
|ϕXAB〉ABÂB̂ of XAB from a purification |ϕXA〉AÂ of XA. Since the Petz recovery channel is 
indeed a channel, we can pick τAB as the output state of the Petz recovery channel acting 
on an invertible state ωA:

τAB = X1/2
AB

([
X−1/2

A ωAX−1/2
A

]
⊗ IB

)
X1/2

AB .� (3.50)

		 Observe that τAB is invertible. Then consider that

V† (τ−1
AB ⊗ YT

ÂB̂

)
V

=
(
〈Γ|BB̂

[
X−1/2

A ⊗ IÂ

]
X1/2

AB

) (
τ−1

AB ⊗ YT
ÂB̂

) (
X1/2

AB

[
X−1/2

A ⊗ IÂ

]
|Γ〉BB̂

)� (3.51)

= 〈Γ|BB̂

(
X−1/2

A X1/2
AB τ−1

AB X1/2
AB X−1/2

A ⊗ YT
ÂB̂

)
|Γ〉BB̂� (3.52)

= 〈Γ|BB̂

(
ω−1

A ⊗ YT
ÂB̂

)
|Γ〉BB̂� (3.53)
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= ω−1
A ⊗ 〈Γ|BB̂YT

ÂB̂|Γ〉BB̂� (3.54)

= ω−1
A ⊗ YT

Â .� (3.55)

		 For the fourth equality, we used the fact that τ−1
AB = X−1/2

AB ([X1/2
A ω−1

A X1/2
A ]⊗ IB)X

−1/2
AB  

for the choice of τAB in (3.50). With this setup, we can now readily establish the desired 
inequality by employing the operator Jensen inequality [HP03] and operator convexity of 
the function f:

Q̃f (XAB‖YAB; τAB) = 〈ϕXAB |ABÂB̂f (τ−1
AB ⊗ YT

ÂB̂)|ϕ
XAB〉ABÂB̂� (3.56)

= 〈ϕXA |AÂV†f (τ−1
AB ⊗ YT

ÂB̂)V|ϕXA〉AÂ� (3.57)

� 〈ϕXA |AÂf (V†[τ−1
AB ⊗ YT

ÂB̂]V)|ϕXA〉AÂ� (3.58)

= 〈ϕXA |AÂf (ω−1
A ⊗ YT

Â )|ϕ
XA〉AÂ� (3.59)

= Q̃f (XA‖YA;ωA).� (3.60)

		 Taking a supremum over τAB such that τAB > 0 and Tr{τAB} = 1, we conclude that the 
following inequality holds for all invertible states ωA:

Q̃f (XAB‖YAB) � Q̃f (XA‖YA;ωA).� (3.61)

		 After taking a supremum over invertible states ωA, we find that the inequality in (3.31) 
holds when XAB is invertible.

	Case XA  >  0 , but XAB not invertible: � Consider the following isometry:

VAÂ→ABÂB̂ ≡ X1/2
AB

[
X−1/2

A ⊗ IÂ

]
|Γ〉BB̂.� (3.62)

		 The operator VAÂ→AÂBB̂ is indeed an isometry because

V†V =
(
〈Γ|BB̂

[
X−1/2

A ⊗ IÂ

]
X1/2

AB

)(
X1/2

AB

[
X−1/2

A ⊗ IÂ

]
|Γ〉BB̂

)
� (3.63)

= 〈Γ|BB̂

[
X−1/2

A ⊗ IÂ

]
XAB

[
X−1/2

A ⊗ IÂ

]
|Γ〉BB̂� (3.64)

=
[
X−1/2

A ⊗ IÂ

]
〈Γ|BB̂XAB|Γ〉BB̂

[
X−1/2

A ⊗ IÂ

]
� (3.65)

=
[
X−1/2

A ⊗ IÂ

]
XA

[
X−1/2

A ⊗ IÂ

]
� (3.66)

= X−1/2
A XAX−1/2

A ⊗ IÂ� (3.67)

= IA ⊗ IÂ.� (3.68)

		 Then, for δ ∈ (0, 1) and ωA an invertible density operator, take τAB to be the following 
invertible density operator:
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τAB = (1 − δ)X1/2
AB

([
X−1/2

A ωAX−1/2
A

]
⊗ IB

)
X1/2

AB + δξAB,� (3.69)

where ξAB is some invertible density operator. We then find that

V†(τ−1
AB ⊗ YT

ÂB̂)V

= 〈Γ|BB̂X−1/2
A X1/2

AB (τ−1
AB ⊗ YT

ÂB̂)X
1/2
AB X−1/2

A |Γ〉BB̂

� (3.70)

= 〈Γ|BB̂X−1/2
A X1/2

AB τ−1
AB X1/2

AB X−1/2
A ⊗ YT

ÂB̂|Γ〉BB̂� (3.71)

= 〈Γ|BB̂ω
−1/2
A ω

1/2
A X−1/2

A X1/2
AB τ−1

AB X1/2
AB X−1/2

A ω
1/2
A ω

−1/2
A ⊗ YT

ÂB̂|Γ〉BB̂� (3.72)

� 〈Γ|BB̂ω
−1/2
A

∥∥∥ω1/2
A X−1/2

A X1/2
AB τ−1

AB X1/2
AB X−1/2

A ω
1/2
A

∥∥∥
∞

ω
−1/2
A ⊗ YT

ÂB̂|Γ〉BB̂

� (3.73)

=
∥∥∥τ−1/2

AB X1/2
AB X−1/2

A ωAX−1/2
A X1/2

AB τ
−1/2
AB

∥∥∥
∞

〈Γ|BB̂ω
−1
A ⊗ YT

ÂB̂|Γ〉BB̂� (3.74)

�
1

1 − δ

[
ω−1

A ⊗ YT
Â

]
.� (3.75)

		 The last equality follows because ‖Z†Z‖∞ = ‖ZZ†‖∞ for any operator Z (here we set 

Z = τ
−1/2
AB X1/2

AB X−1/2
A ω

1/2
A ). The last inequality follows because

∥∥∥τ−1/2
AB X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB τ

−1/2
AB

∥∥∥
∞

= inf
{
µ : τ−1/2

AB X1/2
AB X−1/2

A ωAX−1/2
A X1/2

AB τ
−1/2
AB � µIAB

}� (3.76)

= inf
{
µ : X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB � µ τAB

}
� (3.77)

= inf

{
µ : X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB � µ

[
(1 − δ)X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB + δξAB

]}
� (3.78)

�
1

1 − δ
. � (3.79)

		 Then consider that

〈ϕXAB |ABÂB̂f (τ−1
AB ⊗ YT

ÂB̂)|ϕ
XAB〉ABÂB̂ = 〈ϕXA |AÂV†f (τ−1

AB ⊗ YT
ÂB̂)V|ϕXA〉AÂ� (3.80)

� 〈ϕXA |AÂf (V† [τ−1
AB ⊗ YT

ÂB̂

]
V)|ϕXA〉AÂ� (3.81)

� 〈ϕXA |AÂf ([1 − δ]
−1 [

ω−1
A ⊗ YT

Â

]
)|ϕXA〉AÂ,

� (3.82)
		 where the first inequality is a consequence of the operator Jensen inequality and the 

second follows from (3.70)–(3.75) and operator anti-monotonicity of the function f. 
Taking a supremum over invertible density operators τAB, we then conclude that the fol-
lowing inequality holds for all δ ∈ (0, 1) and for all invertible density operators ωA:
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Q̃f (XAB‖YAB) � 〈ϕXA |AÂf ([1 − δ]
−1 [

ω−1
A ⊗ YT

Â

]
)|ϕXA〉AÂ.� (3.83)

		 Since this inequality holds for all δ ∈ (0, 1) and for all invertible density operators ωA, 
we can appeal to continuity of the function f (taking the limit δ ↘ 0) and then take a 
supremum over all invertible density operators ωA to conclude the desired inequality for 
the case XA  >  0, but XAB is not invertible:

Q̃f (XAB‖YAB) � Q̃f (XA‖YA),� (3.84)

		 as claimed.� ■ 

Remark 7.  I stress once again here that if XAB and YAB are invertible, then we only require 
operator convexity of the function f in order to arrive at the inequality in (3.31). One can ex-
amine the steps in (3.56)–(3.60) to see this.

Based on propositions 4 and 6 and the Stinespring dilation theorem [Sti55], we conclude 
the following data-processing theorem for the optimized quantum f-divergences:

Theorem 8 (Quantum data processing).  Let XS and YS be positive semi-definite op-
erators acting on a Hilbert space HS, and let NS→B be a quantum channel taking operators 
acting on HS to operators acting on a Hilbert space HB. Let f be an operator anti-monotone 
function with domain (0,∞) and range R . Then the following inequality holds

Q̃f (XS‖YS) � Q̃f (NS→B(XS)‖NS→B(YS)).� (3.85)

4.  Examples of optimized quantum f-divergences

I now show how several known quantum divergences are particular examples of an optimized 
quantum f-divergence, including the quantum relative entropy [Ume62] and the sandwiched 
Rényi relative quasi-entropies [MLDS+13, WWY14]. The result will be that theorem 8 recov-
ers quantum data processing for the sandwiched Rényi relative entropies for the full range of 
parameters for which it is known to hold. Thus, one benefit of theorem 8 and earlier work of 
[Pet85, Pet86a, TCR09] is a single, unified approach, based on the operator Jensen inequality 
[HP03], for establishing quantum data processing for all of the Petz– and sandwiched Rényi 
relative entropies for the full parameter ranges for which data processing is known to hold.

4.1.  Quantum relative entropy as optimized quantum f-divergence

Let τ be an invertible state, ε > 0, and X and Y positive semi-definite. Let X = X/Tr{X}. Pick 
the function

f (x) = − log x,� (4.1)

which is an operator anti-monotone function with domain (0,∞) and range R , and we find 
that
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1
Tr{X}

〈ϕX|SŜ

[
− log(τ−1

S ⊗
(
Y + εΠ⊥

Y

)T

Ŝ )
]
|ϕX〉SŜ

= 〈ϕX|SŜ

[
log(τS)⊗ IŜ − IS ⊗ log

(
Y + εΠ⊥

Y

)T

Ŝ

]
|ϕX〉SŜ

� (4.2)

= 〈ϕX|SŜ log(τS)⊗ IŜ|ϕ
X〉SŜ − 〈ϕX|SŜIS ⊗ log

(
Y + εΠ⊥

Y

)T

Ŝ |ϕ
X〉SŜ� (4.3)

= Tr{X log τ} − Tr{X log(Y + εΠ⊥
Y )}� (4.4)

� Tr{X logX} − Tr{X log(Y + εΠ⊥
Y )}� (4.5)

= D(X‖Y + εΠ⊥
Y ).� (4.6)

The inequality is a consequence of Klein’s inequality [Kle31] (see also [Rus02]), establishing 
that the optimal τ is set to X2. Now taking a supremum over ε > 0, we find that

Q̃− log(·)(X‖Y) = Tr{X}D(X‖Y),� (4.7)

where the quantum relative entropy D(X‖Y) is defined as [Ume62]

D(X‖Y) = Tr{X
[
logX − log Y

]
}� (4.8)

if supp(X) ⊆ supp(Y) and D(X‖Y) = +∞ otherwise.

4.2.  Sandwiched Rényi relative quasi-entropy as optimized quantum f-divergence

Take τ, ε, X, and Y as defined in section 4.1. For α ∈ [1/2, 1), pick the function

f (x) = −x(1−α)/α,� (4.9)

which is an operator anti-monotone function with domain (0,∞) and range R . Note that this 
is a reparametrization of −xβ for β ∈ (0, 1]. I now show that

Q̃−(·)(1−α)/α(X‖Y) = −
∥∥∥Y(1−α)/2αXY(1−α)/2α

∥∥∥
α

,� (4.10)

which is the known expression for sandwiched Rényi relative quasi-entropy for α ∈ [1/2, 1) 
[MLDS+13, WWY14]. To see this, consider that

−〈ϕX|SŜ

[
τ−1

S ⊗
(
Y + εΠ⊥

Y

)T

Ŝ

](1−α)/α

|ϕX〉SŜ

= −〈ϕX|SŜτ
(α−1)/α
S ⊗

((
Y + εΠ⊥

Y

)T

Ŝ

)(1−α)/α

|ϕX〉SŜ

� (4.11)

= −〈Γ|SŜX1/2
S τ

(α−1)/α
S X1/2

S ⊗
((

Y + εΠ⊥
Y

)T

Ŝ

)(1−α)/α

|Γ〉SŜ� (4.12)

2 Technically, we would require an invertible τ that approximates X  arbitrarily well in order to achieve equality in 
Klein’s inequality. One can alternatively establish the inequality Tr{X logX} � Tr{X log τ} by employing the non-
negativity of quantum relative entropy D(X‖τ) � 0 for quantum states.
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= −Tr
{

X1/2τ (α−1)/αX1/2(Y + εΠ⊥
Y )(1−α)/α

}
� (4.13)

= −Tr
{

X1/2(Y + εΠ⊥
Y )(1−α)/αX1/2τ (α−1)/α

}
.� (4.14)

The formulas in the above development are related to those given in the proof of [MLDS+13, 
lemma 19]. Now optimizing over invertible states τ and employing Hölder duality [Bha97], in 
the form of the reverse Hölder inequality and as observed in [MLDS+13], we find that

sup
τ>0,

Tr{τ}=1

[
−Tr

{
X1/2(Y + εΠ⊥

Y )(1−α)/αX1/2τ (α−1)/α
}]

= −
∥∥∥X1/2(Y + εΠ⊥

Y )(1−α)/αX1/2
∥∥∥
α

,

� (4.15)
where for positive semi-definite Z, we define

‖Z‖α = [Tr{Zα}]1/α .� (4.16)

Now taking the limit ε ↘ 0, we get that

Q̃−(·)(1−α)/α(X‖Y) = −
∥∥∥X1/2Y(1−α)/αX1/2

∥∥∥
α
= −

∥∥∥Y(1−α)/2αXY(1−α)/2α
∥∥∥
α

,
�

(4.17)

which is the sandwiched Rényi relative quasi-entropy for the range α ∈ [1/2, 1). The sand-
wiched Rényi relative entropy itself is defined up to a normalization factor as [MLDS+13, 
WWY14]

D̃α(X‖Y) =
α

α− 1
log

∥∥∥Y(1−α)/2αXY(1−α)/2α
∥∥∥
α

.� (4.18)

Thus, theorem 8 implies quantum data processing for the sandwiched Rényi relative entropy

D̃α(X‖Y) � D̃α(N (X)‖N (Y)),� (4.19)

for the parameter range α ∈ [1/2, 1), which is a result previously established in [FL13].
For α ∈ (1,∞], pick the function

f (x) = x(1−α)/α,� (4.20)

which is an operator anti-monotone function with domain (0,∞) and range R . Note that this 
is a reparametrization of xβ for β ∈ [−1, 0). I now show that

Q̃(·)(1−α)/α(X‖Y) =
{∥∥Y(1−α)/2αXY(1−α)/2α

∥∥
α

if supp(X) ⊆ supp(Y)
+∞ else

,

� (4.21)
which is the known expression for sandwiched Rényi relative quasi-entropy for α ∈ (1,∞] 
[MLDS+13, WWY14]. To see this, consider that the same development as above gives that

〈ϕX|SŜ(τ
−1
S ⊗

(
Y + εΠ⊥

Y

)T

Ŝ )
(1−α)/α|ϕX〉SŜ = Tr

{
X1/2(Y + εΠ⊥

Y )(1−α)/αX1/2τ (α−1)/α
}

.� (4.22)

Again employing Hölder duality, as observed in [MLDS+13], we find that

sup
τ>0,Tr{τ}=1

Tr
{

X1/2(Y + εΠ⊥
Y )(1−α)/αX1/2τ (α−1)/α

}
=

∥∥∥X1/2(Y + εΠ⊥
Y )(1−α)/αX1/2

∥∥∥
α

.�

(4.23)
Now taking the limit ε ↘ 0, we get that
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Q̃(·)(1−α)/α(X‖Y) =
∥∥∥X1/2Y(1−α)/αX1/2

∥∥∥
α
=

∥∥∥Y(1−α)/2αXY(1−α)/2α
∥∥∥
α

,
�

(4.24)

where the equalities hold if supp(X) ⊆ supp(Y) and otherwise Q̃(·)(1−α)/α(X‖Y) = +∞, as 
observed in [MLDS+13]. The sandwiched Rényi relative entropy itself is defined up to a 
normalization factor as in (4.18) if supp(X) ⊆ supp(Y) and otherwise D̃α(X‖Y) = +∞ for 
α ∈ (1,∞] [MLDS+13, WWY14]. Thus, theorem 8 implies quantum data processing for the 
sandwiched Rényi relative entropy

D̃α(X‖Y) � D̃α(N (X)‖N (Y)),� (4.25)

for the parameter range α ∈ (1,∞], which is a result previously established in full by [FL13, 
Bei13, MO15] and for α ∈ (1, 2] by [MLDS+13, WWY14].

4.3.  Optimized α-divergence: monotonicity under partial trace for invertible density operators

Interestingly, for α ∈ [1/3, 1/2], the function

f (x) = x(1−α)/α� (4.26)

is operator convex on the domain (0,∞) and with range R . Note that this is a reparametri-
zation of xβ for β ∈ [1, 2]. Thus, by following the same development as before, for positive 
definite X and Y we find that

〈ϕX|SŜ(τ
−1
S ⊗ YT

Ŝ )
β |ϕX〉SŜ = Tr

{
X1/2YβX1/2τ−β

}
.� (4.27)

Now optimizing over τ, we find that the following function

Q̃(·)β (X‖Y) = sup
τ>0,Tr{τ}=1

Tr
{

X1/2YβX1/2τ−β
}

� (4.28)

is monotone with respect to partial trace for β ∈ [1, 2]. That is, the inequality

Q̃(·)β (XAB‖YAB) � Q̃(·)β (XA‖YA)� (4.29)

holds for β ∈ [1, 2] and positive definite XAB and YAB, by applying remark 7.
Take note that Q̃(·)β (X‖Y) for β ∈ [1, 2] is not a sandwiched Rényi relative quasi-entropy 

because the optimization over τ goes the opposite way when compared to that for the sand-
wiched Rényi relative entropy for α ∈ [1/3, 1/2]. This is consistent with the fact that data 
processing is known not to hold for the sandwiched Rényi relative entropy for α ∈ (0, 1/2) 
[MLDS+13, DL14, BFT17].

5.  On Petz’s quantum f-divergence

I now discuss in more detail the relation between the optimized quantum f-divergence and the 
Petz quantum f-divergence from [Pet85, Pet86a]. In brief, we find that the Petz f-divergence 
can be recovered by replacing τ in definition 1 with X + δπ⊥

X .

Definition 9 (Petz quantum f-divergence).  Let f be a continuous function with domain 
(0,∞) and range R . For positive semi-definite operators X and Y acting on a Hilbert space HS, 
the Petz quantum f-divergence is defined as
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Qf (X‖Y) ≡ sup
ε>0

lim
δ↘0

〈ϕX|SŜf
([

XS + δπ⊥
X

]−1 ⊗
[
YŜ + εΠ⊥

Y

]T
)
|ϕX〉SŜ,� (5.1)

where π⊥
X = Π⊥

X /Tr{Π⊥
X } is the maximally mixed state on the kernel of X and the rest of the 

notation is the same as in definition 1. If the kernel of X is equal to zero, then we set π⊥
X = 0.

Let spectral decompositions of positive semi-definite X and positive definite Y be given as

X =
∑

x

λx|ψx〉〈ψx|, Y =
∑

y

µy|φy〉〈φy|.� (5.2)

By following the same development needed to arrive at (2.13), we see that Qf (X‖Y) can be 
written for non-invertible X and invertible Y as

Qf (X‖Y) = lim
δ↘0

∑
y

[ ∑
x:λx �=0

f (µyλ
−1
x )Tr{X1/2|ψx〉〈ψx|X1/2|φy〉〈φy|}

+ f (µyTr{Π⊥
X }δ−1)Tr{X1/2Π⊥

X X1/2|φy〉〈φy|}

]�

(5.3)

= lim
δ↘0

∑
y

∑
x:λx �=0

f (µyλ
−1
x )Tr{X1/2|ψx〉〈ψx|X1/2|φy〉〈φy|}

� (5.4)

=
∑

y

∑
x:λx �=0

λxf (µyλ
−1
x ) |〈ψx|φy〉|2 .

� (5.5)

Note that we get the same formula for Qf (X‖Y) if X is invertible. For non-invertible Y, we just 
substitute Y + εΠ⊥

Y  and take the supremum over ε > 0 at the end.
The next concern is about quantum data processing with the Petz f-divergence as defined 

above. To show this, we take f to be an operator anti-monotone function with domain (0,∞) 
and range R . As discussed in section 3, one can establish data processing by showing isomet-
ric invariance and monotonicity under partial trace. Isometric invariance of Qf (X‖Y) follows 
from the same proof as given in proposition 4. Monotonicity of Qf (XAB‖YAB) under partial 
trace breaks down into three cases depending on invertibility of XAB or XA, as discussed in 
the proof of proposition 6. For the proof, we assume as previously done that YAB is invertible 
throughout. If it is not, then definition 9 forces it to be invertible and then a supremum over 
ε > 0 is finally taken at the end.

	 1.	�The case when XAB is invertible is already handled by Petz’s proof from [Pet85, Pet86a], 
which relies on the operator Jensen inequality [HP03]. In this case, the operator 
XAB + δπ⊥

AB reduces to XAB because Π⊥
AB = 0.

	 2.	�The case when XAB is not invertible but XA is can be understood as an appeal to continuity, 
as discussed in remark A.1. For this case, we take the operator τAB for some δ1 ∈ (0, 1) 
to be (1 − δ1)XAB + δ1π

⊥
XAB

, which is a positive definite operator. The rest of the proof 
proceeds the same and then the monotonicity under partial trace holds for this case.

	 3.	�As far as I can tell, the case when XA is not invertible was not discussed in several papers 
of Petz et al [Pet85, Pet86a, PS09, Pet10b, Pet10a], and it was only considered recently in 
[HM17, proposition 3.12]. However, the method I have given in the proof of proposition 
6 appears to be different. Also, remark A.1 in the appendix discusses how this approach 
arguably extends beyond a mere appeal to continuity. For this case, we take the channel 
in (A.1) to be

M M Wilde﻿J. Phys. A: Math. Theor. 51 (2018) 374002



20

ZA → X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ IB

)
X1/2

AB + Tr{Π⊥
XA

ZA}π⊥
XAB

.� (5.6)

		 Inputting XA + δπ⊥
A  then leads to the output XAB + δπ⊥

AB, which is a positive definite 
operator. The rest of the proof proceeds the same and then the monotonicity under partial 
trace holds for this case.

Special and interesting cases of the Petz f-divergence are found by taking

f (x) = − log x,� (5.7)

f (x) = −xβ for β ∈ (0, 1],� (5.8)

f (x) = xβ for β ∈ [−1, 0).� (5.9)

Each of these functions are operator anti-monotone with domain (0,∞) and range R . By 
following similar reasoning as in section 4 to simplify Qf and by applying the above argu-
ments for data processing, we find that all of the following quantities obey the data processing 
inequality:

Q− log(·)(X‖Y) = Tr{X}D(X‖Y),� (5.10)

Q−(·)β (X‖Y) = −Tr{X1−βYβ}, for β ∈ (0, 1],� (5.11)

Q(·)β (X‖Y) =
{

Tr{X1−βYβ} if supp(X) ⊆ supp(Y)
+∞ else

, for β ∈ [−1, 0),

� (5.12)
where again X = X/Tr{X}. By a reparametrization α = 1 − β, we find that the latter two 
quantities are directly related to the Petz Rényi relative entropy, defined as

Dα(X‖Y) ≡
{ 1

α−1 logTr{XαY1−α} if supp(X) ⊆ supp(Y) and α > 1
+∞ else

.

� (5.13)
Thus, the data processing proof establishes the data processing inequality for Dα(X‖Y) for 
α ∈ [0, 1) ∪ (1, 2], which is the range for which it was already known to hold from prior work 
[Pet86a, TCR09].

Remark 10.  One beneficial aspect of the present paper is that we now see that there is a 
single, unified approach, based on the operator Jensen inequality, for establishing the data 
processing inequality for both the Petz–Rényi relative entropy for α ∈ [0, 1) ∪ (1, 2] and the 
sandwiched Rényi relative entropy for α ∈ [1/2, 1) ∪ (1,∞], the full ranges of α for which 
the data processing inequality is already known from [Pet85, Pet86a, TCR09, MLDS+13, 
WWY14, FL13, Bei13, MO15] to hold for these quantities. Prior to the present paper, there 
were a variety of different ways for establishing the data processing inequality for the sand-
wiched Rényi relative entropy, which can be found in [MLDS+13, WWY14, FL13, Bei13, 
MO15].

Interestingly, for β ∈ [1, 2], the function

f (x) = xβ� (5.14)

M M Wilde﻿J. Phys. A: Math. Theor. 51 (2018) 374002



21

is operator convex on the domain (0,∞) and with range R . Thus, for positive definite X and 
Y we find that

Q(·)β (X‖Y) = Tr
{

X1−βYβ
}

� (5.15)

is monotone with respect to partial trace for β ∈ [1, 2]. That is, the inequality

Q(·)β (XAB‖YAB) � Q(·)β (XA‖YA)� (5.16)

holds for β ∈ [1, 2] and positive definite XAB and YAB, by applying remark 7. By reparametriz-
ing with α = 1 − β, we find that the following inequality holds for positive definite XAB and 
YAB and α ∈ [−1, 0]:

Dα(XAB‖YAB) � Dα(XA‖YA).� (5.17)

Note that there is trivially an equality when α = 0, under the assumption that XAB and YAB are 
positive definite, because

D0(XAB‖YAB) = − logTr{YAB} = − logTr{YA} = D0(XA‖YA).� (5.18)

5.1.  Inequality for sandwiched and Petz–Rényi relative entropies

The development above motivates the following inequality relating the sandwiched and Petz–
Rényi relative entropies. The same inequality was shown in [Jen18] when X and Y are normal 
states of an arbitrary von Neumann algebra and for α > 1, whereas the following proposition 
considers the case when X and Y are positive semi-definite operators acting on a finite-dimen-
sional Hilbert space and the range α ∈ [1/2, 1) ∪ (1,∞).

Proposition 11.  Let X and Y be positive semi-definite operators such that X, Y �= 0. Then 
the following inequality holds for α ∈ [1/2, 1) ∪ (1,∞):

D̃α(X‖Y) � D(2α−1)/α(X‖Y)− logTr{X}.� (5.19)

Proof.  Without loss of generality, let us assume that X and Y are invertible. The above in-
equality follows simply by picking the state τ = X/Tr{X}. Indeed, let α ∈ [1/2, 1). Consider 
that

−
∥∥∥X1/2Y(1−α)/αX1/2

∥∥∥
α
= sup

τ>0,
Tr{τ}=1

[
−Tr

{
X1/2Y(1−α)/αX1/2τ (α−1)/α

}]

�

(5.20)

� −Tr
{

X1/2Y(1−α)/αX1/2 (X/Tr{X})(α−1)/α
}

� (5.21)

= −Tr
{

Y(1−α)/αX(2α−1)/α
}
[Tr{X}](1−α)/α .� (5.22)

This inequality implies that

log
∥∥∥X1/2Y(1−α)/αX1/2

∥∥∥
α
� logTr

{
X(2α−1)/αY(1−α)/α

}
+

1 − α

α
logTr{X}.

� (5.23)

Multiplying by α
α−1

 leads to
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D̃α(X‖Y) =
α

α− 1
log

∥∥∥X1/2Y(1−α)/αX1/2
∥∥∥
α

� (5.24)

�
α

α− 1
logTr

{
X(2α−1)/αY(1−α)/α

}
− logTr{X}� (5.25)

=
1[ 2α−1

α

]
− 1

logTr
{

X(2α−1)/αY(1−α)/α
}
− logTr{X}� (5.26)

= D 2α−1
α

(X‖Y)− logTr{X}.� (5.27)

This establishes the claim for α ∈ [1/2, 1). The proof for α ∈ (1,∞) is very similar.� ■ 

6.  Classical and classical-quantum cases

When the operators X and Y commute, the optimized f-divergence takes on a simpler form, as 
stated in the following proposition:

Proposition 12 (Classical case).  Let f be an operator anti-monotone function with  
domain (0,∞) and range R . Let X and Y be positive semi-definite operators that commute, 
having spectral decompositions

X =
∑

z

λz|z〉〈z|, Y =
∑

z

µz|z〉〈z|,� (6.1)

for a common eigenbasis {|z〉}z . Then

Q̃f (X‖Y) = sup
{τz}z, ε>0




∑
z : µz �=0

λzf (µz/τz) +
∑

z : µz=0

λzf (ε/τz) : τz > 0 ∀z,
∑

z

τz = 1


 .� (6.2)

Proof.  For simplicity, we prove the statement for the case in which Y is invertible, and 
then the extension to non-invertible Y is straightforward. For a spectral decomposition of τ as 
τ =

∑
t νt|φt〉〈φt| and by applying (2.13), we find that

Q̃f (X‖Y; τ) =
∑

z,t

f (µz/νt)|〈z|X1/2|φt〉|2� (6.3)

=
∑

z,t

f ((νt/µz)
−1)λz|〈z|φt〉|2� (6.4)

�
∑

z

f ((τz/µz)
−1)λz,� (6.5)

where τz =
∑

t |〈z|φt〉|2νt = 〈z|τ |z〉. The inequality follows because the function f(x−1) is  
concave, due to the assumption that f is operator anti-monotone with domain (0,∞) and  
range R .� ■ 
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If X and Y have a classical-quantum form, as follows

X =
∑

z

|z〉〈z| ⊗ Xz, Y =
∑

z

|z〉〈z| ⊗ Yz,� (6.6)

where {|z〉}z  is an orthonormal basis and {Xz}z and {Yz}z  are sets of positive semi-definite 
operators, then the optimized f-divergence simplifies as well, generalizing proposition 12. 
That is, it suffices to optimize over positive definite states τ respecting the same classical-
quantum form:

Proposition 13 (Classical-quantum case).  Let f be an operator anti-monotone func-
tion with domain (0,∞) and range R . Let X and Y be positive semi-definite, having the clas-
sical-quantum form in (6.6). Then

Q̃f (X‖Y) = sup
{τ̂ z}z, ε>0

∑
z

Q̃f (Xz‖Yz + εΠ⊥
Yz

; τ̂ z),� (6.7)

where each τ̂ z  is positive definite such that 
∑

z Tr{τ̂ z} = 1.

Proof.  The main idea here is to show that the optimal τ takes on a classical-quantum form 
as well, as τ =

∑
z |z〉〈z| ⊗ τ z. This follows from an application of the operator Jensen ine-

quality [HP03], as shown below. We focus on the case in which each Yz is invertible. We adopt 
system labels Z for the classical system and A for the quantum system. For a given positive 
definite τ with Tr{τ} = 1, we have that

Q̃f (X‖Y; τ) = 〈ϕX|ZAẐÂf (τ−1
ZA ⊗ YT

ẐÂ)|ϕ
X〉ZAẐÂ� (6.8)

= 〈ϕX|ZAẐÂf

(
τ−1

ZA ⊗
∑

z

|z〉〈z|Ẑ ⊗ (Yz
Â
)T

)
|ϕX〉ZAẐÂ� (6.9)

= 〈ϕX|ZAẐÂ

∑
z

|z〉〈z|Ẑ ⊗ f
(
τ−1

ZA ⊗ (Yz
Â
)T
)
|ϕX〉ZAẐÂ.� (6.10)

Consider that |z〉〈z|Ẑ  is invariant under the action of the decoherence or ‘pinching’ channel

(·) → DẐ(·) =
∑

z

|z〉〈z|Ẑ(·)|z〉〈z|Ẑ .� (6.11)

This implies that

〈ϕX|ZAẐÂf (τ−1
ZA ⊗ YT

ẐÂ)|ϕ
X〉ZAẐÂ = 〈ϕX|ZAẐÂDẐ

[
f (τ−1

ZA ⊗ YT
ẐÂ)

]
|ϕX〉ZAẐÂ.

� (6.12)

By (2.16), the fact that XZA = DZ(XZA), and defining g(x)  =  f(x−1), we find that

〈ϕX|ZAẐÂDẐ

[
f (τ−1

ZA ⊗ YT
ẐÂ)

]
|ϕX〉ZAẐÂ = 〈ϕX|ZAẐÂDZ

[
f (τ−1

ZA ⊗ YT
ẐÂ)

]
|ϕX〉ZAẐÂ

�
(6.13)

= 〈ϕX|ZAẐÂDZ
[
g(τZA ⊗ (YT

ẐÂ)
−1)

]
|ϕX〉ZAẐÂ� (6.14)

� 〈ϕX|ZAẐÂ

[
g(DZ(τZA)⊗ (YT

ẐÂ)
−1)

]
|ϕX〉ZAẐÂ� (6.15)

= 〈ϕX|ZAẐÂf ([DZ(τZA)]
−1 ⊗ YT

ẐÂ)|ϕ
X〉ZAẐÂ.� (6.16)
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The inequality follows from the operator Jensen inequality [HP03] and the fact that g(x) is 
operator concave with domain (0,∞) and range R . Consider that

DZ(τZA) =
∑

z

|z〉〈z|Z ⊗ τ̂ z
A,� (6.17)

for some {τ z}z, where each τ̂ z
A is positive definite and 

∑
z Tr{τ̂ z

A} = 1. Now consider that

〈ϕX|ZAẐÂf ([DZ(τZA)]
−1 ⊗ YT

ẐÂ)|ϕ
X〉ZAẐÂ

=
∑
z,z′

〈ϕX|ZAẐÂ ⊗ |z〉〈z|Z ⊗ |z′〉〈z′|Ẑ ⊗ f
(
(τ̂ z

A)
−1 ⊗ (Yz′

Â
)T
)
|ϕX〉ZAẐÂ

� (6.18)

=
∑

z

〈ϕXz
|AÂf

(
(τ̂ z

A)
−1 ⊗ (Yz

Â
)T
)
|ϕXz

〉AÂ� (6.19)

=
∑

z

Q̃f (Xz‖Yz; τ̂ z),� (6.20)

where the second-to-last line follows because

|ϕX〉ZAẐÂ = (X1/2
ZA ⊗ IẐÂ)|Γ〉ZẐ |Γ〉AÂ� (6.21)

=
∑

z

|z〉〈z|Z ⊗ (Xz
A)

1/2|Γ〉ZẐ |Γ〉AÂ� (6.22)

=
∑

z

|z〉Z |z〉Ẑ(X
z
A)

1/2|Γ〉AÂ� (6.23)

=
∑

z

|z〉Z |z〉Ẑ |ϕ
Xz
〉AÂ.� (6.24)

This completes the proof after optimizing over {τ̂ z}z satisfying 
∑

z Tr{τ̂ z} = 1. We handle the 
case of non-invertible Y by taking a supremum over ε > 0 at the end.� ■ 

7.  Optimized quantum f-information measures

It is well known that the quantum relative entropy is a parent quantity for many information 
measures used in quantum information theory (see, e.g. [Dat11] or [Wil17, chapter 11]). As 
such, once one has a base relative entropy or divergence to work with, there is now a rela-
tively standard recipe for generating other information measures, such as entropy, conditional 
entropy, coherent information, mutual information, entanglement measures, and more gener-
ally resource measures. This method has been used in many works now [VP98, Dat09, Sha10, 
MH11, WWY14, MLDS+13, Bei13, GW15, TWW17, WTB17, KW17]. Each of the resulting 
quantities then satisfies a particular kind of quantum data processing inequality, which follows 
as a consequence of the monotonocity of the underlying relative entropy.

With the above in mind, we now mention some different information measures that can be 
derived from the optimized f-divergence and we state the data processing inequality that they 
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satisfy. In what follows, ρAB is a density operator acting on a tensor-product Hilbert space 
HA ⊗HB, ρA = TrB{ρAB}, and f is an operator anti-monotone function with domain (0,∞) 
and range R . Let WA→A′ denote a subunital channel, satisfying WA→A′(IA) � IA′, and let 
NA→A′ and MB→B′ be quantum channels. All statements about data processing follow from 
theorem 8 and some slight extra reasoning (see, e.g. [Wil17, section  11.9]). One can find 
various operational interpretations of entropic quantities discussed in [Wil17, Hay06, Hol12].

	 1.	�The optimized f-entropy is defined as

S̃f (A)ρ ≡ S̃f (ρA) ≡ −Q̃f (ρA‖IA).� (7.1)

		 It does not decrease under the action of a subunital channel WA→A′, in the sense that

S̃f (A)ρ � S̃f (A′)W(ρ).� (7.2)

	 2.	�The optimized f-mutual information is defined as

Ĩf (A; B)ρ ≡ inf
σB

Q̃f (ρAB‖ρA ⊗ σB).� (7.3)

		 It does not increase under the action of the product channel NA→A′ ⊗MB→B′, in the 
sense that

Ĩf (A; B)ρ � Ĩf (A′; B′)(N⊗M)(ρ).� (7.4)

	 3.	�The optimized conditional f-entropy is defined as

S̃f (A|B)ρ ≡ − inf
σB

Q̃f (ρAB‖IA ⊗ σB).� (7.5)

		 It does not decrease under the action of the product channel WA→A′ ⊗MB→B′:

S̃f (A|B)ρ � S̃f (A|B)(W⊗M)(ρ).� (7.6)

	 4.	�Related to the above, the optimized f-coherent information is defined as

Ĩf (A〉B)ρ ≡ −S̃f (A|B)ρ,� (7.7)

		 and we have that

Ĩf (A〉B)ρ � Ĩf (A〉B)(W⊗M)(ρ).� (7.8)

	 5.	�In recent years, there has been much activity surrounding quantum resource theories 
[BG15, Fri15, dRKR15, KdR16, CG18]. Such a resource theory consists of a few basic 
elements. There is a set F  of free quantum states, i.e., those that the players involved are 
allowed to access without any cost. Related to these, there is a set of free channels, and 
they should have the property that a free state remains free after a free channel acts on it. 
Once these are defined, it follows that any state that is not free is considered resourceful, 
i.e., useful in the context of the resource theory. We can also then define a measure of 
the resourcefulness of a quantum state, and some fundamental properties that it should 
satisfy are that 1) it should be monotone non-increasing under the action of a free channel 
and 2) it should be equal to zero when evaluated on a free state. A typical choice of a 
resourcefulness measure of a state ρ satisfying these requirements is the relative entropy 
of resourcefulness, defined in terms of relative entropy as infσ∈F D(ρ‖σ). We can thus 
consider an optimized f-relative entropy of resourcefulness as
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R̃f (ρ) ≡ inf
σ∈F

Q̃f (ρ‖σ),� (7.9)

		 and it thus satisfies the following data processing inequality

R̃f (ρ) � R̃f (N (ρ)),� (7.10)

		 whenever N  is a free channel as described above.
	 6.	�We can extend all of the above measures to quantum channel measures by optimizing 

over inputs to the channel. For example, optimized f-mutual information of a channel 
NA→B is defined as

sup
ψRA

Ĩf (R; B)ω ,� (7.11)

		 where ωRB = NA→B(ψRA) and ψRA is a pure bipartite state. Due to the Schmidt decompo-
sition theorem and data processing, it suffices to optimize over pure bipartite states ψRA 
with the reference system R isomorphic to the channel input system A.

7.1.  Duality of optimized conditional f-entropy

This paper’s final contribution is the following proposition, which generalizes a well known 
duality relation for conditional quantum entropy:

Proposition 14 (Duality).  Let f be an operator anti-monotone function with domain 
(0,∞) and range R . For a pure state |ψ〉〈ψ|ABC , we have that

S̃f (A|B)ψ = −S̃k(A|C)ψ ,� (7.12)

where k(x)  =  −f(x−1).

Proof.  The method of proof is related to that given in [Bei13, MLDS+13]. Set 
ρAB = TrC{|ψ〉〈ψ|ABC} and consider that

S̃f (A|B)ψ = − inf
σB

Q̃f (ρAB‖IA ⊗ σB)� (7.13)

= − inf
σB

sup
τAB

〈ϕρAB |ABÂB̂f (τ−1
AB ⊗ IÂ ⊗ σT

B̂)|ϕ
ρAB〉ABÂB̂� (7.14)

= − sup
τAB

inf
σB

〈ϕρAB |ABÂB̂f (τ−1
AB ⊗ IÂ ⊗ σT

B̂)|ϕ
ρAB〉ABÂB̂� (7.15)

= − sup
τAB

inf
σB

〈ϕρAB |ABÂB̂f (IA ⊗ σB ⊗
(
τ−1

ÂB̂

)T
)|ϕρAB〉ABÂB̂� (7.16)

= − sup
τC

inf
σB

〈ψ|ABCf (IA ⊗ σB ⊗
(
τ−1

C

)T
)|ψ〉ABC.� (7.17)

The first two equalities follow by definition. For simplicity, we consider σB to be an in-
vertible density operator. The third equality follows from an application of the minimax 
theorem [Sio58], considering that f (x) is operator convex and f(x−1) is operator concave. 
The fourth equality follows by applying (2.13)–(2.17). The fifth equality follows because 
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|ϕρAB〉ABÂB̂ and |ψ〉ABC are purifications of ρAB and all purifications are related by an isom-
etry (see, e.g. [Wil17]). Furthermore, we have isometric invariance of the optimized 

〈ϕρAB |ABÂB̂f (IA ⊗ σB ⊗ (τ−1
ÂB̂

)T)|ϕρAB〉ABÂB̂ by the same reasoning as given in the proof of 
proposition 4. Continuing,

= − sup
τC

inf
σB

[
−〈ψ|ABC k(IA ⊗ σ−1

B ⊗ τT
C )|ψ〉ABC

]
� (7.18)

= inf
τC

sup
σB

〈ψ|ABC k(IA ⊗ σ−1
B ⊗ τT

C )|ψ〉ABC� (7.19)

= inf
τC

Q̃k(ψAC‖IA ⊗ τC)� (7.20)

= −S̃k(A|C)ψ .� (7.21)

The first equality follows from the definition of the function k. The second equality follows 
from propagating the inside minus sign to the outside. The last equalities follow from applying 
similar steps as in the beginning of the proof and then the definitions of Q̃k(ρAC‖IA ⊗ τC) and 
S̃k(A|C)ψ.� ■ 

When f (x) = x(1−α)/α for α ∈ (1,∞], we recover a duality relation similar to that for 
sandwiched Rényi relative entropy [Bei13, MLDS+13]. Duality relations for conditional 
entropy and the data processing inequality are known to be closely related to entropic uncer-
tainty relations [CCYZ12], so there could be interesting new ones to develop by choosing 
more general operator anti-monotone functions.

8.  Conclusion

The main contribution of the present paper is the definition of the optimized quantum f-diver-
gence and the proof that the data processing inequality holds for it whenever the function f is 
operator anti-monotone with domain (0,∞) and range R . The proof of the data processing 
inequality relies on the operator Jensen inequality [HP03], and it bears some similarities to 
the original approach from [Pet85, Pet86a, TCR09]. Furthermore, I showed how the sand-
wiched Rényi relative entropies are particular examples of the optimized quantum f-diver-
gence. As such, one benefit of this paper is that there is now a single, unified approach, based 
on the operator Jensen inequality [HP03], for establishing the data processing inequality for 
the Petz–Rényi and sandwiched Rényi relative entropies, for the full range of parameters for 
which it is known to hold. In the remainder of the paper, I considered other aspects such as the 
classical case, the classical-quantum case, and information measures that one could construct 
from the optimized f-divergence.

There are several directions that one could pursue going forward. Equation  (2.19) rep-
resents the function underlying the optimized f-divergence in the relative modular operator 
formalism—this should be helpful in understanding the optimized f-divergence in more gen-
eral contexts. Combined with the methods of [Pet85, Pet86a] and the approach in this paper, 
it is clear that the data processing inequality will hold in more general contexts. It would also 
be interesting to show that the data processing inequality holds for maps beyond quantum 
channels, such as the Schwarz and stochastic maps considered in [HMPB11]. I suspect that 
the methods of [HMPB11] and the present paper could be used to establish the data processing 
inequality for more general classes of maps.
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Appendix.  Final case for proposition 6

A.1.  Case XA not invertible

We now discuss how to extend the proof detailed in the main text to the case in which XA 

is not invertible (and thus XAB is not invertible either). In this case, with X−1/2
A  understood 

as a square-root inverse of XA on its support, the Petz recovery map in (3.35) is no longer 
a quantum channel, but it is instead a completely positive and trace non-increasing map. A 
standard method for producing a quantum channel from the map in (3.35) is to specify an 
additional action on the kernel of XA, as

ZA → X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ IB

)
X1/2

AB + Tr{Π⊥
XA

ZA}ξAB,� (A.1)

where we take ξAB to be an invertible density operator (see, e.g. [Wil17, chapter 12] for this 
standard construction). One can check that the map in (A.1) is completely positive and trace 
preserving, and furthermore, an invertible input state leads to an invertible output state. Our 
goal is now to find a Kraus decomposition for the above quantum channel, so that we can work 
with its isometric extension as we did previously. To begin with, suppose that the invertible 
state ξAB has a spectral decomposition as

ξAB =

|A||B|∑
l=1

pl|φl〉〈φl|AB,� (A.2)

where { pl}l  is a probability distribution and {|φl〉AB}l is an orthonormal basis. Then we can 
write the channel in (A.1) as

|B|∑
j=1

X1/2
AB

([
X−1/2

A ZAX−1/2
A

]
⊗ |j〉〈 j|B

)
X1/2

AB +

|A|∑
k=1

〈k|AΠ⊥
XA

ZAΠ
⊥
XA
|k〉AξAB

=

|B|∑
j=1

X1/2
AB

[
X−1/2

A ⊗ |j〉B

]
ZA

[
X−1/2

A ⊗ 〈 j|B
]

X1/2
AB

+

|A|∑
k=1

|A||B|∑
l=1

√
pl|φl〉AB〈k|AΠ⊥

XA
ZAΠ

⊥
XA
|k〉A〈φl|AB

√
pl.

�

(A.3)

Thus, Kraus operators for it are as follows:
{{

X1/2
AB

[
X−1/2

A ⊗ |j〉B

]}|B|

j=1
,
{√

pl|φl〉AB〈k|AΠ⊥
XA

}
l∈{1,...,|A||B|},k∈{1,...,|A|}

}
.

�

(A.4)

We now define an enlarged Hilbert space Ĉ to be the direct sum of B̂ and Â, and thus with 
dimension |B̂|+ |Â|, and an orthonormal basis for it as
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{|1〉Ĉ, . . . , |j〉Ĉ, . . . , ||B̂|〉Ĉ, ||B̂|+ 1〉Ĉ, . . . , ||B̂|+ k〉Ĉ, . . . , ||B̂|+ |Â|〉Ĉ}.� (A.5)

We also define an auxiliary Hilbert space E with orthonormal basis

{|e〉E, |1〉E, . . . , ||Â||B̂|〉E},� (A.6)

and we represent a purification |ϕξAB〉ABE of the state ξAB as

|ϕξAB〉ABE =

|Â||B̂|∑
l=1

√
pl|φl〉AB|l〉E.� (A.7)

Thus, an isometric extension of the Petz recovery channel in (A.1), according to the standard 
recipe in (3.42), is given by

|B|∑
j=1

X1/2
AB

[
X−1/2

A ⊗ |j〉B

]
|j〉Ĉ|e〉E +

|Â|∑
k=1

|Â||B̂|∑
l=1

√
pl|φl〉AB〈k|AΠ⊥

XA
⊗ |k + |B|〉Ĉ|l〉E

= X1/2
AB X−1/2

A |Γ〉BĈ|e〉E + |ϕξAB〉ABEUA→ĈΠ
⊥
XA

,
� (A.8)

where we set

|Γ〉BĈ ≡
|B|∑
j=1

|j〉B|j〉Ĉ,� (A.9)

and we define the embedding map

UA→Ĉ ≡
|Â|∑

k=1

|k + |B|〉Ĉ〈k|A.� (A.10)

So we set the isometry VA→BĈE as

VA→BĈE ≡ X1/2
AB X−1/2

A |Γ〉BĈ|e〉E + |ϕξAB〉ABEUA→ĈΠ
⊥
XA

.� (A.11)

By construction, the operator VA→BĈE is an isometry, but we can verify by the following alter-
native calculation that this operator is indeed an isometry:

V†V =
(
〈Γ|BĈ〈e|EX−1/2

A X1/2
AB +Π⊥

XA

(
UA→Ĉ

)† 〈ϕξAB |ABE

)

×
(

X1/2
AB X−1/2

A |Γ〉BĈ|e〉E + |ϕξAB〉ABEUA→ĈΠ
⊥
XA

)� (A.12)

= 〈Γ|BĈ〈e|EX−1/2
A X1/2

AB X1/2
AB X−1/2

A |Γ〉BĈ|e〉E

+Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABEX1/2
AB X−1/2

A |Γ〉BĈ|e〉E

+ 〈Γ|BĈ〈e|EX−1/2
A X1/2

AB |ϕξAB〉ABEUA→ĈΠ
⊥
XA

+Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE|ϕξAB〉ABEUA→ĈΠ
⊥
XA

� (A.13)

= 〈e|EX−1/2
A 〈Γ|BĈXAB|Γ〉BĈX−1/2

A |e〉E +Π⊥
XA

� (A.14)

= X−1/2
A XAX−1/2

A +Π⊥
XA

� (A.15)
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= ΠXA +Π⊥
XA� (A.16)

= IA.� (A.17)

In the above, we have used the fact that 〈e|E|ϕξAB〉ABE = 0. Now we extend V  to

VAÂ→BĈE ≡ VA→BĈE ⊗ IÂ,� (A.18)

and observe that

VAÂ→BĈE|ϕ
XA〉AÂ = |ϕXAB〉AÂBĈ|e〉E = (X1/2

AB ⊗ IÂĈ)|Γ〉AÂ|Γ〉BĈ|e〉E.� (A.19)

Let τAB be the output of the Petz recovery channel when the invertible state ωA is input:

τAB = X1/2
AB

([
X−1/2

A ωAX−1/2
A

]
⊗ IB

)
X1/2

AB + Tr{Π⊥
XA
ωA}ξAB.� (A.20)

Note that τAB is invertible because we chose ξAB to be invertible. Consider the positive definite 
operator YÂB̂, whose B̂ system we embed into span{|1〉Ĉ, . . . , |j〉Ĉ, . . . , ||B̂|〉Ĉ} of system Ĉ, 
calling the embedded operator YÂĈ. We then have that YT

ÂĈ
UA→Ĉ = 0, and so we find that

V† (τ−1
AB ⊗ YT

ÂĈ ⊗ IE
)

V

=
[(

〈Γ|BĈ〈e|EX−1/2
A X1/2

AB +Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE

)
⊗ IÂ

]
×

(
τ−1

AB ⊗ YT
ÂĈ ⊗ IE

) [(
X1/2

AB X−1/2
A |Γ〉BĈ|e〉E + |ϕξAB〉ABEUA→ĈΠ

⊥
XA

)
⊗ IÂ

]

�
(A.21)

= 〈Γ|BĈ〈e|EX−1/2
A X1/2

AB

(
τ−1

AB ⊗ YT
ÂĈ ⊗ IE

)
X1/2

AB X−1/2
A |Γ〉BĈ|e〉E

+Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE
(
τ−1

AB ⊗ YT
ÂĈ ⊗ IE

)
X1/2

AB X−1/2
A |Γ〉BĈ|e〉E

+ 〈Γ|BĈ〈e|EX−1/2
A X1/2

AB

(
τ−1

AB ⊗ YT
ÂĈ ⊗ IE

)
|ϕξAB〉ABEUA→ĈΠ

⊥
XA

+Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE
(
τ−1

AB ⊗ YT
ÂĈ ⊗ IE

)
|ϕξAB〉ABEUA→ĈΠ

⊥
XA

.

�

(A.22)

The last three terms are equal to zero because 〈ϕξAB |ABE|e〉E = 0 and YT
ÂĈ

UA→Ĉ = 0. 
Continuing, the last expression above is equal to

〈Γ|BĈ〈e|EX−1/2
A X1/2

AB

(
τ−1

AB ⊗ YT
ÂĈ ⊗ IE

)
X1/2

AB X−1/2
A |Γ〉BĈ|e〉E

= 〈Γ|BĈω
−1/2
A ω

1/2
A X−1/2

A X1/2
AB

(
τ−1

AB ⊗ YT
ÂĈ

)
X1/2

AB X−1/2
A ω

1/2
A ω

−1/2
A |Γ〉BĈ

� (A.23)

= 〈Γ|BĈ

(
ω
−1/2
A

[
ω

1/2
A X−1/2

A X1/2
AB τ−1

AB X1/2
AB X−1/2

A ω
1/2
A

]
ω
−1/2
A ⊗ YT

ÂĈ

)
|Γ〉BĈ

� (A.24)

�
∥∥∥ω1/2

A X−1/2
A X1/2

AB τ−1
AB X1/2

AB X−1/2
A ω

1/2
A

∥∥∥
∞

〈Γ|BĈ

(
ω
−1/2
A ω

−1/2
A ⊗ YT

ÂĈ

)
|Γ〉BĈ

� (A.25)

=
∥∥∥τ−1/2

AB X1/2
AB X−1/2

A ωAX−1/2
A X1/2

AB τ
−1/2
AB

∥∥∥
∞

〈Γ|BĈ

(
ω−1

A ⊗ YT
ÂĈ

)
|Γ〉BĈ� (A.26)

� 〈Γ|BĈ

(
ω−1

A ⊗ YT
ÂĈ

)
|Γ〉BĈ� (A.27)
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= ω−1
A ⊗ YT

Â .� (A.28)

The third equality follows because 
∥∥Z†Z

∥∥
∞ =

∥∥ZZ†
∥∥
∞ for an operator Z. The last inequality fol-

lows because for a positive semi-definite operator W, we have that ‖W‖∞ = inf {µ : W � µI}. 
Applying this, we find that

inf
{
µ : τ−1/2

AB X1/2
AB X−1/2

A ωAX−1/2
A X1/2

AB τ
−1/2
AB � µIAB

}

= inf
{
µ : X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB � µ τAB

}� (A.29)

= inf
{
µ : X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB � µ

[
X1/2

AB X−1/2
A ωAX−1/2

A X1/2
AB + Tr{Π⊥

XA
ωA}ξAB

]}
� (A.30)

� 1.� (A.31)

Let PĈ be the embedding of the identity operator IA into the subspace of Ĉ spanned by

{||B̂|+ 1〉Ĉ, . . . , ||B̂|+ k〉Ĉ, . . . , ||B̂|+ |Â|〉Ĉ}.� (A.32)

That is, PĈ ≡
∑|Â|

k=1 ||B̂|+ k〉Ĉ〈|B̂|+ k|Ĉ. Consider that, due to PĈ|Γ〉BĈ = 0, we have that

V† (τ−1
AB ⊗ IÂ ⊗ PĈ ⊗ IE

)
V

=
[(

〈Γ|BĈ〈e|EX−1/2
A X1/2

AB +Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE

)
⊗ IÂ

]
×

(
τ−1

AB ⊗ IÂ ⊗ PĈ ⊗ IE
) [(

X1/2
AB X−1/2

A |Γ〉BĈ|e〉E + |ϕξAB〉ABEUA→ĈΠ
⊥
XA

)
⊗ IÂ

]

�

(A.33)

= 〈Γ|BĈ〈e|EX−1/2
A X1/2

AB

(
τ−1

AB ⊗ IÂ ⊗ PĈ ⊗ IE
)

X1/2
AB X−1/2

A |Γ〉BĈ|e〉E

+Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE
(
τ−1

AB ⊗ IÂ ⊗ PĈ ⊗ IE
)

X1/2
AB X−1/2

A |Γ〉BĈ|e〉E

+ 〈Γ|BĈ〈e|EX−1/2
A X1/2

AB

(
τ−1

AB ⊗ IÂ ⊗ PĈ ⊗ IE
)
|ϕξAB〉ABEUA→ĈΠ

⊥
XA

+Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE
(
τ−1

AB ⊗ IÂ ⊗ PĈ ⊗ IE
)
|ϕξAB〉ABEUA→ĈΠ

⊥
XA

�
(A.34)

= Π⊥
XA

(
UA→Ĉ

)† 〈ϕξAB |ABE
(
τ−1

AB ⊗ IÂ ⊗ PĈ ⊗ IE
)
|ϕξAB〉ABEUA→ĈΠ

⊥
XA

� (A.35)

= Π⊥
XA

⊗ IÂ 〈ϕξAB |ABEτ
−1
AB |ϕξAB〉ABE� (A.36)

= Π⊥
XA

⊗ IÂ Tr{ξABτ
−1
AB }.� (A.37)

Observe that

f
(
τ−1

AB ⊗ YT
ÂB̂

)
= 〈e|E

[
f
(
τ−1

AB ⊗ YT
ÂB̂

)
⊗ IE

]
|e〉E� (A.38)

= 〈e|E
[

f
(
τ−1

AB ⊗ YT
ÂB̂ ⊗ IE

)]
|e〉E.� (A.39)

Furthermore, consider that for an ε ∈ (0, 1), we have that

Q̃f (XAB‖YAB; τAB)

= 〈ϕXAB |AÂBB̂f
(
τ−1

AB ⊗ YT
ÂB̂

)
|ϕXAB〉AÂBB̂

� (A.40)
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= 〈ϕXAB |AÂBB̂〈e|E
[

f
(
τ−1

AB ⊗ YT
ÂB̂ ⊗ IE

)]
|ϕXAB〉AÂBB̂|e〉E� (A.41)

= 〈ϕXAB |AÂBĈ〈e|E
[

f
(
τ−1

AB ⊗
(
YT

ÂĈ + ε
[
IÂ ⊗ PĈ

])
⊗ IE

)]
|ϕXAB〉AÂBĈ|e〉E� (A.42)

= 〈ϕXA |AÂV† [ f
(
τ−1

AB ⊗
(
YT

ÂĈ + ε
[
IÂ ⊗ PĈ

])
⊗ IE

)]
V|ϕXA〉AÂ� (A.43)

� 〈ϕXA |AÂf
(
V† [τ−1

AB ⊗
(
YT

ÂĈ + ε
[
IÂ ⊗ PĈ

])
⊗ IE

]
V
)
|ϕXA〉AÂ� (A.44)

� 〈ϕXA |AÂf
(
ω−1

A ⊗ YT
Â + ε

[
Π⊥

XA
⊗ IÂ Tr{ξABτ

−1
AB }

])
|ϕXA〉AÂ.� (A.45)

The third equality follows because the term ε
[
IÂ ⊗ PĈ

]
 gets zeroed out due to the sandwich 

by |ϕXAB〉AÂBĈ , given that |ϕXAB〉AÂBĈ  only has support in span{|1〉Ĉ, . . . , |j〉Ĉ, . . . , ||B̂|〉Ĉ} (this 
can be seen explicitly by examining the proof of proposition 4). Furthermore, note that the 

operator YT
ÂĈ

+ ε
[
IÂ ⊗ PĈ

]
 is invertible. The first inequality follows from the operator Jensen 

inequality [HP03]. The next inequality follows because

V† [τ−1
AB ⊗

(
YT

ÂĈ + ε
[
IÂ ⊗ PĈ

])
⊗ IE

]
V

= V† [τ−1
AB ⊗ YT

ÂĈ ⊗ IE
]

V + V† [τ−1
AB ⊗ ε

[
IÂ ⊗ PĈ

]
⊗ IE

]
V

� (A.46)

� ω−1
A ⊗ YT

Â + εΠ⊥
XA

⊗ IÂ Tr{ξABτ
−1
AB },� (A.47)

and by applying operator anti-monotonicity of f. This establishes the inequality for all 
ε ∈ (0, 1). Thus, we can apply continuity of f and take the limit ε ↘ 0 to find that

Q̃f (XAB‖YAB; τAB) � 〈ϕXA |AÂf
(
ω−1

A ⊗ YT
Â

)
|ϕXA〉AÂ = Q̃f (XA‖YA;ωA).� (A.48)

We can now take the supremum over all invertible states τAB to get the following inequality 
holding for all invertible states ωA:

Q̃f (XAB‖YAB) � Q̃f (XA‖YA;ωA).� (A.49)

After taking a supremum over invertible states ωA, we find that the inequality in (3.31) holds 
when XA is not invertible.

Remark A.1.  Several of the works [Pet86a, PS09, Pet10a, Sha10] on quantum f-divergence 
consider only invertible density operators and then appeal to continuity in order to extend 
proofs to the whole set of density operators. This is often understood as simply adding εI  to a 
density operator and then taking the limit ε → 0 later. In the second case given in the proof of 
theorem 8, in which XAB is not invertible but XA is, the method can be understood as falling un-
der an appeal to continuity. However, in the last case detailed above, when XA is not invertible, 
the method arguably goes beyond a mere appeal to continuity, given the construction of the 
channel in (A.1), the corresponding isometric extension in (A.11), and the ensuing analysis.
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