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ABSTRACT

In single-molecule super-resolution microscopy, engineered

point-spread functions (PSFs) are designed to efficiently en-

code new molecular properties, such as 3D orientation, into

complex spatial features captured by a camera. To fully ben-

efit from their optimality, algorithms must estimate multi-

dimensional parameters such as molecular position and orien-

tation in the presence of PSF overlap and model-experiment

mismatches. Here, we present a novel joint sparse deconvo-

lution algorithm based on the decomposition of fluorescence

images into six basis images that characterize molecular ori-

entation. The proposed algorithm exploits a group-sparsity

structure across these basis images and applies a pooling strat-

egy on corresponding spatial features for robust simultane-

ous estimates of the number, brightness, 2D position, and

3D orientation of fluorescent molecules. We demonstrate this

method by imaging DNA transiently labeled with the interca-

lating dye YOYO-1. Imaging the position and orientation of

each molecule reveals orientational order and disorder within

DNA with nanoscale spatial precision.

Index Terms— Sparse deconvolution, group sparsity,

single-molecule orientation, DNA intercalators

1. INTRODUCTION

Single-molecule localization microscopy (SMLM) relies on

accurately and precisely estimating the position of many

single emitters repeatedly blinking over time [1, 2, 3]. Be-

sides their position, fluorescent molecules interacting with

their nano-environment also report information such as ori-

entation and emission spectra that are hidden from standard,

diffraction-limited optical imaging systems. Augmenting the

PSF, or the impulse response of the microscope, to uncover

such fine details remains a vibrant research topic [4, 5]. In ad-

dition, biophysical measurements utilizing SMLM are more

accurate when a physically-realistic image-formation model

and recovery problem are utilized that include parameters

such as molecular orientation and rotational mobility.
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However, estimating multidimensional parameters such

as molecular position, orientation, and brightness from noisy

camera images poses a formidable challenge. For example,

engineered PSFs have much larger footprints compared to the

standard PSF (Fig. 1(b)), thereby causing frequent PSF over-

laps [6] and lower pixel-wise signal-to-noise ratios, which

can substantially reduce the detection rate of standard spot-

detection methods. Further, a target structure must be densely

sampled by blinking emitters in order to be resolved, and

therefore, it is vital to develop an algorithmic framework to

address the aforementioned challenges. Joint estimation of

the molecular position and orientation for the standard PSF

has been considered previously [7, 8, 9]. These methods,

however, cannot be adapted to engineered PSFs for measur-

ing jointly the position, 3D orientation, and rotational dy-

namics of fluorescent molecules. In addition, the problem

of PSF overlap in the presence of multi-channel measure-

ment errors has not been considered before. In this work, we

tackle these challenges by 1) constructing a forward model

that decomposes molecular parameters (i.e., brightness, po-

sition, and orientation) into six basis images corresponding

to the six second moments of orientation dynamics [5]; 2)

building a novel sparse basis deconvolution algorithm that

exploits a group-sparsity norm to jointly recover all molecu-

lar parameters; and 3) applying spatial pooling across the six

basis images to avoid false localizations due to experimen-

tal mismatches. We applied the proposed method to resolve

DNA conformation via super-resolution imaging of DNA in-

tercalating probes.

2. IMAGE-FORMATION MODEL

A dipole, such as a single fluorescent molecule, is character-

ized by its position r = [x, y]T and an orientation vector μ =
[μx, μy, μz]

T = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]T ∈
R

3, where θ and φ are the polar and the azimuthal angles in

spherical coordinates, respectively (Fig. 1(a)). The image of a

dipole, denoted by I , can be described in terms of an orienta-

tional second-moment vector M = [〈μ2
x〉, 〈μ2

y〉, 〈μ2
z〉, 〈μxμy〉,

〈μxμz〉, 〈μyμz〉]T , in which 〈·〉 represents the temporal av-

erage over a camera frame or equivalently an ensemble av-

erage over the orientation domain [8, 10]. More precisely,
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Fig. 1. (a) Two closely-spaced dipole emitters with dis-

tinct orientations. (b) Images of emitters in (a) for (left)

a microscope augmented with the Tri-spot PSF [5] to pro-

duce orientation-sensitive images and (right) a standard mi-

croscope. White lines separate x- and y-polarized images.

(c) Proposed algorithmic framework consists of three stages.

Scale bar: 1 μm.

I = s
(∑6

j=1 MjBj
)

. Here, s denotes the total number of

photons emitted by the dipole, and the Bj’s represent the so-

called basis images corresponding to a dipole exhibiting each

orientational second-moment component. Note that here I
corresponds to two orthogonally-polarized images (i.e., x and

y), concatenated together (Figs. 1(b), 2(c,d), 3(a inset)).

Consider the object domain Ω = {ωi = (si,Mi, ri) | si
≥ 0, ‖ri‖∞ < rmax, i ∈ {1, 2, . . . , P}} as a collection of P
dipole-like molecules located within a square region of inter-

est of length 2rmax. We represent the PSF of the microscope

as h(u;ω) : Ω → I × R for which u denotes the coordi-

nates in image space I ⊂ R
2. The noiseless image formed on

the camera is the result of a weighted-convolution operation

I(u) =
∑P

i=1 sih(u;ωi) ∗ δ(r − ri) (∗ denotes the (linear)

convolution operator and δ(·) represents the Dirac delta func-

tion). We now exploit the fact that h can be represented as the

sum of six basis images:

I(u) =

P∑
i=1

si

( 6∑
j=1

Mj
ih

j(u− ri)
)

(1)

where hj(·) corresponds to the basis image Bj , and Mj
i rep-

resents the jth component of the second-order orientational

moment of the ith emitter. As s plays a scaling role here, we

absorb it into M and denote it by η = sM. In the next sec-

tion, we extend our model in Eq. (1) to explicitly take into

account the continuous position of molecules, which proves

to be crucial for the robustness of the recovery algorithm.

Let D be a set of N discrete grid points, where the dis-

tance between two adjacent points is given by 2ρ. A position

vector r can be uniquely mapped into r = d+δ for some d ∈
D and δ = [δx, δy]

T with δx, δy ∈ [−ρ, ρ). Therefore, we can

rewrite Eq. (1) as I(u) =
∑N

i=1

∑6
j=1 η

j
i h

j(u − di − δi).

Note that ηi = 0 if no molecule can be mapped to a point in

the neighbourhood of di. For a fixed i ∈ {1, 2, . . . , N} and

j ∈ {1, 2, . . . , 6}, we approximate h via first-order Taylor ex-

pansion hj(u−di−δi) ≈ hj(u−di)−h′j(u−di)
T δi, in

which h′(·) denotes the derivative of h. Within the first-order

approximation, we have

I(u) =

N∑
i=1

6∑
j=1

(
ηji h

j(u− di)− h′
x
j
(u− di)ζ

j
x,i−

h′
y
j
(u− di)ζ

j
y,i

)
, (2)

where ζj
i = ηji δi = [ζjx,i, ζ

j
y,i]

T ; h′
x
j

and h′
y
j

represent

derivatives of h along the x-axis and y-axis, respectively. Re-

markably, the image model in Eq. (2) can be interpreted as the

sum of a few PSFs weighted by object-domain parameters Ω.

We also take into account camera pixelation by integrat-

ing the image I over m pixels, which effectively results in

matrices Φj ,Gxj and Gyj for each basis with index j. Note

that Φ corresponds to h in Eq. (2) whereas Gx and Gy cor-

respond to h′
x and h′

y , respectively. The final imaging model

can be compactly represented as AF =
∑6

j=1 A
jf j with

Aj = [ΦjT ,GxjT ,GyjT ]T and f j = [ηjT , ζjT
x , ζjT

y ]T .

We further model the photon count in each pixel i as an inde-

pendent Poisson distribution gi ∼ Pois
(
(AF + b)i

)
whose

mean equals the sum of detected photons emitted by fluores-

cent molecules (i.e., AF ) and background flux (i.e., b).

Therefore, the nonlinear image-formation model for

dipole emitters parameterized by brightness, 3D orienta-

tion, rotational dynamics, and position can be represented by

a linear model utilizing a set of new parameters, accompanied

by nonlinear constraints.

3. RECOVERY ALGORITHM

Next, we focus on the regularized inverse problem for the

derived model and show how we can handle nonlinear con-

straints to obtain efficient recovery in the presence of image

overlap and experimental mismatches. The proposed algo-

rithm consists of three main stages (Fig. 1(c)) as follows.

3.1. Joint sparse basis deconvolution

Our main observation is that the number of underlying

molecules is much smaller than the number of ambient pa-

rameters. Taking advantage of the cascading structure of the

proposed signal model, this prior knowledge can be encoded

via a group/joint-sparsity norm across the six basis images,

hence the name joint sparse basis deconvolution.

We formulate the recovery problem as a minimization:

F̂ = argmin
F

{L(F ) + λR(F ) + IC(F )}, (3)



where L is the negative Poisson log-likelihood; R denotes the

regularizer (described below); λ is a penalty parameter; and

IC denotes the indicator function of the set C representing the

constraint set. The regularizer, R, is a group-sparsity norm for

brightness and position gradients across all six basis images

defined by R(F ) =
∑N

i=1

√∑6
j=1

(
(ηji )

2 + (ζjx,i)
2 + (ζjy,i)

2)
. The set C = ∩6

i=1Ci captures physical constraints on the

signal model. In particular, Cj = {f j | ηj ≥ 0, −ρηj ≤
ζj
x ≤ ρηj , −ρηj ≤ ζj

y ≤ ρηj} for j = {1, 2, 3}; Cj =

{f j | ‖ζj
x‖∞ ≤ ρ‖ηj‖∞, ‖ζj

y‖∞ ≤ ρ‖ηj‖∞} for j =
{4, 5, 6}. One may note that the sets Cj (j = {4, 5, 6}) are

non-convex. To preserve convexity, we neglect the first-order

approximation in the last three basis images, implying that

f j = [ηjT ,0T ,0T ]T for j = {4, 5, 6}. Henceforth we

drop the corresponding constraint sets. This approximation

is physically justified since the energy radiated by a dipole

is mostly contained in the first three basis images [5, 10].

Consequently, it renders Eq. (3) as a convex program, and we

develop a variant of FISTA to solve it [6, 11].

Deriving a closed-form proximal operator required for

FISTA in Eq. (3) is not possible. We thus smooth the reg-

ularizer term with a differentiable function, e.g., its Moreau

envelope. Let w(F ) = λR(F ). The Moreau envelope

of w, Eτ (w), is continuous, and its gradient is given as

∇wτ (F ) = 1
τ (F − proxτw(F )) in which proxτw(F ) is the

proximal operator of τλR(F ). The smoothing parameter τ
controls the accuracy of the approximation. The modified

optimization is now an instance of the gradient projection

given as minF L(F ) + Eτ (λR(F )) + IC(F ), for which

IC(·) is the indicator of the set C = ∩3
i=1Ci. Another

difficulty is that the projection operator associated with C
does not admit a closed-form expression. To tackle this is-

sue, we approximate each Cj with a second-order cone as

Ĉj = {f j | ‖[ζjx,i, ζjy,i]T ‖2 ≤ ρηji , i = {1, 2, . . . , N}}
(j = {1, 2, 3}), which quite remarkably admits a closed-form

projection operator [6].

3.2. Spatial pooling for robust emitter identification and
localization

An important challenge in sparse recovery is that of model

mismatch, which has been shown to degrade the performance

of grid-based recovery algorithms. However, for the prob-

lem of emitter localization, a model mismatch can cause false

emitter localization, thereby introducing bias in the measure-

ments (Fig. 2(a)). In our imaging system, the misalignment of

two polarization channels leads to a mismatch; the estimated

positions obtained separately from left and right channels may

differ by an amount comparable to the localization precision.

Notice, however, that the average of position estimates in two

channels can actually be considered as the main parameter of

interest. Using this insight and the fact that our model can

provide continuous position estimates, we next show how to

robustly identify the correct number of molecules.

As shown in [6], the recovered joint signal F̂ exhibits a

specific structure in which position gradients converge to the

true location of each emitter. To exploit this structure, we con-

struct an operator called GradMap G : R3N → R
N . Briefly,

for each grid point or pixel, G computes how much the po-

sition gradients in neighbouring points converge to the grid

point of interest. Put differently, G returns the “likelihood”

that a true emitter belongs to each pixel. We apply G on each

of first three deconvolved basis images to obtain Gj = G(f̂ j)
for f̂ j = [η̂jT , ζ̂jT

x , ζ̂jT
y ]T and j = {1, 2, 3} (Fig. 2(b)). The

final position estimates are obtained by pooling these three

spatial maps, i.e., G = 1
3

∑3
i=1 G

i (Fig. 2(b)). The emit-

ters’ initial positions and brightnesses correspond to the local

maxima of G.

Let Supp(F̂ ) be the support set of estimated emitters’ po-

sitions obtained via spatial pooling. Localization is achieved

via solving a constrained maximum-likelihood problem with

an initial point obtained in the previous stage:

min
F∈C∩Supp(F̂ )

L(F ), (4)

which is a convex program. The molecular orientation pa-

rameters are estimated using the recovered second-moment

vectors η̂ = ŝM̂.

4. RESULTS

Fluorescent beads were utilized to validate our method’s de-

tection and localization capabilities. A sparse layer of beads

was imaged using the standard and Tri-spot PSFs with the

system described in [5] (Fig. 2). Despite the substantial over-

lap and channel mismatch, as evidenced by the offset of the

green dots from the peaks of the standard PSF (Fig. 2(c)), the

algorithm is able to recover the correct position and number

of emitters using the Tri-spot PSF (Fig. 2(d)).

λ-DNA (Thermo Scientific) was deposited onto cover-

slips using a molecular combing technique [12] and imaged

using a reducing-oxidizing buffer [13] and Tri-spot PSF. The

proposed method recovered the location, orientation, and ro-

tational mobility γ (γ = 0 for an isotropic emitter and γ = 1

for a fixed dipole) of many blinking YOYO-1 dyes transiently

bound to DNA (Fig. 3(a,b)). The long-axis of the DNA strand

was estimated by a simple least-squares polynomial fit, and

the orientation of the dyes bound to the strand (Δφ) was cal-

culated relative to this fit. As shown in Fig. 3(b), molecules

detected along a linear section of DNA are mostly oriented

perpendicular to the DNA axis, which is consistent with the

primary binding mode of YOYO-1 [14, 15]. The distribution

of binding angles is likely broadened by secondary dye bind-

ing modes along the major and minor grooves of DNA, i.e.,

along its axis [14]. These modes have been reported at high

concentrations of YOYO-1 and can be observed in regions
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Fig. 2. (a) False discovery of a single emitter using a grid-

based sparse recovery algorithm due to a channel misalign-

ment of one camera pixel. Accurate counting of emitters is re-

stored via a pooling strategy. (b) (left) Recovered GradMaps

for the first three bases and (right) the result of pooling these

maps. (c) Experimental images of beads using standard PSF

(100 ms exposure). (d) Images of beads in (c) using the Tri-

spot PSF and artificially reduced SNR (5 ms exposure). The

green dots in (c) and gray triangles in (d) display the localiza-

tions recovered by the proposed algorithm. Scale bar: 1 μm.

Color bars: (a,c,d) photons and (b) scaled-photon likelihood

per 58× 58 nm2 pixel.

of high localization density (Fig. 3(b)), where some dipoles

are oriented parallel to the strand. The recovered rotational

constraint yielded an average “wobble” cone angle of 91◦,

assuming uniform rotation within a cone. Our 3D estimate of

wobble angle is larger than previously observed for YOYO-1

[15] and SYTOX Orange [12] (another DNA intercalating

dye), which were 2D orientation measurements. As YOYO-1

is a bis-intercalator, each molecule is effectively two dipole

emitters with similar in-plane orientations but offset out-of-

plane orientations; this superposition of dipoles likely causes

a larger effective wobble angle in 3D and therefore an overes-

timate of the true rotational mobility of each bis-intercalator.

Previous 2D studies of YOYO-1 were not sensitive to this

out-of-plane offset.

The algorithm was also able to distinguish areas of rela-

tive organization and disorder. Regions where the average dye

orientation was not perpendicular to the DNA axis indicate lo-

cal fluctuations, or tangles, in the DNA strand (Fig. 3(e)) that

are not observable via standard SMLM (Fig. 3(d)).

5. CONCLUSION

Engineered PSFs for orientation-sensitive super-resolution

imaging pose major challenges, such as frequent overlapping

PSFs and channel registration errors, for standard localization
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Fig. 3. (a) Super-resolved image of λ-DNA. Inset upper-left:

a raw image showing the recovered molecular orientations

from four detected PSFs. Inset lower-right: distribution of

localization distances from the DNA axis (σΔr = 26 nm).

(b) Dye orientations within the region denoted by a gray

dashed rectangle in (a), overlaid on the estimated DNA axis

(white dashed line) and color-coded by rotational constraint

γ. Inset upper-left: dye intercalation into a DNA helix. Inset

lower-right: distribution of in-plane dye orientation relative

to DNA axis (Δφavg = 94◦, σΔφ = 28◦). (c) Diffraction-

limited image of a DNA strand. (d) Super-resolved image

corresponding to (c). (e) Dye orientations reveal order and

disorder (i.e. tangles) within the region denoted by the dashed

gray rectangle in (d). Scale bars: (a,c,d) 1 μm, (b) 400 nm, (e)

200 nm. Color bars: (a,d) localizations and (a inset) photons

per 58× 58 nm2 pixel.

algorithms. We have presented a novel, robust algorithm for

simultaneous recovery of the position and 3D orientation of

fluorescent molecules using engineered PSFs. In contrast to

methods based on defocus imaging, our algorithm can be

applied to arbitrary orientation-sensitive PSFs and remedies

mislocalizations due to PSF overlap and channel misalign-

ment. We validated this method by imaging λ-DNA labeled

with an intercalating dye, showing that the recovered molec-

ular dipole orientation is primarily perpendicular to the DNA

axis, which is consistent with previous observations. Inter-

estingly, by measuring the full 3D orientation of YOYO-1,

we observe a rotational constraint that is significantly smaller

than that measured by 2D methods, suggesting that 3D orien-

tation measurements may be necessary for revealing the true

rotational dynamics of single molecules.
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