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Abstract
Weestablish several upper bounds on the energy-constrained quantumand private capacities of all
single-mode phase-insensitive bosonicGaussian channels. Thefirst upper bound, whichwe call the
‘data-processing bound,’ is the simplest and is obtained by decomposing a phase-insensitive channel
as a pure-loss channel followed by a quantum-limited amplifier channel.We prove that the data-
processing bound can be atmost 1.45 bits larger than a known lower bound on these capacities of the
phase-insensitive Gaussian channel.We discuss another data-processing upper bound aswell. Two
other upper bounds, whichwe call the ‘ε-degradable bound’ and the ‘ε-close-degradable bound,’ are
established using the notion of approximate degradability alongwith energy constraints.We find a
strong limitation on any potential superadditivity of the coherent information of any phase-insensitive
Gaussian channel in the low-noise regime, as the data-processing bound is very near to a known lower
bound in such cases.We alsofind improved achievable rates of private communication through
bosonic thermal channels, by employing coding schemes thatmake use of displaced thermal states.
We end by proving that an optimal Gaussian input state for the energy-constrained, generalized
channel divergence of two particular Gaussian channels is the two-mode squeezed vacuum state that
saturates the energy constraint.What remains open for several interesting channel divergences, such
as the diamond normor the Rényi channel divergence, is to determinewhether, among all input
states, aGaussian state is optimal.

1. Introduction

One of themain aims of quantum information theory is to characterize the capacities of quantum
communication channels [Hol12,Hay06,Wil16]. A quantum channel is amodel for a communication link
between two parties. The properties of a quantum channel and its coupling to an environment govern the
evolution of a quantum state that is sent through the channel.

The quantum capacity Q ( ) of a quantum channel  is themaximum rate at which quantum information
(qubits) can be reliably transmitted from a sender to a receiver by using the channelmany times. The private
capacity P ( ) of a quantum channel  is defined to be themaximum rate at which a sender can reliably
communicate classicalmessages to a receiver by using the channelmany times, such that the environment of the
channel gets negligible information about the transmittedmessage. In general, the best known characterization
of quantumor private capacity of a quantum channel is given by the optimization of regularized information
quantities over an unbounded number of uses of the channel [CWY04, Sho02,Dev05, Llo97]. Since these
information quantities are additive for a special class of channels called degradable channels [DS05, Smi08], the
capacities of these channels can be calculatedwithout any regularization.However, for the channels that are not
degradable, these information quantities can be superadditive [DSS98, SS07, SRS08, ES15, CEM+15], and
quantum capacities can be superactivated for some of these channels [SSY11, SY08]. Hence, it is difficult to
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determine the quantumor private capacity of channels that are not degradable, and the natural way to
characterize such channels is to bound these capacities from above and below.

An important class of channels called phase-insensitive, bosonic Gaussian channels act as a goodmodel for
the transmission of light through opticalfibers or free-space (see, e.g., [Ser17] for a review).Within the past two
decades, there have been advances infinding quantumand private capacities of bosonic channels. In particular,
when there is no constraint on the energy available at the transmitter, the quantumand private capacities of
single-mode quantum-limited attenuator and amplifier channels were given in
[HW01,WHG12,WQ16,QW17,WPGG07]. However, the availability of an unbounded amount of energy at
the transmitter is not practically feasible, and it is thus natural to place energy constraints on any communication
protocol. Recently, a general theory of energy-constrained quantumand private communication has been
developed in [WQ16], by building on notions developed in the context of other energy-constrained
information-processing tasks [Hol04]. For the particular case of bosonicGaussian channels, formulas for the
energy-constrained quantum and private capacities of the single-mode pure-loss channel were conjectured in
[GSE08] and proven in [WHG12,WQ16]. Also, for a single-mode quantum-limited amplifier channel, the
energy-constrained quantum and private capacities have been established in [WQ16,QW17].

What remains a pressing open question in the theory ofGaussian quantum information [Ser17] is to
determine formulas for or bounds on the quantumand private capacities of non-degradable bosonic Gaussian
channels. Of particular interest are phase-insensitive bosonic Gaussian channels, which serve asmodels for
several physical processes. In this article, we address this query by providing several bounds on the energy-
constrained quantum andprivate capacities of all phase-insensitive Gaussian channels.

Tomotivate the thermal channelmodel, consider that almost all communication systems are affected by
thermal noise [Cav82]. Even though the pure-loss channel has relevance in free-space communication
[Sha09, YS78], it represents an ideal situation inwhich the environment of the channel is prepared in a vacuum
state. Instead, consideration of a thermal state with afixedmean photon numberNB as the state of the
environment ismore realistic, and such a channel is called a bosonic Gaussian thermal channel
[Sha09, RGR+17]. Hence, quantum thermal channelsmodel free-space communicationwith background
thermal radiation affecting the input state in addition to transmission loss. Additionally, the dark counts of
photon detectors can also bemodeled as arising from thermal photons in the environment [RGR+17,Sha09]. In
the context of private communication, a typical conservativemodel is to allow an eavesdropper access to the
environment of a channel, and in particular, tampering by an eavesdropper can bemodeled as the excess noise
realized by a thermal channel [LDTBG05,NH04].

Interestingly, quantumamplifier channelsmodel spontaneous parametric down-conversion in a nonlinear
optical system [CDG+10], alongwith the dynamical Casimir effect in superconducting circuits [Moo70], the
Unruh effect [Unr76], andHawking radiation [Haw72].Moreover, an additive-noise channel is ubiquitous in
quantumoptics due to the fact that the aggregation ofmany independent randomdisturbances will typically
have aGaussian distribution [Hal94].

2. Summary of results

Ourmain contribution is to establish several bounds on the energy-constrained quantum and private capacities
of single-mode, phase-insensitive bosonic Gaussian channels.We start by summarizing our upper bounds on
the energy-constrained quantum capacity of thermal channels. Afirst upper bound is established by
decomposing a thermal channel as a pure-loss channel followed by a quantum-limited amplifier channel
[CGH06, GPNBL+12] and using a data-processing argument.We note that the samemethodwas employed in
[KS13], in order to establish an upper bound on the classical capacity of the thermal channel (note that the
general idea for the data-processing argument comes from the earlier work in [SS08,WPG07]). Throughout, we
call this first upper bound the ‘data-processing bound.’Wealso prove that this upper bound can be atmost 1.45
bits larger than a known lower bound [HW01,WHG12] on the energy-constrained quantum andprivate
capacity of a thermal channel.Moreover, the data-processing bound is very near to a known lower bound for the
case of low thermal noise and both low andhigh transmissivity.

We then prove that any phase-insensitive channel that is not entanglement breaking [HSR03] can be
decomposed as the concatenation of a quantum-limited amplifier channel followed by a pure-loss channel. This
theoremwas independently proven in [NAJ18, RMG18] (see also [SWAT17]). It has been used to bound the
unconstrained quantum capacity of a thermal channel in [RMG18], via a data-processing argument.We use this
technique to prove an upper bound on the energy-constrained quantum and private capacities of a thermal
channel. This technique has also been usedmost recently in [NAJ18] in similar contexts. In particular, wefind
that this upper bound is very near to a known lower bound for the case of low thermal noise and both low and
high transmissivity. Furthermore, this alternate data-processing upper bound and the data-processing bound
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mentioned in the previous paragraph are incomparable, as one is better than the other for certain parameter
regimes.

Recently, the notion of approximate degradability of quantum channels was developed in [SSWR17], and
upper bounds on the quantum andprivate capacities of approximately degradable channels were established for
quantum channels withfinite-dimensional input and output systems. In our paper, we establish general upper
bounds on the energy-constrained quantumand private capacities of approximately degradable channels for
infinite-dimensional systems. These general upper bounds can be applied to any quantum channel that is
approximately degradable with energy constraints on the input and output states of the channels. In particular,
we apply these general upper bounds to bosonic Gaussian thermal and amplifier channels.

Our second upper bound is based on the notion of ε-degradability of thermal channels, andwe call this
bound the ‘ε-degradable bound.’ In thismethod, wefirst construct a degrading channel, such that a
complementary channel of the thermal channel is close in diamond distance [Kit97] to the serial concatenation
of the thermal channel followed by this degrading channel. In general, it seems to be computationally hard to
determine the diamond distance between two quantum channels if the optimization is over input density
operators acting on an infinite-dimensional Hilbert space. However, in our setup, we address this difficulty by
constructing a simulating channel, which simulates the serial concatenation of the thermal channel and the
aforementioned degrading channel. Using this technique, an upper bound on the diamond distance reduces to
the calculation of the quantumfidelity between the environmental states of the thermal channel and the
simulating channel. Based on the fact that, for certain parameter regimes, the resulting capacity upper bound is
better than all other upper bounds reported here, we believe that our aforementioned choice of a degrading
channel is a good choice.

A third upper bound on the energy-constrained quantum capacity of thermal channels is established using
the concept of ε-close-degradability of a thermal channel, andwe call this bound the ‘ε-close-degradable
bound.’ In particular, we show that a low-noise thermal channel is ε-close-degradable, given that it is close in
diamond distance to a pure-loss channel.We find that the ε-close-degradable bound is very near to the data-
processing bound for the case of low thermal noise.

We compare these different upper boundswith a known lower bound on the quantum capacity of a thermal
channel [HW01,WHG12].Wefind that the data-processing bound is very near to a known capacity lower
bound for low thermal noise and for bothmedium and high transmissivity.Moreover, we show that the
maximumdifference between the data-processing bound and a known lower bound never exceeds
1 ln 2 1.45» bits for all possible values of parameters, and thismaximumdifference is attained in the limit of
infinite inputmean photon number. This result places a strong limitation on any possible superadditivity of
coherent information of the thermal channel.We note here that this kind of result was suggestedwithout proof
by the heuristic developments in [SS13]. Next, we plot these upper bounds aswell as a known lower bound
versus inputmean photon number for different values of the channel transmissivity η and thermal noiseNB. In
particular, wefind that the ε-close-degradable bound is very near to the data-processing bound for low thermal
noise and for bothmedium and high transmissivity.Moreover, all of these upper bounds are very near to a
known lower bound for low thermal noise and high transmissivity.We also examine different parameter
regimeswhere the ε-close-degradable bound is tighter than the ε-degradable bound and vice versa. In particular,
wefind that the ε-degradable bound is tighter than the ε-close-degradable bound for the case of high thermal
noise.

Wefind an interesting parameter regimewhere the ε-degradable bound is tighter than all other upper
bounds, as it becomes closest to a known lower bound for the case of high noise and high inputmean photon
number.However, for the same parameter regime, if the inputmean photon number is low, then the data-
processing bound is tighter than the ε-degradable bound. This suggests that the upper bounds based on the
notion of approximate degradability are good for the case of high inputmean photon number.We suspect that
these bounds could be further improved for the case of low inputmean photon number if it were possible to
compute or tightly bound the energy-constrained diamond norm [Shi17a,Win17] (see also section 12 for some
developments in this direction).

Similar to our bounds on the energy-constrained quantum capacity, we establish several upper bounds on
the energy-constrained private capacity of bosonic thermal channels.We also develop an improved lower bound
on the energy-constrained private capacity of a bosonic thermal channel. In particular, wefind that for certain
values of the channel transmissivity, a higher private communication rate can be achieved by using displaced
thermal states as information carriers instead of coherent states.

Related to our bounds on energy-constrained quantum andprivate capacities of thermal channels, we
establish several upper bounds on the same capacities of quantumamplifier channels.We also establish upper
bounds on the energy-constrained quantumand private capacities of an additive-noise channel.

As one of the last technical developments of our paper, we address the question of computing energy-
constrained channel distances in a very broad sense, by considering the energy-constrained, generalized channel
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divergence of two quantum channels, as an extension of the generalized channel divergence developed in
[LKDW18]. In particular, we prove that an optimalGaussian input state for the energy-constrained, generalized
channel divergence of two particular Gaussian channels is the two-mode squeezed vacuum state that saturates
the energy constraint. It is an interesting open question to determinewhether the two-mode squeezed vacuum is
optimal among all input states, butwe leave this for futurework, simply noting for now that an answerwould
lead to improved upper bounds on the energy-constrained quantumand private capacities of the thermal and
amplifier channels. At the least, we have proven that the optimal input state for the particular Gaussian channels
is such that its reduction to the channel input system is diagonal in the photon number basis.

The rest of our paper is structured as follows. In section 3, we summarize definitions and prior results
relevant to our paper.We provide general upper bounds on the energy-constrained quantum and private
capacities of approximately degradable channels in section 4.We use these tools to establish several upper
bounds on the energy-constrained quantumand private capacities of a thermal channel in sections 5 and 7,
respectively. A comparison of these different upper bounds on energy-constrained quantum capacity of a
thermal channel is discussed in section 6.We present an improvement on the achievable rate of private
communication through thermal channels, in section 8.We establish bounds on energy-constrained capacities
of a quantumamplifier channel and an additive-noise channel in sections 9 and 10, respectively. In section 11,
we discuss recent developments from [RMG18] on the unconstrained quantum capacity of a thermal channel,
andwe then provide another upper bound on the energy-constrained quantum andprivate capacities of a
thermal channel.We discuss the optimization of theGaussian energy-constrained generalized channel
divergence in section 12. Finally, we summarize our results and conclude in section 13.

3. Preliminaries

Background on quantum information in infinite-dimensional systems is available in [Hol12] (see also
[Hol04,HS10,HZ11, Shi15, Shi16, SH08]). In this section, we explain our notations and discuss prior results
relevant for our paper.

3.1.Quantum states and channels
Let denote a separableHilbert space, let  ( ) denote the set of bounded operators acting on, and let  ( )
denote the subset of  ( ) that consists of positive semi-definite operators. Let  ( ) denote the set of trace-class
operators, defined such that their trace norm isfinite: A ATr1 º < ¥  {∣ ∣} , where A A Aº∣ ∣ † . Let  ( )
denote the set of density operators (positive semi-definite with unit trace) acting on. A quantum channel

: A B    ( ) ( ) is a completely positive, trace preserving linearmap. Using the Stinespring dilation
theorem [Sti55], a quantum channel can be expressed in terms of a linear isometry : i.e., there exists another
Hilbert space E and a linear isometryU : A B E   Ä such that for all A A w Î ( ), the following equality
holds : U UTrA E A w w=( ) { }† . A complementary channel A E 

ˆ of A B  is defined as

U UTrA E B A w=
ˆ { }† . A quantum channel A B  is degradable [DS05] if there exists a quantum channel

B E  such that B E A B A A E A  w w=  ( ( )) ˆ ( ), for all A A w Î ( ).

3.2.Quantum entropies and information
The quantum entropy of a state Hr Î ( ) is defined as H Tr log2r r rº -( ) { }. It is a non-negative, concave,
lower semicontinuous function [Weh76] and not necessarily finite [BV13]. The binary entropy function is
defined for xä[0, 1] as

h x x x x xlog 1 log 1 . 3.12 2 2º - - - -( ) ( ) ( ) ( )

Throughout the paper we use a function g(x), which is the entropy of a bosonic thermal statewithmean photon
number x�0:

g x x x x x1 log 1 log . 3.22 2º + + -( ) ( ) ( ) ( )

By continuity, we have that h h x0 lim 0x2 0 2= =( ) ( ) and g g x0 lim 0x 0= =( ) ( ) . The quantum relative
entropy D r s( ) of ,  r s Î ( ) is defined as [Fal70, Lin73]

D i ilog log , 3.3
i

2 2år s r r r s s rº á - + - ñ( ) ∣ ∣ ( )

where i i 1ñ =
¥{∣ } is an orthonormal basis of eigenvectors of the state ρ, if supp suppr sÍ( ) ( ) and D r s = ¥( )

otherwise. The quantum relative entropy D r s( ) is non-negative for ,  r s Î ( ) and ismonotonewith
respect to a quantum channel [Lin75] : A B    ( ) ( ):
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D D . 3.4 r s r s ( ) ( ( ) ( )) ( )

The quantummutual information I A B; r( ) of a bipartite state AB A B  r Î Ä( ) is defined as [Lin73]

I A B D; . 3.5AB A Br r rº Är ( ) ( ) ( )

The coherent information I A Bñ r( ) of ABr is defined as [HS10, Kuz11, SN96]

I A B I A B H A; , 3.6ñ º -r r r( ) ( ) ( ) ( )

when H A < ¥r( ) . This expression reduces to

I A B H B H AB , 3.7ñ = -r r r( ) ( ) ( ) ( )

if H B < ¥r( ) .

3.3.Quantumfidelity, trace distance, and diamonddistance
Thefidelity of two quantum states ,  r s Î ( ) is defined as [Uhl76] F , 1

2r s r sº  ( ) . The trace distance
between two density operators ,  r s Î ( ) is equal to 1r s-  . The operational interpretation of trace
distance is that it is linearly related to themaximum success probability in distinguishing two quantum states.
The diamondnormof aHermiticity preserving linearmap  is defined as

sup idR A B RA 1
RA R A

    rº Ärà Î Ä    ( )( )( ) , where idR is the identitymap acting on aHilbert space R

corresponding to an arbitrarily large reference system [Kit97]. It suffices to optimizewith respect to input states
ρ that are pure. The diamondnormdistance  - à  is ameasure of the distinguishability of two quantum
channels  and.

3.4. Approximate degradability
The concept of approximate degradability was introduced in [SSWR17]. The following two definitions of
approximate degradability will be useful in our paper.

Definition 1 (ε-degradable [SSWR17]).A channel A B  is ε-degradable if there exists a channel B E  such

that 1

2
    e- à ˆ ◦ , where ̂ denotes a complementary channel of  .

Definition 2 (ε-close-degradable [SSWR17]).Achannel A B  is e-close-degradable if there exists a degradable
channel A B  such that 1

2
   e- à  .

Remark 3. Let A B  be a quantum channel that is e-close-degradable. Then A B  is 2e e+ -degradable by
[SSWR17], proposition A.5. A converse implication is not known to hold.

3.5. Energy-constrained continuity bounds
Next, we recall the definition of an energy observable and aGibbs observable [Hol12,Win16].We also review the
uniform continuity of conditional quantum entropywith energy constraints [Win16].When defining aGibbs
observable, we follow [Hol12,Win16].

Definition 4 (Energy observable). LetG be a positive semi-definite operator.We assume that it has discrete
spectrum and that it is bounded frombelow. In particular, let ek kñ{∣ } be an orthonormal basis for aHilbert
space, and let gk k{ } be a sequence of non-negative real numbers. Then

G g e e 3.8
k

k k k
1

å= ñá
=

¥

∣ ∣ ( )

is a self-adjoint operator thatwe call an energy observable.

Definition 5 (Extension of energy observable).The nth extension Gn of an energy observableG is defined as

G
n

G I I I I G
1

, 3.9n = Ä Ä Ä + + Ä Ä Ä  ( ) ( )

where n is the number of factors in each tensor product above.

Definition 6 (GibbsObservable).An energy observableG is aGibbs observable if for all 0b > , we have
GTr exp b- < ¥{ ( )} , so that the partition function Z b º( ) GTr exp b-{ ( )}has afinite value and hence

G Gexp Tr expb b- -( ) { ( )} is a well defined thermal state.

For aGibbs observableG, let us consider a quantum state ρ such that G WTr r{ } . There exists a unique
state thatmaximizes the entropy H r( ), and this uniquemaximizer has theGibbs form
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W W G Z Wexpg b b= -( ) ( ( ) ) ( ( )), where Wb ( ) is the solution of the equation:

G G WTr exp 0. 3.10b- - ={ ( )( )} ( )

In particular, for theGibbs observable G nw= ˆ, where n a a=ˆ ˆ ˆ† is the photon number operator, a thermal state
(mean photon number n̄) that saturates the energy-constrained inequality G WTr r{ } , gives themaximum
value of the entropy:

H W g n n n n n1 log 1 log . 3.112 2g = = + + -( ( )) ( ¯) ( ¯ ) ( ¯ ) ¯ ¯ ( )

Here, we have fixed the ground-state energy to be equal to zero. In some parts of our paper, we take theGibbs
observable to be the number operator, andwe use the terminology ‘mean photon number’ and ‘energy’
interchangeably.

The following lemma is a uniform continuity bound for the conditional quantum entropywith energy
constraints [Win16]:

Lemma1 (Meta-Lemma17, [Win16]). For aGibbs observable G A Î ( ), and states ,AB AB A B  w t Î Ä( ),
such that G I G I W1, Tr , TrAB AB B AB B AB

1

2 1   w t e e w t- < ¢ Ä Ä  {( ) } {( ) } , whereW 0,Î ¥[ ) and
1d e e e= ¢ - + ¢( ) ( ), the following inequality holds

H A B H A B H W g h2 4 2 . 3.122 e d g d e d- ¢ + + ¢ +w t∣ ( ∣ ) ( ∣ ) ∣ ( ) ( ( )) ( ) ( ) ( )

Throughout the paper, we consider only those quantum channels that satisfy the followingfinite output entropy
condition:

Condition 7 (Finite output entropy). LetG be aGibbs observable andW 0,Î ¥[ ). A quantum channel 
satisfies thefinite output entropy conditionwith respect toG andW if

Hsup . 3.13
G W: Tr




r < ¥
r r

( ( )) ( )
{ }

3.6. Gaussian states and channels
Wenowdeliver a brief review ofGaussian states and channels, andwe point to [Ser17] formore details. Gaussian
channelsmodel natural physical processes such as photon loss, photon amplification, thermalizing noise, or
randomkicks in phase space. They satisfy condition 7when theGibbs observable formmodes is taken to be

E a a , 3.14m
j

m

j j j
1

å wº
=

ˆ ˆ ˆ ( )†

where 0jw > is the frequency of the jthmode and ajˆ is the photon annihilation operator for the jthmode, so
that a aj jˆ ˆ† is the photon number operator for the jthmode.

Let

x q q p p x x, , , , , , , 3.15m m m1 1 1 2º ¼ ¼ º ¼ˆ [ ˆ ˆ ˆ ˆ ] [ ˆ ˆ ] ( )

denote a vector of position- andmomentum-quadrature operators, satisfying the canonical commutation
relations:

x x I, i , where 0 1
1 0

, 3.16j k j k m,= W W º
-

Ä
⎡
⎣⎢

⎤
⎦⎥[ ˆ ˆ ] ( )

and Im denotes them×m identitymatrix.We take the annihilation operator for the jthmode as
a q pi 2j j j= +ˆ ( ˆ ˆ ) . For m2x Î , we define the unitary displacement operator D xexp i Tx xº W( ) ( ˆ). Displace-
ment operators satisfy the following relation:

D D D D exp i . 3.17Tx x x x x x¢ = ¢ W ¢( ) ( ) ( ) ( ) ( ) ( )† †

Every state  r Î ( ) has a correspondingWigner characteristic function, defined as

DTr , 3.18c x x rºr ( ) { ( ) } ( )

and fromwhichwe can obtain the state ρ as

D
1

2
d . 3.19

m
m2òr

p
x c x x= r( )

( ) ( ) ( )†

Aquantum state ρ is Gaussian if itsWigner characteristic function has aGaussian form as

Vexp
1

4
, 3.20T Tc x x x m x= - W W + Wr

r r⎜ ⎟⎛
⎝

⎞
⎠( ) [ ] [ ] ( )
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where mr is the m2 1´ mean vector of ρ, whose entries are defined by xj jm º á ñr
rˆ andVr is the m m2 2´

covariancematrix of ρ, whose entries are defined as

V x x, . 3.21j k j j k k, m mº á - - ñr r r{ ˆ ˆ } ( )

The following condition holds for a valid covariancematrix:V i 0+ W , which is amanifestation of the
uncertainty principle [SMD94].

A thermal Gaussian state qb ofmmodes with respect to Em
ˆ from (3.14)and having inverse temperature

0b > thus has the following form:

e Tr e , 3.22E Em mq =b
b b- -{ } ( )ˆ ˆ

and has amean vector equal to zero and a diagonal m m2 2´ covariancematrix. One can calculate that the
photon number in this state is equal to

1

e 1
. 3.23

j
j

å
-bw

( )

A single-mode thermal state withmean photon number n 1 e 1= -bw¯ ( ) has the following representation in
the photon number basis:

n
n

n

n
n n

1

1 1
. 3.24

n

n

0
åq º

+ +
ñá

=

¥ ⎛
⎝⎜

⎞
⎠⎟( ¯)

¯
¯

¯
∣ ∣ ( )

It is alsowell known that thermal states can bewritten as aGaussianmixture of displacement operators acting on
the vacuum state:

p D Dd 0 0 , 3.25m m2òq x x x x= ñáb
Ä( ) ( )[∣ ∣] ( ) ( )†

where p x( ) is a zero-mean, circularly symmetric Gaussian distribution. From this, it also follows that randomly
displacing a thermal state in such away leads to another thermal state of higher temperature:

q D Dd , 3.26m2òq x x x q x=b b ¢( ) ( ) ( ) ( )†

where b b¢ and q x( ) is a particular circularly symmetricGaussian distribution.
In our paper, we employ the two-mode squeezed vacuum statewith parameter n̄, which is equivalent to a

purification of the thermal state in (3.24) and is defined as

n
n

n

n
n n

1

1 1
. 3.27

n

n

R ATMS
0

åy ñ º
+ +

ñ ñ
=

¥ ⎛
⎝⎜

⎞
⎠⎟∣ ( ¯)

¯
¯

¯
∣ ∣ ( )

A m m2 2´ matrix S is symplectic if it preserves the symplectic form: S STW = W. According to
Williamsonʼs theorem [Wil36], there is a diagonalization of the covariancematrixVr of the form

V S D D S , 3.28T= År r r r r( )( ) ( )

where Sr is a symplecticmatrix and D diag , , m1n nº ¼r ( ) is a diagonalmatrix of symplectic eigenvalues such
that 1i n for all i m1, ,Î ¼{ }. Computing this decomposition is equivalent to diagonalizing thematrix Vi Wr

[WTLB17, appendixA].
The entropy H r( ) of a quantumGaussian state ρis a direct function of the symplectic eigenvalues of its

covariancematrixVr [Ser17]:

H g 1 2 , 3.29
j

m

j
1

år n= -
=

( ) (( ) ) ( )

where g (·) is defined in (3.2).
TheHilbert–Schmidt adjoint of aGaussian quantum channel X Y, from lmodes tommodes has the

following effect on a displacement operator D x( ) [Ser17]:

D D X Y dexp
1

2
i , 3.30T T Tx x x x x- + W ⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )

whereX is a real m l2 2´ matrix,Y is a real m m2 2´ positive semi-definitematrix, and d m2Î , such that
they satisfy

Y X Xi i 0. 3.31T + W - W ( )

The effect of the channel on themean vector mr and the covariancematrixVr is thus as follows:

X d, 3.32m m +r r⟼ ( )
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V XV X Y . 3.33T +r r⟼ ( )
Aphase-insensitive, single-mode bosonicGaussian channel adds an equal amount of noise to each quadrature of
the electromagnetic field, such that

X diag , , 3.34t t= ( ) ( )
Y diag , , 3.35n n= ( ) ( )
d 0, 3.36= ( )

where 0, 1t Î [ ]corresponds to attenuation, 1t amplification, and ν is the variance of an additive-noise.
Moreover, the following inequalities should hold

0, 3.37n ( )

1 , 3.382 2n t-( ) ( )
in order for themap to be a legitimate completely positive and trace preservingmap. The channel is
entanglement breaking [HSR03] if the following inequality holds [Hol08]

1. 3.39n t + ( )

All Gaussian channels are covariant with respect to displacement operators. That is, the following relation
holds

D D D X D X , 3.40X Y X Y, , x r x x r x=( ( ) ( )) ( ) ( ) ( ) ( )† †

and note that D Xx( ) is a tensor product of local displacement operators.
Just as every quantum channel can be implemented as a unitary transformation on a larger space followed by

a partial trace, so canGaussian channels be implemented as aGaussian unitary on a larger space with some extra
modes prepared in the vacuum state, followed by a partial trace [CEGH08]. Given aGaussian channel X Y, with
Z such that Y ZZT= we can find two othermatricesXE andZE such that there is a symplecticmatrix

S
X Z
X Z

, 3.41
E E

=
⎡
⎣⎢

⎤
⎦⎥ ( )

which corresponds to theGaussian unitary transformation on a larger space. The complementary channel

X Y,E E
̂ from input to the environment then effects the following transformation onmean vectors and covariance
matrices:

X , 3.42Em mr r⟼ ( )

V X V X Y , 3.43E E
T

E+r r⟼ ( )

where Y Z ZE E E
Tº .

3.7.Quantum thermal channel
Aquantum thermal channel is aGaussian channel that can be characterized by a beamsplitter of transmissivity

0, 1h Î ( ), coupling the signal input statewith a thermal state withmean photon number N 0B  , and followed
by a partial trace over the environment. In theHeisenberg picture, the beamsplitter transformation is given by
the following Bogoliubov transformation:

b a e1 , 3.44h h= - -ˆ ˆ ˆ ( )

e a e1 , 3.45h h¢ = - +ˆ ˆ ˆ ( )

where a b e, ,ˆ ˆ ˆ, and e ¢ˆ are the annihilation operators representing the senderʼs inputmode, the receiverʼs output
mode, an environmental inputmode, and an environmental outputmode of the channel, respectively.
Throughout the paper, we represent the thermal channel by N, B

h . If themean photon number at the input of a
thermal channel is no larger thanNS, then the total number of photons thatmake it through the channel to the
receiver is no larger than N N1S Bh h+ -( ) .

3.8.Quantumamplifier channel
Aquantumamplifier channel is aGaussian channel that can be characterized by a two-mode squeezer with
parameter G 1> , coupling the signal input state with a thermal state withmean photon number N 0B  , and
followed by a partial trace over the environment. In theHeisenberg picture, the two-mode squeezer
implementing a quantumamplifier channel has the following Bogoliubov transformation:

b G a G e1 , 3.46= + -ˆ ˆ ˆ ( )†

e G a G e1 , 3.47¢ = - +ˆ ˆ ˆ ( )†
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where a b e, ,ˆ ˆ ˆ, and e ¢ˆ correspond to the same parties as discussed above. Throughout the paper, we represent the
noisy amplifier channel by G N, B

 , and the quantum-limited amplifier channel (with N 0B = ) by G,0 .

3.9. Additive-noise channel
An additive-noise channel is specified by the following completely positive and trace preservingmap:

P D Dd , 3.48n n
2 òr a a a r aº( ) ( ) ( ) ( ) ( )¯ ¯

†

where P n nexpn
2a p= -( ∣ ∣ ¯) ( ¯)¯ and D a( ) is a displacement operator for the inputmode. The variance n 0>¯

completely characterizes the channel n ¯, and it roughly represents the number of noise photons added to the
inputmode by the channel.

3.10. Continuity of output entropy
The following theoremon continuity of output entropy for infinite-dimensional systemswithfinite average
energy constraints is a direct consequence of [LS09, theorem 11] and lemma 1.

Theorem8. Let A B  and A B  be quantum channels, G B Î ( ) be aGibbs observable, such that

G G WTr , Tr , 3.49n
n

A n
n

An n  r rÄ Ä{ ( )} { ( )} ( )

whereW 0,Î ¥[ ) and RA R A
n

n   r Î Ä Ä( ). If 11

2
   e e- < ¢à  and 1d e e e= ¢ - + ¢( ) ( ),

then the following inequality holds

H H

n H W g h

id id

2 4 2 . 3.50
R A B

n
RA R A B

n
RA

2

n n 


r r

e d g d e d
Ä - Ä

¢ + + ¢ +


Ä


Ä∣ (( )( )) (( )( ))∣
[( ) ( ( )) ( ) ( )] ( )

Proof. Let

id , 3.51j
R A B

j
A B

n j
RAn r r= Ä Ä

Ä


Ä -( )( ) ( )( )

and consider the following chain of inequalities:

H RB H RB

H RB H RB
3.52

n n

j

n
n n

1

n

j j

0

1å

-

= -

r r

r r
=

-

∣ ( ) ( ) ∣

( ) ( )
( )

H RB H RB 3.53
j

n
n n

1

j j1å -r r
=

-∣ ( ) ( ) ∣ ( )

H B RB B B B H B RB B B B 3.54
j

n

j j j n j j j n
1

1 1 1 1 1 1j j1å= -r r
=

- + - +-   ∣ ( ∣ ) ( ∣ ) ∣ ( )

n
n

H W g h2 4
1

2 3.55
j

n

j
1

2 åe d g d e d¢ + + ¢ +
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[( ) ( ( )) ( ) ( )] ( )

n H
n

W g h2 4
1

2 3.56
j

n

j
1

2 åe d g d e d¢ + + ¢ +
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[( ) ( ) ( ) ( )] ( )

n H W g h2 4 2 . 3.572 e d g d e d¢ + + ¢ +[( ) ( ( )) ( ) ( )] ( )

Thefirst inequality follows from the triangle inequality. The second equality follows from the fact that the states
jr and j 1r - are the same except for the jth output system. LetWj denote an energy constraint on the jth output

state of both the channels  and, i.e., G G WTr , TrA A jj j
  r r{ ( )} { ( )} and W W

n j j
1 å . Then the

second inequality follows because j j1

2
1

1 r r e- -  for the given channels, andwe use lemma 1 for the jth
output system. The third inequality follows from concavity of entropy. Thefinal inequality follows because

n
G W

n
G W WTr

1 1
Tr , 3.58

j

n

j
j

n

j
1 1

å åg d g d d=
= =

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( ) { ( )} ( )

and Wg d( ) is theGibbs state thatmaximizes the entropy corresponding to the energyW d . +

3.11. Continuity of capacities for channels
The continuity of various capacities of quantum channels has been discussed in [LS09, lemma 12]. The general
form for the classical, quantum, or private capacity of a channel  can be defined as

9
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F f Plim sup ,n n P n
n n1

n = ¥
Ä( ) ( )( )( ) , where fn n{ } denotes a family of functions, and P n( ) represents states or

parameters over which an optimization is performed. Then the following lemma holds [LS09].

Lemma2 (Lemma12, [LS09]). If F f Plim sup ,n n P n
n n1

n = ¥
Ä( ) ( )( )( ) for a channel  and "

n P f P f P nc, , , ,n
n

n n
n

n n  -Ä Ä∣ ( ) ( )∣( ) ( ) ( ) , then F F c  -∣ ( ) ( )∣ .

3.12. Energy-constrained quantumandprivate capacities
The energy-constrained quantum and private capacities of quantum channels have been defined in [WQ16,
section 3]. Inwhat follows, we review the definition of quantum communication and private communication
codes, achievable rates, and regularized formulas for energy-constrained quantumand private capacities.

3.13. Energy-constrained quantum capacity
An n M G W, , , , e( ) code for energy-constrained quantum communication consists of an encoding channel

:n
S A

n     Ä( ) ( ) and a decoding channel :n
B

n
S    Ä( ) ( ), where M dim S= ( ). The energy

constraint is such that the following bound holds for all states resulting from the output of the encoding channel
n :

G WTr , 3.59n
n

S r{ ( )} ( )

where S S r Î ( ). Note that

G GTr Tr , 3.60n
n

S n r r={ ( )} { } ( )

where

n

1
Tr 3.61n

i

n

A A
n

S
1

n
i år rº

=

{ ( )} ( )⧹

due to the i.i.d.nature of the observable Gn. Furthermore, the quantum communication code satisfies the
following reliability condition such that for all pure states RS R S  f Î Ä( ),

F , id 1 , 3.62RS R
n n n

RS   f f eÄ -Ä( ( [ ◦ ◦ ])( )) ( )

where R is isomorphic to S . A rateR is achievable for quantum communication over  subject to the energy
constraintWif for all 0, 1e Î ( ), 0d > , and sufficiently large n, there exists an n G W, 2 , , ,n R ed-( )[ ] energy-
constrained quantum communication code. The energy-constrained quantum capacity Q G W, ,( ) of  is
equal to the supremumof all achievable rates.

If the channel  satisfies condition 7 andG is a Gibbs observable, then the quantum capacity Q G W, ,( )
is equal to the regularized energy-constrained coherent information of the channel  [WQ16]

Q G W
n

I G W, , lim
1

, , , 3.63
n

c
n

n =
¥

Ä( ) ( ) ( )

where the energy-constrained coherent information of the channel is defined as [WQ16]

I G W H H, , sup , 3.64c
G W:Tr

  


r rº -
r r

( ) ( ( )) ( ˆ ( )) ( )
{ }

and ̂ denotes a complementary channel of  . Note that another definition of energy-constrained quantum
communication is possible, but it leads to the same value for the capacity in the asymptotic limit ofmany channel
uses [WQ16].

3.14. Energy-constrained private capacity
An n M G W, , , , e( ) code for private communication consists of a set A

m
m
M

1nr ={ } of quantum states, each in

A
n Ä( ), and a POVM B

m
m
M

1nL ={ } such that

G WTr , 3.65n A
m

n r{ } ( )

Tr 1 , 3.66B
m n

A
m

n n r eL -Ä{ ( )} ( )
1

2
, 3.67

n

A
m

E 1n n r w e-
Ä

 ˆ ( ) ( )

for all m M1, ,Î ¼{ }, with Enw some fixed state in E
n Ä( ). In the above, ̂ is a channel complementary to

 . A rateR is achievable for private communication over  subject to energy constraintW if for all
0, 1 , 0e dÎ >( ) , and sufficiently large n, there exists an n G W, 2 , , ,n R ed-( )[ ] private communication code.

The energy-constrained private capacity P G W, ,( ) of  is equal to the supremumof all achievable rates.
An upper bound on the energy-constrained private capacity of a channel has been established in [WQ16],

but the lower bound still needs a detailed proof.However, the results in [WQ16] suggest the validity of the
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following form. If the channel  satisfies condition 7 andG is aGibbs observable, then the energy-constrained
private capacity P G W, ,( ) is given by the regularized energy-constrained private information of the channel:

P G W
n

P G W, , lim
1

, , , 3.68
n

n
n

1 =
¥

Ä( ) ( ) ( )( )

where the energy-constrained private information is defined as

P G W x p x D D, , sup d , 3.69
G W

X A
x

A
x1

:Tr
A A

A A
     

  
ò r r r rº -

r r
 ( ) ( )[ ( ( ) ( ¯ )) ( ˆ ( ) ˆ ( ¯ ))] ( )( )

¯ { ¯ }

and x p xd X A
x

A òr rº¯ ( ) is an average state of the ensemble

p x , , 3.70A X A
x rº { ( ) } ( )

and ̂ denotes a complementary channel of  . Note that another definition of energy-constrained private
communication is possible, but it leads to the same value for the capacity in the asymptotic limit ofmany channel
uses [WQ16].

Remark 9.The unconstrained quantumand private capacities of a quantum channel  are defined in the same
way as above butwithout the energy constraints demanded in (3.59) and (3.65). As a consequence of these
definitions and the fact that the set of states with finite but arbitrarily large energy is dense in the set of all states,
for channels satisfying thefinite output entropy condition for every energyW 0 , the unconstrained quantum
and private capacities are respectively given by

Q G W P G Wsup , , , sup , , . 3.71
W W0 0

 
 

( ) ( ) ( )

4. Bounds on energy-constrained quantumandprivate capacities of approximately
degradable channels

In this section, we derive upper bounds on the energy-constrained quantumand private capacities of
approximately degradable channels.We derive these bounds for both ε-degradable (definition 1) and ε-close-
degradable (definition 2) channels. This general form for the upper bounds on the energy-constrained quantum
and private capacities of approximately degradable channels will be directly used in establishing bounds on the
capacities of quantum thermal channels.

We begin by defining the conditional entropy of degradation, whichwill be useful forfinding upper bounds on
the energy-constrained quantum and private capacities of an ε-degradable channel. A similar quantity has been
defined for thefinite-dimensional case in [SSWR17].

Definition 10 (Conditional entropy of degradation). Let A B  and B E  be quantum channels, and let
G A Î ( ) be aGibbs observable.We define the conditional entropy of degradation as follows:

U G W H H, , sup , 4.1
G W: Tr

   


r r= -
r r

( ) [ ( ( )) ( ◦ ( ))] ( )
{ }

whereW 0,Î ¥[ ). For a Stinespring dilation B E F:    Ä( ) ( ) ( ) of the channel ,
U G W H F E, , sup . 4.2

G W: Tr

  


=
r r

r( ) [ ( ∣ ) ] ( )
{ }

◦ ( )

Wenote that the conditional entropy of degradation can be understood as the negative entropy gain of the
channel B E  [Ali04,Hol11b,Hol10,Hol11a], with the optimization over input states  r( ) restricted to being
in the image of  and obeying the energy constraint G WTr r{ } . Next, we show that the conditional entropy
of degradation in (4.2) is additive.

Lemma3. Let A B  and B E  be quantum channels, let G A Î ( ) be aGibbs observable, and letW 0,Î ¥[ ).
Then for all integer n 1

U G W n U G W, , , , . 4.3n
nn   =ÄÄ ( ) [ ( )] ( )

Proof.The following inequality

U G W n U G W, , , , 4.4n
nn   ÄÄ ( ) [ ( )] ( )

follows trivially because a product input state is a particular state of the form required in the optimization of
U G W, ,n

nn 
ÄÄ ( ).We nowprove the less trivial inequality

U G W n U G W, , , , . 4.5n
nn   ÄÄ ( ) [ ( )] ( )
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Consider the following chain of inequalities:

H F E H F E 4.6n n

i

n

i i
1

n n
An Ai

    år r
=

Ä Ä( ∣ ) ( ∣ ) ( )( ◦ )( ) ( ◦ )( )

n H F E 4.7
n  r[ ( ∣ ) ] ( )( ◦ )( ¯ )

n U G W, , , 4.8 [ ( )] ( )

where n n i
n

A
1

1 i
r r= å =¯ . Thefirst inequality follows from several applications of strong subadditivity

[LR73b, LR73a]. The second inequality follows from concavity of conditional entropy [LR73b, LR73a]. The last
inequality follows because G G WTr Trn A nn r r={ } { ¯ } and the conditional entropy of degradation
U G W, , ( ) involves an optimization over all input states obeying this energy constraint. Since the chain of
inequalities is true for all input states Anr satisfying the input energy constraint, the desired result follows. +

4.1. Bound on the energy-constrained quantum capacity of an ε-degradable channel
Anupper bound on the quantum capacity of an ε-degradable channel was established as [SSWR17, theorem3.1
(ii)] for thefinite-dimensional case. Here, we prove a related bound for the infinite-dimensional case withfinite
average energy constraints on the input and output states of the channels.

Theorem11. Let A B  be an ε-degradable channel with a degrading channel B E  ¢, and let G A Î ( ) and
G E ¢ Î ¢( ) beGibbs observables, such that for all input states HA A

n
n r Î Ä( ) satisfying input average energy

constraints G WTr n An r{ } , the following output average energy constraints are satisfied:

G G WTr , Tr , 4.9n
n

A n
n n

An n   r r¢ ¢ ¢
Ä Ä Ä{ ˆ ( )} { ( ◦ )( )} ( )

where A E 
ˆ is a complementary channel of  and E E¢  . Then the energy-constrained quantum capacity

Q G W, ,( ) is bounded from above as

Q G W U G W H W g h, , , , 2 4 2 , 4.102  e d g d e d+ ¢ + ¢ + ¢ +( ) ( ) ( ) ( ( )) ( ) ( ) ( )

with W W, 1 , , 0,e e¢ Î ¢ Î ¥( ] [ ), and 1d e e e= ¢ - + ¢( ) ( ).

Proof. Let

,

,

B
n

A

E E

j j j n j
A

n n

j
n j

n



  

s r

r r

=

¢
= Ä

Ä

Ä Ä Ä -

-

( )

( ◦ ) ˆ ( )( )

( )

and consider the following chain of inequalities:

H B H E

H B H E H E H E 4.11

n n

n n n nn n

0

0

-

= - ¢ + ¢ -
s r

s r r r

( ) ( )
( ) ( ) ( ) ( ) ( )

U G W H E H E, , 4.12n
n

n nn n 0 + ¢ -r r
ÄÄ ( ) ( ) ( ) ( )

n U G W

H E E E E E H E E E E E

, ,

... ... ... ... 4.13
j

n

j j j n j j j n
1

1 1 1 1 1 1j j 1



å

=

+ ¢ ¢ ¢ - ¢ ¢r r
=

- + - + -

( )

[ ( ∣ ) ( ∣ ) ] ( )

n U G W
n

H W g h, , 2 4
1

2 4.14
j

n

j
1

2 åe d g d e d+ ¢ + ¢ + ¢ +
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ( ) ( ) ( ( )) ( ) ( )] ( )

n U G W H
n

W g h, , 2 4
1

2 4.15
j

n

j
1

2 åe d g d e d+ ¢ + ¢ + ¢ +
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ( ) ( ) ( ) ( ) ( )] ( )

n U G W H W g h, , 2 4 2 . 4.162 e d g d e d+ ¢ + ¢ + ¢ +[ ( ) ( ) ( ( )) ( ) ( )] ( )

Thefirst inequality follows from the definition in (4.1). The second equality follows from lemma 3 and the
telescoping technique. LetWj¢ denote the energy constraint on the jth output state of both the channels  ◦
and ̂ , i.e., G G WTr , TrA A jj j

   r r¢ ¢ ¢{ ( ◦ )( )} { ˆ ( )} where W W
n j j
1 å ¢ ¢. Then the second inequality

holds because j j1

2
1

1 r r e- -  for the given channels, andwe use lemma 1 for the jth output system. The
third inequality follows from concavity of entropy. The last inequality follows because

G W G W WTr Tr
n j

n
j n j

n
j

1
1

1
1 g d g d då ¢ = å ¢ ¢= ={ ( )} { ( )} , and Wg d¢( ) is theGibbs state thatmaximizes the

entropy corresponding to the energyW d¢ . Since the chain of inequalities is true for all Anr satisfying the input
average energy constraint, from (3.64) and the above, we get that

12
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n
I G W U G W H W g h

1
, , , , 2 4 2 . 4.17c

n
n 2  e d g d e d+ ¢ + ¢ + ¢ +Ä( ) ( ) ( ) ( ( )) ( ) ( ) ( )

Since the last inequality holds for all n, we obtain the desired result by taking the limit n  ¥ and applying
(3.63). +

4.2. Bound on the energy-constrained quantum capacity of an ε-close-degradable channel
Anupper bound on the quantum capacity of an ε-close-degradable channel was established as [SSWR17,
propositionA.2(i)] for thefinite-dimensional case. Here, we provide a bound for the infinite-dimensional case
withfinite average energy constraints on the input and output states of the channels.

Theorem12. Let A B  be an e-close-degradable channel, i.e., 11

2
   e e- < ¢à  , where A B  is a

degradable channel. Let G G,A B   Î ¢ Î( ) ( ) beGibbs observables, such that for all input states
RA R A

n
n   r Î Ä Ä( ) satisfying the input average energy constraint G WTr n An r{ } , the following output

average energy constraints are satisfied:

G G WTr , Tr , 4.18n
n

A n
n

An n  r r¢ ¢ ¢Ä Ä{ ( )} { ( )} ( )

whereW W, 0,¢ Î ¥[ ). Then the energy-constrained quantum capacity Q G W, ,( ) is bounded from above as

Q G W I G W H W g h, , , , 4 8 2 4 , 4.19c 2  e d g d e d+ ¢ + ¢ + ¢ +( ) ( ) ( ) ( ( )) ( ) ( ) ( )

with , 1e e¢ Î ( ]and 1d e e e= ¢ - + ¢( ) ( ).

Proof. Let idRB R
n

RA
n nw r= Ä Ä( )( ) and idRB R

n
RA

n nt r= Ä Ä( )( ), and consider the following chain of
inequalities:

H B H RB H B H RB
H B H B H RB H RB 4.20

n n n n

n n n n

- - +
= - + -

w w t t

w t t w

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

n H W g h2 2 4 2 . 4.212 e d g d e d¢ + + ¢ +[( ) ( ( )) ( ) ( )] ( )

Thefirst inequality follows from applying theorem8 twice. Then from lemma 2,

Q G W Q G W H W g h, , , , 4 8 2 4 . 4.222  e d g d e d+ ¢ + ¢ + ¢ +( ) ( ) ( ) ( ( )) ( ) ( ) ( )

The desired result follows from the fact that the energy-constrained quantum capacity of a degradable channel is
equal to the energy-constrained coherent information of the channel [WQ16]. +

4.3. Bound on the energy-constrained private capacity of an ε-degradable channel
In this section, wefirst derive an upper bound on the private capacity of an ε-degradable channel for the finite-
dimensional case, which is different from any of the bounds presented in [SSWR17]. Then, we generalize this
bound to the infinite-dimensional case withfinite average energy constraints on the input and output states of
the channels.

Theorem13. Let A B  be a finite-dimensional e-degradable channel with a degrading channel B E  ¢, and let

A E:  ˆ ( ) ( ) be a complementary channel of  , such that E E¢  . If

U H Hmax , 4.23
A

   
 

r r= -
rÎ

( ) [ ( ( )) (( ◦ )( ))] ( )
( )

then the private capacity P ( ) of  is bounded from above as

P U g6 log dim 3 . 4.24E2   e e+ +( ) ( ) ( ) ( ) ( )

Proof.Consider Stinespring dilations A B E:    Ä( ) ( ) ( ) and B E F:    ¢ Ä( ) ( ) ( ) of the channel
 and the degrading channel , respectively. Let XAnr be a classical-quantum state in correspondencewith an
ensemble p x ,X A

x
nr{ ( ) }:

p x x x , 4.25XA
x

X X A
x

n når r= ñá Ä( )∣ ∣ ( )

and let

p x x x id . 4.26XE E F
x

X X E
n n n

A
x

n n n n åw r= ñá Ä Ä¢
Ä Ä Ä( )∣ ∣ ( ) ◦ ( ) ( )

Consider the following extension of XE E Fn n nw ¢ :

p x p y x x x y y id , 4.27XYE E F
x y

X Y X X Y E
n n n

A
x y

,

,
n n n n ås y= ñá Ä ñá Ä Ä¢

Ä Ä Ä( ) ( ∣ )∣ ∣ ∣ ∣ ( ) ◦ ( ) ( )∣

13
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where A
x y,

ny is a pure state, and let idE E F
x y

E
n n n

A
x y, ,

n n n n s y= Ä¢
Ä Ä Ä( )◦ ( ). Consider the following chain of

inequalities:

I X B I X E I X F E I X E I X E; ; ; ; ; 4.28n n n n n n- = ¢ + ¢ -w w w w w( ) ( ) ( ∣ ) ( ) ( ) ( )

I X F E H E H E H E X H E X; 4.29n n n n n n= ¢ + ¢ - + - ¢w w w w w( ∣ ) ( ) ( ) ( ∣ ) ( ∣ ) ( )
I X F E n g; 2 2 log dim 4.30n n

E2  e e¢ + +w( ∣ ) [ ( ) ( )] ( )

I XY F E n g; 4 log dim 2 4.31n n
E2  e e¢ + +s( ∣ ) [ ( ) ( )] ( )

H F E H F E XY H E XY

n g4 log dim 2 4.32

n n n n n

E2 e e
= ¢ - ¢ + ¢
+ +

s s s( ∣ ) ( ∣ ) ( ∣ )
[ ( ) ( )] ( )

H F E H E XY H E XY

n g4 log dim 2 4.33

n n n n

E2 e e
= ¢ - + ¢

+ +
s s s( ∣ ) ( ∣ ) ( ∣ )

[ ( ) ( )] ( )

n U g6 log dim 3 . 4.34E2  e e+ +[ ( ) ( ) ( )] ( )

Thefirst two equalities follow from entropy identities. Thefirst inequality follows by applying the telescoping
technique twice and using the continuity result of the conditional quantum entropy forfinite-dimensional
quantum systems [Win16]. The second inequality follows from the quantumdata-processing inequality for
conditional quantummutual information. The last two equalities follow from entropy identities and by using
that E E F

x y,
n n ns ¢ is a pure state, so that H F E H En n nx y x y, ,¢ =s s( ) ( ) . The last inequality follows from the definition in

(4.23), and additivity ofU  ( ) [SSWR17]. Also, we applied the telescoping technique for each x y,s in the
summation, and used the continuity result of the conditional quantum entropy forfinite-dimensional systems
[Win16]. Since the chain of inequalities is true for any ensemble p x ,X A

x
nr{ ( ) }, thefinal result follows from the

definition of private information of the channel, dividing by n, taking the limit n  ¥, and noting that the
regularized private information is equal to the private capacity of any channel. +

Next, we derive an upper bound on the energy-constrained private capacity of an ε-degradable channel.

Theorem14. Let A B  be an e-degradable channel with a degrading channel B E  ¢, and let
G G,A E   Î ¢ Î ¢( ) ( ) beGibbs observables, such that for all input states HA A

n
n r Î Ä( ) satisfying input average

energy constraints G WTr n An r{ } , the following output average energy constraints are satisfied:

G G WTr , Tr , 4.35n
n

A n
n n

An n   r r¢ ¢ ¢
Ä Ä Ä{ ˆ ( )} { ( ◦ )( )} ( )

where A E 
ˆ is a complementary channel of  , and E E¢  . Then the energy-constrained private capacity is

bounded from above as

P G W U G W H W g h, , , , 6 12 3 6 , 4.362  e d g d e d+ ¢ + ¢ + ¢ +( ) ( ) ( ) ( ( )) ( ) ( ) ( )

with W W, 1 , , 0,e e¢ Î ¢ Î ¥( ] [ ), and 1d e e e= ¢ - + ¢( ) ( ).

Proof. Since the proof is similar to the above one and previous ones, we just summarize it briefly below. Consider
Stinespring dilations A B E:    Ä( ) ( ) ( ) and B E F:    ¢ Ä( ) ( ) ( ) of the channel  and the
degrading channel , respectively. Then the action of nÄ followed by nÄ on the ensemble p x ,X A

x
nr{ ( ) } leads

to the following ensemble:

p x , id . 4.37X E E F
x

E
n n n

A
x

n n n n w rº Ä¢
Ä Ä Ä{ ( ) ( ) ◦ ( )} ( )

Similar to the above proof, from applying the telescoping technique three times and using lemma 1, concavity of
entropy, and lemma 3, we get the following bound:

I X B I X E n U G W H W g h; ; , , 6 12 3 6 . 4.38n n
2 e d g d e d- + ¢ + ¢ + ¢ +w w( ) ( ) [ ( ) ( ) ( ( )) ( ) ( )] ( )

The desired result follows fromdividing by n, taking the limit n  ¥, the definition of the energy-constrained
private information of the channel, and using the fact that the regularized energy-constrained private
information is an upper bound on the energy-constrained private capacity of a quantum channel [WQ16]. +

4.4. Bound on the energy-constrained private capacity of an ε-close-degradable channel
Anupper bound on the private capacity of an ε-close-degradable channel was established as [SSWR17,
propositionA.2(ii)] for thefinite-dimensional case. Here, we provide a bound for the infinite-dimensional case
withfinite average energy constraints on the input and output states of the channels.

Theorem15. Let A B  be an e-close-degradable channel, i.e., 11

2
   e e- < ¢à  , where A B  is a

degradable channel. Let G G,A B   Î ¢ Î( ) ( ) beGibbs observables, such that for all input states A A
n

n  r Î Ä( )
satisfying input average energy constraints G WTr n An r{ } , the following output average energy constraints are

14
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satisfied:

G G WTr , Tr , 4.39n
n

A n
n

An n  r r¢ ¢ ¢Ä Ä{ ( )} { ( )} ( )

whereW W, 0,¢ Î ¥[ ). Then

P G W I G W H W g h, , , , 8 16 4 8 , 4.40c 2  e d g d e d+ ¢ + ¢ + ¢ +( ) ( ) ( ) ( ( )) ( ) ( ) ( )

with , 1e e¢ Î ( ], and 1d e e e= ¢ - + ¢( ) ( ).

Proof.We follow the proof of [LS09, corollary15] closely, but incorporate energy constraints. Consider
Stinespring dilations A B E:    Ä( ) ( ) ( ) and A B E:    Ä( ) ( ) ( ) of the channels  and,
respectively. Consider an input ensemble p x ,X A

x
nr{ ( ) }, which leads to the output ensembles

p x , , 4.41X
x n

A
x

nw rº Ä{ ( ) ( )} ( )

p x , . 4.42X
x n

A
x

nt rº Ä{ ( ) ( )} ( )

Supposing atfirst that the index x is discrete, from four times applying theorem8 and employing the same
expansions as in the proof of [LS09, corollary15] , we get

I X B I X E I X B I X E n H W g h; ; ; ; 4 2 4 2 .

4.43

n n n n
2 e d g d e d- - - ¢ + + ¢ +w w t t( ) ( ) [ ( ) ( ) ] [( ) ( ( )) ( ) ( )]

( )

The upper bound is uniform and has no dependence on the particular ensemble except via the energy
constraints. Thus, by approximation, the same bound applies to ensembles for which the index x is continuous.
Then from lemma 2, we find that

P G W P G W H W g h, , , , 8 16 4 8 4.442  e d g d e d+ ¢ + ¢ + ¢ +( ) ( ) ( ) ( ( )) ( ) ( ) ( )
I G W H W g h, , 8 16 4 8 . 4.45c 2 e d g d e d= + ¢ + ¢ + ¢ +( ) ( ) ( ( )) ( ) ( ) ( )

The equality in the last line follows from the fact that the energy-constrained private capacity of a degradable
channel is equal to the energy-constrained coherent information of the channel [WQ16]. +

5.Upper bounds on energy-constrained quantum capacity of bosonic thermal channels

In this section, we establish three different upper bounds on the energy-constrained quantum capacity of a
thermal channel:

1.We establish a first upper bound using the theorem that any thermal channel can be decomposed as the
concatenation of a pure-loss channel followed by a quantum-limited amplifier channel
[CGH06,GPNBL+12].We call this bound the data-processing bound and denote it by QU1

.

2. Next, we show that a thermal channel is an ε-degradable channel for a particular choice of degrading
channel. Then an upper bound on the energy-constrained quantum capacity of a thermal channel directly
follows from theorem11.We call this bound the ε-degradable bound and denote it by QU2

.

3.We establish a third upper bound on the energy-constrained quantum capacity of a thermal channel using
the idea of ε-close-degradability.We show that the thermal channel is ε-close to a pure-loss bosonic channel
for a particular choice of ε. Since a pure-loss bosonic channel is a degradable channel [WPGG07], the bound
on the energy-constrained quantum capacity of a thermal channel follows directly from theorem 12.We
call this bound the ε-close-degradable bound and denote it by QU3

.

In section 6, we compare, for different parameter regimes, the closeness of these upper boundswith a known
lower bound on the quantum capacity of thermal channels.

5.1.Data-processing bound on the energy-constrained quantum capacity of bosonic thermal channels
In this section, we provide an upper bound using the theorem that any thermal channel N, B

h can be
decomposed as the concatenation of a pure-loss channel ,0h¢ with transmissivity h¢ followed by a quantum-
limited amplifier channel G,0 with gainG [CGH06,GPNBL+12], i.e.,

, 5.1N G, ,0 ,0B  =h h¢◦ ( )

where G N1 1Bh= - +( ) , and Gh h¢ = . In theorem26, we prove that the data-processing bound can be at
most 1.45 bits larger than a known lower bound.

Theorem16.Anupper bound on the quantum capacity of a thermal channel N, B
h with transmissivity

1 2, 1h Î [ ], environment photon number NB, and inputmean photon number constraint NS is given by

15
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Q N Q N, max 0, , , 5.2N S U N S, ,B B1 h h( ) { ( )} ( )

Q N g N g N, 1 , 5.3U N S S S, B1  h hº ¢ - - ¢h( ) ( ) [( ) ] ( )

with N1 1Bh h h¢ = - +(( ) ).

Proof.Anupper bound on the energy-constrained quantum capacity can be established by using (5.1) and a
data-processing argument.Wefind that

Q N Q N, , 5.4N S G S, ,0B  =h h¢( ) ( ◦ ) ( )

Q N, 5.5S,0 h¢( ) ( )
g N g Nmax 0, 1 . 5.6S Sh h= ¢ - - ¢{ ( ) [( ) ]} ( )

Thefirst inequality follows fromdefinitions and data-processing—the energy-constrained capacity of

G ,0 h¢◦ cannot exceed that of ,0h¢ . The second equality follows from the formula for the energy-
constrained quantum capacity of a pure-loss bosonic channel with transmissivity h¢ and inputmean photon
numberNS [WHG12,WQ16]. +

Remark 17.Applying remark 9, wefind the following data-processing bound QU N, B1
h( ) on the unconstrained

quantum capacity of bosonic thermal channels:

Q Q Q Nsup , 5.7N U N
N N

U N S, ,
: 0,

,B B

S S

B1 1   =h h h
Î ¥

( ) ( ) ( ) ( )
[ ]

Q Nlim , 5.8
N

U N S,
S

B1 = h
¥

( ) ( )

Nlog 1 log 1 , 5.9B2 2h h= - - +( ( )) ( ) ( )

where the second equality follows from themonotonicity of g N g N1S Sh h- -( ) [( ) ]with respect toNS for
1 2h [GSE08].
The bound

Q N g N, log 1 5.10N S
N

B, 2B
B  h h- - -h( ) ([ ] ) ( ) ( )

was found in [PLOB17,WTB17].Moreover, the following boundwas established quite recently in [RMG18,
equation (40)]:

Q N
N

N
, max 0, log

1

1 1
. 5.11N S, 2B  h h

h
- -
+ -

h
⎧⎨⎩

⎫⎬⎭( ) ( )
( )( )

( )

As discussed in [RMG18], a comparison of (5.9)with the bounds from (5.10) and (5.11) leads to the conclusion
that the bound given in (5.11) is always tighter than (5.9). However, (5.9) and the bound in (5.10) are
incomparable as one is better than the other for certain parameter regimes. Also, (5.10) is tighter than (5.11) for
certain parameter regimes.

We note that the upper bound in (5.11)was independently established in [NAJ18].

Remark 18.The data-processing bound Q N,U N S, B1
h( ) on the energy-constrained quantum capacity

Q N,N S, B
h( ) places a strong restriction on the channel parameters η andNB. Since the quantum capacity of a

pure-loss channel with transmissivity h¢ is non-zero only for 1 2h¢ > , the energy-constrained quantum
capacity Q N,N S, B

h( ) is non-zero only for
N

N
1

1

2
. 5.12B

B

 h >
+
+

( )

However, [CGH06, section4] provides a stronger restriction on η andNB than (5.12) does.

5.2. ε-degradable bound on the energy-constrained quantum capacity of bosonic thermal channels
In this section, we provide an upper bound on the energy-constrained quantum capacity of a thermal channel
using the idea of ε-degradability. In theorem11, we established a general upper bound on the energy-
constrained quantum capacity of an ε-degradable channel. Hence, ourfirst step is to construct the degrading
channel  given in (5.20), such that the concatenation of a thermal channel N, B

h followed by  is close in

diamond distance to the complementary channel N, B
h
ˆ of the thermal channel N, B

h .
We start bymotivating the reason for choosing the particular degrading channel in (5.20), which is depicted

infigure 1, and thenwefind an upper bound on the diamond distance between N, B
 h◦ and N, B

h
ˆ . In general,

it is computationally hard to perform the optimization over an infinite-dimensional space required in the
calculation of the diamond distance betweenGaussian channels. However, we address this problem in this
particular case by introducing a channel that simulates the serial concatenation of the thermal channel and the
degrading channel, andwe call it the simulating channel, as given in (5.24). This allows us to bound the diamond
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distance between the channels from above by the trace distance between the environment states of the
complementary channel and the simulating channel (theorem19). Next, we argue that, for a given inputmean
photon number constraintNS, a thermal state withmean photon numberNSmaximizes the conditional entropy
of degradation defined in (4.2), which also appears in the general upper bound established in theorem11.We
finally provide an upper bound on the energy-constrained quantum capacity of a thermal channel by using all
these tools and invoking theorem11.

Wenow establish an upper bound on the diamond distance between the complementary channel of the
thermal channel and the concatenation of the thermal channel followed by a particular degrading channel. Let 
and ¢ represent beamsplitter transformationswith transmissivity η and 1 h h-( ) , respectively. In the
Heisenberg picture, the beamsplitter transformation C D C D1 1 2 2

  is given by

c c d1 , 5.132 1 1h h= - -ˆ ˆ ˆ ( )

d c d1 . 5.142 1 1h h= - +ˆ ˆ ˆ ( )

Similarly, the beamsplitter transformation C D C D1 1 2 2
¢  is given by

c c d1 2 1 , 5.152 1 1h h h h= - + -ˆ ( ) ˆ ( ) ˆ ( )

d c d2 1 1 , 5.162 1 1h h h h= - - + -ˆ ( ) ˆ ( ) ˆ ( )

where c c d, ,1 2 1ˆ ˆ ˆ , and d2̂ are annihilation operators representing variousmodes involved in the beamsplitter
transformations. Here, 1 2, 1h Î [ ]. It is important to stress that there is a difference in phase between  and ¢
beamsplitter transformations, which is crucial in our development.

Consider the following action of the thermal channel N, B
h on an input state RAf :

Nid Tr , 5.17R N RA E E AE BE RA B E E, TMSB 1 2 2 1 f f yÄ = Äh ¢ ¢( )( ) { ( ( ) )} ( )

whereR is a reference system and NB E ETMS 1
y ¢( ) is a two-mode squeezed vacuum state with parameterNB, as

defined in (3.27).
Here andwhat remains in the proof, we consider the action of various transformations on the covariance

matrices of the states involved, andwe furthermore track only the submatrices corresponding to the position-
quadrature operators of the covariancematrices. It suffices to do so because all channels involved in our
discussion are phase-insensitiveGaussian channels.

The submatrix corresponding to the position-quadrature operators of the covariancematrix of
NB E ETMS 1

y ¢( ) has the following form:

V
N N N

N N N

2 1 2 1

2 1 2 1
. 5.18

B B B

B B B

=
+ +

+ +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )
( )

( )

Figure 1.The figure plots a thermal channel with transmissivity 1 2, 1h Î [ ] and a degrading channel as described in (5.20). RAf is an
input state to the beamsplitter  with transmissivity η and NBTMSy ( ) represents a two-mode squeezed vacuum state with parameter
NB. SystemB is the output of the thermal channel, and systems E E1 2 are the outputs of the complementary channel. The second
beamsplitter ¢ has transmissivity 1 h h-( ) , and systemB acts as an input to ¢. Systems E E1 2¢ ¢ represent the output systems of the
degrading channel, whose action is to tensor in the state NB FETMS 1y ¢( ) , interact the input systemBwith F according to ¢, and then
trace over systemG.
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The action of a complementary channel N, B
h
ˆ on an input state RAf is given by

Nid Tr . 5.19R N RA B AE BE RA B E E, TMSB 2 1 f f yÄ = Äh ¢ ¢( ˆ )( ) { ( ( ) )} ( )

It can be understood from figure 1 that the systemR is correlatedwith the input systemA for the channel, and the
system E¢ is the environmentʼs input. The beamsplitter transformation  then leads to systemsB and E2. Hence,
the output of the thermal channel N, B

h is systemB, and the outputs of the complementary channel N, B
h
ˆ are

systemsE1 andE2.
Our aim is to introduce a degrading channel , such that the combined state ofR and the output of

N, B
 h◦ emulate the combined state of R E, 1, andE2, to an extent. This will then allowus to bound the

diamond distance between N, B
 h◦ and N, B

h
ˆ from above. For the case when there is no thermal noise, i.e.,

N 0B = , a thermal channel reduces to a pure-loss channel.Moreover, we know that a pure-loss channel is a
degradable channel and the corresponding degrading channel can be realized by a beamsplitter with
transmissivity 1 h h-( ) [GSE08]. Hence, we consider a degrading channel, such that it also satisfies the
conditions for the above described special case.

Consider a beamsplitter with transmissivity 1 h h-( ) and the beamsplitter transformation ¢ from
(5.15)–(5.16). As described infigure 1, the outputB of the thermal channel N, B

h becomes an input to the
beamsplitter ¢.We consider onemode (F infigure 1) of the two-mode squeezed vacuum state NB FETMS 1

y ¢( ) as

an environmental input for ¢, so that the subsystem E1¢mimicsE1. Hence, our choice of degrading channel
seems reasonable, as the combined state of systemR and output systems E E,1 2¢ ¢ of N, B

 h◦ emulates the
combined state of R E, 1, andE2, to an extent.We suspect that our choice of degrading channel is a good choice
because an upper bound on the energy-constrained quantum capacity of a thermal channel using this technique
outperforms all other upper bounds for certain parameter regimes.We denote our choice of degrading channel
by B E E:N1 , 1 2B
    ¢ Ä ¢h h- ( ) ( ) ( )( ) .More formally, N1 , B

 h h-( ) has the following action on the output
state N RA, B

 fh ( ):

Nid Tr . 5.20R N N RA G BF E G N RA B FE1 , , , TMSB B B2 1
   f f yÄ = ¢ Äh h h h-  ¢ ¢( [ ◦ ])( ) { ( ( ) ( ) ))} ( )( )

Next, we provide a strategy to bound the diamond distance between N N1 , ,B B
 h h h- ◦( ) and N, B

h
ˆ . Consider

the following submatrix corresponding to the position-quadrature operators of the covariancematrix of an
input state RAf :

a c
c b

5.21g = ⎡
⎣⎢

⎤
⎦⎥ ( )

where a b c, , Î are such that the above is the position-quadrature part of a legitimate covariancematrix. Let

RE E E GE2 2 1 1
x ¢ ¢ denote the state after the beamsplitter transformations act on an input state RAf :

N N . 5.22RE E E GE BF E G AE BE RA B E E B FETMS TMS2 2 1 1 2 2 1 1
 x f y y= ¢ Ä Ä¢ ¢  ¢ ¢ ¢ ¢[ [ ( ) ] ( ) )] ( )

Then the submatrix corresponding to the position-quadrature operators of the covariancematrix of the output
state in (5.20) is given by [Mat]:

a c

c b b N N N

N N N

1 0

1 1 2 2 1 2 1

0 2 1 2 1 2 1

. 5.23B B B

B B B

g

h

h h h

h

¢ =

-

- + - + + -

+ - +

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( ) ( )( )

( )( )

( )

Now,we introduce a particular channel that simulates the action of N N1 , ,B B
 h h h- ◦( ) on an input state

RAf .We denote this channel byΞ, and it has the following action on an input state RAf :

Nid Tr , 5.24R RA B AE BE RA B E E2 1f f wÄ X = Ä¢ ¢( )( ) { ( ( ) )} ( )

where NB E E1
w ¢( ) represents a noisy version of a two-mode squeezed vacuum state with parameterNB and has the

following submatrix corresponding to the position-quadrature operators of the covariancematrix:

V
N N N

N N N

2 1 2 1 2 1

2 1 2 1 2 1
. 5.25

B B B

B B B

2

2

h h

h h
¢ =

+ + -

+ - +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

[ ( )( )]

[ ( )( )]
( )

ThematrixV ¢ in (5.25) is a well defined submatrix of the covariancematrix for the noisy version of a two-mode
squeezed vacuum state, because 2 1 0, 12h h- Î( ) [ ] for 1 2, 1h Î [ ]. The submatrix of the covariancematrix
corresponding to the state in (5.24) is the same as the submatrix in (5.23) [Mat]. In other words, the covariance
matrix for the systems R E, 1¢, and E2¢ infigure 1 is exactly the same as the covariancematrix for the systems R E, 1,
andE2 infigure 2. This equality of covariancematrices is sufficient to conclude that the following equivalence
holds for any quantum input state RAf (see [Ser17, chapter 5] for a proof):
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id id . 5.26R N N RA R RA1 , ,B B  f fÄ = Ä Xh h h-( [ ◦ ])( ) ( )( ) ( )( )

Thus, the channels N N1 , ,B B
 h h h- ◦( ) andΞ are indeed the same.

From (5.19), (5.24), and (5.26), the action of both N, B
h
ˆ andΞ can be understood as tensoring the state of the

environment with the input state of the channel, performing the beamsplitter transformation  , and then
tracing out the output of the channels. Using these techniques, we now establish an upper bound on the
diamond distance between the complementary channel in (5.19) and the concatenation of the thermal channel
followed by the degrading channel in (5.20).

Theorem19. Fix 1 2, 1h Î [ ]. Let N, B
h be a thermal channel with transmissivity h, and let N1 , B

 h h-( ) be a
degrading channel as defined in (5.20). Then

N
1

2
1 , , 5.27N N N B, 1 , ,

2
B B B    h k h- -h h h h- à ˆ ◦ ( ) ( )( )

with

N N N, 1 1 3 2 1 2 1 . 5.28B B B
2 2k h h h h h= + + + - + -( ) ( )[ ( )] ( )

Proof.Consider the following chain of inequalities:

id id

id id
5.29

R N RA R N N RA

R N RA R RA

, 1 , , 1

, 1

B B B

B

  



f f

f f

Ä - Ä

= Ä - Ä X

h h h h

h

- 

 

( ˆ )( ) ( [ ◦ ])( )

( ˆ )( ) ( )( )
( )( )

N NTr 5.30B AE BE RA B E E AE BE RA B E ETMS 12 1 2 1 f y f w= Ä - Ä¢ ¢ ¢ ¢ { ( ( ) ) ( ( ) )} ( )
N N 5.31AE BE RA B E E AE BE RA B E ETMS 12 1 2 1  f y f wÄ - Ä¢ ¢ ¢ ¢ ( ( ) ) ( ( ) ) ( )

N N 5.32RA B E E RA B E ETMS 11 1f y f w= Ä - Ä¢ ¢ ( ) ( ) ( )
N N 5.33B E E B E ETMS 11 1y w= -¢ ¢ ( ) ( ) ( )

F N N2 1 , . 5.34B E E B E ETMS 1 1 y w- ¢ ¢( ( ) ( ) ) ( )

Thefirst equality follows from (5.26). The second equality follows from (5.19) and (5.24). Thefirst inequality
follows frommonotonicity of the trace distance. The third equality follows from invariance of the trace distance
under a unitary transformation (beamsplitter). The last inequality follows from the Powers–Stormer
inequality [PS70].

Next, we compute the fidelity between NB E ETMS 1
y ¢( ) and NB E E1

w ¢( ) by using their respective covariance
matrices in (5.18) and (5.25), in theUhlmannfidelity formula for two-modeGaussian states [MM12].Wefind
[Mat]

F N N
N N

,
1 1 3 2 1 2 1

. 5.35B E E B E E
B B

TMS

2

2 21 1y w
h

h h h h
=

+ + + - + -
¢ ¢( ( ) ( ) )

( )[ ( )]
( )

Since these inequalities hold for any input state RAf , thefinal result follows from the definition of the diamond
norm. +

Figure 2.The figure plots the simulating channelΞ described in (5.24). RAf is an input state to a beamsplitter  with transmissivity η
and NBw ( ) represents a noisy version of a two-mode squeezed vacuum state with parameterNB (see (5.25)), onemode of which is an
input to the environmentmode of the beamsplitter. The simulating channel is such that systemB is traced over, so that the channel
outputs areE1 andE2. Finally, the simulating channel is exactly the same as the channel from systemA to systems E E1 2¢ ¢ infigure 1.
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Theorem20.Anupper bound on the quantum capacity of a thermal channel N, B
h with transmissivity

1 2, 1h Î [ ], environment photon number NB, and inputmean photon number constraint NS is given by

Q N Q N g N N g g

g N N g h

, , 1

2 4 1 1 2 , 5.36

N S U N S S B

S B

, ,

2

B B2  h h z z
e d h h d e d
º + - - -

+ ¢ + - + + + ¢ +
h h + -( ) ( ) ( ( ) ) ( ) ( )

( ) ([( ) ( ) ] ) ( ) ( ) ( )

with

N N1 1 1 3 2 1 2 1 , 5.37B B
2 2 2e h h h h h= - + + + - + -( ( )[ ( )]) ( )

N N N
1

2
1 1 2 2 1 2 4 1 2 , 5.38B B B

2 2 2 z J J J= - + + - + +  - + + - ( [( ) ( ) ( ) [ ] ] ) ( )

N N4 1 2 1 , 5.39B B h h= + -( )( ) ( )
N N1 , 5.40B SJ h h= + -( ) ( )

, 1e e¢ Î ( ], and 1d e e e= ¢ - + ¢( ) ( ).

Proof. From theorem 19, we have an upper bound on the diamond distance between the complementary
channel of the thermal channel and the concatenation of the thermal channel followed by the degrading channel,
i.e.,

N N

1

2

1 1 1 3 2 1 2 1 1. 5.41

N N N

B B

, 1 , ,

2 2 2

B B B  

 h h h h h e

-

- + + + - + - < ¢

h h h h- à ˆ ◦

( ( )[ ( )]) ( )

( )

Due to the inputmean photon number constraintNS, and environment photon numberNB for both N, B
h and

N1 , B
 h h-( ) , there is a total photon number constraint N N1 1S Bh h- + +( ) ( ) for the average output of n

channel uses of both N, B
h
ˆ and N N1 , ,B B

 h h h- ◦( ) . Using these results in theorem11, wefind the following
upper bound on the energy-constrained quantum capacity of a thermal channel:

Q N U N g N N g h, , 2 4 1 1 2 .

5.42

N S N S S B, , 2B NB B1 ,  e d h h d e d+ ¢ + - + + + ¢ +h hh h-( ) ( ) ( ) ([( ) ( ) ] ) ( ) ( )
( )

( )

Using proposition 21, wefind that the thermal state withmean photon numberNS optimizes the conditional
entropy of degradationU N,N S,NB B1 ,

 hh h- ( )( ) . For the given thermal channel in (5.17) and the degrading channel
in (5.20), we find the following analytical expression [Mat]:

U N g N N g g, 1 , 5.43N S S B,NB B1 ,  h h z z= + - - -h + -h h- ( ) ( ( ) ) ( ) ( ) ( )( )

with z defined as in the theorem statement. +

Proposition 21. Let N, B
h be a thermal channel with transmissivity 1 2, 1h Î [ ], environment photon number NB,

and inputmean photon number constraint NS. Let N1 , B
 h h-( ) be the degrading channel from (5.20). Then the

thermal state withmean photon number NS optimizes the conditional entropy of degradationU N,N S,NB B1 ,
 hh h- ( )( ) ,

defined from (4.2).

Proof.Consider the Stinespring dilation in (5.22) of the degrading channel N1 , B
 h h-( ) from (5.20), and denote

it by . Then according to (4.2),

U N H G E E, sup . 5.44N S
n N

,
: Tr

1 2NB B

S

NB1 , ,  


= ¢ ¢h
r r

rh h h- ( ) ( ∣ ) ( )
{ ˆ }

( ◦ )( )( )

Our aim is tofind an input state ρwith a certain photon number N Nt S , such that itmaximizes the conditional
entropy in (5.44). From the extremality of Gaussian states applied to the conditional entropy [EW07], it suffices
to perform the optimization in (5.44) over onlyGaussian states.

Now,we argue that for a given inputmean photon numberNt, a thermal state is the optimal state for the
conditional output entropy in (5.44). For a thermal channel and our choice of a degrading channel, a phase
rotation on the input state is equivalent to a product of local phase rotations on the outputs. Let us denote the
state after the local phase rotations on the outputs by

e e e e e e , 5.45E GE
n n n

N
n n ni i i

,
i i i

B2 1
 s f r= Ä Ä Ä Äf f f

h
f f f¢ ¢ - - -( ) ( )( ◦ )( )( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ

and let

1

2
d e e . 5.46E GE N

n n

0

2

,
i i

B2 1
 òx

p
f r=

p
h

f f
¢ ¢

-( ◦ )( ) ( )ˆ ˆ

Note that the phase covariance propertymentioned above is the statement that the following equality holds for
all 0, 2f pÎ [ ) [Mat]:
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e e . 5.47E GE N
n n

,
i i

B2 1
 s f r= h

f f¢ ¢ -( ) ( ◦ )( ) ( )ˆ ˆ

Consider the following chain of inequalities for aGaussian input state ρ:

H G E E H G E E
1

2
d 5.481 2

0

2

1 2NB,  òp
f¢ ¢ = ¢ ¢r

p
s fh( ∣ ) ( ∣ ) ( )( ◦ )( ) ( )

H G E E
1

2
d 5.49

0

2

1 2 e eNB
n n

,
i i òp

f= ¢ ¢
p

rh
f f-( ∣ ) ( )( ◦ )( )ˆ ˆ

H G E E 5.501 2 ¢ ¢ x( ∣ ) ( )

H G E E . 5.51N1 2 NB t, = ¢ ¢ qh( ∣ ) ( )( ◦ )( ( ))

Thefirst equality follows from invariance of the conditional entropy under local unitaries. The second equality
follows from the phase covariance property of the channel. The inequality follows from concavity of conditional
entropy. The last equality follows from linearity of the channel, and the following identity:

N
1

2
d e e . 5.52t

n n

0

2
i iòq

p
f r=

p
f f-( ) ( )ˆ ˆ

In (5.52), the state after the phase averaging is diagonal in the number basis, and furthermore, the resulting state
has the same photon numberNt as theGaussian state ρ. The thermal state Ntq ( ) is the onlyGaussian state of a
single-mode that is diagonal in the number basis with photon number equal toNt.

Next, we argue that, for a given photon number constraint, a thermal state that saturates the constraint is the
optimal state for the conditional output entropy. Let

D D I N D D I1 2 1 1 2 1 .

5.53

E GE

N t, B

2 1

 

t a

ha h a q ha h a= - Ä - Ä - Ä - Äh

¢ ¢( )
[ ( ) ( ) ][( ◦ )( ( ))][ ( ) ( ) ]

( )

† †

Consider the following chain of inequalities:

H G E E q H G E Ed

5.54

N N N N1 2
2

1 2NB t S t NB t, ,   ò a a¢ ¢ = ¢ ¢q q-h h( ∣ ) ( ) ( ∣ )

( )
( ◦ )( ( )) ( ) ( ◦ )( ( ))

q H G E Ed 5.55N N
2

1 2S tò a a= ¢ ¢ t a- ( ) ( ∣ ) ( )( ) ( )

q H G E Ed 5.56N N D N D
2

1 2S t NB t, ò a a= ¢ ¢ a q a- h( ) ( ∣ ) ( )( ) ( ◦ )( ( ) ( ) ( ))†

H G E E , 5.57N1 2 NB S,  ¢ ¢ qh( ∣ ) ( )( ◦ ) ( )

where q N NexpN
2a a p= -( ) { ∣ ∣ } is a complex-centeredGaussian distributionwith variance N 0 . The

first equality follows by placing a probability distribution in front, and the second follows from invariance of the
conditional entropy under local unitaries. The third equality follows because the channel is covariant with
respect to displacement operators, as reviewed in (3.40). The last inequality follows from concavity of
conditional entropy, and from the fact that a thermal state with a highermean photon number can be realized by
randomGaussian displacements of a thermal state with a lowermean photon number, as reviewed in (3.26).
Hence, for a given inputmean photon number constraintNS, a thermal state withmean photon numberNS

optimizes the conditional entropy of degradation defined from (4.2). +

Remark 22.The arguments used in the proof of proposition 21 can be employed inmore general situations
beyond that which is discussed there. Themain properties that we need are the following, when the channel
involved takes a single-mode input to amulti-mode output:

• The channel should be phase covariant, such that a phase rotation on the input state is equivalent to a product
of local phase rotations on the output.

• The channel should be covariant with respect to displacement operators, such that a displacement operator
acting on the input state is equivalent to a product of local displacement operators on the output.

• The function being optimized should be invariant with respect to local unitaries and concave in the input
state.

If all of the above hold, thenwe can conclude that the thermal state input saturating the energy constraint is an
optimal input state.We employ this reasoning again in the proof of theorem 26.
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5.3. ε-close-degradable bound on the energy-constrained quantum capacity of bosonic thermal channels
In this section, wefirst establish an upper bound on the diamond distance between a thermal channel and a
pure-loss channel. Since a pure-loss channel is a degradable channel, an upper bound on the energy-constrained
quantum capacity of a thermal channel directly follows from theorem 12.

Theorem23. If a thermal channel N, B
h and a pure-loss bosonic channel ,0h have the same transmissivity

parameter 0, 1h Î [ ], then
N

N

1

2 1
. 5.58N

B

B
, ,0B  -

+
h h à  ( )

Proof. Let  represent the beamsplitter transformation, and let NE Bq ( ) and 0Eq¢ ( ) denote the states of the
environment for the thermal channel and pure-loss channel, respectively. For any input state RAy to both
thermal and pure-loss channels, the following inequalities hold:

N

id id

Tr 0 5.59

R N RA R RA

E AE BE RA E B AE BE RA E

, ,0 1

1

B 

 

y y

y q y q

Ä - Ä

= Ä - Ä ¢
h h

¢  ¢  ¢

 
 

( )( ) ( )( )
{ ( ( )) ( ( ))} ( )

N 0 5.60AE BE RA E B AE BE RA E 1  y q y qÄ - Ä ¢ ¢  ¢ ( ( )) ( ( )) ( )

N 0 5.61RA E B RA E 1y q y q= Ä - Ä ¢ ( ) ( ) ( )
N 0 5.62E B E 1q q= - ¢ ( ) ( ) ( )

N

N
n n

1
0 0 5.63

n

B
n

B
n

0
1

1

å=
+

ñá - ñá
=

¥

+

( )
( )

∣ ∣ ∣ ∣ ( )

N

N

2

1
. 5.64B

B

=
+

( )

Thefirst equality follows from the definition of the channel in terms of its environment and a unitary interaction
(beamsplitter). Thefirst inequality follows frommonotonicity of the trace distance. The second equality follows
from invariance of the trace distance under a unitary operator (beamsplitter). The last equality follows from
basic algebra. Since these inequalities hold for any state RAy , thefinal result follows from the definition of the
diamondnorm. +

Remark 24. In [TW16], it has been shown that the optimal strategy to distinguish two quantum thermal
channels N, B

1h and N, B
2h , each having the same transmissivity parameter η, and thermal noises NB

1 and NB
2,

respectively, is to use a highly squeezed, two-mode squeezed vacuum state NS RATMSy ( ) as input to the channels.
According to [TW16, equation (35)],

F F N Nlim , , , 5.65
N

N N B B
1 2

S
B B
1 2s s q q=

¥
( ) ( ( ) ( )) ( )

where NidN R N S RA, TMS
B
i

B
is yº Ä h( )( ( ) ), and NB

iq ( ) is a thermal statewithmean photon number NB
i . Hence, a

lower bound on the diamond distance in theorem23 is given by

F N N
1

2
1 , 0 1 1 1 , 5.66N B B, ,0B   q q- - = - +h h à  ( ( ) ( )) ( )

where the inequality follows from the Powers–Stormer inequality [PS70].We also suspect that the upper bound
in theorem23 is achievable, butwe are not aware of amethod for computing the trace distance of general
quantumGaussian states, which is what it seemswould be needed to verify this suspicion.

Theorem25.Anupper bound on the quantum capacity of a thermal channel N, B
h with transmissivity

1 2, 1h Î [ ], environment photon number NB, and inputmean photon number constraint NS is given by

Q N Q N g N g N

g N N g h

, , 1

4 8 1 2 4 , 5.67

N S U N S S S

S B

, ,

2

B B3  h h
e d h h d e d

º - -
+ ¢ + + - + ¢ +

h h( ) ( ) ( ) [( ) ]
( ) [( ( ) ) ] ( ) ( ) ( )

with N N 1 , , 1B Be e e= + ¢ Î( ) ( ]and 1d e e e= ¢ - + ¢( ) ( ).

Proof. From theorem 23, we have that 1N
N

N

1

2 , ,0 1B

B

B
   e- < ¢h h à +
  . Due to the inputmean photon

number constraintNS for n channel uses, the outputmean photon number cannot exceed N N1S Bh h+ -( ) for
the thermal channel and NSh for the pure-loss channel. Hence, there is a photon number constraint

N N1S Bh h+ -( ) for the output of both the thermal and pure-loss channels. Since the pure-loss channel is a
degradable channel for 1 2, 1h Î [ ] [GSE08,WPGG07], thefinal result follows directly from theorem 12. +
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6. Comparison of upper bounds on the energy-constrained quantumcapacity of bosonic
thermal channels

In this section, we study the closeness of the three different upper boundswhen compared to a known lower
bound. In particular, we use the following lower bound on the quantum capacity of a thermal channel
[HW01,WHG12] and denote it byQL:

Q N Q N g N N

g D N N g D N N

, , 1

1 1 1 2 1 1 1 2 , 6.1
N S L N S S B

S B S B

, ,B B  h h
h h h h

º + -
- + - - - - - - - + - -

h h( ) ( ) ( ( ) )
([ ( ) ( ) ] ) ([ ( ) ( ) ] ) ( )

where

D N N N N1 1 1 4 1 . 6.2S B S S
2 2h h hº + + - + - +[( ) ( ) ] ( ) ( )

We start by discussing how close the data-processing bound QU1
is to the aforementioned lower bound. In

particular, we show that the data-processing bound QU1
can be atmost 1.45 bits larger thanQL.

Theorem26. Let N, B
h be a thermal channel with transmissivity 1 2, 1h Î [ ], environment photon number NB,

and inputmean photon number constraint NS. Then the following relation holds between the data-processing bound
Q N,U N S, B1

h( ) in (5.3) and the lower bound Q N,L N S, B
h( ) in (6.1) on the energy-constrained quantum capacity of

a thermal channel:

Q N Q N Q N, , , 1 ln 2. 6.3L N S U N S L N S, , ,B B B1    +h h h( ) ( ) ( ) ( )

Proof.Toprove this result, wefirst compute the difference between the data-processing bound in (5.3) and the
lower bound in (6.1) and show that it is equal to1 ln 2 as NS  ¥. Next, we prove that the difference is a
monotone increasing functionwith respect to inputmean photon number N 0S  . Hence, the difference
Q N Q N, ,U N S L N S, ,B B1

 -h h( ) ( ) attains itsmaximumvalue in the limit NS  ¥.We note that a similar
statement has been given in [KS13] to bound the classical capacity of a thermal channel, but the details of the
approachwe develop here are different and are likely to bemore broadly applicable to related future questions.

For simplicity, we denote N1 Bh-( ) asY, employ the natural logarithm for g x( ), and omit the prefactor
1 ln 2 from all instances of g x( ).We use the following property of the function g x( ): For largex,

g x x O xln 1 1 1 , 6.4= + + +( ) ( ) ( ) ( )

so that as x  ¥, the approximation g x xln 1 1» + +( ) ( ) holds. Using (6.4), the data-processing bound in
(5.3) can be expressed as follows for largeNS:

Y N Y Y N O Nln 1 ln 1 1 1 . 6.5S S Sh h+ + - + + + - +( ) ( ( ) ) ( ) ( )

Similarly, the lower boundQL in (6.1) can be expressed as

N Y D N Y

D N Y O N

ln 1 ln 1 1 2

ln 1 1 2 1 1. 6.6
S S

S S

h h
h

+ + - + + - -
- + - - + + -
( ) ([ ( ) ] )

([ ( ) ] ) ( ) ( )

Let us denote the difference between QU1
andQL by N,N S, B

D h( ).

N Q N Q N, , , . 6.7N S U N S L N S, , ,B B B1  D = -h h h( ) ( ) ( ) ( )

Then the difference simplifies as

N

Y Y N D N Y O N

,

1 ln 1 1 ln 1 1 4 1 . 6.8

N S

S S S

,

2 2

B

h h

D

= - + + + - + + - - - +
h( )

( ( ) ) ([( ) (( ) ) ] ) ( ) ( )

Y Y N N Y Y D O N1 ln 1 1 ln 1 1 2 2 1 6.9S S Sh h= - + + + - + + - + + + +( ( ) ) ([ ( ) ] ) ( ) ( )

N Y Y D Y Y N O N1 ln 1 1 2 2 1 1 1 . 6.10S S Sh h= + + - + + + + + + - +([ ( ) ] [ ( ( ) )]) ( ) ( )

The second equality follows from the definition ofD2. Next, we show that

N Y Y D Y Y Nln 1 1 2 2 1 1 0 6.11S Sh h+ - + + + + + + - ([ ( ) ] [ ( ( ) )]) ( )

as NS  ¥, and hencewe get the desired result. Consider the following expression and take the limit NS  ¥:

N Y Y D

Y Y N
lim

1 1 2

2 1 1
6.12

N

S

SS

h
h

+ - + + +
+ + + -¥

( )
( ( ) )

( )

N Y Y N Y N N

Y N Y
lim

1 1 2 1 1 4 4

2 1 1
6.13

N

S S S S

S

2

S

h h h h
h

=
+ - + + + + + + - -

+ + + -¥

( ) (( ) ( ) )
(( ) ( ))

( )
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Y

Y

1 2 1

2 1
1. 6.14

h h
h


- + + -

+ -
=

( )
( )

( )

Hence, Nlim , 1N N S,S B
D =h¥ ( ) . After incorporating the 1 ln 2 factor, whichwas omitted earlier for

simplicity, wefind that the difference between the upper and lower bounds approaches 1 ln 2 (» 1.45 bits)
as NS  ¥.

Now,we show that the difference N,N S, B
D h( ) is amonotone increasing functionwith respect to input

mean photon number N 0S  . Let A B E1 1
 h


¢ and B B E

G
1 2 2

  denote Stinespring dilations of a pure-loss channel
A B:,0 1 h¢ and a quantum-limited amplifier channel B B:G,0 1 2  , respectively. For the energy-

constrained quantum capacity of a pure-loss channel, the thermal state as an input is optimal for any fixed
energy or inputmean photon number constraintNS [WHG12].Moreover, the lower bound in (6.1) is obtained
for a thermal state withmean photon numberNS as input to the channel. Then the action of a thermal channel

N, B
h on an input state NSq ( ) can be expressed as

N NTr id . 6.15N S E E E B B E
G

A B E S, B 1 2 1 1 2 2 1 1
  q q= Äh

h
 

¢( ( )) {( ) ◦ ( ( ))} ( )

Consider the following state:

Nid . 6.16B E E E B B E
G

A B E S2 1 2 1 1 2 2 1 1
 w q= Ä h

 
¢( ) ◦ ( ( )) ( )

Since the data-processing bound Q N,U N S, B1
h( ) is equal to the quantum capacity of a pure-loss channel with

transmissivity h¢, which in turn is equal to coherent information for this case, (5.3) can also be represented as

Q N H B E H E, . 6.17U N S, 2 2 1B1  = -h w w( ) ( ) ( ) ( )

Similarly, the lower bound can be expressed as

Q N H B H E E, . 6.18L N S, 2 1 2B = -h w w( ) ( ) ( ) ( )

Hence the difference between (6.17) and (6.18) is given by

N H E B H E E, . 6.19N S, 2 2 2 1BD = +h w w( ) ( ∣ ) ( ∣ ) ( )

Now, our aim is to show that the conditional entropies in (6.19) aremonotone increasing functions ofNS.We
employ displacement covariance of the channels, and note that this argument is similar to that used in the proof
of proposition 21. Let

D G I D G D G I D G1 1 ,

6.20
B E E B E E2 1 2 2 1 2s a h a h a w h a h a= Ä Ä - Ä Ä -( ) [ ( ) ( ( ) )] [ ( ) ( ( ) )]

( )

† †

I D D G I D D G1 1 1 1 .

6.21
B E E B E E2 1 2 2 1 2t a ha h a w ha h a= Ä - Ä - Ä - Ä -( ) [ ( ) ( ( ) )] [ ( ) ( ( ) )]

( )

† †

Let N N 0S S ¢ - , and consider the following chain of inequalities:

H E B H E E q H E B H E Ed 6.22N N2 2 2 1
2

2 2 2 1
S Sò a a+ = +w w w w¢-( ∣ ) ( ∣ ) ( ) [ ( ∣ ) ( ∣ ) ] ( )( )

q H E B H E Ed 6.23N N
2

2 2 2 1
S Sò a a= +s a t a¢- ( ) [ ( ∣ ) ( ∣ ) ] ( )( ) ( ) ( )

q H E B

q H E E

d

d 6.24

N N D N D

N N D N D

2
2 2

2
2 1

S S
G

S

S S
G

S

 

 

ò
ò

a a

a a

=

+

a q a

a q a

¢-

¢-

h

h

¢

¢

( ) [ ( ∣ ) ]

( ) [ ( ∣ ) ] ( )

( ) ( ◦ )( ( ) ( ) ( ))

( ) ( ◦ )( ( ) ( ) ( ))

†

†

H E B H E E . 6.25N N2 2 2 1G
S

G
S    +q q¢ ¢h h¢ ¢( ∣ ) ( ∣ ) ( )( ◦ )( ( )) ( ◦ )( ( ))

Thefirst equality follows by placing a probability distribution in front, and the second follows from invariance of
the conditional entropy under local unitaries. The third equality follows because the channel is covariant with
respect to displacement operators, as reviewed in (3.40). The last inequality follows from concavity of
conditional entropy, and from the fact that a thermal state with a highermean photon number can be realized by
randomGaussian displacements of a thermal state with a lowermean photon number, as reviewed in (3.26).

Hence, the difference between the data-processing bound in (5.3) and the lower bound in (6.1) attains its
maximumvalue in the limit NS  ¥. +

Next, we performnumerical evaluations to see how close the three different upper bounds are to the lower
boundQL in (6.1). Since there is a free parameter e¢ in both the ε-degradable bound in (5.36) and the ε-close-
degradable bound in (5.67), we optimize these boundswith respect to e¢ [Mat]. Infigure 3, we plot the data-
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processing bound QU1
, the ε-degradable bound QU2

, the ε-close-degradable bound QU3
and the lower boundQL

versusNS for certain values of the transmissivity η and thermal noiseNB. In particular, wefind that the data-
processing bound is close to the lower boundQL for both low andhigh thermal noise. This is related to theorem
26, as the data-processing bound can be atmost 1.45 bits larger than the lower boundQL. Infigure 3(a), we plot
formedium transmissivity and low thermal noise.Wefind that the ε-close-degradable bound is very near to the
data-processing bound and is tighter than the ε-degradable bound. Infigure 3(b), we plot formedium
transmissivity and high thermal noise.We find that the ε-degradable bound is tighter than the ε-close-
degradable bound. Infigure 3(d), we plot for high transmissivity and high thermal noise. Infigure 3(c), we plot
for high transmissivity and low thermal noise.Wefind that all upper bounds are very near to the lower bound
QL. Fromfigures 3(a) and (c), it is evident that in the low-noise regime, there is a strong limitation on any
potential superadditivity of coherent information of a thermal channel. Similar results were obtained on
quantumand private capacities of low-noise quantum channels in [LLS17]. It is important to stress that the
upper bound QU3

can serve as a good bound only for low values of the thermal noiseNB, as the technique to
calculate this bound requires the closeness of a thermal channel with a pure-loss channel (discussed in theorem
23), and the closeness parameter is equal to N N 1B B +( ).

Infigure 4, we plot all the upper bounds and the lower boundQL versusNS, for high transmissivity and high
thermal noise. Infigure 4(a), wefind that the ε-degradable bound is tighter than all other bounds for high values
ofNS. Infigure 4(b), we plot for the same parameter values, but for low values ofNS. It is evident that for low
inputmean photon number, the data-processing bound is tighter than the ε-degradable bound.

The plots suggest that our upper bounds based on the notion of approximate degradability are good for the
case of high inputmean photon number.We suspect that these bounds can be further improved for the case of
low inputmean photon number by considering the energy-constrained diamond norm [Shi17a,Win17]. To

Figure 3.The figures plot the data-processing bound QU1( ), the ε-degradable bound QU2( ), the ε-close-degradable bound QU3( ) and
the lower bound QL( ) on energy-constrained quantumcapacity of thermal channels. In each figure, we select certain values of η and
NB, with the choices indicated above each figure. In all the cases, the data-processing bound QU1 is close to the lower bound QUL. In (a),
formedium transmissivity and low thermal noise, the ε-close-degradable bound is close to the data-processing bound, and they are
tighter than the ε-degradable bound. In (b), formedium transmissivity and high thermal noise, only the data-processing bound is
close to the lower bound. Also the ε-degradable bound is tighter than the ε-close-degradable bound. In (c), for high transmissivity and
low thermal noise, all upper bounds are very near to the lower bound. In (d), for high transmissivity and high noise, the ε-degradable
bound is tighter than the ε-close-degradable bound.
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address this question, we consider the generalized channel divergences of quantumGaussian channels in
section 12 and argue about their optimization.

7.Upper bounds on energy-constrained private capacity of bosonic thermal channels

In this section, we provide three different upper bounds on the energy-constrained private capacity of a thermal
channel. These upper bounds are derived very similarly as in section 5.We call these different bounds the data-
processing bound, the ε-degradable bound, and the ε-close-degradable bound, and denote themby P P,U U1 2

,
and PU3

, respectively.

Figure 4.The figures plot the data-processing bound QU1( ), the ε-degradable bound QU2( ), and the lower bound QL( ) on energy-
constrained quantum capacity of thermal channels (the ε-close-degradable bound QU3( ) is not plotted because it ismuch higher than
the other bounds for all parameter values considered). In each figure, we select 0.99h = and N 0.5B = . In (a), the ε-degradable upper
bound is tighter than all other upper bounds. In (b), for low values ofNS, the data-processing bound is tighter than the ε-degradable
bound.
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7.1.Data-processing bound on the energy-constrained private capacity of bosonic thermal channels

Theorem27.Anupper bound on the private capacity of a thermal channel N, B
h with transmissivity 1 2, 1h Î [ ],

environment photon number N 0B  , and inputmean photon number constraint N 0S  is given by

P N P N, max 0, , 7.1N S U N S, ,B B1 h h( ) { ( )} ( )

P N g N g N, 1 , 7.2U N S S S, B1  h hº ¢ - - ¢h( ) ( ) [( ) ] ( )

with N1 1Bh h h¢ = - +(( ) ).

Proof.Aproof follows from arguments similar to those in the proof of theorem16. Since a pure-loss channel is a
degradable channel [GSE08,WPGG07], its energy-constrained private capacity is the same as its energy-
constrained quantum capacity [WQ16]. +

Remark 28.Applying remarks 9 and 17, wefind the following data-processing bound PU N, B1
h( ) on the

unconstrained private capacity P N, B
h( ) of a thermal channel N, B

h :

P P Nlog 1 log 1 . 7.3N U N B, , 2 2B B1  h h= - - +h h( ) ( ) ( ( )) ( ) ( )

7.2. ε-degradable bound on the energy-constrained private capacity of bosonic thermal channels

Theorem29.Anupper bound on the private capacity of a thermal channel N, B
h with transmissivity 1 2, 1h Î [ ],

environment photon number N 0B  , and inputmean photon number constraint N 0S  is given by

P N P N g N N g g

g N N g h

, , 1

6 12 1 1 3 6 , 7.4

N S U N S S B

S B

, ,

2

B B2  h h z z
e d h h d e d
º + - - -

+ ¢ + - + + + ¢ +
h h + -( ) ( ) ( ( ) ) ( ) ( )

( ) ([( ) ( ) ] ) ( ) ( ) ( )

with

N N1 1 1 3 2 1 2 1 , 7.5B B
2 2 2e h h h h h= - + + + - + -( ( )[ ( )]) ( )

N N N
1

2
1 1 2 2 1 2 4 1 2 , 7.6B B B

2 2 2 z J J J= - + + - + +  - + + - ( [( ) ( ) ( ) [ ] ] ) ( )

N N4 1 2 1 , 7.7B B h= + -( )( ) ( )
N N1 , 7.8B SJ h h= + -( ) ( )

, 1e e¢ Î ( ], and 1d e e e= ¢ - + ¢( ) ( ).

Proof.Aproof follows from arguments similar to those in the proof of theorem20. Thefinal result is obtained
using theorem14. +

7.3. ε-close-degradable bound on the energy-constrained private capacity of bosonic thermal channels

Theorem30.Anupper bound on the private capacity of a thermal channel N, B
h with transmissivity 1 2, 1h Î [ ],

environment photon number N 0B  , and inputmean photon number constraint N 0S  is given by

P N P N g N g N

g N N g h

, , 1

8 16 1 4 8 , 7.9

N S U N S S S

S B

, ,

2

B B3  h h
e d h h d e d

º - -
+ ¢ + + - + ¢ +

h h( ) ( ) ( ) [( ) ]
( ) [( ( ) ) ] ( ) ( ) ( )

with N N 1 , , 1B Be e e= + ¢ Î( ) ( ], and 1d e e e= ¢ - + ¢( ) ( ).

Proof.Aproof follows from arguments similar to those in the proof of theorem25. Thefinal result is obtained
using theorem15. +

8. Lower boundon energy-constrained private capacity of bosonic thermal channels

In this section, we establish an improvement on the best known lower bound [WHG12] on the energy-
constrained private capacity of bosonic thermal channels, by using displaced thermal states as input to the
channel.We note that a similar effect has been observed in [RGK05] for thefinite-dimensional case.

The energy-constrained private information of a channel  , as defined in (3.69), can also bewritten as

P G W H H x p x H H, , sup d ,

8.1

G W
X A

x
A
x1

:Tr
A A

A A
     

  
òr r r rº - - -

r r
( ) [ ( ( ¯ )) ( ˆ ( ¯ )) ( )[ ( ( )) ( ˆ ( ))]]

( )

( )

¯ { ¯ }
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where x p xd X A
x

A òr rº¯ ( ) is an average state of the ensemble p x ,A X A
x rº { ( ) }and ̂ denotes a

complementary channel of  . If the energy-constrained private information is calculated for coherent-state
inputs, then for each element of the ensemble, the following equality holds H HA

x
A
x r r=( ( )) ( ˆ ( )). Hence,

the entropy difference H H
A A

  r r-( ( ¯ )) ( ˆ ( ¯ )) is an achievable rate, which is the same as the energy-
constrained coherent information.

However, we show that displaced thermal state inputs provide an improved lower bound for certain values
of the transmissivity η, low thermal noiseNB, and both low andhigh inputmean photon numberNS.We start
with the following ensemble of displaced thermal states,

p D N D, , 8.2N S
2

S
1 a a q aº -{ ( ) ( ) ( ) ( )} ( )

chosen according to theGaussian probability distribution

p
N

N
1

exp , 8.3N
S

S1
2 1

S
1 a

p
a= -( ) ( ∣ ∣ ) ( )

where D a( ) denotes the displacement operator, NS
2q ( ) denotes the thermal state withmean photon number NS

2,
and NS

1 and NS
2 are chosen such that N N NS S S

1 2+ = , which is themean number of photons input to the channel.
By employing (3.26), the average of this ensemble is a thermal state withmean photon numberNS, i.e.,

p D N D Nd . 8.4N S S
2 2

S
1

 òr a a a q a q= - =¯ ( ) ( ) ( ) ( ) ( ) ( )

Hence, this ensemblemeets the constraint that the average number of photons input to the channel is equal to
NS.

After the action of the channel on one of the states in the ensemble, the entropy of the output state is given by

H D N D H D N D 8.5N S N S,
2

,
2

B B a q a ha q ha- = -h h( ( ( ) ( ) ( ))) ( ( ) ( ( )) ( )) ( )

H N , 8.6N S,
2

B q= h( ( ( ))) ( )

where thefirst equality follows because thermal channel is covariant with respect to displacement operators, as
reviewed in (3.40). The second equality follows because D ha( ) is a unitary operator and entropy is invariant
under the action of a unitary operator. Since H NN S,

2
B

 qh( ( ( ))) is independent of theGaussian probability
distribution in (8.3), we have that

p H N H Nd . 8.7N N S N S
2

,
2

,
2

S B B
1  ò a a q q=h h( ) ( ( ( ))) ( ( ( ))) ( )

Similar arguments can bemade for the output states at the environmentmode.
Hence, a lower bound on the energy-constrained private information in (8.1) for the bosonic thermal

channel is as follows:

P N

H N H N H N H N

,

8.8

N S

N S N S N S N S

1
,

, , ,
2

,
2

B

B B B B



    q q q q- - -

h

h h h h

( )

( ( ( ))) ( ˆ ( ( ))) [ ( ( ( ))) ( ˆ ( ( )))] ( )

( )

I N I N P N, , , , 8.9c N S c N S L N S, ,
2

,B B B  = - ºh h h( ) ( ) ( ) ( )

where N, B
h
ˆ denotes the complementary channel of N, B

h , andwe denote the lower bound in (8.9) on the private
information by P N,L N S, B

h( ). Thefirst inequality follows from (3.69). Here, I N,c N S, B
h( ) denotes the coherent

information of the channel for the thermal statewithmean photon numberNS as input to the channel.
I N,c N S, B
h( ) has the same form as (6.1), i.e.,

I N g N N g D N N

g D N N

, 1 1 1 1 2

1 1 1 2 , 8.10
c N S S B S B

S B

, B h h h h
h h

= + - - + - - - -
- - - + - -

h( ) ( ( ) ) ([ ( ) ( ) ] )
([ ( ) ( ) ] ) ( )

where D N N N N1 1 1 4 1S B S S
2 2h h hº + + - + - +[( ) ( ) ] ( ). Similarly, I N,c N S,

2
B

h( ) is defined by replacing
NS in (8.10)with NS

2.
We optimize the lower bound in (8.9) on the private information P N,L N S, B

h( )with respect to NS
2 for afixed

value ofNS [Mat]. Infigure 5, we plot the optimized value of the lower bound in (8.9) on the private information
P N,L N S, B
h( ) (dashed line) and the coherent information in (8.10) I N,c N S, B

h( ) (solid line) of the thermal
channel versus the transmissivity parameter η, for low thermal noiseNB and for both low and high inputmean
number of photonsNS.Wefind that a larger rate for private communication can be achieved by using displaced
thermal states as input to the channel instead of coherent states, for certain values of the transmissivity η.
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9.Upper bounds on energy-constrained quantumandprivate capacities of quantum
amplifier channels

Usingmethods similar to those from sections 5 and 7, we now establish three different upper bounds on the
energy-constrained quantum and private capacities of a noisy amplifier channel.

9.1.Data-processing bound on energy-constrained quantumandprivate capacities of quantumamplifier
channels
In this section, we provide an upper bound using theorem31 below,which states that any phase-insensitive
single-mode bosonic Gaussian channel can be decomposed as a pure-amplifier channel followed by a pure-loss
channel, if the original channel is not entanglement breaking. This theoremwas independently proven in
[NAJ18, RMG18] (see also [SWAT17] in this context).

Before we state the theorem, let us recall that the action of a phase-insensitive channel  on the covariance
matrixΓ of a single-mode, bosonic quantum state is given by

I , 9.12t nG G +⟼ ( )

where ν is the variance of an additive-noise, I2 is the 2×2 identitymatrix, and τ and ν satisfy the conditions in
(3.37)–(3.38).Moreover, asmentioned previously, a phase-insensitive channel  is entanglement breaking
[Hol08,HSR03] if

1 . 9.2t n+ ( )

Theorem31.Any single-mode, phase-insensitive bosonic Gaussian channel  that is not entanglement breaking
(i.e., satisfies 1t n+ > ) can be decomposed as the concatenation of a quantum-limited amplifier channel G,0
with gain G 1> followed by a pure-loss channel ,0h with transmissivity 0, 1h Î ( ], i.e.,

, 9.3G,0 ,0  = h ◦ ( )

where 1 2h t n= + -( ) and G t h= .

Proof.The action of a quantum-limited amplifier channel G,0 with gainG followed by a pure-loss channel

,0h with transmissivity η, on the convariancematrixΓ is given by

G G I I1 1 . 9.42 2h hG + - + -( [ ] ) [ ] ( )

By comparing (9.1) and (9.4), we find that it is necessary for the following equalities to hold

G , 9.5h t= ( )

G 1 1 . 9.6h h n- + - =( ) ( )

Solving these equations for η andG in terms of τ and ν then gives 1 2h t n= + -( ) and G t h= . By the
assumption that  is not entanglement breaking, which is that 1t n+ > , wefind that

Figure 5.The figures plot the optimized value of the lower bound on the private information P N,L N S, Bh( ) (dashed line) and coherent
information I N,c N S, Bh( ) (solid line) of a thermal channel versus transmissivity parameter η. In each figure, we select certain values of
thermal noiseNB and inputmean photon numberNS, with the choices indicated above eachfigure. In all the cases, there is an
improvement in the achievable rate of private communication for certain values of the transmissivity η.
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1 2 0. 9.7h t n= + - >( ) ( )

Nowapplying the conditions in (3.37) and (3.38) for the channel  to be a CPTPmap, wefind that

1 2 1 1 2
for 0, 1

1 for 1
. 9.8


h t n t t

t t
t

= + - + - - =
Î⎧⎨⎩( ) ( ∣ ∣) [ ) ( )

By the fact that G t h= , the above implies that G 1> , so that the decomposition in (9.3) is valid under the
stated conditions. +

Wenow apply theorem 31 and a data-processing argument to a noisy amplifier channel G N, B
 with gain

G 1> , environment photon number N 0B  , for which Gt = and G N1 2 1Bn = - +( )( ). This channel is
entanglement breakingwhen G N1 1B -( ) [Hol08].

Theorem32.Anupper bound on the energy-constrained quantum and private capacities of a noisy amplifier
channel G N, B

 with gain G 1> and environment photon number N 0B  , such that G N1 1B- <( ) , and input
photon number constraint N 0S  , is given by

Q N P N Q N, , , max 0, , , 9.9G N S G N S U G N S, , ,B B B1  ( ) ( ) { ( )} ( )

where

Q N g G N G g G N, 1 1 1 , 9.10U G N S S S, B1  º ¢ + ¢ - - ¢ - +( ) ( ) [( )( )] ( )

G G N G1 1 . 9.11B¢ = + -( ( )) ( )

Proof.Anupper bound on the energy-constrained quantumand private capacities can be established by using
(9.3) and a data-processing argument.Wefind that

Q N Q N, , 9.12G N S G S, ,0 ,0B  = h ¢( ) ( ◦ ) ( )

Q N, 9.13G S,0 ¢( ) ( )

g G N G g G Nmax 0, 1 1 1 . 9.14S S= ¢ + ¢ - - ¢ - +{ ( ) [( )( )]} ( )

Thefirst inequality follows from the definition and data-processing—the energy-constrained capacity of

G,0 ,0 h ¢◦ cannot exceed that of G ,0 ¢ . The second equality follows from the formula for the energy-
constrained quantum capacity of a quantum-limited amplifier channel with gain G¢ and inputmean photon
numberNS [QW17]. Since a quantum-limited amplifier channel is a degradable channel [CG06,WPGG07], its
energy-constrained private capacity is the same as its energy-constrained quantum capacity. +

Remark 33.Applying remark 9, wefind the following data-processing bound QU G N, B1
( ) on the unconstrained

quantumand private capacities of amplifier channels for which G N1 1B- <( ) :

Q P Q Q N, sup , 9.15G N G N U G N
N N

U G N S, , ,
: 0,

,B B B

S S

B1 1    =
Î ¥

( ) ( ) ( ) ( ) ( )
[ ]

Q Nlim , 9.16
N

U G N S,
S

B1 =
¥

( ) ( )

G G Nlog 1 log 1 . 9.17B2 2= - - +( ( )) ( ) ( )

The second equality follows from themonotonicity of Q N,U G N S, B1
( )with respect toNS, which in turn follows

from the fact that thefirst derivative of Q N,U G N S, B1
( )with respect toNS goes to zero as NS  ¥, and the

second derivative is always negative.
The bound

Q P
G

G
g N, log

1
9.18G N G N

N

B, ,

1

B B

B

  
-

-
+⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( ) ( )

was given in [PLOB17,WTB17]. From a comparison of (9.17)with (9.18), wefind that the bound given in (9.18)
is always tighter than (9.17). Both the bounds in (9.17) and (9.18) converge to the true unconstrained quantum
and private capacity in the limit as N 0B  , but (9.18) is tighter for N 0B > .

Remark 34.The data-processing bound Q N,U G N S, B1
( ) on the energy-constrained quantum capacity of

amplifier channels places a strong restriction on the channel parametersG andNB. Since the quantum capacity
of a quantum-limited amplifier channel with gain G¢ is non-zero only for G¢ ¹ ¥, the energy-constrained
quantum capacity of an amplifier channel will be non-zero only for

G N N1 1 , 9.19B B < +( ) ( )

which is same as the condition given in [CGH06] and is equivalent to the condition G N1 1B- <( ) , that the
channel is not entanglement breaking.
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Wenow study the closeness of the data-processing bound Q N,U G N S, B1
( ) when compared to a known lower

bound. In particular, we use the following lower bound on the energy-constrained quantumand private
capacities of an amplifier channel [HW01,WQ16] and denote it by Q N,L G N S, B

( ):

Q N Q N g GN G N

g D G N N g D G N N

, , 1 1

1 1 1 2 1 1 1 2 , 9.20
G N S L G N S S B

S B S B

, ,B B  º + - +
- + - + + - - - - + + -

( ) ( ) ( ( )( ))
([ ( )( ) ] ) ([ ( )( ) ] ) ( )

where

D G N G N GN N1 1 1 1 4 1 . 9.21S B S S
2 2º + + - + + - +[( ) ( )( ) ] ( ) ( )

Theorem35. Let G N, B
 be an amplifier channel with gain G 1> and environment photon number N 0B  , such

that G N1 1B- <( ) , and input photon number constraint N 0S  . Then the following relation holds between the
data-processing bound Q N,U G N S, B1

( ) in (9.9) and the lower bound Q N,L G N S, B
( ) in (9.20) on the energy-

constrained quantum and private capacities of an amplifier channel:

Q N Q N Q N, , , 1 ln 2. 9.22L G N S U G N S L G N S, , ,B B B1    +( ) ( ) ( ) ( )

Proof.Aproof follows from arguments similar to those in the proof of theorem26. +

9.2. ε-degradable bound on energy-constrained quantumandprivate capacities of amplifier channels
In this section, we provide an upper bound on the energy-constrained quantumand private capacities of a
quantumamplifier channel G N, B

 using the idea of ε-degradability.Wefirst construct an approximate
degrading channel  by following arguments similar to those in section 5.2. Furthermore, we introduce a
particular channel that simulates the serial concatenation of the amplifier channel G N, B

 and the approximate
degrading channel .Wefinally provide an upper bound on the energy-constrained quantumand private
capacities of an amplifier channel by using all these tools and invoking theorem 11.

Similar to section 5.2, wefirst establish an upper bound on the diamond distance between the
complementary channel of the amplifier channel and the concatenation of the amplifier channel followed by a
particular approximate degrading channel. Let  and ¢ represent transformations of two-mode squeezers with
parameterG and G G2 1-( ) , respectively. In theHeisenberg picture, the unitary transformation
corresponding to  and ¢ follow from (3.46).

Consider the following action of the noisy amplifier channel G N, B
 on an input state RAf :

Nid Tr , 9.23R G N RA E E AE BE RA B E E, TMSB 1 2 2 1 f f yÄ = Ä¢ ¢( )( ) { ( ( ) )} ( )

whereR is a reference system and NB E ETMS 1
y ¢( ) is a two-mode squeezed vacuum state with parameterNB, as

defined in (3.27). It is evident from (9.23) that the output of the noisy amplifier channel G N, B
 is systemB, and

the outputs of the complementary channel G N, B
̂ are systems E1 andE2.

Consider a two-mode squeezer ¢ with parameter G G2 1-( ) , such that the output of the amplifier
channel G N, B

 becomes an environmental input for ¢.We consider onemode of the two-mode squeezed
vacuum state NB FETMS 1

y ¢( ) as an input for ¢, so that the subsystem E1¢mimicsE1.We denote our choice of

degrading channel by B E E:G G N2 1 , 1 2B
    ¢ Ä ¢- ( ) ( ) ( )( ) .More formally, G G N2 1 , B

 -( ) has the following
action on the output state G N RA, B

 f( ):

Nid Tr . 9.24R G G N G N RA G BF E G G N RA B FE2 1 , , , TMSB B B2 1
   f f yÄ = ¢ Ä-  ¢ ¢( [ ◦ ])( ) { ( ( ) ( ) ))} ( )( )

Now, similar to section 5.2, we introduce a particular channel that simulates the action of G G G N2 1 , B
 - ◦( )

on an input state RAf .We denote this channel byΛ, and it has the following action on an input state RAf :

Nid Tr , 9.25R RA B AE BE RA B E E2 1f f wÄ L = Ä¢ ¢( )( ) { ( ( ) )} ( )

where NB E E1
w ¢( ) represents a noisy version of a two-mode squeezed vacuum state with parameterNB, and is

same as (5.25), except η is replaced byG. Similar to (5.26), the following equivalence holds for any quantum
input state RAf :

id id . 9.26R G G N G N RA R RA2 1 , ,B B  f fÄ = Ä L-( [ ◦ ])( ) ( )( ) ( )( )

Thus, the channels G G N G N2 1 , ,B B
 - ◦( ) andΛ are indeed the same.

Similar to theorem19, we now establish an upper bound on the diamond distance between the
complementary channel of a noisy amplifier channel and the concatenation of the amplifier channel followed by
the degrading channel in (9.24).

Theorem36. Fix G 1> . Let G N, B
 be an amplifier channel with gain G, and let G G N2 1 , B

 -( ) be a degrading
channel as defined in (9.24). Then
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G G N
1

2
1 , , 9.27G N G G N G N B, 2 1 , ,

2
B B B    k- -- à ˆ ◦ ( ) ( )( )

with

G N G N N G G G, 1 1 3 2 1 2 1 . 9.28B B B
2 2k = + + + - + -( ) ( )[ ( )] ( )

Proof.Aproof follows from arguments similar to those in the proof of theorem19. +

Theorem37.Anupper bound on the energy-constrained quantum capacity of a noisy amplifier channel G N, B
 with

gain G 1> , environment photon numberNB, such that G N1 1B- <( ) , and inputmean photon number
constraint N 0S  is given by

Q N Q N g GN G N g g

g G N G N g h

, , 1

2 4 1 1 2 ,
9.29

G N S U G N S S B

S B

, ,

2

B B2  z z
e d d e d

º + - - -

+ ¢ + - + + + ¢ +
+ -( ) ( ) ( ( ) ) ( ) ( )

( ) ([( ) ( ) ] ) ( ) ( )
( )

with

G G N N G G G1 1 1 3 2 1 2 1 , 9.30B B
2 2 2e = - + + + - + -( ( )[ ( )]) ( )

N N N
1

2
1 1 2 2 2 1 4 1 2 , 9.31B B B

2 2 2 z J J J= - + + - + -  - - + - ( [( ) ( ) ( ) [ ] ] ) ( )

N N G G4 1 2 1 , 9.32B B = + -( )( ) ( )
G N G N1 1 , 9.33B SJ = + + -( ) ( ) ( )

, 1e e¢ Î ( ], and 1d e e e= ¢ - + ¢( ) ( ).

Proof.Aproof follows from arguments similar to those in the proof of theorem20. +

Theorem38.Anupper bound on the energy-constrained private capacity of a noisy amplifier channel G N, B
 with

with gain G 1> , environment photon number NB, such that G N1 1B- <( ) , and inputmean photon number
constraint N 0S  is given by

P N P N g GN G N g g

g G N G N g h

, , 1

6 12 1 1 3 6 ,

9.34

G N S U G N S S B

S B

, ,

2

B B2  z z
e d d e d

º + - - -

+ ¢ + - + + + ¢ +
+ -( ) ( ) ( ( ) ) ( ) ( )

( ) ([( ) ( ) ] ) ( ) ( )
( )

with

G G N N G G G1 1 1 3 2 1 2 1 , 9.35B B
2 2 2e = - + + + - + -( ( )[ ( )]) ( )

N N N
1

2
1 1 2 2 2 1 4 1 2 , 9.36B B B

2 2 2 z J J J= - + + - + -  - - + - ( [( ) ( ) ( ) [ ] ] ) ( )

N N G G4 1 2 1 , 9.37B B = + -( )( ) ( )
G N G N1 1 , 9.38B SJ = + + -( ) ( ) ( )

, 1e e¢ Î ( ], and 1d e e e= ¢ - + ¢( ) ( ).

Proof.Aproof follows from arguments similar to those in the proof of theorem20. Thefinal result is obtained
using theorem14. +

9.3. ε-close-degradable bound on energy-constrained quantumandprivate capacities of amplifier channels
In this section, wefirst establish an upper bound on the diamond distance between a noisy amplifier channel and
a quantum-limited amplifier channel. Since a quantum-limited amplifier channel is a degradable channel, an
upper bound on the energy-constrained quantum capacity of a noisy amplifier channel directly follows from
theorem12.

Theorem39. If a noisy amplifier channel G N, B
 and a quantum-limited amplifier channel G,0 have the same gain

G 1> , then

N

N

1

2 1
. 9.39G N G

B

B
, ,0B  -

+
à  ( )

Proof.Aproof follows from arguments similar to those in the proof of theorem23. +

Theorem40.Anupper bound on the energy-constrained quantum capacity of a noisy amplifier channel G N, B
 with

gain G 1> , environment photon number NB, such that G N1 1B- <( ) , and inputmean photon number
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constraint N 0S  is given by

Q N Q N g GN G g G N

g GN G N g h

, , 1 1 1

4 8 1 2 4 , 9.40
G N S U G N S S S

S B

, ,

2

B B3 
e d d e d

º + - - - +
+ ¢ + + - + ¢ +

( ) ( ) ( ) [( )( )]
( ) [( ( ) ) ] ( ) ( ) ( )

with N N 1 , , 1B Be e e= + ¢ Î( ) ( ]and 1d e e e= ¢ - + ¢( ) ( ).

Proof.Aproof follows from arguments similar to those in the proof of theorem25. +

Theorem41.Anupper bound on the energy-constrained private capacity of a noisy amplifier channel G N, B
 with

gain G 1> , environment photon numberNB, such that G N1 1B- <( ) , and inputmean photon number
constraint N 0S  is given by

P N P N g GN G g G N

g GN G N g h

, , 1 1 1

8 16 1 4 8 , 9.41
G N S U G N S S S

S B

, ,

2

B B3 
e d d e d
º + - - - +

+ ¢ + + - + ¢ +
( ) ( ) ( ) [( )( )]

( ) [( ( ) ) ] ( ) ( ) ( )

with N N 1 , , 1B Be e e= + ¢ Î( ) ( ]and 1d e e e= ¢ - + ¢( ) ( ).

Proof.Aproof follows from arguments similar to those in the proof of theorem25. Thefinal result is obtrained
using theorem15. +

10.Data-processing bound on energy-constrained quantumandprivate capacities of
additive-noise channels

In this section, we provide an upper bound on the energy-constrained quantumand private capacities of an
additive-noise channel using theorem 16.Note that we only consider n 0, 1Î¯ ( ) because the additive-noise
channel is not entanglement breaking in this interval [Hol08].

Theorem42.Anupper bound on the energy-constrained quantum and private capacities of an additive-noise
channel n ¯ with noise parameter n 0, 1Î¯ ( ), and inputmean photon number constraint NS is given by

Q N P N Q N, , , max 0, , , 10.1n S n S U n S1  ( ) ( ) { ( )} ( )¯ ¯ ¯

where

Q N g N n g nN n, 1 1 . 10.2U n S S S1  º + - +( ) ( ( ¯ )) ( ¯ ( ¯ )) ( )¯

Proof.Aproof follows from the fact that an additive-noise channel can be obtained froma thermal noise channel
in the limit 1h  and NB  ¥, with N n1 Bh- ( ) ¯ [GGL+04], as well by applying the continuity results for
these capacities from [Shi17b, theorem3] (see also [Win17]). By taking these limits in (5.3), we obtain the desired
result. +

Remark 43.Applying remarks 9 and 17, and theorem42, wefind the following data-processing bound QU n1
( )¯

on the unconstrained quantum and private capacities of additive-noise channels for n 0, 1Î¯ ( ):

Q nlog 1 . 10.3U n 21  =( ) ( ¯) ( )¯

Remark 44. From theorem 26, it follows that the data-processing upper bound Q N,n S( )¯ can be atmost 1.45
bits larger than a known lower bound on the energy-constrained quantumand private capacities of an additive-
noise channel.

Remark 45.The following boundwas given in [PLOB17,WTB17] for n 0, 1Î¯ ( ):

Q P
n

n,
1

ln 2
log 1 . 10.4n n 2   -

+( ) ( ) ¯ ( ¯) ( )¯ ¯

From a comparison of (10.3)with the bound in (10.4), wefind that the bound in (10.4) is always tighter
than (10.3).

11. Recent developments

In this section, wefirst recall a recent result of [RMG18] on the unconstrained quantum capacity of a thermal
channel. After that, we extend these results here to obtain new bounds on the energy-constrained quantum and
private capacities of a thermal channel and an additive-noise channel. Finally, we compare these newbounds
with our previous bounds.
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11.1. Reference [RMG18]bounds for the unconstrained quantum capacity of a thermal channel
Recently, the following upper bound on the unconstrained quantum capacity of a thermal channel for which

N1 Bh h> -( ) was introduced in [RMG18, equation (40)]:

Q
N

N
max 0, log

1

1 1
. 11.1U N

B

B
, 2B1 

h h
h

=
- -
- +

h

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭( ) ( )
( )( )

( )

This boundwas obtained by using the decomposition N G, ,0 ,0B
  =h h¢ ◦ from theorem31 (found

independently in [RMG18]) and the bottleneck inequality Q Q Qmin ,G G,0 ,0 ,0 ,0   h h¢ ¢( ◦ ) { ( ) ( )} for the
unconstrained quantum capacity. Note that (11.1) is slightly tighter than (5.9) for all parameter regimes. These
findings were independently discovered in [NAJ18].

11.2. Further extension to the energy-constrained quantumandprivate capacities of thermal channels
Wenow introduce a newupper bound on the energy-constrained quantumand private capacities of thermal
channels (independently discovered in [NAJ18] as well). In the energy-constrained scenario, one cannot directly
apply the bottleneck inequality in order to obtain a bound for the finite-energy case, due to an important
physical consideration discussed below.However, we introduce amethod to tackle this issue and establish an
upper bound in the following theorem:

Theorem46.Anupper bound on the energy-constrained quantum and private capacities of a thermal channel N, B
h

with transmissivity 1 2, 1h Î [ ], environment photon number N 0B  , such that N1 Bh h> -( ) , and input
mean photon number constraint N 0S  is given by

Q N P N Q N, , , max 0, , , 11.2N S N S U N S, , ,B B B4  h h h( ) ( ) { ( )} ( )

where

Q N g N N g N N, 1 1 1 1 , 11.3U N S S B S B, B4  h h h h hº + - - ¢ - + -h( ) ( ( ) ) [( )( ( ) )] ( )

and N1 Bh h h¢ = - -( ) .

Proof.Using theorem 31, a thermal channel N, B
h satisfying N1 Bh h> -( ) can be decomposed as the

concatenation of a quantum-limited amplifier channel G,0 followed by a pure-loss channel ,0h¢ , such that

G , 11.4h h= ¢ ( )

N1 . 11.5Bh h h¢ = - -( ) ( )

Consider the following chain of inequalities:

Q N Q N, , 11.6N S G S, ,0 ,0B  =h h¢( ) ( ◦ ) ( )

Q GN G, 1 11.7S,0 + -h¢( ) ( )

g GN G g GN G1 1 1 11.8S Sh h= ¢ + - - - ¢ + -( [ ]) [( )( )] ( )

g N N g N N1 1 1 1 . 11.9S B S Bh h h h h= + - - ¢ - + -( ( ) ) [( )( ( ) )] ( )

Thefirst inequality is a consequence of the following argument: consider an arbitrary encoding and decoding
scheme for energy-constrained quantum communication over the thermal channel N, B

h , which satisfies the
mean input photon number constraint N 0S  . Due to the decomposition of N, B

h as G,0 ,0 h¢ ◦ , this
encoding, followed bymany uses of the pure-amplifier channel G,0 can be considered as an encoding for the
channel ,0h¢ , which also satisfies themean photon number constraint GN G 1S + - , due to the fact that the
pure-amplifier channel G,0 introduces a gain. Since the energy-constrained quantum capacity of the channel

,0h¢ involves an optimization over all such encodings that satisfies themean photon number constraint
GN G 1S + - , we arrive at the desired inequality. The second equality follows from the formula for the energy-
constrained quantum capacity of a pure-loss bosonic channel with transmissivity h¢ and inputmean photon
number GN G 1S + - [WHG12,WQ16]. +

Now,we conduct a numerical evaluation in order to compare the bound in (11.3)with our other bounds on
the energy-constrained quantum and private capacities of a thermal channel. Since there is a free parameter e¢ in
both the ε-degradable bound in (5.36) and the ε-close-degradable bound in (5.67), we optimize these bounds
with respect to e¢ [Mat]. Infigure 6(a), we find that both the data-processing bound QU1

and QU4
are close to the

lower bound formedium transimissivity and high thermal noise.Moreover, QU4
is slightly tighter than QU1

for
some parameter regimes. Infigure 6(b), wefind that the ε-degradable bound is tighter than all other bounds for
high transmissivity and high thermal noise.
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Remark 47.The upper bound Q N,U N S, B4
h( ) on the energy-constrained quantumand private capacities of

thermal channels places a strong restriction on the channel parameters η andNB. Since the quantumand private
capacities of a pure-loss channel with h¢ are non-zero only for 1 2h¢ > , the energy-constrained quantumand
private capacities of a thermal channel will be non-zero only for

N

N
1

1 2

2 1
, 11.10B

B

 h >
+
+( )

( )

which is same as the condition given in [CGH06, section 4].

11.3. Further extension on the energy-constrained quantumandprivate capacities of additive-noise
channels
In this section, we establish another upper bound on the energy-constrained quantum and private capacities of
an additive-noise channel, by using theorem 46.

Theorem48.Anupper bound on the energy-constrained quantum and private capacities of an additive-noise
channel Nn̄ with noise parameter n 0, 1Î¯ ( ), and input photon number constraint N 0S  is given by

Q N P N Q N, , , max 0, , , 11.11n S n S U n S4  ( ) ( ) { ( )} ( )¯ ¯ ¯

where

Q N g N n g n N n n, 1 . 11.12U n S S S4  º + - + -( ) ( ¯) [ ¯ ( ¯) ( ¯)] ( )¯

Proof.Aproof follows from arguments similar to those in the proof of theorem42. Thefinal result is obtained
using theorem46. +

Remark 49. Froma comparison of (11.12) and (10.2), wefind that Q N,U n S1
( )¯ is tighter than Q N,U n S4

( )¯ only
for low-noise and low inputmean photon number. The bound Q N,U n S4

( )¯ is tighter than Q N,U n S1
( )¯ for all

other parameter regimes.

Remark 50.Applying remarks 9 and 17, and theorem48, wefind the following data-processing bound QU n4
( )¯

on the unconstrained quantum and private capacities of additive-noise channels:

Q n nlog 1 . 11.13U n 24  = -( ) [( ¯) ¯] ( )¯

Remark 51. Froma comparison of (11.13)with the bound in (10.4), we find that (11.13) is tighter than (10.4) for
high noise.

Figure 6.The figures plot the data-processing bound QU1( ), the ε-degradable bound QU2( ), the ε-close-degradable bound QU3( ), the
bound QU4 and the lower bound QL( ) on energy-constrained quantum capacity of thermal channels. In each figure, we select certain
values of η andNB, with the choices indicated above eachfigure. In (a), formedium transmissivity and high thermal noise, both the
data-processing bound and QU4 is close to the lower bound. In (b), the ε-degradable upper bound is tighter than all other upper
bounds (QU3 is not plotted because it ismuch higher than the other bounds for all parameter values).
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12.On the optimization of generalized channel divergences of quantumGaussian
channels

In this section, we address the question of computing the energy-constrained diamond normof several channels
of interest that have appeared in our paper.We provide a very general argument, based on some definitions and
results in [LKDW18] and phrased in terms of the ‘generalized channel divergence’ as ameasure of the
distinguishability of quantum channels.Wefind that, among all Gaussian input states with a fixed energy
constraint, the two-mode squeezed vacuum state saturating the energy constraint is the optimal state for the
energy-constrained generalized channel divergence of two particular Gaussian channels.We describe these
results inmore detail in what follows.

We begin by recalling some developments from [LKDW18]:

Definition 52 (Generalized divergence [SW12,WWY14]).A functional D :     ´ ( ) ( ) is a
generalized divergence if it satisfies themonotonicity (data-processing) inequality

D D , 12.1 r s r s ( ) ( ( ) ( )) ( )

where  is a quantum channel.

Particular examples of a generalized divergence are the trace distance, quantum relative entropy, and the
negative rootfidelity.

We say that a generalized channel divergence possesses the direct-sumproperty on classical-quantum states
if the following equality holds:

p x x x p x x x p xD D , 12.2
x

X X
x

x
X X

x

x
X

x xå å år s r sñá Ä ñá Ä = 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )∣ ∣ ( )∣ ∣ ( ) ( ) ( )

where pX is a probability distribution, x xñ{∣ } is an orthonormal basis, and x
xr{ } and x

xs{ } are sets of states.We
note that this property holds for trace distance, quantum relative entropy, and the negative root fidelity.

Definition 53 (Generalized channel divergence [LKDW18]).Given quantum channels A B  and A B  , we
define the generalized channel divergence as

D Dsup id id . 12.3R A B RA R A B RA

RA

   r rº Ä Ä
r

  ( ) (( )( ) ( )( )) ( )

In the above definition, the supremum iswith respect to allmixed states and the reference systemR is allowed to
be arbitrarily large. However, as a consequence of purification, data-processing, and the Schmidt decomposi-
tion, it follows that

D Dsup id id , 12.4R A B RA R A B RA

RA

   y y= Ä Ä
y

  ( ) (( )( ) ( )( )) ( )

such that the supremum can be restricted to bewith respect to pure states and the reference systemR isomorphic
to the channel input systemA.

Particular cases of the generalized channel divergence are the diamondnormof the difference of A B  and

A B  aswell as the Rényi channel divergence from [CMW16].
Covariant quantum channels have symmetries that allowus to simplify the set of states over whichwe need

to optimize their generalized channel divergence [Hol02]. LetG be a finite group, and for every g GÎ , let
g U gA ( ) and g V gB ( ) be unitary representations acting on the input and output spaces of the channel,
respectively. Then aquantum channel A B  is covariant with respect to U g V g,A B g{( ( ) ( ))} if the following
relation holds for all input density operators Ar and group elements g GÎ :

, 12.5A B A
g

A B
g

A B A   r r= ( ◦ )( ) ( ◦ )( ) ( )

where

U g U g , 12.6A
g

A A A A r r=( ) ( ) ( ) ( )†

V g V g . 12.7B
g

B B B B s s=( ) ( ) ( ) ( )†

We say that channels A B  and A B  are jointly covariantwith respect to U g V g,A B g GÎ{( ( ) ( ))} if each of them
is covariant with respect to U g V g,A B g{( ( ) ( ))} [TW16,DW17].

The following lemmawas established in [LKDW18]:
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Lemma4 ([LKDW18]). Let A B  and A B  be quantum channels, and let U g V g,A B g GÎ{( ( ) ( ))} denote unitary
representations of a group G. Let Ar be a density operator, and let RAfr be a purification of Ar . Let Ar̄ denote the group
average of Ar according to a distribution pG, i.e.,

p g , 12.8A
g

G A
g

Aår r=¯ ( ) ( ) ( )

and let RAfr̄ be a purification of Ar̄ . If the generalized divergence possesses the direct-sum property on classical-
quantum states, then the following inequality holds

p g

D

D . 12.9

A B RA A B RA

g
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g
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g
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¯ ¯

† †

By approximation, the above lemma can be extended to continuous groups for several generalized channel
divergences of interest:

Lemma5. Let A B  and A B  be quantum channels, and let U g V g,A B g GÎ{( ( ) ( ))} denote unitary
representations of a continuous group G. Let Ar be a density operator, and let RAfr be a purification of Ar . Let Ar̄
denote the group average of Ar according to ameasure gm ( ), i.e.,

gd , 12.10A A
g

Aòr m r=¯ ( ) ( ) ( )

and let RAfr̄ be a purification of Ar̄ . If the generalized divergence possesses the direct-sum property on classical-
quantum states and is a Borel function, then the following inequality holds

g

D

Dd . 12.11
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† †

Wecan apply this lemma effectively in the context of quantumGaussian channels. To this end, we consider
an energy-constrained generalized channel divergence forW 0,Î ¥[ ) and an energy observableG as follows:

D Dsup id id . 12.12G W
G W

R A B RA R A B RA,
:TrRA A

   


y y= Ä Ä
y y

  ( ) (( )( ) ( )( )) ( )
{ }

Inwhat follows, we specialize thismeasure even further to theGaussian energy-constrained generalized channel
divergence,meaning that the optimization is constrained to bewith respect toGaussian input states:

D Dsup id id , 12.13G W
G W

R A B RA R A B RA,
:Tr ,RA A RA

   


y y= Ä Ä

y y y Î
  ( ) (( )( ) ( )( )) ( )

{ }

where  denotes the set of Gaussian states.We then establish the following proposition:

Proposition 54. Suppose that channels A B  and A B  are Gaussian, they each take one inputmode to m output
modes, and they have the following action on a single-mode, input covariancematrix V :

V XVX Y , 12.14T
 + ( )

V XVX Y , 12.15T
 + ( )

where X is an m 1´ matrix, Y and Y are m m´ matrices such that A B  and A B  are legitimate Gaussian
channels. Suppose furthermore they these channels are jointly phase covariant (phase-insensitive), in the sense that for
all 0, 2f pÎ [ ) and input density operators r, the following equality holds

e e e e , 12.16A B
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e e e e , 12.17A B
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where a 0, 1i Î { } for i m1, ,Î ¼{ }and niˆ is the photon number operator for the i thmode. Then it suffices to
restrict the optimization in the energy-constrained generalized channel divergence as follows:

D Dsup id id , 12.18n N
n N
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where RA RAy y y= ñá∣ ∣ and
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for some n l Î + such that 1n n0
2lå ==

¥ and n Nn n S0
2lå ==

¥ . Furthermore, the Gaussian energy-constrained
generalized channel divergence is achieved by the two-mode squeezed vacuum state with parameter NS, i.e.,

N ND D id id . 12.20n N R A B S R A B S, TMS TMSS
    y y= Ä Ä  ( ) (( )( ( )) ( )( ( ))) ( )ˆ

Proof.This result is an application of lemma 5 and previous developments in our paper.Wefirst exploit the joint
displacement covariance of the channels A B  and A B  . That is, the fact that channels A B  and A B 

have the sameXmatrix as given in (12.14), (12.15) implies that they are jointly covariant with respect to
displacements; i.e., for all input density operators ρ and unitary displacement operators
D a aexp *a a aº -( ) ( ˆ ˆ)† , the following equalities hold
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where fi for i m1, ,Î ¼{ }are functions depending on the entries of thematrixX andα. Let RAf be an arbitrary
pure state such that n N NTr A S1 f ={ ˆ } . Consider the following additive-noise Gaussian channel acting on an
input state Ar :

p D Dd , 12.23A N A
2

2
 òr a a a r a= -( ) ( ) ( ) ( ) ( )

where p N NexpN
2

2 22
a a p= -( ) { ∣ ∣ } is a complex, centeredGaussian probability density functionwith

variance N N N 0S2 1 º - . Applying this channel to Af increases its photon number fromN1 toNS:

n NTr , 12.24A S f ={ ˆ ( )} ( )

which follows because

n a a p D DTr Tr d 12.25A N A
2

2
 òf a a a f a= -{ ˆ ( )} { ˆ ˆ ( ) ( ) ( )} ( )†

p D a aDd Tr 12.26N A
2

2ò a a a a f= -( ) { ( ) ˆ ˆ ( ) } ( )†

p D a D D aDd Tr 12.27N A
2

2ò a a a a a a f= - -( ) { ( ) ˆ ( ) ( ) ˆ ( ) } ( )†

p a ad Tr 12.28N A
2

2
*ò a a a a f= + +( ) {[ ˆ ][ ˆ ] } ( )†

p a a a ad Tr Tr Tr Tr 12.29N A A A A
2 2

2
*ò a a f a f a f a f= + + +( )[ { ˆ ˆ } { ˆ } { ˆ } ∣ ∣ { }] ( )† †
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Thefirst three equalities use definitions, cyclicity of trace, and the fact that D D Ia a- =( ) ( ) . The fourth
equality uses thewell known identities (see, e.g., [Ser17])

D aD a D a D a, . 12.31*a a a a a a- = + - = +( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )† †

The second-to-last equality follows because pN2
a( ) is a probability density functionwithmean zero and variance

N2 (wehave explicitly indicatedwhat each of the four terms evaluate to in the following line). Let RAj denote a
purification of the state A f( ).We can then exploit the joint covariance of the channels with respect to
displacements, the relation in (12.23), and lemma 5 to conclude that

D D , 12.32A B RA A B RA A B RA A B RA   j j f f    ( ( ) ( )) ( ( ) ( )) ( )

for all N NS1  . As a consequence of this development, we find that it suffices to restrict the optimization of the
energy-constrained, generalized channel divergence to pure bipartite states RAj thatmeet the energy constraint
with equality (i.e., n NTr A Sj ={ ˆ } ).

Nowwe exploit the joint phase covariance of the channels. Let RAj be a pure bipartite state thatmeets the
energy constraint with equality. Consider that

n n n n
1

2
d e e . 12.33A

n
A

n

n
A

0

2
i i

0
ò åj

p
f j jº = ñá ñá

p
f f-

=

¥

∣ ∣ ∣ ∣ ( )ˆ ˆ

That is, the state after phase averaging is diagonal in the number basis, and furthermore, the resulting state Aj has
the same photon numberNS as Aj because
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Thus, n nA n n A0
2j l= å ñá=

¥ ∣ ∣ , for some n l Î + such that 1n n0
2lå ==

¥ and n Nn n S0
2lå ==

¥ . Let RAx denote a
pure bipartite state that purifies Aj . By applying lemma 5 and the joint phase covariance relations in (12.16),
(12.17), we find that the following inequality holds

D D . 12.37A B RA A B RA A B RA A B RA   x x j j    ( ( ) ( )) ( ( ) ( )) ( )

Since all purifications are related by isometries acting on the purifying systemR, and since a generalized
divergence is invariant under such an isometry [TWW17], we find that

D D , 12.38A B RA A B RA A B RA A B RA   x x y y=    ( ( ) ( )) ( ( ) ( )) ( )

where RAy is a state of the form in (12.19). This concludes the proof of (12.18).
To conclude (12.20), consider that the thermal state NSq ( ) is the onlyGaussian state of a single-mode that is

diagonal in the number basis with photon number equal toNS. A purification of the thermal state NSq ( ) is the
two-mode squeezed vacuum NSTMSy ( )with parameterNS. So thismeans that, for afixed photon numberNS,
the two-mode squeezed vacuumwith parameterNS is optimal among all Gaussian states with reduced state on
the channel input having the same photon number. +

Wenote here that joint phase covariance of two otherwise arbitrary channels implies that states of the form
in (12.19)withmean photon number of their reduced states NS are optimal, while joint displacement
covariance of two otherwise arbitrary channels implies that states withmean photon number of their reduced
states NS= are optimal. In proposition 54, we chose to present the interesting case of Gaussian channels inwhich
both kinds of joint covariance hold simultaneously. The aforementioned result regarding jointly phase covariant
channels was concluded in [Nai11] for a special case by employing a different argument and considering the
special case offidelity andChernoff-information divergences, as well as the discrimination of pure-loss
channels. It is worthwhile to note that our argument is different, relyingmainly on channel symmetries and
data-processing, and thus applies in farmore general situations than those considered in [Nai11].

Proposition 54 applies to the various settings and channels that we have considered in this paper for ε-
degradable and ε-close-degradable bosonic thermal channels. Thus, we can conclude in these situations that the
Gaussian energy-constrained generalized channel divergence is achieved by the two-mode squeezed vacuum
state.

Particular generalized channel divergences of interest are the energy-constrained diamondnorm
[Shi17a,Win17] and the energy-constrained, channel version of theC-distance [GLN05, Ras02, Ras03, Ras06],
respectively defined as

sup id id , 12.39G W
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
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where F denotes the quantumfidelity. Proposition 54implies that theGaussian-constrained versions of these
quantities reduce to the following for channels satisfying the assumptions stated there:

N Nid id , 12.41n N R A B S R A B S, , TMS TMS 1S
    y y- = Ä - Äà     ( )( ( )) ( )( ( )) ( )ˆ

C F N N, 1 id , id . 12.42n N R A B S R A B S, TMS TMSS
    y y= - Ä Ä ( ) (( )( ( )) ( )( ( ))) ( )ˆ

Wenote that the latter quantity is readily expressed as a closed formula in terms of theGaussian specification of
the channels A B  and A B  in (12.14), (12.15)and the parameterNS by employing the general formula for
thefidelity of zero-meanGaussian states from [PS00]. One could also employ the formulas from [SLW17] or
[Kru06, Che05] to computeGaussian, energy-constrained channel divergences based onRényi relative entropy
or quantum relative entropy, respectively.

The result in (12.18) already significantly reduces the set of states that we need to consider in computing a
given energy-constrained, generalized channel divergence for channels satisfying the conditions of proposition
54.However, it is a very interesting open question to determinewhether, under the conditions given in
proposition 54, the energy-constrained generalized channel divergence is always achieved by the two-mode
squeezed vacuum state (if the restriction toGaussian input states is lifted). Divergences of interest in applications
are the trace distance,fidelity, quantum relative entropy, andRényi relative entropies. All of thesemeasures lead
to a very interesting suite of Gaussian optimizer questions, whichwe leave for future work. If there is a positive
answer to this question, thenwewould expect to see, in the low-photon number regime, significant
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improvements of the ε-degradable and ε-close-degradable upper bounds on the capacities of the thermal
channel.

13. Conclusion

In this paper, we established several bounds on the energy-constrained quantum and private capacities of single-
mode, phase-insensitive bosonic Gaussian channels. The energy-constrained bounds imply bounds for the
corresponding unconstrained capacities.

Inparticular,webeganbyproving several differentupperboundson the energy-constrainedquantumcapacityof
thermal channels.Wediscussed the closeness of these threeupperboundswith aknown lowerbound. Inparticular,we
have shown that theε-close-degradable boundworkswell only in the low-noise regimeand that thedata-processing
upperbound is close to a lowerbound forboth lowandhigh thermalnoise.Wealsodiscussed an interesting case in
which theε-degradable bound is tighter thanall otherupperbounds.Also, our results establish strong limitationson
anypotential superadditivity of coherent informationof a thermal channel in the low-noise regime.

Similarly, we established several different upper bounds on the energy-constrained private capacity of
thermal channels.We have also shown an improvement in the achievable rates of private communication
through quantum thermal channels by using displaced thermal states as inputs to the channel.

Additionally, we proved several different upper bounds on the energy-constrained quantum andprivate
capacities of quantum amplifier channels.We also established a data-processing upper bound on the energy-
constrained quantum andprivate capacities of additive-noise channels.

We also found that the data-processing bound can be atmost 1.45 bits larger than a known lower bound on
the energy-constrained quantum and private capacities of all phase-insensitive Gaussian channels.

Building on recent developments in [RMG18], we proved evenmore bounds on the energy-constrained
quantumand private capacities of the aforementioned channels.

Since thermal noise is present in almost all communication and optical systems, our results have
implications for quantum computing and quantum cryptography. The knowledge of bounds on quantum
capacity can be useful to quantify the performance of distributed quantum computation between remote
locations, and private communication rates are connected to the ability to generate secret key.

Wefinally used the generalized channel divergence from [LKDW18] to address the question of optimal
input states for the energy-bounded diamond norm and other related divergences. In particular, we showed that
for twoGaussian channels that are jointly phase and displacement covariant, theGaussian energy-constrained
generalized channel divergence is achieved by a two-mode squeezed vacuum state that saturates the energy
constraint. It is an interesting open question to determinewhether, among all input states, the two-mode
squeezed vacuum is the optimal input state for several energy-constrained, generalized channel divergences of
interest. Here, we have reduced the optimization to be as given in (12.18).

Acknowledgments

We thankVittorioGiovannetti, KennethGoodenough, Saikat Guha, Felix Leditzky, ImanMarvian, Ranjith
Nair, TyVolkoff, ChristianWeedbrook, andAndreasWinter for discussions related to this paper.We also
acknowledge the catalyzing role of the open problems session at Beyond i.i.d.2015 (Banff International
ResearchResearch Station, Banff, Canada) inwhich the question of applying approximate degradability to
bosonic channel capacities was raised. KS acknowledges support from theDepartment of Physics and
Astronomy at LSU and theNational Science Foundation underGrantNo.1714215.MMWthanksNICT for
hosting himduringDec.2015 and acknowledges support from theOffice ofNaval Research and theNational
Science Foundation. SA acknowledges support from theARO, AFOSR,DARPA,NSF, andNGAS.MT
acknowledges CREST Japan Science andTechnology Agency, GrantNumber JPMJCR1772, and the ImPACT
ProgramofCouncil for Science, Technology, and Innovation, Japan.

ORCID iDs

Kunal Sharma https://orcid.org/0000-0003-3132-1088
MarkMWilde https://orcid.org/0000-0002-3916-4462

References

[Ali04] Alicki R 2004 Isotropic quantum spin channels and additivity questions https://arxiv.org/abs/quant-ph/0402080
[BV13] Baccetti V andVisserM2013 Infinite Shannon entropy J. Stat.Mech.P04010

40

New J. Phys. 20 (2018) 063025 K Sharma et al

https://orcid.org/0000-0003-3132-1088
https://orcid.org/0000-0003-3132-1088
https://orcid.org/0000-0003-3132-1088
https://orcid.org/0000-0003-3132-1088
https://orcid.org/0000-0002-3916-4462
https://orcid.org/0000-0002-3916-4462
https://orcid.org/0000-0002-3916-4462
https://orcid.org/0000-0002-3916-4462
https://arxiv.org/abs/quant-ph/0402080
https://doi.org/10.1088/1742-5468/2013/04/P04010


[Cav82] Caves CM1982Quantum limits on noise in linear amplifiersPhys. Rev.D 26 1817
[CDG+10] Clerk AA,DevoretMH,Girvin SM,Marquardt F and Schoelkopf R J 2010 Introduction to quantumnoise,measurement,

and amplificationRev.Mod. Phys. 82 1155
[CEGH08] Caruso F, Eisert J, Giovannetti V andHolevoA S 2008Multi-mode bosonicGaussian channelsNew J. Phys. 10 083030
[CEM+15] Cubitt T, ElkoussD,MatthewsW,OzolsM, Pérez-García D and Strelchuk S 2015Unbounded number of channel uses are

required to see quantum capacityNat. Commun. 6 7739
[CG06] Caruso F andGiovannetti V 2006Degradability of bosonicGaussian channels Phys. Rev.A 74 062307
[CGH06] Caruso F, Giovannetti V andHolevoA S 2006One-mode bosonicGaussian channels: a full weak-degradability classification

New J. Phys. 8 310
[Che05] ChenX-Y 2005Gaussian relative entropy of entanglement Phys. Rev.A 71 062320
[CMW16] CooneyT,MosonyiM andWildeMM2016 Strong converse exponents for a quantumchannel discrimination problem and

quantum-feedback-assisted communicationCommun.Math. Phys. 344 797–829
[CWY04] CaiN,Winter A andYeung RW2004Quantumprivacy and quantumwiretap channels Problems Inf. Transm. 40 318–36
[Dev05] Devetak I 2005The private classical capacity and quantum capacity of a quantum channel IEEETrans. Inf. Theory 51 44–55
[DS05] Devetak I and Shor PW2005The capacity of a quantum channel for simultaneous transmission of classical and quantum

informationCommun.Math. Phys. 256 287–303
[DSS98] DiVincenzoDP, Shor PWand Smolin J A 1998Quantum-channel capacity of very noisy channels Phys. Rev.A 57 830–9
[DW17] Das S andWildeMM2017Quantum reading capacity: general definition and bounds arXiv:1703.03706
[ES15] ElkoussD and Strelchuk S 2015 Superadditivity of private information for any number of uses of the channel Phys. Rev. Lett. 115

040501
[EW07] Eisert J andWolfMM2007Quantum Information withContinuous Variables of Atoms and Light, chGaussianQuantumChannels

(Singapore:World Scientific) pp 23–42
[Fal70] FalkH 1970 Inequalities of J.W.GibbsAm. J. Phys. 38 858–69
[GGL+04] Giovannetti V, Guha S, Lloyd S,Maccone L and Shapiro JH 2004Minimumoutput entropy of bosonic channels: a conjecture

Phys. Rev.A 70 032315
[GLN05] Gilchrist A, LangfordNK andNielsenMA2005Distancemeasures to compare real and ideal quantumprocesses Phys. Rev.A 71

062310
[GPNBL+12] Garcia-Patron R,Navarrete-BenllochC, Lloyd S, Shapiro JH andCerfN J 2012Majorization theory approach to the

Gaussian channelminimumentropy conjecture Phys. Rev. Lett. 108 110505
[GSE08] Guha S, Shapiro JH and ErkmenB I 2008Capacity of the bosonic wiretap channel and the entropy photon-number inequality

Proc. IEEE Int. Symp. on Information Theory (Toronto, Ontario) (Piscataway,NJ: IEEE) pp 91–5
[Hal94] HallM JW1994Gaussian noise and quantum-optical communication Phys. Rev.A 50 3295
[Haw72] Hawking SW1972Black holes in general relativityCommun.Math. Phys. 25 152–66
[Hay06] HayashiM2006Quantum Information: An Introduction (Berlin: Springer)
[Hol02] HolevoA S 2002Remarks on the classical capacity of quantum channel arXiv:quant-ph/0212025
[Hol04] HolevoA S 2004 Entanglement-assisted capacities of constrained quantum channelsTheory Probab. Appl. 48 243–55
[Hol08] HolevoA S 2008 Entanglement-breaking channels in infinite dimensionsProblems Inf. Transm. 44 171–84
[Hol10] HolevoA S 2010The entropy gain of infinite-dimensional quantum evolutionsDokl.Math. 82 730–1
[Hol11a] HolevoA S 2011 Entropy gain and theChoi–Jamiolkowski correspondence for infinite-dimensional quantum evolutionsTheor.

Math. Phys. 166 123–38
[Hol11b] HolevoA S 2011The entropy gain of quantum channels 2011 IEEE Int. Symp. on Information Theory Proc. pp 289–92
[Hol12] HolevoA S 2012QuantumSystems, Channels, Information (deGruyter Studies inMathematical Physics (Book 16)) (Berlin: de

Gruyter&Co)
[HS10] HolevoA S and ShirokovME2010Mutual and coherent information for infinite-dimensional quantum channelsProblems Inf.

Transm. 46 201–18
[HSR03] HorodeckiM, Shor PWandRuskaiMB 2003 Entanglement breaking channelsRev.Math. Phys. 15 629–41
[HW01] HolevoA S andWerner R F 2001 Evaluating capacities of bosonicGaussian channelsPhys. Rev.A 63 032312
[HZ11] Heinosaari T andZimanM2011TheMathematical Language of QuantumTheory: FromUncertainty to Entanglement (Cambridge:

CambridgeUniversity Press)
[Kit97] Kitaev AY 1997Quantum computations: algorithms and error correctionRuss.Math. Surv. 52 1191–249
[Kru06] KruegerO 2006Quantum Information TheorywithGaussian Systems PhDThesisTechnischeUniversität Braunschweig https://

publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00020741
[KS13] König R and SmithG 2013Classical capacity of quantum thermal noise channels towithin 1.45 bitsPhys. Rev. Lett. 110 040501
[Kuz11] Kuznetsova AA 2011Conditional entropy for infinite-dimensional quantum systemsTheory Probab. Appl. 55 709–17
[LDTBG05] Lodewyck J, Debuisschert T, Tualle-Brouri R andGrangier P 2005Controlling excess noise infiber-optics continuous-

variable quantumkey distributionPhys. Rev.A 72 050303
[Lin73] LindbladG1973 Entropy, information and quantummeasurementsCommun.Math. Phys. 33 305–22
[Lin75] LindbladG1975Completely positivemaps and entropy inequalitiesCommun.Math. Phys. 40 147–51
[LKDW18] Leditzky F, Kaur E,DattaN andWildeMM2018Approaches for approximate additivity of theHolevo information of

quantum channels Phys. Rev.A 97 012332
[Llo97] Lloyd S 1997Capacity of the noisy quantum channel Phys. Rev.A 55 1613–22
[LLS17] Leditzky F, LeungD and SmithG2018Quantum and private capacities of low-noise channels Phys. Rev. Lett. 120 160503
[LR73a] Lieb EH andRuskaiMB1973A fundamental property of quantum-mechanical entropyPhys. Rev. Lett. 30 434–6
[LR73b] Lieb EH andRuskaiMB 1973 Proof of the strong subadditivity of quantum-mechanical entropy J.Math. Phys. 14 1938–41
[LS09] LeungD and SmithG2009Continuity of quantumchannel capacitiesCommun.Math. Phys. 292 201–15
[Mat] Mathematica files are available in the sourcefiles of our arxiv post
[MM12] Marian P andMarian TA2012Uhlmann fidelity between two-modeGaussian statesPhys. Rev.A 86 022340
[Moo70] MooreGT1970Quantum theory of the electromagneticfield in a variable-length one-dimensional cavity J.Math. Phys. 11

2679–91
[Nai11] Nair R 2011Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: applications to

quantum reading and target detection Phys. Rev.A 84 032312
[NAJ18] NohK,Albert VV and Jiang L 2018 Improved quantum capacity bounds ofGaussian loss channels and achievable rates with

Gottesman–Kitaev–Preskill codes arXiv:1801.07271

41

New J. Phys. 20 (2018) 063025 K Sharma et al

https://doi.org/10.1103/PhysRevD.26.1817
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1088/1367-2630/10/8/083030
https://doi.org/10.1038/ncomms7739
https://doi.org/10.1103/PhysRevA.74.062307
https://doi.org/10.1088/1367-2630/8/12/310
https://doi.org/10.1103/PhysRevA.71.062320
https://doi.org/10.1007/s00220-016-2645-4
https://doi.org/10.1007/s00220-016-2645-4
https://doi.org/10.1007/s00220-016-2645-4
https://doi.org/10.1007/s11122-005-0002-x
https://doi.org/10.1007/s11122-005-0002-x
https://doi.org/10.1007/s11122-005-0002-x
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1103/PhysRevA.57.830
https://doi.org/10.1103/PhysRevA.57.830
https://doi.org/10.1103/PhysRevA.57.830
http://arxiv.org/abs/1703.03706
https://doi.org/10.1103/PhysRevLett.115.040501
https://doi.org/10.1103/PhysRevLett.115.040501
https://doi.org/10.1119/1.1976484
https://doi.org/10.1119/1.1976484
https://doi.org/10.1119/1.1976484
https://doi.org/10.1103/PhysRevA.70.032315
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1103/PhysRevLett.108.110505
https://doi.org/10.1103/PhysRevA.50.3295
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01877517
http://arxiv.org/abs/quant-ph/0212025
https://doi.org/10.1137/S0040585X97980415
https://doi.org/10.1137/S0040585X97980415
https://doi.org/10.1137/S0040585X97980415
https://doi.org/10.1134/S0032946008030010
https://doi.org/10.1134/S0032946008030010
https://doi.org/10.1134/S0032946008030010
https://doi.org/10.1134/S1064562410050133
https://doi.org/10.1134/S1064562410050133
https://doi.org/10.1134/S1064562410050133
https://doi.org/10.1007/s11232-011-0010-5
https://doi.org/10.1007/s11232-011-0010-5
https://doi.org/10.1007/s11232-011-0010-5
https://doi.org/10.1134/S0032946010030014
https://doi.org/10.1134/S0032946010030014
https://doi.org/10.1134/S0032946010030014
https://doi.org/10.1142/S0129055X03001709
https://doi.org/10.1142/S0129055X03001709
https://doi.org/10.1142/S0129055X03001709
https://doi.org/10.1103/PhysRevA.63.032312
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00020741
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00020741
https://doi.org/10.1103/PhysRevLett.110.040501
https://doi.org/10.1137/S0040585X97985121
https://doi.org/10.1137/S0040585X97985121
https://doi.org/10.1137/S0040585X97985121
https://doi.org/10.1103/PhysRevA.72.050303
https://doi.org/10.1007/BF01646743
https://doi.org/10.1007/BF01646743
https://doi.org/10.1007/BF01646743
https://doi.org/10.1007/BF01609396
https://doi.org/10.1007/BF01609396
https://doi.org/10.1007/BF01609396
https://doi.org/10.1103/PhysRevA.97.012332
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1103/PhysRevLett.120.160503
https://doi.org/10.1103/PhysRevLett.30.434
https://doi.org/10.1103/PhysRevLett.30.434
https://doi.org/10.1103/PhysRevLett.30.434
https://doi.org/10.1063/1.1666274
https://doi.org/10.1063/1.1666274
https://doi.org/10.1063/1.1666274
https://doi.org/10.1007/s00220-009-0833-1
https://doi.org/10.1007/s00220-009-0833-1
https://doi.org/10.1007/s00220-009-0833-1
https://doi.org/10.1103/PhysRevA.86.022340
https://doi.org/10.1063/1.1665432
https://doi.org/10.1063/1.1665432
https://doi.org/10.1063/1.1665432
https://doi.org/10.1063/1.1665432
https://doi.org/10.1103/PhysRevA.84.032312
http://arxiv.org/abs/1801.07271


[NH04] Namiki R andHiranoT 2004 Practical limitation for continuous-variable quantum cryptography using coherent statesPhys. Rev.
Lett. 92 117901

[PLOB17] Pirandola S, Laurenza R,Ottaviani C andBanchi L 2017 Fundamental limits of repeaterless quantum communicationsNat.
Commun. 8 15043

[PS70] Powers RT and Størmer E 1970 Free states of the canonical anticommutation relationsCommun.Math. Phys. 16 1–33
[PS00] ParaoanuG-S and ScutaruH 2000 Fidelity formultimode thermal squeezed states Phys. Rev.A 61 022306
[QW17] QiHandWildeMM2017Capacities of quantum amplifier channels Phys. Rev.A 95 012339
[Ras02] Rastegin AE 2002Relative error of state-dependent cloning Phys. Rev.A 66 042304
[Ras03] Rastegin AE 2003A lower bound on the relative error ofmixed-state cloning and related operations J. Opt. B: Quantum Semiclass.

Opt. 5 S647
[Ras06] Rastegin AE 2006 Sine distance for quantum states arXiv:quant-ph/0602112
[RGK05] Renner R, GisinN andKraus B 2005 Information-theoretic security proof for quantum-key-distribution protocols Phys. Rev.A

72 012332
[RGR+17] Rozpedek F, GoodenoughK, Ribeiro J, KalbN,Vivoli VC, Reiserer A,HansonR,Wehner S andElkouss D 2018 Parameter

regimes for a single sequential quantum repeaterQuantumSci. Technol. 3 034002
[RMG18] RosatiM,Mari A andGiovannetti V 2018Narrow bounds for the quantum capacity of thermal attenuators arXiv:1801.04731
[Ser17] Serafini A 2017QuantumContinuous Variables: A Primer of TheoreticalMethods (Boca Raton, FL: CRCPress)
[SH08] ShirokovME andHolevoA S 2008On approximation of infinite-dimensional quantum channels Problems Inf. Transm. 44 3–22
[Sha09] Shapiro JH 2009The quantum theory of optical communications IEEE J. Sel. Top. QuantumElectron. 15 1547–69
[Shi15] ShirokovME 2015Measures of quantum correlations in infinite-dimensional systems Sbornik:Math. 207 724
[Shi16] ShirokovME 2016 Squashed entanglement in infinite dimensions J.Math. Phys. 57 032203
[Shi17a] ShirokovME2018On the energy-constrained diamond norm and its application in quantum information theory Problems of

Information Transmission 54 20–33
[Shi17b] ShirokovME2017Uniform finite-dimensional approximation of basic capacities of energy-constrained channels arXiv:1707.

05641
[Sho02] Shor PW2002The quantumchannel capacity and coherent information LectureNotes,MSRIWorkshop onQuantum

Computation
[SLW17] SeshadreesanKP, Lami L andWildeMM2017Renyi relative entropies of quantumGaussian states arXiv:1706.09885
[SMD94] SimonR,MukundaN andDutta B 1994Quantum-noisematrix formultimode systems:U(n) invariance, squeezing, and

normal forms Phys. Rev.A 49 1567–83
[Smi08] SmithG 2008 Private classical capacity with a symmetric side channel and its application to quantum cryptography Phys. Rev.A 78

022306
[SN96] Schumacher B andNielsenMA1996Quantumdata processing and error correction Phys. Rev.A 54 2629–35
[SRS08] SmithG, Renes JM and Smolin J A 2008 Structured codes improve the Bennett–Brassard-84 quantumkey rate Phys. Rev. Lett. 100

170502
[SS07] SmithG and Smolin J A 2007Degenerate quantum codes for Pauli channelsPhys. Rev. Lett. 98 030501
[SS08] SmithG and Smolin J A 2008Additive extensions of a quantum channel 2008 IEEE Information TheoryWorkshop pp 368–72
[SS13] SmithG and Smolin J A 2013An exactly solvablemodel for quantum communicationsNature 504 263–7
[SSWR17] SutterD, Scholz VB,Winter A andRenner R 2017Approximate degradable quantumchannels IEEETrans. Inf. Theory 63

7832–44
[SSY11] SmithG, Smolin J A andYard J 2011Quantum communicationwithGaussian channels of zero quantum capacityNat. Photon. 5

624–7
[Sti55] StinespringWF1955 Positive functions onC*-algebrasProc. Am.Math. Soc. 6 211–6
[SW12] SharmaNandWarsi NA2012On the strong converses for the quantum channel capacity theorems arXiv:1205.1712
[SWAT17] SharmaK,WildeMM,Adhikari S andTakeokaM2017Unpublished notes available upon request
[SY08] SmithG andYard J 2008Quantum communicationwith zero-capacity channels Science 321 1812–5
[TW16] TakeokaMandWildeMM2016Optimal estimation and discrimination of excess noise in thermal and amplifier channels

arXiv:1611.09165
[TWW17] TomamichelM,WildeMMandWinter A 2017 Strong converse rates for quantum communication IEEETrans. Inf. Theory 63

715–27
[Uhl76] UhlmannA 1976The ‘transition probability’ in the state space of a *-algebraRep.Math. Phys. 9 273–9
[Unr76] UnruhWG1976Notes on black-hole evaporation Phys. Rev.D 14 870
[Weh76] Wehrl A 1976Three theorems about entropy and convergence of densitymatricesRep.Math. Phys. 10 159–63
[WHG12] WildeMM,Hayden P andGuha S 2012Quantum trade-off coding for bosonic communication Phys. Rev.A 86 062306
[Wil36] Williamson J 1936On the algebraic problem concerning the normal forms of linear dynamical systemsAm. J.Math. 58 141–63
[Wil16] WildeMM2016 From classical to quantumShannon theory arXiv:1106.1445v7
[Win16] Winter A 2016Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and

energy constraintsCommun.Math. Phys. 347 291–313
[Win17] Winter A 2017 Energy-constrained diamond normwith applications to the uniform continuity of continuous variable channel

capacities arXiv:1712.10267
[WPG07] WolfMMandPérez-GarcíaD 2007Quantum capacities of channels with small environment Phys. Rev.A 75 012303
[WPGG07] WolfMM, Pérez-GarcíaD andGiedkeG2007Quantum capacities of bosonic channelsPhys. Rev. Lett. 98 130501
[WQ16] WildeMMandQiH 2016 Energy-constrained private and quantum capacities of quantum channels arXiv:1609.01997
[WTB17] WildeMM,TomamichelM andBertaM2017Converse bounds for private communication over quantum channels IEEE Trans.

Inf. Theory 63 1792–817
[WTLB17] WildeMM,TomamichelM, Lloyd S andBertaM2017Gaussian hypothesis testing and quantum illumination Phys. Rev. Lett.

119 120501
[WWY14] WildeMM,Winter A andYangD 2014 Strong converse for the classical capacity of entanglement-breaking andHadamard

channels via a sandwiched Rényi relative entropyCommun.Math. Phys. 331 593–622
[YS78] YuenH and Shapiro JH 1978Optical communicationwith two-photon coherent states: I. Quantum-state propagation and

quantum-noise IEEE Trans. Inf. Theory 24 657–68

42

New J. Phys. 20 (2018) 063025 K Sharma et al

https://doi.org/10.1103/PhysRevLett.92.117901
https://doi.org/10.1038/ncomms15043
https://doi.org/10.1007/BF01645492
https://doi.org/10.1007/BF01645492
https://doi.org/10.1007/BF01645492
https://doi.org/10.1103/PhysRevA.61.022306
https://doi.org/10.1103/PhysRevA.95.012339
https://doi.org/10.1103/PhysRevA.66.042304
https://doi.org/10.1088/1464-4266/5/6/017
http://arxiv.org/abs/quant-ph/0602112
https://doi.org/10.1103/PhysRevA.72.012332
https://doi.org/10.1088/2058-9565/aab31b
http://arxiv.org/abs/1801.04731
https://doi.org/10.1134/S0032946008020014
https://doi.org/10.1134/S0032946008020014
https://doi.org/10.1134/S0032946008020014
https://doi.org/10.1109/JSTQE.2009.2024959
https://doi.org/10.1109/JSTQE.2009.2024959
https://doi.org/10.1109/JSTQE.2009.2024959
https://doi.org/10.1070/SM8561
https://doi.org/10.1063/1.4943598
https://doi.org/10.1134/S0032946018010027
https://doi.org/10.1134/S0032946018010027
https://doi.org/10.1134/S0032946018010027
http://arxiv.org/abs/1707.05641
http://arxiv.org/abs/1707.05641
http://arxiv.org/abs/1706.09885
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1103/PhysRevA.78.022306
https://doi.org/10.1103/PhysRevA.78.022306
https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/10.1103/PhysRevLett.100.170502
https://doi.org/10.1103/PhysRevLett.100.170502
https://doi.org/10.1103/PhysRevLett.98.030501
https://doi.org/10.1038/nature12669
https://doi.org/10.1038/nature12669
https://doi.org/10.1038/nature12669
https://doi.org/10.1109/TIT.2017.2754268
https://doi.org/10.1109/TIT.2017.2754268
https://doi.org/10.1109/TIT.2017.2754268
https://doi.org/10.1109/TIT.2017.2754268
https://doi.org/10.1038/nphoton.2011.203
https://doi.org/10.1038/nphoton.2011.203
https://doi.org/10.1038/nphoton.2011.203
https://doi.org/10.1038/nphoton.2011.203
http://arxiv.org/abs/1205.1712
https://doi.org/10.1126/science.1162242
https://doi.org/10.1126/science.1162242
https://doi.org/10.1126/science.1162242
http://arxiv.org/abs/1611.09165
https://doi.org/10.1109/TIT.2016.2615847
https://doi.org/10.1109/TIT.2016.2615847
https://doi.org/10.1109/TIT.2016.2615847
https://doi.org/10.1109/TIT.2016.2615847
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1016/0034-4877(76)90037-9
https://doi.org/10.1016/0034-4877(76)90037-9
https://doi.org/10.1016/0034-4877(76)90037-9
https://doi.org/10.1103/PhysRevA.86.062306
https://doi.org/10.2307/2371062
https://doi.org/10.2307/2371062
https://doi.org/10.2307/2371062
http://arxiv.org/abs/1106.1445v7
https://doi.org/10.1007/s00220-016-2609-8
https://doi.org/10.1007/s00220-016-2609-8
https://doi.org/10.1007/s00220-016-2609-8
http://arxiv.org/abs/1712.10267
https://doi.org/10.1103/PhysRevA.75.012303
https://doi.org/10.1103/PhysRevLett.98.130501
http://arxiv.org/abs/1609.01997
https://doi.org/10.1103/PhysRevLett.119.120501
https://doi.org/10.1007/s00220-014-2122-x
https://doi.org/10.1007/s00220-014-2122-x
https://doi.org/10.1007/s00220-014-2122-x
https://doi.org/10.1109/TIT.1978.1055958
https://doi.org/10.1109/TIT.1978.1055958
https://doi.org/10.1109/TIT.1978.1055958

	1. Introduction
	2. Summary of results
	3. Preliminaries
	3.1. Quantum states and channels
	3.2. Quantum entropies and information
	3.3. Quantum fidelity, trace distance, and diamond distance
	3.4. Approximate degradability
	3.5. Energy-constrained continuity bounds
	3.6. Gaussian states and channels
	3.7. Quantum thermal channel
	3.8. Quantum amplifier channel
	3.9. Additive-noise channel
	3.10. Continuity of output entropy
	3.11. Continuity of capacities for channels
	3.12. Energy-constrained quantum and private capacities
	3.13. Energy-constrained quantum capacity
	3.14. Energy-constrained private capacity

	4. Bounds on energy-constrained quantum and private capacities of approximately degradable channels
	4.1. Bound on the energy-constrained quantum capacity of an ε-degradable channel
	4.2. Bound on the energy-constrained quantum capacity of an ε-close-degradable channel
	4.3. Bound on the energy-constrained private capacity of an ε-degradable channel
	4.4. Bound on the energy-constrained private capacity of an ε-close-degradable channel

	5. Upper bounds on energy-constrained quantum capacity of bosonic thermal channels
	5.1. Data-processing bound on the energy-constrained quantum capacity of bosonic thermal channels
	5.2.ε-degradable bound on the energy-constrained quantum capacity of bosonic thermal channels
	5.3.ε-close-degradable bound on the energy-constrained quantum capacity of bosonic thermal channels

	6. Comparison of upper bounds on the energy-constrained quantum capacity of bosonic thermal channels
	7. Upper bounds on energy-constrained private capacity of bosonic thermal channels
	7.1. Data-processing bound on the energy-constrained private capacity of bosonic thermal channels
	7.2.ε-degradable bound on the energy-constrained private capacity of bosonic thermal channels
	7.3.ε-close-degradable bound on the energy-constrained private capacity of bosonic thermal channels

	8. Lower bound on energy-constrained private capacity of bosonic thermal channels
	9. Upper bounds on energy-constrained quantum and private capacities of quantum amplifier channels
	9.1. Data-processing bound on energy-constrained quantum and private capacities of quantum amplifier channels
	9.2.ε-degradable bound on energy-constrained quantum and private capacities of amplifier channels
	9.3.ε-close-degradable bound on energy-constrained quantum and private capacities of amplifier channels

	10. Data-processing bound on energy-constrained quantum and private capacities of additive-noise channels
	11. Recent developments
	11.1. Reference [RMG18] bounds for the unconstrained quantum capacity of a thermal channel
	11.2. Further extension to the energy-constrained quantum and private capacities of thermal channels
	11.3. Further extension on the energy-constrained quantum and private capacities of additive-noise channels

	12. On the optimization of generalized channel divergences of quantum Gaussian channels
	13. Conclusion
	Acknowledgments
	References



