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Abstract—Holevo’s just-as-good fidelity is a similarity measure
for quantum states that has found several applications. One of its
critical properties is that it obeys a data processing inequality: the
measure does not decrease under the action of a quantum channel
on the underlying states. In this paper, I prove a refinement of
this data processing inequality that includes an additional term
related to recoverability. That is, if the increase in the measure is
small after the action of a partial trace, then one of the states can
be nearly recovered by the Petz recovery channel, while the other
state is perfectly recovered by the same channel. The refinement
is given in terms of the trace distance of one of the states to its
recovered version and also depends on the minimum eigenvalue
of the other state. As such, the refinement is universal, in the
sense that the recovery channel depends only on one of the states,
and it is explicit, given by the Petz recovery channel.

Full version of this paper is accessible at arXiv:1801.02800

I. INTRODUCTION

In Holevo’s seminal 1972 work on the quasiequivalence
of locally normal states [1], he established the following
inequalities for quantum states p and o:
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where ||p — o||; denotes the well known trace distance and
the function F is Holevo’s “just-as-good fidelity,” defined as

Fu(p,0) = [Tr{\/pv/a}]* . )

After writing it down, he then remarked that “it is evident that
Fr is just as good a measure of proximity of the states p and
o as ||p—ol|;.” And so it is that the measure F'y is known
as Holevo’s just-as-good fidelity.

Some years after this, Uhlmann defined the quantum fidelity
as F(p,0) = H\/ﬁﬁ’ ? [2]. It is evident that the following
relation holds

FH(pa 0) S F(paa)a (3)

due to the variational characterization of the trace norm of a
square operator X as

1, = max [Te{XU}|, )

where the optimization is with respect to a unitary operator U.
Many years after this, at the dawn of quantum computing, with
more growing interest in quantum information theory, Fuchs
and van de Graaf presented the following widely employed
inequalities [3]:
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which bear a striking similarity to (1). Indeed the lower
bound on 3 |p—ol|; in (5) is an immediate consequence

of (3) and the lower bound in (1). The upper bound on
1llp—oll, in (5) can be proven by first showing that it
is achieved for pure states, employing Uhlmann’s “transition
probability” characterization of F'(p, o) [2], and then invoking
monotonicity of trace distance with respect to partial trace.
The latter inequalities in (5) have been more widely employed
in quantum information theory than those in (1) due to
Uhlmann’s “transition probability” characterization of F'(p, o)
and its many implications.

Nevertheless, Holevo’s just-as-good fidelity is clearly a
useful measure of similarity for quantum states in light of (1),
and it has found several applications in quantum information
theory. For example, it serves as an upper bound on the
probability of error in discriminating p from o in a hypothesis
testing experiment [4], [5], which in some sense is just a
rewriting of the lower bound in (1) (see also [6, Lemma 3.2] in
this context). In turn, this way of thinking has led to particular
decoders for quantum polar codes [7], [8].

The function Fy has also been rediscovered a number of
times. For example, it is a particular case of Petz’s quasi-
entropies [9], [10]. It was studied under the name ‘“quantum
affinity” in [11] and shown to be equal to the fidelity of the
canonical purifications of quantum states in [12].

One of the most important properties of F is that it obeys
the following data processing inequality:

Fu(N(p),N(0)) = Fu(p,0), (6)

where N is a quantum channel (a completely positive and
trace preserving map). This inequality is a consequence of data
processing for Petz’s more general quasi-entropies [9], [10].
This property is one reason that F'i has an interpretation as a
similarity measure: the states p and o generally become more
similar under the action of a quantum channel.

The main contribution of this paper is the following refine-
ment of the data processing inequality in (6), in the case that p
is a bipartite density operator, o is a positive definite bipartite
operator, and the channel is a partial trace over the B system:

VFu(pa,04) >/ Fu(pap,oaB)
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where Apin(04p) is the minimum eigenvalue of 045 and
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is a quantum channel known as the Petz recovery channel
[13], [14]. The interpretation of this inequality is the same



as that given in previous work on this topic of refining data
processing inequalities (see, e.g., [15]-[17]). If the difference
VFu(pa,04) — VFu(pap,oap) is small, then one can
approximately recover the state p4p from its marginal p4. A
generalization of the result in (7) to arbitrary quantum channels
is available in the appendix of arXiv:1801.02800.

The technique that I use for proving the above data process-
ing refinement closely follows the elegant approach recently
put forward by Carlen and Vershynina in [18]. This technique
appears to be different from every other approach, given in
recent years since [15], that has established refinements of
data processing inequalities. It builds on Petz’s approach from
[9], [10] for proving data processing for the quantum relative
entropy, as well as ideas in [19]. Here, I use this same
technique and establish a general lemma regarding remainder
terms for data processing with Petz’s quasi-entropies, and then
I specialize it to obtain the inequality in (7).

An interesting aspect of (7) is that the recovery channel
is explicit, given in the Petz form, and universal, having no
dependence on the state p4p while depending only on 0 45.

In the rest of the paper, I begin by giving background and
establish some notation. After that, I prove a general lemma
that refines data processing for Petz’s quasi-entropies. Then I
specialize it to arrive at the inequality in (7).

II. BACKGROUND AND NOTATION

I begin by reviewing some background and establish no-
tation. Basic concepts of quantum information theory can
be found in [6], [20], [21]. Let f be an operator convex
function defined on [0, c0). Examples include f(x) = zlnx,
flx) = —z* for a € (0,1), f(z) = z* for o € (1,2].
According to [22, Section 8], such a function has the following
integral representation:

f(z) = f(0) + az + ba®
e T t
+/O du(t) (1+t1+x+t>’ ©)

where ¢ € R, b > 0, and p is a non-negative measure on
(0, 00) satisfying [3° dpu(t)/ (1 +t)* < oo.
Define the maximally entangled vector as

|S|—1

Tss = Z li)s 1) s

for orthonormal bases {|i)¢}; and {|i)5},, and for a positive
semi-definite operator o, define its canonical purification by

[0)55 = (o8> @ 15) ID)ss (an

Then, following Petz [9], [10], [23], [24], as well as what was
discussed later in [25], [26], we define the f-quasi-relative
entropy @ ¢(pl||o) of a density operator p and a positive definite
operator ¢ as

Qs(pllo) = (¥ lss f (05" @ k) [¢7) g5 -

For example, when f(z) = zlnz, then Qf reduces to the
quantum relative entropy from [27].

(10)
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Now consider the bipartite case and define

) aags =1 aa® D) g5

We can also write this as |I') , 5 45 With it being understood
that there is a permutation of systems. Then, by the above,
we have for a density operator psp and a positive definite
operator o 4p that
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Now define the linear operator V' by
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This linear operator is an isometric extension of the Petz
recovery channel, as discussed recently in [28]. One can
readily verify that V' is an isometry and that
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For simple proofs of these properties, see, e.g., [25] or [28].
With all these notions in place, we can recall Petz’s approach

[9], [10], [23], [24] for establishing monotonicity of the f-
quasi-relative entropy under partial trace:

Qr(paslloas) = (7% | spap F(oap @ 055) 19742) anas
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where we made use of everything above and the operator
Jensen inequality [29].

(18)

III. GENERAL STATEMENT FOR QUASI-ENTROPIES

I now modify the approach from [18] for lower bounds for
relative entropy differences to use an arbitrary operator convex
function f instead. So we are considering the following f-
quasi-relative entropy difference:

Q(paslloas) — Qs(palloa). (19)
Recall the integral representation of f from (9). Let
Agi=o0r'@ph, (0
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and recall from (17) that VTAABABV = A, ;. This implies
12 alle = VA a5V = IVVIALpasV VTl

<lAapanls (22)

with the last equality following from isometric invariance of

the operator norm and the inequality from submultiplicativity

of the operator norm and the fact that V'V is a projection.
Lemma 1: Let 1 be a measure. For an operator X, define

0= [Tao (i g) @



and for 7' > 0, define u([0,T]) = fOTd,u(t). For ¢ > 0, define
g(c,T) = [ du(t) ﬁt/c Let pap be a density operator
and o 4p a positive definite operator. Then for all 7" > 0, the
following inequality holds

H [UZ/B?UAUQ AA)U,14/2 (AABAB)UAB} |F>AABBH2
< u([0, T)Y?[Qs(paslloar) — Qr(palloa)’
+29(|A s pasll. 7)) Tr{oa}. (24

Proof. The proof follows [18] quite closely at times but also
features some departures. Since V is an isometry satisfying
VIV = I,;, it follows that VVT is a projection, so that
vVt <I ApAip- Using the integral representation in (9), we
arrive at the chain of inequalities in (25), where we made use
of (17) and the fact that V'V is a projection so that VV <
I, 5 4p- Similarly, we find that

Qr(palloa) = (¢ |44 [F(Daa)] 1974) a4
= f(0) +(¢7*| 44 [GAAA + bAAA] l07%) 44
> oal  (Bai 3 oA
o [T (T2 -1 s ) e
(26)
Thus, we find that
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Now consider that for ¢t > 0
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so that .
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Now invoking the definition in (23) we find that
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Thus, for any 7" > 0, we have that
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Let us study the two terms separately. For the first term, from
Cauchy—Schwarz
2 T T
<| [ woro||[ woso|,
0 0
we have that
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Moving to the second term, from the reasoning in the proof
of [18, Theorem 1.7], we find that for any positive operator X

1 1 1 1
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so that [° dpu(t) ¢ g% - t+X> < g(||X]||,T) I. This leads to
the development in (45), and after putting everything together,

we get (24). m
IV. APPLICATION TO HOLEVO’S JUST-AS-GOOD FIDELITY

I now specialize the above analysis to the case of the
operator convex function —x® for ov € (0, 1), and I abbreviate
the corresponding quasi-entropy as Q.. For this case, from
[22, Section 8], we have that du(t) = @t“_l dt. Plugging
into the quantities in Lemma 1, we find that

. T .
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We also find that
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Substituting into (24), we find that
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We can consider this for an arbitrary o € (0, 1), but the
most interesting and physically relevant case seems to occur
when a = 1/2. So I now prove the claim in (7).

For ae = 1/2, the lower bound in (53) simplifies to

1/2_-1/2 1/2 1 2
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Now minimizing over 7' > 0 gives the choice
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Thus, the final inequality is
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The estimate from [18, Lemma 2.2] then gives [9] D. Petz, “Quasi-entropies for states of a von Neumann algebra,” Publ.

72 /432 H 120212 ) =1/2 12 —pABH3
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Observe that ||AABABH = HUAB@pABH m
because p4p is a density operator. So we then get
ﬁAmin(JAB) Hal/Qa 1/2 1/2 1/2H
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3 iy oot 0ot 20k~ s,
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the latter of which being what was claimed in (7).
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